
Advanced cluster options 2

Advanced Cluster Options
Date of Publish: 2019-05-28

https://docs.hortonworks.com/

https://docs.hortonworks.com/

Advanced cluster options | Contents | ii

Contents

Custom images.. 4
Build custom images.. 4
Prepare image catalog...4

Structure of the image catalog... 5
Example image catalog...5

Register image catalog... 8
Set CB_ENABLED_LINUX_TYPES..9
Create clusters with custom images...9

Custom blueprints...11
Creating blueprints..11
Creating dynamic blueprints...12

External authentication source..13
External database.. 13

Upload blueprints..14

Recipes..15
Writing recipes..15
Recipe parameters...17
Add recipes... 23
Reusable recipes..23

Install mysql connector recipe..24

Management packs... 24
Add management pack... 24

Kerberos security..25
Using existing KDC... 26
Using test KDC.. 27

EBS encryption on AWS... 28
Permissions for using EBS encryption.. 29
Encryption key requirements..30
Create a cluster with encrypted EBS volumes...31

Disk encryption on GCP..32
Encryption key requirements..32
Permissions required for key encryption... 33
Create a cluster with key encryption... 34

External databases for cluster components... 35
Supported databases..35

Advanced cluster options | Contents | iii

External database options... 36
Example 1: Built-in type Hive... 36
Example 2: Other type... 38

Creating a template blueprint for RDMBS..39
Register an external database... 39

External authentication source for clusters... 40
Preparing the blueprint for LDAP/AD...40
Register an authentication source...41

Custom internal hostnames for cluster hosts...43

Custom hostnames based on DNS on AWS...43
Configure DNS using Route53.. 44
Configure DNS using custom DNS server.. 47

Advanced cluster options Custom images

Custom images

In addition to providing default images, Cloudbreak allows you to create custom base images. Refer to this section if
you would like to create custom images for Cloudbreak-managed clusters.

Default images are available for each supported cloud provider and region. The following table lists the default base
images available:

Cloud provider Default image

AWS Amazon Linux

AWS Amazon Linux 2

Azure CentOS 7

GCP CentOS 7

OpenStack CentOS 7

Since these default images may not fit the requirements of some users (for example when user requirements include
custom OS hardening, custom libraries, custom tooling, and so on), you can use your own custom base images.

In order to use your own custom base images you must:

1. Build your custom image(s).
2. Prepare the custom image catalog JSON file and save it in a location accessible to the Cloudbreak instance.
3. Register your custom image catalog in Cloudbreak.
4. If using a different operating system than that included on default images, set the

CB_ENABLED_LINUX_TYPES variable in Profile.
5. Select a custom image when creating a cluster.

Note:

Only base images can be created and registered as custom images. Do not create or register prewarmed
images as custom images.

Build custom images
Refer to the https://github.com/hortonworks/cloudbreak-images repository for information on how to build custom
images.

This repository includes instructions and scripts to help you build custom images. Once you have the images, refer to
the documentation below for information on how to create an image catalog and register it with Cloudbreak.

Related Information
https://github.com/hortonworks/cloudbreak-images

Prepare image catalog
Once you’ve built the custom images, prepare your custom image catalog JSON file.

Steps

1. Prepare your custom image catalog JSON file. Use the information included in this section to create a valid image
catalog.

2. Once your image catalog JSON file is ready, save it in a location accessible via HTTP/HTTPS.

4

https://github.com/hortonworks/cloudbreak-images
https://github.com/hortonworks/cloudbreak-images

Advanced cluster options Custom images

Structure of the image catalog
Use this information to create a valid image catalog.

The image catalog JSON file includes the following two high-level sections:

• images: Contains information about the created images. The burned images are stored in the base-images section.
• versions: Contains the cloudbreak entry, which includes mapping between Cloudbreak versions and the image

identifiers of burned images available for these Cloudbreak versions.

Note:

After adding your image(s) to the images section, make sure to also update the versions section.

The images section

The burned images are stored in the base-images sub-section of images. The base-images section stores one or more
image “records”. Every image “record” must contain the date, description, images, os, os_type, and uuid fields.

Parameter Description

date Date for your image catalog entry.

description Description for your image catalog entry.

images The image sets by cloud provider. An image set must store the virtual
machine image IDs by the related region of the provider (AWS, Azure)
or contain one default image for all regions (GCP, OpenStack). The
virtual machine image IDs come from the result of the image burning
process and must be an existing identifier of a virtual machine image
on the related provider side. For the providers which use global rather
than per-region images, the region should be replaced with default .

os The operating system used in the image.

os_type The type of operating system which will be used to determine the
default Ambari and HDP/HDF repositories to use. Set os_type to
“redhat6” for amazonlinux or centos6 images. Set os_type to “redhat7”
for centos7 or rhel7 images.

uuid The uuid field must be a unique identifier within the file. You can
generate it or select it manually. The utility uuidgen available from
your command line is a convenient way to generate a unique ID.

package-versions The package versions used for Salt (salt) and Salt Bootstrap (salt-
bootstrap).

The versions section

The versions section includes a single “cloudbreak” entry, which maps the uuids to a specific Cloudbreak version:

Parameter Description

images Image uuid, same as the one that you specified in the base-images
section.

versions The Cloudbreak version(s) for which you would like to use the images.

Example image catalog
Use this example to create a valid image catalog.

Here is an example image catalog JSON file that includes two sets of custom base images:

• A custom base image for AWS:

• That is using Amazon Linux operating system
• That will use the Redhat 6 repos as default Ambari and HDP repositories during cluster create
• Has a unique ID of “44b140a4-bd0b-457d-b174-e988bee3ca47”

5

Advanced cluster options Custom images

• Is available for Cloudbreak 2.8.0
• A custom base image for Azure, Google, and OpenStack:

• That is using CentOS 7 operating system
• That will use the Redhat 7 repos as default Ambari and HDP repositories during cluster create
• Has a unique ID of “f6e778fc-7f17-4535-9021-515351df3692”
• Is available to Cloudbreak 2.8.0

You can also download it from here.

{
 "images": {
 "base-images": [
 {
 "date": "2017-10-13",
 "description": "Cloudbreak official base image",
 "images": {
 "aws": {
 "ap-northeast-1": "ami-78e9311e",
 "ap-northeast-2": "ami-84b613ea",
 "ap-southeast-1": "ami-75226716",
 "ap-southeast-2": "ami-92ce23f0",
 "eu-central-1": "ami-d95be5b6",
 "eu-west-1": "ami-46429e3f",
 "sa-east-1": "ami-86d5abea",
 "us-east-1": "ami-51a2742b",
 "us-west-1": "ami-21ccfe41",
 "us-west-2": "ami-2a1cdc52"
 }
 },
 "os": "amazonlinux",
 "os_type": "redhat6",
 "uuid": "44b140a4-bd0b-457d-b174-e988bee3ca47",
 "package-versions": {
 "salt": "2017.7.5",
 "salt-bootstrap": "0.13.0-2018-05-03T07:39:07"
 }
 },
 {
 "date": "2017-10-13",
 "description": "Cloudbreak official base image",
 "images": {
 "azure": {
 "Australia East": "https://
hwxaustraliaeast.blob.core.windows.net/images/hdc-hdp--1710161226.vhd",
 "Australia South East": "https://
hwxaustralisoutheast.blob.core.windows.net/images/hdc-hdp--1710161226.vhd",
 "Brazil South": "https://
sequenceiqbrazilsouth2.blob.core.windows.net/images/hdc-
hdp--1710161226.vhd",
 "Canada Central": "https://
sequenceiqcanadacentral.blob.core.windows.net/images/hdc-
hdp--1710161226.vhd",
 "Canada East": "https://
sequenceiqcanadaeast.blob.core.windows.net/images/hdc-hdp--1710161226.vhd",
 "Central India": "https://hwxcentralindia.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",
 "Central US": "https://
sequenceiqcentralus2.blob.core.windows.net/images/hdc-hdp--1710161226.vhd",
 "East Asia": "https://sequenceiqeastasia2.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",
 "East US": "https://sequenceiqeastus12.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",

6

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cb-doc-resources/custom-image-catalog2.json

Advanced cluster options Custom images

 "East US 2": "https://sequenceiqeastus22.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",
 "Japan East": "https://
sequenceiqjapaneast2.blob.core.windows.net/images/hdc-hdp--1710161226.vhd",
 "Japan West": "https://
sequenceiqjapanwest2.blob.core.windows.net/images/hdc-hdp--1710161226.vhd",
 "Korea Central": "https://hwxkoreacentral.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",
 "Korea South": "https://hwxkoreasouth.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",
 "North Central US": "https://
sequenceiqorthcentralus2.blob.core.windows.net/images/hdc-
hdp--1710161226.vhd",
 "North Europe": "https://
sequenceiqnortheurope2.blob.core.windows.net/images/hdc-
hdp--1710161226.vhd",
 "South Central US": "https://
sequenceiqouthcentralus2.blob.core.windows.net/images/hdc-
hdp--1710161226.vhd",
 "South India": "https://hwxsouthindia.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",
 "Southeast Asia": "https://
sequenceiqsoutheastasia2.blob.core.windows.net/images/hdc-
hdp--1710161226.vhd",
 "UK South": "https://hwxsouthuk.blob.core.windows.net/images/
hdc-hdp--1710161226.vhd",
 "UK West": "https://hwxwestuk.blob.core.windows.net/images/hdc-
hdp--1710161226.vhd",
 "West Central US": "https://
hwxwestcentralus.blob.core.windows.net/images/hdc-hdp--1710161226.vhd",
 "West Europe": "https://
sequenceiqwesteurope2.blob.core.windows.net/images/hdc-hdp--1710161226.vhd",
 "West India": "https://hwxwestindia.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",
 "West US": "https://sequenceiqwestus2.blob.core.windows.net/
images/hdc-hdp--1710161226.vhd",
 "West US 2": "https://hwxwestus2.blob.core.windows.net/images/
hdc-hdp--1710161226.vhd"
 },
 "gcp": {
 "default": "sequenceiqimage/hdc-hdp--1710161226.tar.gz"
 },
 "openstack": {
 "default": "hdc-hdp--1710161226"
 }
 },
 "os": "centos7",
 "os_type": "redhat7",
 "uuid": "f6e778fc-7f17-4535-9021-515351df3691",
 "package-versions": {
 "salt": "2017.7.5",
 "salt-bootstrap": "0.13.0-2018-05-03T07:39:07"
 }
 }
]
},
 "versions": {
 "cloudbreak": [
 {
 "images": [
 "44b140a4-bd0b-457d-b174-e988bee3ca47",
 "f6e778fc-7f17-4535-9021-515351df3692"
],
 "versions": [

7

Advanced cluster options Custom images

 "2.8.0"
]
 }
]
 }
}

Related Information
Example image catalog

Register image catalog
Once you've created your image catalog JSON file, register it with your Cloudbreak instance.

You can do this by using one of the following:

• Cloudbreak web UI
• Cloudbreak CLI
• By editing the Profile file

Note:

The content type of your image catalog file should be “application/json” for Cloudbreak to be able to process
it.

Register image catalog in the UI

Use these steps to register your custom image catalog in the Cloudbreak web UI.

Steps

1. In the Cloudbreak UI, select External Sources > Image Catalogs from the navigation menu.
2. Click Create Image Catalog:

3. Enter name for your image catalog and the URL to the location where it is stored.
4. Click Create:

After performing these steps, the image catalog will be available and automatically selected as the default entry in the
image catalog drop-down list in the create cluster wizard.

8

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cb-doc-resources/custom-image-catalog.json

Advanced cluster options Custom images

Register image catalog in the CLI

To register your custom image catalog using the CLI, use the cb imagecatalog create command. For more
information, refer to CLI documentation.

Register image catalog in the Profile

As an alternative to using the web UI or CLI, it is possible to place the catalog file to the Cloudbreak
deployer`s etc directory and then set CB_IMAGE_CATALOG_URL variable in your Profile to
IMAGE_CATALOG_FILE_NAME.JSON.

Steps

1. On the Cloudbreak machine, switch to the root user by using sudo su
2. Save the image catalog file on your Cloudbreak machine in the /var/lib/cloudbreak-deployment/etc directory.
3. Edit the Profile file located in /var/lib/cloudbreak-deployment by adding export CB_IMAGE_CATALOG_URL

to the file and set it to the name of your JSON file which declares your custom images. For example:

export CB_IMAGE_CATALOG_URL=custom-image-catalog.json

4. Save the Profile file.
5. Restart Cloudbreak by using:

cbd restart

Set CB_ENABLED_LINUX_TYPES
If using a different operating system than that included on the default images, you must set the
CB_ENABLED_LINUX_TYPES variable in Profile.

Note:

If you are using CentOS 6, CentOS 7, Amazon Linux, or Amazon Linux 2, you don't need to perform this
step. If your custom images include any other operating system, you must perform this step.

Steps

1. On the Cloudbreak machine, switch to the root user by using sudo su
2. Edit the Profile file located in /var/lib/cloudbreak-deployment by adding export CB_ENABLED_LINUX_TYPES

and set it to include all operating systems that you would like to use on your custom images. For example:

CB_ENABLED_LINUX_TYPES=redhat6,redhat7,centos6,centos7,amazonlinux

Possible values are: centos6, centos7, redhat6, redhat7, debian9, ubuntu16, ubuntu18, sles12, amazonlinux,
amazonlinux2.

3. Save the Profile file.
4. Restart Cloudbreak by using:

cbd restart

Create clusters with custom images
Once you have registered your image catalog, you can use your custom image(s) when creating a cluster.

You can do this either with the web UI or CLI.

9

Advanced cluster options Custom images

Select a custom image in Cloudbreak web UI

Perform these steps in the advanced General Configuration section of the create cluster wizard.

Steps

1. In the create cluster wizard, make sure that you are using the advanced wizard version.
2. Navigate to the Image Settings section of the wizard.
3. Under Choose Image Catalog, select your custom image catalog.
4. Under Choose Image Type, select “Base Image”.
5. Under Choose Image, select the provider-specific image that you would like to use. The “os” that you specified in

the image catalog will be displayed in the selection and the content of the “description” will be displayed in green:

6. You can leave the default entries for the Ambari and HDP/HDF repositories, or you can customize to point to
specific versions of Ambari and HDP/HDF that you want to use for the cluster.

Select a custom image in the CLI

To use the custom image when creating a cluster via CLI, perform these steps.

Steps

1. Obtain the image ID. For example:

cb imagecatalog images aws --imagecatalog custom-catalog
[
 {
 "Date": "2017-10-13",
 "Description": "Cloudbreak official base image",
 "Version": "2.5.1.0",
 "ImageID": "44b140a4-bd0b-457d-b174-e988bee3ca47"
 },
 {
 "Date": "2017-11-16",
 "Description": "Official Cloudbreak image",
 "Version": "2.5.1.0",
 "ImageID": "3c7598a4-ebd6-4a02-5638-882f5c7f7add"
 }
]

2. When preparing a CLI JSON template for your cluster, set the “ImageCatalog” parameter to the image catalog that
you would like to use, and set the “ImageId” parameter to the uuid of the image from that catalog that you would
like to use. For example:

...
 "name": "aszegedi-cli-ci",

10

Advanced cluster options Custom blueprints

 "network": {
 "subnetCIDR": "10.0.0.0/16"
 },
 "orchestrator": {
 "type": "SALT"
 },
 "parameters": {
 "instanceProfileStrategy": "CREATE"
 },
 "region": "eu-west-1",
 "stackAuthentication": {
 "publicKeyId": "seq-master"
 },
 "userDefinedTags": {
 "owner": "aszegedi"
 },
 "imageCatalog": "custom-catalog",
 "imageId": "3c7598a4-ebd6-4a02-5638-882f5c7f7add"
}

Custom blueprints

In addition to providing default blueprints, Cloudbreak allows you to bring your own custom blueprints. Refer to this
section if you would like to use custom blueprints for Cloudbreak-managed clusters.

We recommend that you review the default blueprints to check if they meet your requirements. You can do this by
selecting Blueprints from the navigation pane in the Cloudbreak web UI.

Related Information
Default cluster configurations

Creating blueprints
A blueprint exported from a running Ambari cluster can be reused in Cloudbreak after slight modifications.

Ambari blueprints are specified in JSON format. When a blueprint is exported, it includes some hardcoded
configurations such as domain names, memory configurations, and so on, that are not applicable to Cloudbreak-
managed clusters. There is no automatic way to modify an exported blueprint and make it instantly usable in
Cloudbreak, the modifications have to be done manually.

In general, the blueprint should include the following elements:

"Blueprints": {
 "blueprint_name": "hdp-small-default",
 "stack_name": "HDP",
 "stack_version": "2.6"
 },
 "settings": [],
 "configurations": [],
 "host_groups": [
 {
 "name": "master",
 "configurations": [],
 "components": []
 },
 {
 "name": "worker",
 "configurations": [],
 "components": []

11

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/content/cb_default-blueprints.html

Advanced cluster options Custom blueprints

 },
 {
 "name": "compute",
 "configurations": [],
 "components": []
 }
]
 }

For correct blueprint layout and other information about Ambari blueprints, refer to the Ambari cwiki page. You can
also use the default blueprints provided in the Cloudbreak web UI as a model.

After you provide the blueprint to Cloudbreak, the host groups in the JSON will be mapped to a set of instances when
starting the cluster, and the specified services and components will be installed on the corresponding nodes. It is not
necessary to define a complete configuration in the blueprint. If a configuration is missing, Ambari will use a default
value.

Blueprint name

Cloudbreak requires you to define an additional element in the blueprint called “blueprint_name”. This should be a
unique name within Cloudbreak's list of blueprints. For example:

"Blueprints": {
 "blueprint_name": "hdp-small-default",
 "stack_name": "HDP",
 "stack_version": "2.6"
 },
 "settings": [],
 "configurations": [],
 "host_groups": [
 ...

The “blueprint_name” is not included in the Ambari export.

Blueprints for Ambari 2.6.1 or newer

Ambari 2.6.1 or newer cannot install the mysqlconnector, as the connector is released under version 2 of the GNU
General Public License. Therefore, when creating a blueprint for Ambari 2.6.1 or newer you should not include the
MYSQL_SERVER component for Hive Metastore in your blueprint. Instead, you have two options:

• Configure an external RDBMS instance for Hive Metastore and include the JDBC connection information in your
blueprint. If you choose to use an external database that is not PostgreSQL (such as Oracle, mysql) you must also
set up Ambari with the appropriate connector; to do this, create a pre-ambari-start recipe and pass it when creating
a cluster.

• If a remote Hive RDBMS is not provided, Cloudbreak installs a Postgres instance and configures it for Hive
Metastore during the cluster launch.

For information on how to configure an external database and pass your external database connection parameters,
refer to Ambari cwiki.

If you still include MYSQL_SERVER in your blueprint, then depending on your chosen operating system, MariaDB
or MySQL Server will be installed.

Related Information
Apache cwiki: Blueprints

Creating dynamic blueprints
Cloudbreak allows you to create dynamic blueprints, which include templating.

12

https://cwiki.apache.org/confluence/display/AMBARI/Blueprints

Advanced cluster options Custom blueprints

The values of the variables specified in the blueprint are dynamically replaced in the cluster creation phase, picking
up the parameter values that you provided in the Cloudbreak web UI or CLI. Cloudbreak supports mustache kind of
templating with "{{{ }}}" syntax.

Production cluster configurations typically include certain configuration parameters, such as those related to external
database (for Hive, Ranger, etc) and LDAP/AD, forcing you to create multiple versions of the same blueprint to
handle different component configurations for these external systems. Dynamic blueprints solve this problem by
offering the ability to manage external sources (such as RDBMS and LDAP/AD) outside of your blueprint. They
merely use the blueprint as a template and Cloudbreak injects the actual configurations into your blueprint. This
simplifies the reuse of cluster configurations for external sources (RDBMS and LDAP/AD) and simplifies the
blueprints themselves.

Note:

You cannot use functions in the blueprint file; only variable injection is supported.

External authentication source
When using an external authentication (LDAP/AD) source for your cluster, the following variables can be specified in
your blueprint for replacement:

Variable Description Example

ldap.connectionURL the URL of the LDAP (host:port) ldap://10.1.1.1:389

ldap.bindDn The root Distinguished Name to search in the
directory for users

CN=Administrator,CN=Users,DC=ad,DC=hdc,DC=com

ldap.bindPassword The root Distinguished Name password Password1234!

ldap.directoryType The directory of type LDAP or ACTIVE_DIRECTORY

ldap.userSearchBase User search base CN=Users,DC=ad,DC=hdc,DC=com

ldap.userNameAttribute Username attribute cn

ldap.userObjectClass Object class for users person

ldap.groupSearchBase Group search base OU=Groups,DC=ad,DC=hdc,DC=com

ldap.groupNameAttribute Group attribute cb

ldap.groupObjectClass Group object class group

ldap.groupMemberAttribute Attribute for membership member

ldap.domain Your domain example.com

Related Information
External authentication source for clusters

External database
When using external databases (RDBMS) for your cluster components, the following variables can be specified in
your blueprint for replacement:

Variable Description Example

rds.[type].connectionString The jdbc url to the RDBMS jdbc:postgresql://db.test:5432/test

rds.[type].connectionDriver The connection driver org.postgresql.Driver

rds.[type].connectionUserName The user name to the database admin

rds.[type].connectionPassword The password for the connection Password1234!

rds.[type].subprotocol Parsed from jdbc url postgres

rds.[type].databaseEngine Capital database name POSTGRES

13

Advanced cluster options Custom blueprints

Upload blueprints
Once you have your blueprint ready, upload it to Cloudbreak and then select it during cluster creation.

Upload blueprints from the web UI

Follow these steps to upload a blueprint from the Cloudbreak web UI.

Steps

1. In the Cloudbreak web UI, select Blueprints from the navigation pane.
2. To add your own blueprint, click Create Blueprint and enter the following parameters:

Parameter Value

Name Enter a name for your blueprint.

Description (Optional) Enter a description for your blueprint.

Blueprint Source Select one of:

• Text: Paste blueprint in JSON format.
• File: Upload a file that contains the blueprint.
• URL: Specify the URL for your blueprint.

3. To use the uploaded blueprints, select it when creating a cluster. The option is available on the General
Configuration page. First select the Platform Version and then select your chosen blueprint under Cluster Type:

Upload blueprint from the CLI

To upload a custom blueprint from the CLI, use the cb blueprint create command. To use the uploaded blueprints,
generate a valid JSON template and then create a cluster with cb cluster create.

Related Information
Creating a cluster

14

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/index.html

Advanced cluster options Recipes

Recipes

Cloudbreak allows you to create and run scripts (called "recipes") that perform specific tasks on your cluster nodes.
Refer to this section if you would like to create and use recipes.

Although Cloudbreak lets you provision clusters in the cloud based on custom Ambari blueprints, Cloudbreak
provisioning options don’t consider all possible use cases. For that reason, recipes (custom scripts) can be used. A
recipe is a script that runs on all nodes of a selected node group at a specific time. You can use recipes for tasks such
as installing additional software or performing advanced cluster configuration. For example, you can use a recipe to
put a JAR file on the Hadoop classpath.

Available recipe execution times are:

• Before Ambari server start
• After Ambari server start
• After cluster installation
• Before cluster termination

You can upload your recipes to Cloudbreak via the web UI or CLI. Then, when creating a cluster, you can optionally
attach one or more “recipes” and they will be executed on a specific host group at a specified time.

Writing recipes
Refer to these guidelines when creating your recipes.

When using recipes, consider the following guidelines:

• Cloudbreak supports running bash and python scripts as recipes. We recommend using scripts with Shebang
character sequence, for example:

#!/bin/sh
#!/bin/bash
#!/usr/bin/sh
#!/usr/bin/bash
#!/usr/bin/env sh
#!/usr/bin/env bash
#!/bin/sh -x
#!/usr/bin/python
#!/usr/bin/env python

• The scripts are executed as root. The recipe output is written to /var/log/recipes on each node on which it was
executed.

• Supported parameters can be specified as variables by using mustache kind of templating with "{{{ }}}" syntax.
Once specified in a recipe, these variables are dynamically replaced when the recipe is executed, generating the
actual values that you provided to Cloudbreak as part of cluster creation process.

For example, if your cluster includes an external LDAP and your recipe includes {{{ldap.connectionURL}}}, as
demonstrated in the following example

#!/bin/bash -e

main() {
 ping {{{ ldap.connectionURL }}}
}

[["$0" == "$BASH_SOURCE"]] && main "$@"

15

https://en.wikipedia.org/wiki/Shebang_(Unix)

Advanced cluster options Recipes

then, when this recipe runs, the {{{ldap.connectionURL}}} is replaced with the actual connection URL specified
as part of cluster creation process, as demonstrated in the following example:

#!/bin/bash -e

main() {
 ping 192.168.59.103
}

[["$0" == "$BASH_SOURCE"]] && main "$@"

• Recipe logs can be found at /var/log/recipes/${RECIPE_TYPE}/${RECIPE_NAME}.log
• The scripts are executed on all nodes of the host groups that you select (such as “master”, “worker”, “compute”).
• In order to be executed, your script must be in a network location which is accessible from the Cloudbreak and

cluster instances VPC.
• Make sure to follow Linux best practices when creating your scripts. For example, don’t forget to script “Yes”

auto-answers where needed.
• Do not execute yum update –y as it may update other components on the instances (such as salt) – which can

create unintended or unstable behavior.

Example Python script

#!/usr/bin/python
print("An example of a python script")
import sys
print(sys.version_info)

Example bash script for yum proxy settings

#!/bin/bash
cat >> /etc/yum.conf
<<ENDOF
proxy=http://10.0.0.133:3128
ENDOF

Example recipe including variables

Original recipe:

#!/bin/bash -e

function setupAtlasServer() {
 curl -iv -u {{{ general.userName }}}:{{{ general.password }}}
 -H "X-Requested-By: ambari" -X POST -d '{"RequestInfo":
{"command":"RESTART","context":"Restart all components required
 ATLAS","operation_level":
{"level":"SERVICE","cluster_name":"{{{ general.clusterName }}}","service_name":"ATLAS"}},"Requests/
resource_filters":[{"hosts_predicate":"HostRoles/
stale_configs=false&HostRoles/cluster_name={{{ general.clusterName }}}"}]}'
 http://$(hostname -f):8080/api/v1/clusters/{{{ general.clusterName }}}/
requests
}

main() {
 setupAtlasServer
}

[["$0" == "$BASH_SOURCE"]] && main "$@"

16

Advanced cluster options Recipes

Generated recipe (to illustrate how the variables from the original recipe were replaced by Cloudbreak):

#!/bin/bash -e

function setupAtlasServer() {
 curl -iv -u admin:admin123 -H "X-Requested-By: ambari" -X POST -d
 '{"RequestInfo":{"command":"RESTART","context":"Restart all components
 required ATLAS","operation_level":{"level":"SERVICE","cluster_name":"super-
cluster","service_name":"ATLAS"}},"Requests/resource_filters":
[{"hosts_predicate":"HostRoles/stale_configs=false&HostRoles/
cluster_name=super-cluster"}]}' http://$(hostname -f):8080/api/v1/clusters/
super-cluster/requests
}

main() {
 setupAtlasServer
}

[["$0" == "$BASH_SOURCE"]] && main "$@"

Recipe parameters
The following supported parameters can be specified as variables in recipes by using mustache kind of templating
with "{{{ }}}" syntax.

The parameter keys listed below follow the following general conventions:

• { } indicates that the parameter key has multiple supported values, which are provided in this documentation. For
example {fileSystemType} can be one of the following: s3, adls, adls_gen_2, wasb, or gcs.

• [index] indicates that the parameter includes an index value for example sharedService.datalakeComponents.
[index] can be "sharedService.datalakeComponents.[0]", "sharedService.datalakeComponents.[1]", and so on.
There is no easy way to find out what the index will be, but you may still be able to use these parameters (for
example by creating a condition to filter them).

Custom properties

Any custom property specified in the blueprint can be used as a recipe parameter. Refer to Custom properties
documentation.

General

The general parameter group includes parameters related to general cluster configuration.

Parameter key Description Example key Example value

general.email Email of the Cloudbreak user. general.email cloudbreak@hortonworks.com

general.gatewayInstanceMetadataPresentedFlag indicating if gateway
instance metadata is present.

general.gatewayInstanceMetadataPresentedtrue

general.instanceGroupsPresented Flag indicates that instance groups
are presented.

general.instanceGroupsPresented true

general.clusterName Name of cluster. general.clusterName testcluster

general.stackName Name of stack. general.stackName teststack

general.uuid UUID of cluster. general.uuid 9aab7fdb-8940-454b-
bc0a-62f04bce6519

general.userName Ambari username. general.userName admin

general.password Ambari password. general.password admin1234

17

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/content/cb_custom-properties.html

Advanced cluster options Recipes

Parameter key Description Example key Example value

general.executorType Type of execution. Possible
values: DEFAULT or
CONTAINER.

general.executorType DEFAULT

general.ambariIp Ambari IP. general.ambariIp 127.0.0.1

general.orchestratorType Type of cluster orchestration.
Possible values: HOST or
CONTAINER.

general.orchestratorType HOST

general.containerExecutor Flag indicates that the cluster is
running containers.

general.containerExecutor false

general.nodeCount Number of nodes. general.nodeCount 5

general.primaryGatewayInstanceDiscoveryFQDNFQDN of primary gateway
instance.

general.primaryGatewayInstanceDiscoveryFQDNip-10-0-88-28.example.com

general.kafkaReplicationFactor Number indicating the Kafka
replication factor (3 or 1).

general.kafkaReplicationFactor 1

Attached cluster

The following parameters are only used with clusters attached to a data lake.

Parameter key Description Example key Example value

REMOTE_CLUSTER_NAME Name of data lake cluster to
which the workload cluster is
attached.

REMOTE_CLUSTER_NAME testclusterdatalake

remoteClusterName Name of data lake cluster to
which the workload cluster is
attached.

remoteClusterName testclusterdatalake

remote.cluster.name Name of data lake cluster to
which the workload cluster is
attached.

remote.cluster.name testclusterdatalake

cluster_name Cluster name. cluster_name testcluster

cluster.name Cluster name. cluster.name testcluster

ranger.audit.solr.zookeepers Ranger Audit URL. ranger.audit.solr.zookeepers ip-10-0-137-205.eu-
west-1.compute.internal:2181/
infra-solr

atlas.rest.address Atlas component REST address. atlas.rest.address http://ip-10-0-137-205.eu-
west-1.compute.internal:21000

atlas.kafka.bootstrap.servers Bootstrap server URL for Atlas
Kafka.

atlas.kafka.bootstrap.servers ip-10-0-137-205.eu-
west-1.compute.internal:6667

ranger_admin_username Username of Ranger admin. ranger_admin_username amb_ranger_admin

policymgr_external_url Load balancer URL of Ranger. policymgr_external_url http://ip-10-0-137-205.eu-
west-1.compute.internal:6080

Blueprint

The bleuprint parameter group includes parameters related to blueprint configuration.

Parameter key Description Example key Example value

blueprint.blueprintText Blueprint text in JSON format. blueprint.blueprintText

blueprint.version Version of blueprint. blueprint.version 3.2

blueprint.type Type of blueprint. blueprint.type HDF

blueprint.components.[index] Components in the blueprint. blueprint.components.[0] TEZ_CLIENT

18

Advanced cluster options Recipes

Blueprint components

The components represented in a blueprint can be used as a recipe parameters. Possible uses of these values are to list
the blueprint's components or check if this list contains a specific component.

Parameter key Description Example key Example value

components.[index] The components represented in a
blueprint.

components.[0] TEZ_CLIENT

Cloud storage

The fileSystemConfigs parameter group includes parameters related to cloud storage configuration.

When forming the parameter keys, the {fileSystemType} should be replaced with an actual cloud storage type such as
"s3", "adls", "adls_gen_2", "wasb", or "gcs".

Parameter key Description Example key Example value

File system common configurations

fileSystemConfigs.
{fileSystemType}.storageContainer

Name of container in Azure
storage account (Cloudbreak +
stackId).

fileSystemConfigs.s3.storageContainercloudbreak123

fileSystemConfigs.
{fileSystemType}.type

Type of filesystem. fileSystemConfigs.s3.type S3

fileSystemConfigs.
{fileSystemType}.defaultFs

Flag to indicate if the file system
is the default filesystem.

fileSystemConfigs.s3.defaultFs false

fileSystemConfigs.
{fileSystemType}.locations.
[index].configFile

Configuration file used to
configure the filesystem.

fileSystemConfigs.s3.locations.
[0].configFile

hbase-site

fileSystemConfigs.
{fileSystemType}.locations.
[index].property

Property key of filesystem path in
defined config.

fileSystemConfigs.s3.locations.
[0].property

hbase.rootdir

fileSystemConfigs.
{fileSystemType}.locations.
[index].value

Value of filesystem path in
defined config.

fileSystemConfigs.s3.locations.
[0].value

s3a://ahorvathtestranger/
testrecipe2/apps/hbase/data

Amazon S3 configurations

fileSystemConfigs.s3.instanceProfileARN of related instance profile in
AWS

fileSystemConfigs.s3.instanceProfilearn:aws:iam::980678866538:instance-
profile/CloudbreakRole

WASB configurations

fileSystemConfigs.wasb.accountKeyAccess key of the corresponding
Azure storage account.

fileSystemConfigs.wasb.accountKey81a9blll-bebf-436f-a333-
f67b29880f1z

fileSystemConfigs.wasb.accountNameName of the corresponding Azure
storage account.

fileSystemConfigs.wasb.accountNameteststorageaccount

fileSystemConfigs.wasb.secure Flag indicating that the file system
is secure.

fileSystemConfigs.wasb.secure true

fileSystemConfigs.wasb.resourceGroupNameName of the corresponding Azure
resource group.

fileSystemConfigs.wasb.resourceGroupNametestresourcegroup

fileSystemConfigs.wasb.storageContainerNameName of container in Azure
storage account.

fileSystemConfigs.wasb.storageContainerNametestcontainer

ADLS Gen1 configurations

fileSystemConfigs.adls.accountNameName of the corresponding Azure
storage account.

fileSystemConfigs.adls.accountNameteststorageaccount

fileSystemConfigs.adls.clientId The corresponding Azure client
ID.

fileSystemConfigs.adls.clientId a9a9a88e-28dc-4851-
ad3d-182a08c44666

19

Advanced cluster options Recipes

Parameter key Description Example key Example value

fileSystemConfigs.adls.tenantId Tenant ID of Azure account. fileSystemConfigs.adls.tenantId d85131e4-1763-42d6-b9c7-
b6bad64b3a51

fileSystemConfigs.adls.resourceGroupNameName of the corresponding Azure
resource group.

fileSystemConfigs.adls.resourceGroupNametestresourcegroup

ADLS Gen2 configurations

fileSystemConfigs.adls_gen_2.accountNameName of the corresponding Azure
storage account.

fileSystemConfigs.adls_gen_2.accountNameteststorageaccount

fileSystemConfigs.adls_gen_2.accountKeyAccess key of the corresponding
Azure storage account.

fileSystemConfigs.adls_gen_2.accountKey81a9blll-bebf-436f-a333-
f67b29880f1z

fileSystemConfigs.adls_gen_2.storageContainerNameName of container in Azure
storage account.

fileSystemConfigs.adls_gen_2.storageContainerNametestcontainer

GCS configurations

fileSystemConfigs.gcs.serviceAccountEmailEmail of the user's GCS account. fileSystemConfigs.gcs.serviceAccountEmailtest@gmail.com

External authentication source

The ldap parameter group includes parameters related to external authentication source configuration.

Parameter key Description Example key Example value

ldap.bindDn LDAP Bind DN. ldap.bindDn Admin2@AD.HWX.COM

ldap.bindPassword Root Distinguished Name (Bind
DN) password.

ldap.bindPassword Admin1234

ldap.directoryType Directory type. Possible
values: LDAP or
ACTIVE_DIRECTORY.

ldap.directoryType ACTIVE_DIRECTORY

ldap.userSearchBase LDAP user search base. This
defines the location in the
directory from which the LDAP
search begins.

ldap.userSearchBase OU=Users,OU=AD,DC=AD,DC=HWX,DC=COM

ldap.userNameAttribute The attribute for which to conduct
a search on the user base.

ldap.userNameAttribute sAMAccountName

ldap.userObjectClass Directory object class for users. ldap.userObjectClass person

ldap.groupSearchBase LDAP group search base. This
defines the location in the
directory from which the LDAP
search begins.

ldap.groupSearchBase OU=Users,OU=AD,DC=AD,DC=HWX,DC=COM

ldap.groupNameAttribute The attribute for which to conduct
search on groups.

ldap.groupNameAttribute cn

ldap.groupObjectClass The directory object class for
groups.

ldap.groupObjectClass group

ldap.groupMemberAttribute The attribute on the group object
class that represents members.

ldap.groupMemberAttribute member

ldap.domain Domain of LDAP. ldap.domain ad.hwx.com

ldap.protocol Protocol used by the LDAP:
LDAP or LDAPS.

ldap.protocol ldap

ldap.adminGroup Name of the admin group. ldap.adminGroup cloudbreak

ldap.userDnPattern LDAP User DN Pattern, which is
used to bind an LDAP user.

ldap.userDnPattern CN={0},OU=Users,OU=AD,DC=AD,DC=HWX,DC=COM

ldap.connectionURL Full connection URL of the
authentication source.

ldap.connectionURL ldap://hwxmsad-
bd87e95aa9775a71.elb.eu-
west-1.amazonaws.com:389

20

Advanced cluster options Recipes

Parameter key Description Example key Example value

ldap.host Host of the authentication source
(without protocol).

ldap.host hwxmsad-
bd87e95aa9775a71.elb.eu-
west-1.amazonaws.com

ldap.port Port of the authentication source. ldap.port 389

External database

The rds parameter group includes parameters related to external database configuration.

When forming the parameter keys, the {rdsType} should be replaced with the actual database type such as "ambari",
"beacon", "druid", "hive", "oozie", "ranger", "superset", or some other user-defined type.

Parameter key Description Example key Example value

rds.{rdsType}.connectionURL JDBC connection URL. rds.hive.connectionURL Value is specified in the following
format: jdbc:postgresql://
host:port/database

rds.{rdsType}.connectionDriver JDBC driver used for connection. rds.hive.connectionDriver org.postgresql.Driver

rds.
{rdsType}.connectionUserName

Username used for the JDBC
connection.

rds.hive.connectionUserName testuser

rds.
{rdsType}.connectionPassword

Password used for the JDBC
connection.

rds.hive.connectionPassword TestPssword123

rds.{rdsType}.databaseName Target database of the JDBC
connection.

rds.hive.databaseName myhivedb

rds.{rdsType}.host Host of the JDBC connection. rds.hive.host mydbhost

rds.
{rdsType}.hostWithPortWithJdbc

Host of JDBC connection with
port and JDBC prefix.

rds.hive.hostWithPortWithJdbc Value is specified in the following
format: jdbc:postgresql://host:port

rds.{rdsType}.subprotocol Sub-protocol from the JDBC
URL.

rds.hive.subprotocol postgresql

rds.{rdsType}.connectionString URL of JDBC the connection.
In case of Ranger, this does not
contain the port.

rds.hive.connectionString Value is specified in the following
format: jdbc:postgresql://
host:port/database

rds.{rdsType}.databaseVendor Database vendor. rds.hive.databaseVendor POSTGRES

rds.{rdsType}.withoutJDBCPrefix URL of the JDBC connection
without JDBC prefix.

rds.hive.withoutJDBCPrefix Value is specified in the following
format: host:port/database

Gateway

The gateway parameter group includes parameters related to gateway configuration.

Parameter key Description Example key Example value

gateway.gatewayType Type of gateway. Possible values:
CENTRAL/INDIVIDUAL.

gateway.gatewayType CENTRAL

gateway.path Base path of gateway (typically
this is the name of the cluster).

gateway.path test

gateway.ssoType Type of SSO. Possible values:
SSO_PROVIDER/NONE.

gateway.ssoType SSO_PROVIDER

gateway.ssoConfigured Flag indicating if SSO is
provided.

gateway.ssoConfigured true

gateway.ssoProvider Path to the SSO provider. gateway.ssoProvider /test/sso/api/v1/websso

gateway.signKey Base64 encoded signing key. gateway.signKey

gateway.signPub Signing certificate (x509 format). gateway.signPub

21

Advanced cluster options Recipes

Parameter key Description Example key Example value

gateway.signCert Public SSH key used for signing
(standard public key format).

gateway.signCert

gateway.gatewayTopologies.
{topologyName}

List of exposed services in a
specific topology. Value is
specified in JSON format.

gateway.gatewayTopologies.dp-
proxy

{"services":
["AMBARI","SPARK2HISTORYUI","LIVYSERVER"]}

HDF

The hdf parameter group includes parameters related to HDF configuration.

Parameter key Description Example key Example value

hdf.nodeEntities NiFi node entities content
(needed in nifi-ambari-ssl-config
configuration).

hdf.nodeEntities <property name="Node Identity
1">CN=ip-10-0-85-196.eu-
west-1.compute.internal,
OU=NIFI</property>

hdf.registryNodeEntities NiFi registry node entities content
(needed in nifi-registry-ambari-
ssl-config configuration).

hdf.registryNodeEntities <property name="NiFi Identity
1">CN=ip-10-0-85-196.eu-
west-1.compute.internal,
OU=NIFI</property>

hdf.nodeUserEntities NiFi node user entities content. hdf.nodeUserEntities <property name="Initial
User Identity
1">CN=ip-10-0-85-196.eu-
west-1.compute.internal,
OU=NIFI</property>

hdf.proxyHosts List of proxy hosts (needed in
nifi-properties configuration).

hdf.proxyHosts 34.244.122.193:9091

Shared services

The sharedService parameter group includes parameters related to data lake configuration.

Parameter key Description Example key Example value

sharedService.rangerAdminPasswordAdmin password of the Ranger
component.

sharedService.rangerAdminPasswordAdmin1234

sharedService.attachedCluster Flag indicating that the cluster is
attached to a data lake cluster.

sharedService.attachedCluster true

sharedService.datalakeCluster Flag indicating that the cluster is a
data lake cluster.

sharedService.datalakeCluster true

sharedService.rangerAdminPort Admin port of the Ranger
component.

sharedService.rangerAdminPort 6080

sharedService.datalakeAmbariIp Ambari IP of data lake cluster. sharedService.datalakeAmbariIp 127.0.0.1

sharedService.datalakeAmbariFqdn Ambari FQDN of data lake cluster
(or the IP if FQDN cannot be
found).

sharedService.datalakeAmbariFqdn ip-10-0-88-28.example.com

sharedService.datalakeComponents.
[index]

Data lake component list. sharedService.datalakeComponents.
[0]

METRICS_COLLECTOR

Stack Version

Parameter key Description Example key Example value

stack_version Stack (HDP or HDF) version. 3.2

Related Information
Custom properties

22

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/content/cb_custom-properties.html

Advanced cluster options Recipes

Add recipes
In order to use your recipe for clusters, you must first register it with Cloudbreak.

Steps

1. Place your script in a network location accessible from Cloudbreak and cluster instances virtual network.
2. Select External Sources > Recipes from the navigation menu.
3. Click on Create Recipe.
4. Provide the following:

Parameter Value

Name Enter a name for your recipe.

Description (Optional) Enter a description for your recipe.

Execution Type Select one of the following options:

• pre-ambari-start: The script will be executed prior to Ambari
server start.

• post-ambari-start: The script will be executed after Ambari
server start but prior to cluster installation.

• post-cluster-install: The script will be executed after cluster
deployment.

• pre-termination: The script will be executed before cluster
termination.

Script Select one of:

• Script: Paste the script.
• File: Point to a file on your machine that contains the recipe.
• URL: Specify the URL for your recipe.

5. When creating a cluster, you can select and attach previously added recipes on the advanced Cluster Extensions
page of the create cluster wizard:

Related Information
Creating a cluster

Reusable recipes
The following section includes recipes for running common tasks.

23

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/index.html

Advanced cluster options Management packs

Install mysql connector recipe
This recipe can be used to manually install and register the ‘mysql-connector-java.jar’.

Starting from Ambari version 2.6, if you have ‘MYSQL_SERVER’ component in your blueprint, you have to
manually install and register the ‘mysql-connector-java.jar’. If you would like to automate this process in Cloudbreak:

• Review the recipe content to ensure that the version of the connector provided in the recipe is as desired; if it is
not adjust the version.

• Apply the recipe as “pre-ambari-start”.

The recipe content is:

#!/bin/bash

download_mysql_jdbc_driver() {
 wget https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-
java-5.1.39.tar.gz -P /tmp
 tar xzf /tmp/mysql-connector-java-5.1.39.tar.gz -C /tmp/
 cp /tmp/mysql-connector-java-5.1.39/mysql-connector-java-5.1.39-bin.jar /
opt/jdbc-drivers/mysql-connector-java.jar
}

main() {
 download_mysql_jdbc_driver
}

main

Related Information
Using Hive with MySQL/MariaDB (Ambari)

Management packs

Cloudbreak supports using management packs, allowing you to register them in Cloudbreak web UI and CLI and then
select to install them as part of cluster creation. Refer to this section if you would like to use management packs with
Cloudbreak.

Management packs allow you to deploy a range of services to your Ambari-managed cluster. You can use a
management pack to deploy a specific component or service, such as HDP Search, or to deploy an entire platform,
such as HDF.

For general information on management packs, refer to Apache cwiki.

Related Information
Apache cwiki: Management Packs

Creating a cluster

Add management pack
In order to have a management stack installed for a specific cluster, you must register it with Cloudbreak by using the
following steps.

Steps

1. Obtain the URL for the management pack tarball file that you want to register in Cloudbreak. The tarball must be
available in a location accessible to clusters created by Cloudbreak.

2. In Cloudbreak web UI, select External Sources > Management Packs from the navigation menu.
3. Click on Register Management Pack.

24

https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.2.0/bk_ambari-administration/content/using_hive_with_mysql.html
https://cwiki.apache.org/confluence/display/AMBARI/Management+Packs
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/index.html

Advanced cluster options Kerberos security

4. Provide the following:

Parameter Value

Name Enter a name for your management pack.

Description (Optional) Enter a description.

Management pack URL Provide the URL to the location where the management pack tarball
file is available.

Remove all existing Ambari stack definitions prior to installing this
Management Pack (“mpack –purge”).

 Checking this option allows you to purge any existing stack
definition and should be included only when installing a stack
management pack. Do not select this when installing an add-on
service management pack.

5. When creating a cluster, on the advanced Cluster Extensions page of the create cluster wizard, you can select one
or more previously registered management packs. After selecting, click Install to use the management pack for the
cluster:

Kerberos security

When creating a cluster via Cloudbreak, you can optionally enable Kerberos security in that cluster and provide your
Kerberos configuration details. Cloudbreak will automatically extend your blueprint configuration with the defined
properties. Refer to this section if you would like to use Kerberos security with Cloudbreak-managed clusters.

Kerberos overview

Kerberos is a third party authentication mechanism, in which users and services that users wish to access Hadoop rely
on a third party - the Kerberos server - to authenticate each to the other.

The Kerberos server itself is known as the Key Distribution Center, or KDC. At a high level, the KDC has three parts:

• A database of the users and services (known as principals) and their respective Kerberos passwords
• An Authentication Server (AS) which performs the initial authentication and issues a Ticket Granting Ticket

(TGT)
• A Ticket Granting Server (TGS) that issues subsequent service tickets based on the initial TGT

A user principal requests authentication from the AS. The AS returns a TGT that is encrypted using the user
principal’s Kerberos password, which is known only to the user principal and the AS. The user principal decrypts
the TGT locally using its Kerberos password, and from that point forward, until the ticket expires, the user principal
can use the TGT to get service tickets from the TGS. Service tickets are what allow the principal to access various
services.

25

Advanced cluster options Kerberos security

Since cluster resources (hosts or services) cannot provide a password each time to decrypt the TGT, they use a special
file, called a keytab, which contains the resource principal authentication credentials. The set of hosts, users, and
services over which the Kerberos server has control is called a realm.

The following table explains the Kerberos related terminology:

Term Description

Key Distribution Center, or KDC The trusted source for authentication in a Kerberos-enabled
environment.

Kerberos KDC Server The machine, or server, that serves as the Key Distribution Center
(KDC).

Kerberos Client Any machine in the cluster that authenticates against the KDC.

Principal The unique name of a user or service that authenticates against the
KDC.

Keytab A file that includes one or more principals and their keys.

Realm The Kerberos network that includes a KDC and a number of clients.

Enabling Kerberos

The option to enable Kerberos is available in the advanced Security section of the create cluster wizard. You have the
following options for enabling Kerberos in a Cloudbreak-managed cluster:

Option Description Environment

Use existing KDC Allows you to leverage an existing MIT KDC
or Active Directory for enabling Kerberos
with the cluster. You can either provide the
required parameters and Cloudbreak will
generate the descriptors on your behalf, or
provide the exact Ambari Kerberos descriptors
to be injected into your blueprint in JSON
format.

Suitable for production

Use test KDC Installs a new MIT KDC on the master node
and configures the cluster to leverage that
KDC.

Suitable for evaluation and testing only, not
suitable for production

Related Information
Creating a cluster

Using existing KDC
To use an existing KDC, in the advanced Security section of the create cluster wizard select Enable Kerberos
Security. By default, Use Existing KDC option is selected.

You must provide the following information about your MIT KDC or Active Directory. Based on these parameters,
kerberos-env and krb5-conf JSON descriptors for Ambari are generated and injected into your Blueprint:

Note:

Before proceeding with the configuration, you must confirm that you met the requirements by checking the
boxes next to all requirements listed. The configuration options are displayed only after you have confirmed
all the requirements by checking every box.

Parameter Description

Kerberos Admin Principal The admin principal in your existing MIT KDC or AD.

Kerberos Admin Password The admin principal password in your existing MIT KDC or AD.

MIT KDC or Active Directory Select MIT KDC or Active Directory.

26

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/index.html

Advanced cluster options Kerberos security

Use basic configuration

Parameter Required if using… Description

Kerberos Url MIT, AD IP address or FQDN for the KDC host.
Optionally a port number may be included.
Example: “kdc.example1.com:88” or
“kdc.example1.com”

Kerberos Admin URL MIT, AD (Optional) IP address or FQDN for the KDC
admin host. Optionally a port number may be
included. Example: “kdc.example2.com:88” or
“kdc.example2.com”

Kerberos Realm MIT, AD The default realm to use when creating service
principals. Example: “EXAMPLE.COM”

Kerberos AD Ldap Url AD The URL to the Active Directory LDAP
Interface. This value must indicate a secure
channel using LDAPS since it is required
for creating and updating passwords for
Active Directory accounts. Example: “ldaps://
ad.example.com:636”

Kerberos AD Container DN AD The distinguished name (DN) of the container
used store service principals. Example:
“OU=hadoop,DC=example,DC=com”

Use TCP Connection Optional By default, Kerberos uses UDP. Checkmark
this box to use TCP instead.

Use advanced configuration

Checking the Use Custom Configuration option allows you to provide the actual Ambari Kerberos descriptors to
be injected into your blueprint (instead of Cloudbreak generating the descriptors on your behalf). This is the most
powerful option which gives you full control of the Ambari Kerberos options that are available. You must provide:

• Kerberos-env JSON Descriptor (required)
• krb5-conf JSON Descriptor (optional)

To learn more about the Ambari Kerberos JSON descriptors, refer to Apache cwiki.

Related Information
Apache cwiki: Kerberos Configurations

Using test KDC
To use a test KDC, in the advanced Security section of the create cluster wizard select Enable Kerberos Security and
then select Use Test KDC.

Note:

Using the Test KDC is for evaluation and testing purposes only, and cannot be used for production clusters.
To enable Kerberos for production use, you must use the Use Existing KDC option.

You must provide the following parameters for your new test KDC:

Parameter Description

Kerberos Master Key The master key for the KDC database.

Kerberos Admin Username The admin principal to create that can administer the KDC.

Kerberos Admin Password The admin principal password.

Confirm Kerberos Admin Password The admin principal password.

When using the test KDC option:

27

https://cwiki.apache.org/confluence/display/AMBARI/Automated+Kerberizaton#AutomatedKerberizaton-Configurations

Advanced cluster options EBS encryption on AWS

• Cloudbreak installs an MIT KDC instance on the Ambari server node.
• Kerberos clients are installed on all cluster nodes, and the krb5.conf is configured to use the MIT KDC.
• The cluster is configured for Kerberos to use the MIT KDC. Very basic Ambari KSON Kerberos descriptors are

generated and used accordingly.

Example kerberos-env JSON descriptor file:

{
 "kerberos-env" : {
 "properties" : {
 "kdc_type" : "mit-kdc",
 "kdc_hosts" : "ip-10-0-121-81.ec2.internal",
 "realm" : "EC2.INTERNAL",
 "encryption_types" : "aes des3-cbc-sha1 rc4 des-cbc-md5",
 "ldap_url" : "",
 "admin_server_host" : "ip-10-0-121-81.ec2.internal",
 "container_dn" : ""
 }
 }
 }

Example krb5-conf JSON descriptor file:

{
 "krb5-conf" : {
 "properties" : {
 "domains" : ".ec2.internal",
 "manage_krb5_conf" : "true"
 }
 }
 }

To learn more about the Ambari Kerberos JSON descriptors, refer to Apache cwiki.

Related Information
Apache cwiki: Kerberos Configurations

EBS encryption on AWS

Cloudbreak allows you to configure encryption for Amazon Elastic Block Store (EBS) volumes used by the cluster's
VM instances to store data. Refer to this section if you would like to encrypt EBS volumes used for clusters running
on AWS.

Amazon's Key Management System (KMS) or external KMS generated keys can be used.

Since an encryption key must be specified for each host group, it is possible to either have one encryption key for
multiple host groups or to have a separate encryption key for each host group. Once enabled, encryption is configured
for the following disk types:

• Block devices
• Root devices

Once the encryption is configured for a given host group, it is automatically applied to any new devices added as a
result of cluster scaling.

Overview of configuring EBS encryption

In order to configure EBS encryption:

• Your Cloudbreak credential must have the minimum access permissions.

28

https://cwiki.apache.org/confluence/display/AMBARI/Automated+Kerberizaton#AutomatedKerberizaton-Configurations

Advanced cluster options EBS encryption on AWS

• Your encryption key must fulfill the following criteria:

• It must be located in the same region where you would like to create clusters with encrypted volumes.
• Your IAM user (if using role-based credential) or IAM role (if using key-based credential) must be assigned to

the encryption key as both key administrator and key user.
• The AWSServiceRoleForAutoScaling built-in role must be assigned to the encryption key as both key

administrator and key user.
• When creating a cluster, you must explicitly select an existing encryption key for each host group on which you

would like to configure EBS volume encryption.

These requirements are described in the sections listed below.

Related Information
Amazon EBS Encryption (AWS)

Permissions for using EBS encryption
If planning to use encryption, ensure that the IAM role (if using role-based credential) or IAM user (if using key-
based credential) that you are using for the Cloudbreak credential has the following permissions.

EC2 permissions

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "ec2:CopyImage",
 "ec2:CreateSnapshot",
 "ec2:DeleteSnapshot",
 "ec2:DescribeSnapshots",
 "ec2:CreateVolume",
 "ec2:DeleteVolume",
 "ec2:DescribeVolumes",
 "ec2:DeregisterImage",
],
 "Resource": "*"
 }
}

KMS permissions

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:ListKeys",
 "kms:ListKeyPolicies",
 "kms:ListAliases"
],
 "Resource": "*"
 }
}

Related Information
Create CredentialRole

Prerequisites for key-based authentication

29

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-credential-aws/content/cb_create-credentialrole.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-credential-aws/content/cb_use-key-based-authentication.html

Advanced cluster options EBS encryption on AWS

Encryption key requirements
If planning to use encryption, ensure that your encryption key can be used with Cloudbreak or if you need to create a
new encryption key.

Ensuring that an existing encryption key can be used with Cloudbreak

If you have an existing encryption key that you would like to use with Cloudbreak, make sure that the following are
attached as both key administrator and key user:

• The AWSServiceRoleForAutoScaling built-in role.
• Your IAM role or IAM user used for the Cloudbreak credential.

To check that these are attached, navigate to the IAM console > Encryption keys, select your encryption key, and
scroll to Key Administrators and then Key Users.

Create a new encryption key on AWS

To create a new encryption key, follow these steps:

1. On AWS, navigate to the IAM console.
2. Select Encryption keys.
3. From the Region dropdown, select the region in which you would like to create and use the encryption key.
4. Click Create key:

5. In Step 1: Create Alias and Description:

a. Enter an Alias for your key.
b. Expand Advanced Options and under Key Material Origin, select “KMS” or “External”.

6. In Step 3: Define Key Administrative Permissions, select the following:

30

Advanced cluster options EBS encryption on AWS

a. AWSDerviceRoleForAutoScaling built-in role.
b. Your IAM user (if using role-based credential) or IAM role (if using key-based credential).

7. In Step 4: Define Key Usage Permissions, select the same items as in the previous steps.
8. Navigate to the last page of the wizard and then click Finish to create an encryption key.

Create a cluster with encrypted EBS volumes
EBS encryption can be configured on the Hardware and Storage page of the advanced create cluster wizard.

The Encryption configuration option is available per host group. The default setting is Encryption: Not encrypted. To
enable encryption for a given host group:

1. Under Instance Type you can see “Encryption Supported” next to all instance types for which encryption is
supported. Ensure that encryption is supported for the instance type that you would like to use.

2. Click on the

icon next to the chosen host group.
3. Under Encryption key, select the encryption key that you would like to use:

• To use the default encryption key, select "Default" from the dropdown.
• To use a custom key, select it from the dropdown.

Note that when encryption option is selected, the cluster creation process takes a few minutes longer than usual.

Once the cluster is running, you can confirm that encryption is enabled by navigating to cluster details > Hardware
tab. The Key ID of the encryption key is also displayed with a link redirecting you to the AWS IAM console.
Furthermore, if in the EC2 console on AWS you navigate to details of the block devices or root devices, you can see
that the device is marked as “Encrypted” and the “KMS Key ARN” is listed.

31

Advanced cluster options Disk encryption on GCP

Related Information
Creating a cluster

Disk encryption on GCP

Cloudbreak supports encryption options available on Google Cloud’s Compute Engine. Refer to this section if you
would like to encrypt key encryption keys used for cluster storage on Google Cloud.

As stated in Protecting resources with Cloud KMS Keys in Google Cloud documentation, “By default, Compute
Engine encrypts customer content at rest. Compute Engine handles and manages this encryption for you without any
additional actions on your part. However, if you want to control and manage this encryption yourself, you can use key
encryption keys. Key encryption keys do not directly encrypt your data but are used to encrypt the data encryption
keys that encrypt your data.”

Google Cloud’s Compute Engine offers two options for these key encryption keys:

• Using the Cloud Key Management Service to create and manage encryption keys, known as "customer-managed
encryption keys" (CMEK).

• Creating and managing your own encryption keys, known as "customer-supplied encryption keys" (CSEK).

When Cloudbreak provisions resources in Compute Engine on your behalf, Compute Engine applies data encryption
as usual and you have an option to configure one of these two methods to encrypt the encryption keys that are used
for data encryption.

Since an encryption option must be specified for each host group, it is possible to either have one encryption key for
multiple host groups or to have a separate encryption key for each host group. Once the encryption is configured for a
given host group, it is automatically applied to any new devices added as a result of cluster scaling.

Overview of configuring key encryption

In order to configure encryption key encryption by using a KMS key (CMEK) or a custom key (CSEK):

• You must enable all required APIs and permissions as described in Google Cloud documentation.
• Your encryption key must be in the same project and location where you would like to create clusters.
• The service account used for the Cloudbreak credential must have the minimum permissions.
• When creating a cluster, you must explicitly select an existing encryption option for each host group on which you

would like to configure disk encryption.

These requirements are described in detail in the following sections.

Related Information
Protecting resources with Cloud KMS Keys (GCP)

Encryption key requirements
If planning to use encryption, ensure that your Google Cloud configuration meets the following requirements.

When fulfilling Google Cloud’s prerequisites (as described in Protecting resources with cloud KMS keys) and
creating encryption keys (as described in Creating key rings and keys) on Google Cloud, ensure that you do the
following:

• Compute Engine and Cloud KMS must be in the same Google Cloud Platform project (not in two different
projects). Furthermore, this must be the same project where you are planning to launch clusters.

• Set up API access for Compute Engine.
• Enable the Cloud KMS API.

• Create the key rings and keys as described in Creating key rings and keys in Google Cloud documentation. Note
that your encryption keys must be in the same location (or “region”) where you are planning to launch clusters.

32

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/index.html
https://cloud.google.com/compute/docs/disks/customer-managed-encryption
https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/compute/docs/disks/customer-managed-encryption
https://cloud.google.com/compute/docs/disks/customer-managed-encryption
https://cloud.google.com/kms/docs/creating-keys
https://cloud.google.com/kms/docs/creating-keys

Advanced cluster options Disk encryption on GCP

• Assign the Cloud KMS CryptoKey Encrypter/Decrypter role to the Compute Engine system service account
(service-[PROJECT_NUMBER]@compute-system.iam.gserviceaccount.com).

Related Information
Protecting resources with Cloud KMS Keys (GCP)

Creating key rings and keys (GCP)

Encrypting disks with customer-supplied encryption keys (GCP)

Permissions required for key encryption
If planning to use encryption key encryption, ensure that you configure the following permissions.

Cloudbreak credential service account's permissions

If you would like to use a KMS key (CMEK) or a custom key (CSEK), you must:

1. Create a new custom role with the following permissions:

a. cloudkms.cryptoKeys.get
b. cloudkms.keyRings.list

To create a custom role, navigate to IAM & admin > Roles and click on +Create role. Next, click on +Add
permissions, select and add the required permissions, and click on Create:

Note:

For testing purposes, it is also possible to use the built-in Cloud KMS Admin role.
2. Assign this role to your Cloudbreak credential’s service account.

To assign this role, on Google Cloud portal, navigate to IAM & admin > IAM, edit the service account that you
created for Cloudbreak credential, click on +Add another role, add the newly created custom role and click on
Save. You should find this role under “Custom”:

33

https://cloud.google.com/compute/docs/disks/customer-managed-encryption
https://cloud.google.com/kms/docs/creating-keys
https://cloud.google.com/compute/docs/disks/customer-supplied-encryption

Advanced cluster options Disk encryption on GCP

Compute Engine system service account's permissions

Assign the Cloud KMS CryptoKey Encrypter/Decrypter role to the Compute Engine system service account as
described in Protecting resources with Cloud KMS Keys in Google Cloud documentation. This is required by Google
Cloud.

Create a cluster with key encryption
GCP disk encryption can be configured on the Hardware and Storage page of the advanced create cluster wizard.

You can configure it per host group by clicking on the

icon next to the chosen host group. Under Encryption Key you can choose between default encryption, KMS
encryption key, or user-provided custom encryption key.

Encryption type Description How to configure

Default The Default encryption option is selected by
default because Compute Engine encrypts all
customer content at rest. There is no option to
turn disk encryption off.

You do not need to do anything.

Select an existing KMS key (CMEK) You can optionally select a previously created
KMS key. If such as a key exists in the
selected region, you can select it from the list.
The format will be <key-ring-name>/<key>.

From the Encryption Key dropdown, select an
existing key.

34

https://cloud.google.com/compute/docs/disks/customer-managed-encryption

Advanced cluster options External databases for cluster components

Encryption type Description How to configure

Enter an existing custom key (CSEK) You can optionally provide a custom key. In
this case, you must provide a key (max. 255
characters long) and the method used to send
this key to Google: either RAW unencrypted
format, or RSA encrypted format. Either way,
an SHA-256 hashed version of the provided
key will be sent, because GCP expects 256
bytes long blocks.

1. Select “Provide Custom Key” from the
Encryption Key dropdown.

2. Under Encryption Method, select RSA or
RAW.

3. Under Custom Encryption Key, paste the
encryption key.

Once the cluster is running, you can confirm that encryption is enabled by navigating to cluster details > Hardware
tab. On Google Cloud, you can navigate to Compute Engine > disks > click on disk name, and you should see the
Encryption key ID listed.

Related Information
Creating a cluster

External databases for cluster components

Cloudbreak allows you to register an existing RDBMS instance as an external source to be used for a database for
certain services. After you register the RDBMS with Cloudbreak, you can use it for multiple clusters. Refer to this
section if you would like to use external databases for cluster components (such as Ambari, Hive, and so on).

The general steps for configuring an external database are:

1. Review the supported databases and then create the external database prior to registering it with Cloudbreak.
2. Review the available options to find out which type to use.
3. Create a template blueprint.
4. Register an existing database in the Cloudbreak web UI or CLI.

Once registered, the database will now show up in the list of available databases when creating a cluster under
advanced External Sources > Configure Authentication. Create a cluster by using the blueprint and by attaching the
database.

Supported databases
Review the supported database types and versions to ensure that you are using one that is supported.

Only supported database types and versions can be used as external databases.

• If you would like to use an external database for one of the components that support it, you may use the database
types and versions defined in the Support Matrix.

• For more information on whether a default database is provided by default and for steps for configuring an
external database, refer to the component-specific documentation:

Component Documentation link

Ambari Refer to Using Existing Databases - Ambari or to documentation for
the specific version that you would like to use.

Druid Refer to Configuring Druid and Superset Metadata Stores in MySQL or
to documentation for the specific version that you would like to use.

Hive Refer to Using Existing Databases - Hive or to documentation for the
specific version that you would like to use.

Oozie Refer to Using Existing Databases - Oozie or to documentation for the
specific version that you would like to use.

35

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/index.html
https://supportmatrix.hortonworks.com
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.2.2/bk_ambari-administration/content/using_existing_databases_-_ambari.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.3.1/installing-hdf-and-hdp-ppc/content/configuring_druid_and_superset_metadata_stores_in_mysql.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.2.2/bk_ambari-administration/content/using_new_and_existing_databases_-_hive.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.2.2/bk_ambari-administration/content/using_existing_databases_-_oozie.html

Advanced cluster options External databases for cluster components

Component Documentation link

Ranger Refer to Using Existing Databases - Ranger or to documentation for the
specific version that you would like to use.

Registry Only a MySQL database can be used. Other database types are not
supported.

Superset Refer to Configuring Druid and Superset Metadata Stores in MySQL or
to documentation for the specific version that you would like to use.

Other Refer to the component-specific documentation.

External database options
Review the following options to find out whether to use a built-in or other external database type.

When using an external database for cluster services and components, Cloudbreak supports selected built-in types and
allows for specifying other types. Cloudbreak supports the following external database options:

Option Description Blueprint requirements Steps Example

Built-in types Cloudbreak includes
a few built-in types:
Ambari, Beacon, Druid,
Hive, Oozie, Ranger, and
Superset.

Use a standard blueprint
which does not include
any JDBC parameters.
Cloudbreak automatically
injects the JDBC property
variables into the
blueprint.

Simply register the
database in the UI. After
that, you can attach the
database config to your
clusters.

Refer to Example 1

Other types In addition to the built-
in types, Cloudbreak
allows you to specify
custom types. In the UI,
this corresponds to the UI
option is called “Other” >
“Enter the type”.

You must provide a
custom dynamic blueprint
which includes RDBMS-
specific variables. Refer
to Creating a template
blueprint.

Prepare your custom
blueprint first. Next,
register the database in
the UI. After that, you can
attach the database config
to your clusters.

Refer to Example 2

During cluster create, Cloudbreak checks whether the JDBC properties are present in the blueprint:

Related Information
Preparing the blueprint for LDAP/AD

Register an authentication source

Creating a template blueprint for RDMBS

Example 1: Built-in type Hive
In this scenario, you start up with a standard blueprint, and Cloudbreak injects the JDBC properties into the blueprint.

36

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_security/content/configuring_database_instance.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.3.1/installing-hdf-and-hdp-ppc/content/configuring_druid_and_superset_metadata_stores_in_mysql.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_register-an-external-database.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_register-an-external-database.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_example-1-built-in-type-hive.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_creating-a-template-blueprint-for-rdmbs.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_creating-a-template-blueprint-for-rdmbs.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_register-an-external-database.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_register-an-external-database.html
https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_example-2-other-type.html

Advanced cluster options External databases for cluster components

1. Register an existing external database of “Hive” type (built-in type):

Property variable Example value

rds.hive.connectionString jdbc:postgresql://
ec2-54-159-202-231.compute-1.amazonaws.com:5432/hive

rds.hive.connectionDriver org.postgresql.Driver

rds.hive.connectionUserName myuser

rds.hive.connectionPassword Hadoop123!

rds.hive.fancyName PostgreSQL

rds.hive.databaseType postgres

2. Create a cluster by using a standard blueprint (i.e. one without JDBC related variables) and by attaching the
external Hive database configuration.

3. Upon cluster create, Hive JDBC properties will be injected into the blueprint according to the following template:

...
"hive-site": {
"properties": {
 "javax.jdo.option.ConnectionURL": "{{{ rds.hive.connectionString }}}",
 "javax.jdo.option.ConnectionDriverName":
 "{{{ rds.hive.connectionDriver }}}",
 "javax.jdo.option.ConnectionUserName":
 "{{{ rds.hive.connectionUserName }}}",
 "javax.jdo.option.ConnectionPassword":
 "{{{ rds.hive.connectionPassword }}}"
}
 },
 "hive-env" : {
"properties" : {
 "hive_database" : "Existing {{{ rds.hive.fancyName}}} Database",
 "hive_database_type" : "{{{ rds.hive.databaseType }}}"
}
}
...

37

Advanced cluster options External databases for cluster components

Example 2: Other type
In this scenario, you start up with a special blueprint including JDBC property variables, and Cloudbreak replaces
JDBC-related property variables in the blueprint.

1. Prepare a blueprint blueprint that includes property variables. Use mustache template syntax. For example:

...
"test-site": {
 "properties": {
 "javax.jdo.option.ConnectionURL":"{{{rds.test.connectionString}}}"
 }
...

2. Register an existing external database of some “Other” type. For example:

a. Property variable Example value

rds.hive.connectionString jdbc:postgresql://
ec2-54-159-202-231.compute-1.amazonaws.com:5432/hive

rds.hive.connectionDriver org.postgresql.Driver

rds.hive.connectionUserName myuser

rds.hive.connectionPassword Hadoop123!

rds.hive.subprotocol postgres

rds.hive.databaseEngine POSTGRES

3. Create a cluster by using your custom blueprint and by attaching the external database configuration.
4. Upon cluster create, Cloudbreak replaces JDBC-related property variables in the blueprint.

Related Information
https://mustache.github.io/

38

https://mustache.github.io/
https://mustache.github.io/

Advanced cluster options External databases for cluster components

Creating a template blueprint for RDMBS
In order to use an external RDBMS for some component other than the built-in components, you must include JDBC
property variables in your blueprint.

See Example 2: Other type for an example configuration.

Related Information
Example 2: Other type

Register an external database
Create the external RDBMS instance and database and then register it with Cloudbreak.

Once you have the database instance running, you can:

1. Register it in Cloudbreak web UI or CLI.
2. Once registered, the database will now show up in the list of available databases when creating a cluster under

advanced External Sources > Configure Databases. You can use it with one or more clusters.

Prerequisites

If you are planning to use an external MySQL or Oracle database, you must download the JDBC connector’s JAR file
and place it in a location available to the cluster host on which Ambari is installed. The steps below require that you
provide the URL to the JDBC connector’s JAR file.

Note:

If you are using your own custom image, you may place the JDBC connector’s JAR file directly on the
machine as part of the image burning process.

Steps

1. From the navigation pane, select External Sources > Database Configurations.
2. Select Register Database Configuration.
3. Provide the following information:

Parameter Description

Name Enter the name to use when registering this database to Cloudbreak.
This is not the database name.

Type Select the service for which you would like to use the external
database. If you selected “Other”, you must provide a special
blueprint.

JDBC Connection Select the database type and enter the JDBC connection string
(HOST:PORT/DB_NAME).

Connector’s JAR URL (MySQL and Oracle only) Provide a URL to the JDBC connector’s
JAR file. The JAR file must be hosted in a location accessible to the
cluster host on which Ambari is installed. At cluster creation time,
Cloudbreak places the JAR file in the /opts/jdbc-drivers directory.
You do not need to provide the “Connector’s JAR URL if you are
using a custom image and the JAR file was either manually placed
on the VM as part of custom image burning or it was placed there by
using a recipe.

Username Enter the JDBC connection username.

Password Enter the JDBC connection password.

4. Click Test Connection to validate and test the RDS connection information.

Note:

The Test Connection* option:

39

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/advanced-cluster-options/content/cb_example-2-other-type.html

Advanced cluster options External authentication source for clusters

• Does not work when an external authentication source uses LDAPS with a self-signed certificate.
• Might not work if Cloudbreak instance cannot reach the LDAP server instance.

In these cases, ignore the error and proceed with cluster installation.
5. Once your settings are validated and working, click REGISTER to save the configuration.
6. The database will now show up on the list of available databases when creating a cluster under advanced External

Sources > Configure Databases. You can select it and click Attach each time you would like to use it for a cluster:

Related Information
Creating a cluster

External authentication source for clusters

Cloudbreak allows you to register an existing LDAP/AD instance as an external source and use it for multiple
clusters. Refer to this section if you would like to use LDAP for Cloudbreak-managed clusters.

You must create the LDAP/AD prior to registering it with Cloudbreak. Once you have it ready, the general steps are:

1. Prepare a cluster blueprint as described in the instructions for preparing a blueprint for LDAP/AD.
2. Register an existing LDAP in the Cloudbreak web UI or CLI.

Once registered, the LDAP will now show up in the list of available authentication sources when creating a cluster
under advanced External Sources > Configure Authentication. Create a cluster by using the blueprint and by attaching
the authentication source. Cloudbreak automatically injects the LDAP property variables into the blueprint.

Preparing the blueprint for LDAP/AD
In order to use LDAP/AD for your cluster, you must provide a suitable cluster blueprint.

The blueprint must fulfill the following requirements:

• The blueprint must include one or more of the following supported components: Atlas, Hadoop, Hive LLAP,
Ranger Admin, Ranger UserSync.

• The blueprint should not include any LDAP properties. Before injecting the properties, Cloudbreak checks if
LDAP related properties already exist in the blueprint. If they exist, they are not injected.

During cluster creation the following properties will be injected in the blueprint:

• ldap.connectionURL
• ldap.domain
• ldap.bindDn
• ldap.bindPassword
• ldap.userSearchBase

40

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/index.html

Advanced cluster options External authentication source for clusters

• ldap.userObjectClass
• ldap.userNameAttribute
• ldap.groupSearchBase
• ldap.groupObjectClass
• ldap.groupNameAttribute
• ldap.groupMemberAttribute
• ldap.directoryType
• ldap.directoryTypeShort

Their values will be the values that you provided to Cloudbreak:

Register an authentication source
Cloudbreak allows you to register an existing LDAP/AD instance and use it for multiple clusters. You must create the
LDAP/AD prior to registering it with Cloudbreak.

Once you have it ready, you can:

1. Register an existing LDAP in Cloudbreak web UI or CLI.
2. Use it as an authentication source for your clusters. Once registered, the LDAP will now show up in the list

of available authentication sources when creating a cluster under advanced External Sources > Configure
Authentication.

Steps

1. From the navigation pane, select External Sources > Authentication Configurations.
2. Select Register Authentication Source.
3. Provide the following parameters related to your existing LDAP/AD:

GENERAL CONFIGURATION

Parameter Description Example

Name Enter a name for your LDAP. cb-ldap

Directory Type Choose whether your directory is LDAP or
Active Directory.

LDAP

LDAP Server Connection Select LDAP or LDAPS. LDAP

Server Host Enter the hostname or IP address for the
LDAP or AD server.

10.0.3.128

Server Port Enter the LDAP server port. 389

LDAP Domain (Optional) Enter your LDAP domain if
applicable.

ad.mytestldap.com

41

Advanced cluster options External authentication source for clusters

Parameter Description Example

LDAP Bind DN Enter the LDAP Bind DN. CN=Administrator,CN=Users,DC=ad,DC=hdc,DC=com

LDAP Bind Password Enter the LDAP Bind DN password. MyPassword1234!

USER CONFIGURATION

Parameter Description Example

LDAP User Search Base Enter your LDAP user search base. This
defines the location in the directory from
which the LDAP search begins.

CN=Users,DC=ad,DC=hdc,DC=com

LDAP User Name Attribute Enter the attribute for which to conduct a
search on the user base.

HDCaccountName

LDAP User Dn Pattern Enter LDAP User DN Pattern, which is used
to bind an LDAP user.

CN={0},CN=Users,DC=ad,DC=hdc,DC=com

LDAP User Object Class Enter the directory object class filter for
users.

person

GROUP CONFIGURATION

Parameter Description Example

LDAP Group Search Base Enter your LDAP group search base. This
defines the location in the directory from
which the LDAP search begins.

CN=Users,DC=ad,DC=hdc,DC=com

LDAP Admin Group (Optional) Enter your LDAP admin group if
applicable.

hdc

LDAP Group Name Attribute Enter the attribute for which to conduct a
search on groups.

cn

LDAP Group Object Class Enter the directory object class filter for
groups.

group

LDAP Group Member Attribute Enter the attribute on the group object class
that represents members.

member

4. Click Test Connection to verify that the connection information that you entered is correct.

Note: The Test Connection option:

• Does not work when an external authentication source uses LDAPS with a self-signed certificate.
• Might not work if Cloudbreak instance cannot reach the LDAP server instance.

In these cases, ignore the error and proceed with cluster installation.
5. Click REGISTER.
6. The LDAP will now show up on the list of available authentication sources when creating a cluster under

advanced External Sources > Configure Authentication. It can be reused with multiple clusters. Just select it if you
would like to use it for a given cluster:

42

Advanced cluster options Custom internal hostnames for cluster hosts

Related Information
Creating a cluster

Custom internal hostnames for cluster hosts

Cloudbreak maintains an internal DNS server and allows you to specify a custom hostname and a custom domain
name.

Cloudbreak maintains an internal DNS server (using Unbound) with entries for all hosts in the cluster. In this setup,
the internal DNS is configured to allow internal communication between the nodes of the same cluster. Queries that
the internal DNS cannot resolve are automatically forwarded to the cloud provider’s nameserver. The DNS server is
distributed in the sense that each of the VMs runs one server with correct entries, so there is no single point of failure.

By default, the internal FQDNs are inherited from the cloud provider’s DNS server. You can optionally change the
hostname prefix and the domain by specifying them as parameters in your cluster CLI JSON. If you would like to
specify a custom hostname and a custom domain name, add the following entries to the CLI JSON at the top level of
the JSON, replacing the [$DOMAIN_NAME] and [$HOST_NAME_PATTERN] with actual values:

"customDomain": {
 "customDomain": "[$DOMAIN_NAME]",
 "customHostname": "[$HOST_NAME_PATTERN]"
 }

For example:

 "customDomain": {
 "customDomain": "hortonworks.local",
 "customHostname": "test"
 }

When these parameters are provided in the CLI JSON, VM FQDNs are generated based on the values specified.
For the values included in the example, these FQDNs are “test0.hortonworks.local”, “test1.hortonworks.local”,
“test2.hortonworks.local”, and so on.

Custom hostnames based on DNS on AWS

By default, when Cloudbreak provisions cloud provider resources, your cloud provider assigns hostnames for your
cluster nodes. Optionally, instead of using default hostnames, you can configure Cloudbreak to use custom hostnames
based on DNS. To do that, follow the steps for configuring reverse Domain Name System (DNS) described below.

43

https://docs.hortonworks.com/HDPDocuments/Cloudbreak/Cloudbreak-2.9.1/create-cluster-aws/index.html
https://nlnetlabs.nl/documentation/unbound/

Advanced cluster options Custom hostnames based on DNS on AWS

When the cluster node machines are provisioned, they try to make a reverse DNS lookup (by querying of the DNS to
determine the domain name associated with a specific IP address); if the reverse DNS lookup returns a valid value,
then that value is set as hostname. This is why reverse DNS setup is required for using custom hostnames.

On AWS you have the following two options:

• Use Route53 as DNS provider.
• Set up your own DNS server in your VPC

Both options require you to have an existing VPC and attach a custom DHCP options set to it.

Note:

The instructions provided in this section describe how to perform the steps in Amazon web consoles, but the
steps can also be performed (and automated) in the AWS CLI.

Configure DNS using Route53
Follow these general steps to configure reverse DNS using Route53.

Step 1: Create a new VPC or use your existing VPC

1. You can create a new VPC from the Amazon VCP console (for example by using Start VPC Wizard):

• CIDR block example: 10.1.0.0/16
• Subnet’s CIDR example: 10.1.1.0/28

2. Make sure to:

• Enable DNS resolution for the VPC. You can do this by selecting the VPC, selecting Actions > Edit DNS
resolution and choosing Yes.

• Enable DNS hostnames for the VPC. You can do this by selecting the VPC, selecting Actions > Edit DNS
hostnames and choosing Yes.

Note:

Optionally, you may want to set up an Internet Gateway for the VPC and add a default route to the routing
table for the Internet Gateway. Additionally, you may want to enable the Auto-assign Public IP option. This
way Cloudbreak would reach the cluster from outside of the VPC and the cluster would have internet access.

Step 2: Create a DHCP options set:

Perform this step from the Amazon VPC console. Select DHCP Options Sets from the left pane and click on Create a
DHCP options set. Make sure to:

• Set the Domain name to a preferred domain, for example cloudbreak.beer
• Set the Domain name servers to AmazonProvidedDNS

44

https://aws.amazon.com/route53/
https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_DHCP_Options.html
https://aws.amazon.com/route53/

Advanced cluster options Custom hostnames based on DNS on AWS

For detailed steps, refer to AWS documentation.

Step 3: Assign the newly created DHCP options set to your VPC

1. From the Amazon VPC console, select Your VPCs from the left pane.
2. Select the VPC created earlier.
3. Click on Actions > Edit DHCP Options Set.
4. Select the newly created DHCP option set.

Step 4: Configure your domain at Route53

Perform these steps from the Amazon Route53 console. For general steps, refer to AWS documentation.

1. Select Hosted zones from the left pane.
2. Create a hosted zone by clicking on Create Hosted Zone. Make sure to:

• Use the same domain name as used previously with the DHCP options set (In the example this was
cloudbreak.beer).

• Set the Type to Private Hosted Zone for Amazon VPC.
• Select the VPC ID of the VPC to which you previously assigned the DHCP option.

3. Add records for your hosted zone:

• Select the hosted zone and choose Go to Record Sets
• Click Create Record Set to create a record set. You must perform this step for every available IP, so that each

IP can have a custom name (If you used the subnet example listed above, these IPs will be in the range of
10.1.1.4-14):

• Type: select A
• Name: for example b10
• Value: for example 10.1.1.10

45

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/dhcp_options_set.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zone-private-creating.html

Advanced cluster options Custom hostnames based on DNS on AWS

4. After performing this step for each IP, you should end up with an many records as IPs. For

example:

Step 5: Create another hosted zone for reverse DNS lookup

Perform these steps from the Amazon Route53 console.

1. Select Hosted zones from the left pane.
2. Create a hosted zone by clicking on Create Hosted Zone. Make sure to:

• For example, if you used the subnet example listed above, its Domain name should look like this (as reverse
DNS lookups use the special domain in-addr.arpa):

1.1.10.in-addr.arpa.

• Set the Type to Private Hosted Zone for Amazon VPC.
• Select the VPC ID to which you previously assigned the DHCP option set.

3. Add records for every created domain:

• Type: select PTR
• Name: This determines the first part of the IP, for example 10
• Value: Enter the domain name that you set in the previous step, for example, b10

46

Advanced cluster options Custom hostnames based on DNS on AWS

4. After performing this step for each domain, you should end up with as many records as IPs. For

example:

Step 6: Create the cluster in the VPC configured in the earlier steps and you will have the same hostnames set as
the domain names.

Note:

Since you don’t have control the order over the IP addresses leased to the machines, the names may not be
in order.

Configure DNS using custom DNS server
Follow these general steps to configure reverse DNS using a custom DNS server.

Step 1: Create a new VPC or use your existing VPC

1. You can create a new VPC from the Amazon VCP console (for example by using Start VPC Wizard):

• CIDR block example: 10.1.0.0/16
• Subnet’s CIDR example: 10.1.1.0/28

2. Make sure to:

47

Advanced cluster options Custom hostnames based on DNS on AWS

• Enable DNS resolution for the VPC. You can do this by selecting the VPC, selecting Actions > Edit DNS
resolution and choosing Yes.

• Enable DNS hostnames for the VPC. You can do this by selecting the VPC, selecting Actions > Edit DNS
hostnames and choosing Yes.

Note:

Optionally, you may want to set up an Internet Gateway for the VPC and add a default route to the routing
table for the Internet Gateway. Additionally, you may want to enable the Auto-assign Public IP option. This
way Cloudbreak would reach the cluster from outside of the VPC and the cluster would have internet access.

Step2: Set up DNS server in your VPC/subnet

• In the configuration ensure that you have DNS records and reverse DNS pointers for all IP address (for example
10.3.3.4-14)

• Example unbound configuration:

[root@ip-10-3-3-9 conf.d]# cat 00-cloudbreak.cloud.conf
 server:
 local-zone: "cloudbreak.cloud." static
 local-data: "aww1.cloudbreak.cloud. IN A 10.3.3.4"
 local-data-ptr: "10.3.3.4 aww1.cloudbreak.cloud."
 local-data: "aww2.cloudbreak.cloud. IN A 10.3.3.5"
 local-data-ptr: "10.3.3.5 aww2.cloudbreak.cloud."
 local-data: "aww3.cloudbreak.cloud. IN A 10.3.3.6"
 local-data-ptr: "10.3.3.6 aww3.cloudbreak.cloud."
 local-data: "aww4.cloudbreak.cloud. IN A 10.3.3.7"
 local-data-ptr: "10.3.3.7 aww4.cloudbreak.cloud."
 local-data: "aww5.cloudbreak.cloud. IN A 10.3.3.8"
 local-data-ptr: "10.3.3.8 aww5.cloudbreak.cloud."
 local-data: "aww6.cloudbreak.cloud. IN A 10.3.3.9"
 local-data-ptr: "10.3.3.9 aww6.cloudbreak.cloud."
 local-data: "aww7.cloudbreak.cloud. IN A 10.3.3.10"
 local-data-ptr: "10.3.3.10 aww7.cloudbreak.cloud."
 local-data: "aww8.cloudbreak.cloud. IN A 10.3.3.11"
 local-data-ptr: "10.3.3.11 aww8.cloudbreak.cloud."
 local-data: "aww9.cloudbreak.cloud. IN A 10.3.3.12"
 local-data-ptr: "10.3.3.12 aww9.cloudbreak.cloud."
 local-data: "aww10.cloudbreak.cloud. IN A 10.3.3.13"
 local-data-ptr: "10.3.3.13 aww10.cloudbreak.cloud."
 local-data: "aww11.cloudbreak.cloud. IN A 10.3.3.14"
 local-data-ptr: "10.3.3.14 aww11.cloudbreak.cloud."

Step 3: Create a DHCP options set

Perform this step from the Amazon VPC console. Select DHCP Options Sets from the left pane and click on Create a
DHCP options set. Make sure to:

• Set the Domain name to your preferred domain, for example cloudbreak.cloud
• Set Domain name servers to the previously created DNS server
• Optionally, set a Name tag

48

Advanced cluster options Custom hostnames based on DNS on AWS

For detailed steps, refer to AWS documentation.

Step 4: Assign the newly created DHCP options set to your VPC

1. From the Amazon VPC console, select Your VPCs from the left pane.
2. Select the VPC created earlier.
3. Click on Actions > Edit DHCP Options Set.
4. Select the newly created DHCP option set.

Step 5: Create the cluster in the VPC configured in the preceding steps and you will have the same hostnames set as
the domain names.

Note:

Since you don’t have control the order over the IP addresses leased to the machines, the names may not be in
order.

Related Information
Create a DHCP Options Set

49

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/dhcp_options_set.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/dhcp_options_set.html

	Contents
	Custom images
	Build custom images
	Prepare image catalog
	Structure of the image catalog
	Example image catalog

	Register image catalog
	Set CB_ENABLED_LINUX_TYPES
	Create clusters with custom images

	Custom blueprints
	Creating blueprints
	Creating dynamic blueprints
	External authentication source
	External database

	Upload blueprints

	Recipes
	Writing recipes
	Recipe parameters
	Add recipes
	Reusable recipes
	Install mysql connector recipe

	Management packs
	Add management pack

	Kerberos security
	Using existing KDC
	Using test KDC

	EBS encryption on AWS
	Permissions for using EBS encryption
	Encryption key requirements
	Create a cluster with encrypted EBS volumes

	Disk encryption on GCP
	Encryption key requirements
	Permissions required for key encryption
	Create a cluster with key encryption

	External databases for cluster components
	Supported databases
	External database options
	Example 1: Built-in type Hive
	Example 2: Other type

	Creating a template blueprint for RDMBS
	Register an external database

	External authentication source for clusters
	Preparing the blueprint for LDAP/AD
	Register an authentication source

	Custom internal hostnames for cluster hosts
	Custom hostnames based on DNS on AWS
	Configure DNS using Route53
	Configure DNS using custom DNS server

