
Hortonworks Cybersecurity Package

 (July 12, 2017)

Tuning Guide

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Cybersecurity
Package

July 12, 2017

ii

Hortonworks Cybersecurity Package: Tuning Guide
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

Hortonworks Cybersecurity Package (HCP) is a modern data application based on Apache Metron,
powered by Apache Hadoop, Apache Storm, and related technologies.

HCP provides a framework and tools to enable greater efficiency in Security Operation Centers (SOCs)
along with better and faster threat detection in real-time at massive scale. It provides ingestion, parsing
and normalization of fully enriched, contextualized data, threat intelligence feeds, triage and machine
learning based detection. It also provides end user near real-time dashboards.

Based on a strong foundation in the Hortonworks Data Platform (HDP) and Hortonworks DataFlow (HDF)
stacks, HCP provides an integrated advanced platform for security analytics.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/technology/hortonworksdataplatform
https://hortonworks.com/support
https://hortonworks.com/training/
https://hortonworks.com/about-us/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Cybersecurity
Package

July 12, 2017

iii

Table of Contents
1. Overview ... 1
2. General Tuning Suggestions ... 2
3. Component Tuning Levers ... 3

3.1. Kafka Tuning .. 3
3.2. Storm Tuning .. 3

4. Use Case Specific Tuning Suggestions ... 5
4.1. Performance Monitoring Tools .. 5

4.1.1. Tooling ... 5
4.1.2. Parser Tuning ... 7
4.1.3. Enrichment Tuning ... 8
4.1.4. Indexing (HDFS) Tuning ... 9

4.2. Issues .. 10
5. References ... 12

Hortonworks Cybersecurity
Package

July 12, 2017

1

1. Overview
This document provides guidance from our experiences tuning the Apache Metron Storm
topologies for maximum performance. You'll find suggestions for optimum configurations
under a 1 Gbps load along with some guidance around the tooling we used to monitor and
assess our throughput.

In the simplest terms, Hortonworks Cybersecurity Package powered by Apache Metron is a
streaming architecture created on top of Kafka and three main types of Storm topologies:
parsers, enrichment, and indexing. Each parser has its own topology and there is also a
highly performant, specialized spout-only topology for streaming PCAP data to HDFS. We
found that the architecture can be tuned almost exclusively through using a few primary
Storm and Kafka parameters along with a few Metron-specific options. You can think of
the data flow as being similar to water flowing through a pipe, and the majority of these
options assist in tweaking the various pipe widths in the system.

Hortonworks Cybersecurity
Package

July 12, 2017

2

2. General Tuning Suggestions
Note that there is currently no method for specifying the number of tasks from the number
of executors in Flux topologies (enrichment, indexing). By default, the number of tasks will
equal the number of executors. Logically, setting the number of tasks equal to the number
of executors is sensible. Storm enforces num executors <= num tasks. The reason you might
set the number of tasks higher than the number of executors is for future performance
tuning and rebalancing without the need to bring down your topologies. The number of
tasks is fixed at topology startup time whereas the number of executors can be increased
up to a maximum value equal to the number of tasks.

When configuring Storm Kafka spouts, we found that the default values for
poll.timeout.ms, offset.commit.period.ms, and max.uncommitted.offsets worked well
in nearly all cases. As a general rule, it was optimal to set spout parallelism equal to the
number of partitions used in your Kafka topic. Any greater parallelism will leave you with
idle consumers since Kafka limits the maximum number of consumers to the number of
partitions. This is important because Kafka has certain ordering guarantees for message
delivery per partition that would not be possible if more than one consumer in a given
consumer group were able to read from that partition.

Hortonworks Cybersecurity
Package

July 12, 2017

3

3. Component Tuning Levers
This chapter provides guidelines for tuning levers for components that are key to HCP.

• Kafka

• Number partitions

• Storm

• Kafka spout

• Polling frequency

• Polling timeouts

• Offset commit period

• Max uncommitted offsets

• Number workers (OS processes)

• Number executors (threads in a process)

• Number ackers

• Max spout pending

• Spout and bolt parallelism

• HDFS

• Replication factor

3.1. Kafka Tuning
The main lever you're going to work with when tuning Kafka throughput will be the
number of partitions. A handy method for deciding how many partitions to use is to first
calculate the throughput for a single producer (p) and a single consumer (c), and then
use that with the desired throughput (t) to roughly estimate the number of partitions to
use. You would want at least max(t/p, t/c) partitions to attain the desired throughput.
For more information, see Confluent - How to choose the number of topics/partitions in a
Kafka cluster?.

3.2. Storm Tuning
There are quite a few options you will be confronted with when tuning your Storm
topologies and this is largely trial and error. As a general rule of thumb, we recommend
starting with the defaults and smaller numbers in terms of parallelism while iteratively
working up until the desired performance is achieved. You will find the offset lag tool
indispensable while verifying your settings.

https://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/
https://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/

Hortonworks Cybersecurity
Package

July 12, 2017

4

We won't go into a full discussion about Storm's architecture - see references section for
more info - but there are some general rules of thumb that should be followed. First, it's
important to understand the ways you can impact parallelism in a Storm topology.

• num tasks

• num executors (parallelism hint)

• num workers

Tasks are instances of a given spout or bolt, executors are threads in a process, and
workers are jvm processes. You'll want the number of tasks as a multiple of the number of
executors, the number of executors as multiple of the number of workers, and the number
of workers as a multiple of the number of machines. The main reason for this approach
is that it will give a uniform distribution of work to each machine and jvm process. More
often than not, your number of tasks will be equal to the number of executors, which is
the default in Storm. Flux does not actually provide a way to independently set number
of tasks, so for enrichments and indexing which use Flux, num tasks will always equal num
executors.

You can change the number of workers via the property topology.workers.

Other Storm Settings

```
topology.max.spout.pending
```

This is the maximum number of tuples that can be in a field (for example, not yet acked) at
any given time within your topology. You set this as a form of back pressure to ensure you
don't flood your topology.

```
topology.ackers.executors
```

This specifies how many threads should be dedicated to tuple acking. We found that
setting this equal to the number of partitions in your inbound Kafka topic worked well.

spout-config.json

```
{
    ...
    "spout.pollTimeoutMs" : 200,
    "spout.maxUncommittedOffsets" : 10000000,
    "spout.offsetCommitPeriodMs" : 30000
}
```

These are the spout recommended defaults from Storm and are currently the defaults
provided in the Kafka spout itself. In fact, if you find the recommended defaults work fine
for you, then you can omit these settings altogether.

Hortonworks Cybersecurity
Package

July 12, 2017

5

4. Use Case Specific Tuning Suggestions
The following discussion outlines a specific tuning exercise we went through for driving
1 Gbps of traffic through a Metron cluster running with 4 Kafka brokers and 4 Storm
Supervisors.

General machine specs:

• 10 GB network cards

• 256 GB memory

• 12 disks

• 32 cores

4.1. Performance Monitoring Tools
Before we get to tuning our cluster, it helps to describe what we might actually want to
monitor as well as any potential pain points. Prior to switching over to the new Storm
Kafka client, which leverages the new Kafka consumer API under the hood, offsets were
stored in ZooKeeper. While the broker hosts are still stored in ZooKeeper, this is no longer
true for the offsets which are now stored in Kafka itself. This is a configurable option, and
you may switch back to ZooKeeper if you choose, but Metron is currently using the new
defaults. With this in mind, there are some useful tools that come with Storm and Kafka
that we can use to monitor our topologies.

4.1.1. Tooling

Kafka

• Consumer group offset lag viewer

• There is a GUI tool to make creating, modifying, and generally managing your Kafka
topics a bit easier - see kafka-manager

• Console consumer - useful for quickly verifying topic contents

Storm

For more information on the Storm user interface, see Reading and Understanding the
Storm UI.

Example: Viewing Kafka Offset Lags

First we need to set up some environment variables.

```
export BROKERLIST  your broker comma-delimated list of host:ports>
export ZOOKEEPER  your zookeeper comma-delimated list of host:ports>
export KAFKA_HOME  kafka home dir>
export METRON_HOME  your metron home>
export HDP_HOME  your HDP home>

https://github.com/yahoo/kafka-manager
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained


Hortonworks Cybersecurity
Package

July 12, 2017

6

```

If you have Kerberos enabled, set up the security protocol

```
$ cat /tmp/consumergroup.config
security.protocol=SASL_PLAINTEXT
```

Now run the following command for a running topology's consumer group. In this example
we are using enrichments.

```
${KAFKA_HOME}/bin/kafka-consumer-groups.sh \
    --command-config=/tmp/consumergroup.config \
    --describe \
    --group enrichments \
    --bootstrap-server $BROKERLIST \
    --new-consumer
```

This will return a table with the following output depicting offsets for all partitions and
consumers associated with the specified consumer group.

```
GROUP                          TOPIC              PARTITION  CURRENT-OFFSET 
 LOG-END-OFFSET  LAG             OWNER
enrichments                    enrichments        9          29746066       
 29746067        1               consumer-2_/xxx.xxx.xxx.xxx
enrichments                    enrichments        3          29754325       
 29754326        1               consumer-1_/xxx.xxx.xxx.xxx
enrichments                    enrichments        43         29754331       
 29754332        1               consumer-6_/xxx.xxx.xxx.xxx
...
```

Note

You won't see any output until a topology is actually running because the
consumer groups only exist while consumers in the spouts are up and running.

The primary column we're concerned with paying attention to is the LAG column, which is
the current delta calculation between the current and end offset for the partition. This tells
us how close we are to keeping up with incoming data. And, as we found through multiple
trials, whether there are any problems with specific consumers getting stuck.

Taking this one step further, it's probably more useful if we can watch the offsets and lags
change over time. In order to do this we'll add a "watch" command and set the refresh rate
to 10 seconds.

```
watch -n 10 -d ${KAFKA_HOME}/bin/kafka-consumer-groups.sh \
    --command-config=/tmp/consumergroup.config \
    --describe \
    --group enrichments \
    --bootstrap-server $BROKERLIST \
    --new-consumer



Hortonworks Cybersecurity
Package

July 12, 2017

7

```

Every 10 seconds the command will re-run and the screen will be refreshed with new
information. The most useful bit is that the watch command will highlight the differences
from the current output and the last output screens.

4.1.2. Parser Tuning

We'll be using the Bro sensor in this example.

Note

The parsers and PCAP use a builder utility, as opposed to enrichments and
indexing, which use Flux.

We started with a single partition for the inbound Kafka topics and eventually worked our
way up to 48 partitions. And we're using the following pending value, as shown below. The
default is 'null' which would result in no limit.

storm-bro.config

  ```
  {
      ...
      "topology.max.spout.pending" : 2000
      ...
  }
  ```

And the following default spout settings. Again, this can be omitted entirely since we are
using the defaults.

spout-bro.config

```
  {
      ...
  
      "spout.pollTimeoutMs" : 200,
      "spout.maxUncommittedOffsets" : 10000000,
      "spout.offsetCommitPeriodMs" : 30000
  }
  ```

And we ran our Bro parser topology with the following options. We did not need to fully
match the number of Kafka partitions with our parallelism in this case, though you could
certainly do so if necessary. Notice that we only needed 1 worker.

```
 /usr/metron/0.4.0/bin/start_parser_topology.sh -k $BROKERLIST -z $ZOOKEEPER -
s bro -ksp SASL_PLAINTEXT
     -ot enrichments
     -e ~metron/.storm/storm-bro.config \
     -esc ~/.storm/spout-bro.config \
     -sp 24 \
     -snt 24 \
     -nw 1 \



Hortonworks Cybersecurity
Package

July 12, 2017

8

     -pnt 24 \
     -pp 24 \
 ```

From the usage docs, here are the options we've used. The full reference can be found here
Parsers Readme.

```
  +-e,--extra_topology_options (JSON_FILE)        Extra options in the form
    +                                               of a JSON file with a map
    +                                               for content.
    +-esc,--extra_kafka_spout_config (JSON_FILE)    Extra spout config options
      +                                               in the form of a JSON
 file
      +                                               with a map for content.
      +                                               Possible keys are:
      +                                               retryDelayMaxMs,
retryDelay
      +                                               Multiplier,
retryInitialDel
      +                                               ayMs,
stateUpdateIntervalMs
      +                                               ,bufferSizeBytes,
fetchMaxW
      +                                               ait,fetchSizeBytes,
maxOffs
      +                                               etBehind,
metricsTimeBucket
      +                                               SizeInSecs,
socketTimeoutMs
      +-sp,--spout_p (SPOUT_PARALLELISM_HINT)         Spout Parallelism Hint
        +-snt,--spout_num_tasks (NUM_TASKS)             Spout Num Tasks
          +-nw,--num_workers (NUM_WORKERS)                Number of Workers
            +-pnt,--parser_num_tasks (NUM_TASKS)            Parser Num Tasks
              +-pp,--parser_p (PARALLELISM_HINT)              Parser
 Parallelism Hint
                +```
                +

4.1.3. Enrichment Tuning

We landed on the same number of partitions for enrichment and indexing as we did for
bro - 48.

For configuring Storm, there is a flux file and properties file that we modified. Here are
the settings we changed for bro in Flux. +Note that the main Metron-specific option we've
changed to accommodate the desired rate of data throughput is max cache size in the join
bolts.

More information on Flux can be found here - http://storm.apache.org/releases/1.0.1/
flux.html

general storm settings

```
 topology.workers: 8
 topology.acker.executors: 48
 topology.max.spout.pending: 2000

https://github.com/apache/metron/blob/master/metron-platform/metron-parsers/README.md

Hortonworks Cybersecurity
Package

July 12, 2017

9

 ```

Spout and Bolt Settings

```
 kafkaSpout
 parallelism=48
 session.timeout.ms=29999
 enable.auto.commit=false
 setPollTimeoutMs=200
 setMaxUncommittedOffsets=10000000
 setOffsetCommitPeriodMs=30000
 enrichmentSplitBolt
 parallelism=4
 enrichmentJoinBolt
 parallelism=8
 withMaxCacheSize=200000
 withMaxTimeRetain=10
 threatIntelSplitBolt
 parallelism=4
 threatIntelJoinBolt
 parallelism=4
 withMaxCacheSize=200000
 withMaxTimeRetain=10
 outputBolt
 parallelism=48
 ```

4.1.4. Indexing (HDFS) Tuning
There are 48 partitions set for the indexing partition, per the enrichment exercise above.

These are the batch size settings for the Bro index.

```
cat ${METRON_HOME}/config/zookeeper/indexing/bro.json
{
"hdfs" : {
"index": "bro",
 "batchSize": 50,
 "enabled" : true
 }...
}```

And here are the settings we used for the indexing topology

General storm settings

```
topology.workers: 4
topology.acker.executors: 24
topology.max.spout.pending: 2000
```

Spout and Bolt Settings

```
hdfsSyncPolicy
    org.apache.storm.hdfs.bolt.sync.CountSyncPolicy



Hortonworks Cybersecurity
Package

July 12, 2017

10

    constructor arg=100000
hdfsRotationPolicy
    bolt.hdfs.rotation.policy.units=DAYS
    bolt.hdfs.rotation.policy.count=1
kafkaSpout
    parallelism: 24
    session.timeout.ms=29999
    enable.auto.commit=false
    setPollTimeoutMs=200
    setMaxUncommittedOffsets=10000000
    setOffsetCommitPeriodMs=30000
hdfsIndexingBolt
    parallelism: 24
```

4.1.4.1. PCAP Tuning

PCAP is a specialized topology that is a Spout-only topology. Both Kafka topic consumption
and HDFS writing is done within a spout to avoid the additional network hop required if
using an additional bolt.

General Storm topology properties

```
topology.workers=16
topology.ackers.executors: 0
```

 +__Spout and Bolt properties__
 +```
 +kafkaSpout
 + parallelism: 128
 + poll.timeout.ms=100
 + offset.commit.period.ms=30000
 + session.timeout.ms=39000
 + max.uncommitted.offsets=200000000
 + max.poll.interval.ms=10
 + max.poll.records=200000
 + receive.buffer.bytes=431072
 + max.partition.fetch.bytes=10000000
 + enable.auto.commit=false
 + setMaxUncommittedOffsets=20000000
 + setOffsetCommitPeriodMs=30000
 +
 +writerConfig
 + withNumPackets=1265625
 + withMaxTimeMS=0
 + withReplicationFactor=1
 + withSyncEvery=80000
 + withHDFSConfig
 + io.file.buffer.size=1000000
 + dfs.blocksize=1073741824
 +```
 +

4.2. Issues
__Error__

Hortonworks Cybersecurity
Package

July 12, 2017

11

```
org.apache.kafka.clients.consumer.CommitFailedException: Commit cannot be
 completed since the group has already rebalanced and assigned
the partitions to another member. This means that the time between subsequent
 calls to poll() was longer than the configured session.timeout.ms,
which typically implies that the poll loop is spending too much time message
 processing. You can address this either by increasing the
session timeout or by reducing the maximum size of batches returned in poll()
 with max.poll.records
 +```

Suggestions

This implies that the spout hasn't been given enough time between polls before
committing the offsets. In other words, the amount of time taken to process the messages
is greater than the timeout window. In order to fix this, you can improve message
throughput by modifying the options outlined above, increasing the poll timeout, or both.



Hortonworks Cybersecurity
Package

July 12, 2017

12

5. References
• What is the "task" in Storm parallelism

• Understanding the Parallelism of a Storm Topology

• Reading and Understanding the Storm UI

• How to choose the number of topics/partitions in a Kafka cluster?

https://stackoverflow.com/questions/17257448/what-is-the-task-in-storm-parallelism
http://storm.apache.org/releases/current/Understanding-the-parallelism-of-a-Storm-topology.html
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/
https://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/

	Hortonworks Cybersecurity Package
	Table of Contents
	1. Overview
	2. General Tuning Suggestions
	3. Component Tuning Levers
	3.1. Kafka Tuning
	3.2. Storm Tuning

	4. Use Case Specific Tuning Suggestions
	4.1. Performance Monitoring Tools
	4.1.1. Tooling
	4.1.2. Parser Tuning
	4.1.3. Enrichment Tuning
	4.1.4. Indexing (HDFS) Tuning
	4.1.4.1. PCAP Tuning


	4.2. Issues

	5. References

