
Hortonworks Cybersecurity Package

 (January 26, 2018)

Administration

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Cybersecurity
Package

January 26, 2018

ii

Hortonworks Cybersecurity Package: Administration
Copyright © 2012-2018 Hortonworks, Inc. Some rights reserved.

Hortonworks Cybersecurity Package (HCP) is a modern data application based on Apache Metron,
powered by Apache Hadoop, Apache Storm, and related technologies.

HCP provides a framework and tools to enable greater efficiency in Security Operation Centers (SOCs)
along with better and faster threat detection in real-time at massive scale. It provides ingestion, parsing
and normalization of fully enriched, contextualized data, threat intelligence feeds, triage and machine
learning based detection. It also provides end user near real-time dashboards.

Based on a strong foundation in the Hortonworks Data Platform (HDP) and Hortonworks DataFlow (HDF)
stacks, HCP provides an integrated advanced platform for security analytics.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/technology/hortonworksdataplatform
https://hortonworks.com/support
https://hortonworks.com/training/
https://hortonworks.com/about-us/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Cybersecurity
Package

January 26, 2018

iii

Table of Contents
1. HCP Information Roadmap .. 1
2. Introduction to Hortonworks CyberSecurity Suite ... 2

2.1. HCP Architecture ... 2
2.1.1. Real-time Processing Security Engine ... 3
2.1.2. Telemetry Data Collectors .. 3
2.1.3. Data Services and Integration Layer ... 3

2.2. Understanding HCP Terminology ... 3
3. Configuring and Customizing ... 6

3.1. Adding a New Telemetry Data Source ... 6
3.1.1. Prerequisites ... 7
3.1.2. Streaming Data into HCP ... 8
3.1.3. Parsing a New Data Source to HCP ... 13
3.1.4. Verifying That the Events Are Indexed .. 27

3.2. Enriching Telemetry Events .. 27
3.2.1. Bulk Loading Enrichment Information .. 28
3.2.2. Streaming Enrichment Information ... 38

3.3. Configuring Indexing ... 40
3.3.1. Overview .. 41
3.3.2. Default Configuration ... 41
3.3.3. Specifying Index Parameters ... 42
3.3.4. Indexing (HDFS) Tuning .. 45
3.3.5. Turning Off HDFS Writer .. 46
3.3.6. Support for HCP 1.4.1 .. 46
3.3.7. Troubleshooting Indexing ... 47

3.4. Using Threat Intelligence Feeds ... 48
3.4.1. Prerequisites ... 48
3.4.2. Bulk Loading Threat Intelligence Information 48
3.4.3. Creating a Streaming Threat Intel Feed Source 58

3.5. Prioritizing Threat Intelligence ... 60
3.5.1. Prerequisites ... 60
3.5.2. Performing Threat Triage Using the Management Module 61
3.5.3. Performing Threat Triage Using the CLI .. 63

3.6. Setting Up Enrichment Configurations ... 66
3.6.1. Sensor Configuration .. 67

3.7. Global Configuration ... 68
3.8. Configuring the Profiler ... 71
3.9. Creating an Index Template .. 72
3.10. Configuring the Metron Dashboard to View the New Data Source
Telemetry Events .. 73
3.11. Setting up pcap to View Your Raw Data ... 73

3.11.1. Setting up pycapa .. 74
3.11.2. Starting pcap .. 74
3.11.3. Setting up Fastcapa .. 76
3.11.4. Using Fastcapa ... 79
3.11.5. Using Fastcapa in a Kerberized Environment 82

3.12. Troubleshooting Parsers .. 83
3.12.1. Storm is Not Receiving Data From a New Data Source 83
3.12.2. Determining Which Events Are Not Being Processed 84

Hortonworks Cybersecurity
Package

January 26, 2018

iv

4. Monitor and Management .. 85
4.1. Understanding Throughput ... 85
4.2. Updating Properties .. 86
4.3. Updating ZooKeeper ... 87
4.4. Managing Sensors ... 87

4.4.1. Starting and Stopping a Sensor .. 88
4.4.2. Modifying a Sensor .. 88
4.4.3. Deleting a Sensor ... 90

4.5. Monitoring Sensors ... 91
4.5.1. Displaying the Metron Error Dashboard .. 91
4.5.2. Default Metron Error Dashboard .. 92
4.5.3. Loading Metron Templates ... 93

4.6. Starting and Stopping Parsers ... 95
4.7. Starting and Stopping Enrichments ... 96
4.8. Starting and Stopping Indexing ... 98
4.9. Modifying the Elasticsearch Template .. 99
4.10. Pruning Data From Elasticsearch .. 99
4.11. Backing up the Metron Dashboard .. 100
4.12. Restoring Your Metron Dashboard Backup .. 100

5. Concepts .. 101
5.1. Parsers ... 101

5.1.1. Java Parsers .. 101
5.1.2. General Purpose Parsers ... 101
5.1.3. Parser Configuration ... 103

5.2. Telemetry Data Source Parsers Bundled with Hortonworks Cybersecurity
Package ... 105

5.2.1. Snort .. 106
5.2.2. Bro ... 106
5.2.3. YAF (NetFlow) .. 107
5.2.4. Indexing ... 107
5.2.5. pcap ... 107

5.3. Enrichment Framework ... 108
5.3.1. Sensor Enrichment Configuration .. 109
5.3.2. Global Configuration .. 115
5.3.3. Using Stellar for Queries ... 115
5.3.4. Using Stellar to Transform Sensor Data Elements 116
5.3.5. Management Utility .. 117

5.4. Fastcapa .. 118

Hortonworks Cybersecurity
Package

January 26, 2018

v

List of Figures
2.1. HCP Architecture ... 2
3.1. New TailFile Processor ... 9
3.2. Configure Processor Dialog Box Settings Tab ... 10
3.3. NiFi Configure Processor .. 10
3.4. Configure Processor Settings Tab .. 11
3.5. Configure Processor Properties Tab ... 11
3.6. nifi_create_connection.png ... 12
3.7. NiFi Dataflow .. 12
3.8. Operate Panel ... 13
3.9. New Sensor Panel ... 18
3.10. Grok Validator Panel ... 19
3.11. New Schema Information Panel .. 21
3.12. New Schema Information Panel .. 36
3.13. Populated New Schema Information Panel .. 37
3.14. Management Module Advanced Panel .. 43
3.15. Threat Intel Configuration ... 55
3.16. New Schema Information Panel .. 57
3.17. Threat Triage Rules Panel .. 61
3.18. Edit Rule Panel .. 62
3.19. Investigation Module Triaged Alert Panel .. 66
4.1. Management Module Main Window ... 88
4.2. Sensor Panel ... 89
4.3. ambari_configs_parsers.png .. 90
4.4. Error Dashboard .. 93
4.5. Ambari Services Tab .. 94
4.6. Confirmation Dialog Box ... 94
4.7. Ambari Background Operations .. 95
4.8. Ambari Metron Summary Window .. 95
4.9. Components Window .. 96
4.10. Ambari Metron Summary Window .. 97
4.11. Components Window .. 97
4.12. Ambari Metron Summary Window .. 98
4.13. Components Window .. 98
5.1. Configuration File with Transformation Information .. 103
5.2. Indexing Architecture .. 107
5.3. HCP Enrichment Flow .. 108

Hortonworks Cybersecurity
Package

January 26, 2018

vi

List of Tables
1.1. HCP Additional Information .. 1
3.1. Global Configuration Properties .. 68
3.2. Profiler Properties ... 71
4.1. Properties Managed by Ambari ... 86
5.1. Individual Enrichment Configuration Fields .. 109
5.2. Threat Intelligence Enrichment Configuration .. 112
5.3. triageConfig Fields ... 113

Hortonworks Cybersecurity
Package

January 26, 2018

1

1. HCP Information Roadmap
This roadmap contains additional information on Hortonworks Cybersecurity Package
(HCP) and Apache Metron.

Table 1.1. HCP Additional Information

Information type Resources

Overview • Apache Metron Website (Source: Apache wiki)

Installing • Ambari Install Guide (Source: Hortonworks)

• Command Line Install Guide (Source: Hortonworks)

• Ambari Upgrade Guide (Source: Hortonworks)

• Command Line Upgrade Guide (Source: Hortonworks)

Administering • Apache Metron Documentation (Source: Apache wiki)

Developing • Community Resources (Source: Apache wiki)

Reference • About Metron (Source: Apache wiki)

Resources for contributors • How to Contribute (Source: Apache wiki)

Hortonworks Community
Connection

• Hortonworks Community Connection for Metron (Source: Hortonworks)

http://metron.incubator.apache.org/
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.1.0/bk_ambari-installation/content/ch_Getting_Ready.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.4/bk_command-line-installation/content/ch_getting_ready_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.1.0/bk_ambari-upgrade/content/ambari_upgrade_guide.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.4/bk_command-line-upgrade/content/ch_upgrade_2_4.html
https://cwiki.apache.org/confluence/display/METRON/Documentation
https://cwiki.apache.org/confluence/display/METRON/Community+Resources
https://cwiki.apache.org/confluence/display/METRON/About+Metron
https://cwiki.apache.org/confluence/display/Hive/HowToContribute
https://community.hortonworks.com/spaces/111/cybersecurity.html?topics=Metron&type=question

Hortonworks Cybersecurity
Package

January 26, 2018

2

2. Introduction to Hortonworks
CyberSecurity Suite

This guide is intended for Platform Engineers responsible for installing, configuring, and
maintaining Hortonworks CyberSecurity Package (HCP) powered by Apache Metron. This
guide is divided into three major sections:

• Configuring and Customizing [6]

• Monitor and Management [85]

• Concepts [101]

2.1. HCP Architecture
Hortonworks CyberSecurity Package (HCP) is a cybersecurity platform. It consists of the
following components:

• Real-time Processing Security Engine [3]

• Telemetry Data Collectors [3]

• Data Services and Integration Layer [3]

Each of these components is described in the following sections.

Figure 2.1. HCP Architecture

The core of the HCP architecture is the Apache Metron real-time processing security engine.
The data flow for HCP is performed in real-time and contains the following steps:

1. Information from telemetry data sources is ingested into Kafka topics. (Kafka is the
telemetry event buffer.) A Kafka topic is created for every telemetry data source. This
information is the raw telemetry data consisting of host logs, firewall logs, emails, and
network data.

2. Once the information is ingested into Kafka topics, the data is parsed into a normalized
JSON structure that Metron can read.

Hortonworks Cybersecurity
Package

January 26, 2018

3

3. The information is then enriched with asset, geo, threat intelligence information, etc.

4. The information is then indexed, stored, and any resulting alerts are sent to the Metron
dashboard, the Alerts user interface, as well as telemetry.

2.1.1. Real-time Processing Security Engine
The core of the HCP architecture is the Apache Metron real-time processing security engine.
This component provides the ingest buffer to capture the raw events, and, in real time,
parses the raw events, enriches the events with relevant contextual information, enriches
the events with threat intelligence, and applies available models (such as triaging threats
via the Stellar language), then writes the events to a searchable index as well as HDFS for
after-the-fact analytics.

2.1.2. Telemetry Data Collectors
Telemetry data collectors push or stream the data source events into Apache Metron.
HCP works with NiFi to push the majority of data sources into Apache Metron. For high-
volume network data, HCP provides a performant network ingest probe. And for threat
intelligence feeds, HCP supports a set of both streaming and batch loaders that enables you
to push third-party intelligence feeds into Apache Metron.

2.1.3. Data Services and Integration Layer
This set of HCP modules provides different features for different SOC personas. HCP
provides the following three modules for the integration layer:

Security data vault Stores the data in HDFS.

Search portal The Metron dashboard.

Provisioning, management, and
monitoring tool

HCP provides a Management module that expedites
provisioning and managing sensors. Other provisioning,
management, and monitoring functions are supported
through Ambari.

2.2. Understanding HCP Terminology
This section defines the key terminology associated with cybersecurity, Hadoop, and HCP:

Alert Alerts provide information about currently security
issues, vulnerabilities, and exploits.

Apache Kafka Apache Kafka is a fast, scalable, durable, fault-tolerant
publish-subscribe messaging system, that can be used
for stream processing, messaging, website activity
tracking, metrics collection and monitoring, log
aggregation, and event sourcing.

Apache Storm Apache Storm enables data-driven, automated activity
by providing a real-time, scalable, fault-tolerant, highly
available, distributed solution for streaming data.

Hortonworks Cybersecurity
Package

January 26, 2018

4

Apache ZooKeeper Apache ZooKeeper is a centralized service for
maintaining configuration information, naming,
providing distributed synchronization, and providing
group services.

Cybersecurity The protection of information systems from theft
or damage to the hardware, software, and to the
information on them, as well as from disruption or
misdirection of the services they provide.

Data management A set of data management utilities aimed at getting
data into HBase in a format which will allow data
flowing through metron to be enriched with the results.
Contains integrations with threat intelligence feeds
exposed via TAXII as well as simple flat file structures.

Enrichment data source A data source containing additional information about
telemetry ingested by HCP.

Enrichment bolt The storm bolt that applies the enrichment to the
telemetry.

Enrichment data loader A streaming or a batch loader that stages the data from
the enrichment source into HCP so that telemetry can
be enriched in real-time with the information from the
enrichment source

Forensic Investigator Collects evidence on breach and attack incidents and
prepares legal responses to breaches.

Model as a Service A Yarn application which can deploy machine learning
and statistical models onto the cluster along with the
associated Stellar functions to be able to call out to
them in a scalable manner.

Parser A storm bolt that transforms telemetry from its native
format to a JSON that Metron is able to understand.

Profiler A feature extraction mechanism that can generate a
profile describing the behavior of an entity. An entity
might be a server, user, subnet or application. Once
a profile has been generated defining what normal
behavior looks-like, models can be built that identify
anomalous behavior.

Security Data Scientist Works with security data, performing data munging,
visualization, plotting, exploration, feature engineering,
model creation. Evaluates and monitors the correctness
and currency of existing models

Security Operations Center
(SOC)

A centralized unit that deals with cybersecurity issues
for an organization by monitoring, assessing, and
defending against cybersecurity attacks.

Hortonworks Cybersecurity
Package

January 26, 2018

5

Security Platform Engineer Installs, configures, and maintains security tools.
Performs capacity planning and upgrades. Establishes
best practices and reference architecture with respect
to provisioning, managing, and using the security tools.
Maintains the probes to collect data, load enrichment
data, and manage threat feeds.

SOC Analyst Responsible for monitoring security information and
event management (SIEM) tools; searching for and
investigating breaches and malware, and reviewing
alerts; escalating alerts when appropriate; and
following security playbooks.

SOC Investigator Responsible for investigating more complicated or
escalated alerts and breaches, such as Advanced
Persistent Threats (APT). Hunts for malware attacks.
Removes or quarantines the malware, breach, or
infected system.

Stellar A custom data transformation language that is used
throughout HCP from simple field transformation to
expressing triage rules.

Telemetry data source The source of telemetry data which can vary in level
from low level (packet capture), intermediate level
(deep packet analysis) or very high level (application
logs).

Telemetry event A single event in a stream of telemetry data. This
can vary in level from low level (packet capture),
intermediate level (deep packet analysis) or very high
level (application logs).

Hortonworks Cybersecurity
Package

January 26, 2018

6

3. Configuring and Customizing
One of the key design goals of Hortonworks Cybersecurity Package (HCP) powered by
Apache Metron is that it should be easily extensible. HCP comes bundled with several
telemetry data sources, enrichment topologies, and threat intelligence feeds. However, you
might want to use HCP as a platform and build custom capabilities on top of it.

This chapter describes the following ways you can customize your HCP platform:

• Adding a New Telemetry Data Source [6]

• Enriching Telemetry Events [27]

• Configuring Indexing [40]

• Using Threat Intelligence Feeds [48]

• Prioritizing Threat Intelligence [60]

• Setting Up Enrichment Configurations [66]

• Configuring the Profiler [71]

• Creating an Index Template [72]

• Configuring the Metron Dashboard to View the New Data Source Telemetry
Events [73]

• Setting up pcap to View Your Raw Data [73]

• Troubleshooting Parsers [83]

3.1. Adding a New Telemetry Data Source
This section describes how you add a new telemetry data source. Before HCP can process
the information from a new telemetry data source, you must use one of the telemetry data
collectors to ingest the information into the telemetry ingest buffer. Information moves
from the data ingest buffer into the Metron real-time processing security engine, where it
is parsed, enriched, triaged, and indexed. Finally, certain telemetry events can initiate alerts
that can be assessed in the Metron dashboard.

To add a new telemetry data source, perform the following tasks:

1. Streaming Data into HCP [8]

2. Parsing a New Data Source to HCP [13]

3. Verifying That the Events Are Indexed [27]

4. For instructions on how to configure the Metron Dashboard to view the new data
source telemetry events, see Hortonworks Cybersecurity User Guide.

The following sections provide steps for each task. You can perform these tasks by using
the HCP Management module or CLI. Instructions are provided for both methods.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_user-guide/content/index.html

Hortonworks Cybersecurity
Package

January 26, 2018

7

3.1.1. Prerequisites

Before you add a new telemetry device, you must perform the following actions:

• Install HDP and HDF, and then install HCP.

For information about installing HCP, see the HCP Installation Guide.

• Ensure that the new sensor is installed and set up.

• Ensure that NiFi or another telemetry data collection tool can feed the telemetry data
source events into a Kafka topic.

• Determine your requirements.

For example, you might decide that you need to meet the following requirements:

• Proxy events from the data source logs must be ingested in real-time.

• Proxy logs must be parsed into a standardized JSON structure suitable for analysis by
Metron.

• In real-time, new data source proxy events must be enriched so that the domain names
contain the IP information.

• In real-time, the IP within the proxy event must be checked against for threat
intelligence feeds.

• If there is a threat intelligence hit, an alert must be raised.

• The SOC analyst must be able to view new telemetry events and alerts from the new
data source.

• Set HCP values

When you install HCP, you will set up several hosts. You will need the locations of these
hosts, along with port numbers, and the Metron version. These values are listed below.

• KAFKA_HOST = The host where a Kafka broker is installed.

• ZOOKEEPER_HOST = The host where a ZooKeeper server is installed.

• PROBE_HOST = The host where your sensor, probes are installed. If don't have any
sensors installed, pick the host where a Storm supervisor is running.

• NIFI_HOST = Host where you will install NIFI.

• HOST_WITH_ENRICHMENT_TAG = The host in your inventory hosts file that you put
under the group "enrichment."

• SEARCH_HOST = The host where you have Elastic or Solr running. This is the host in
your inventory hosts file that you put under the group "search". Pick one of the search
hosts.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_installation/content/index.html

Hortonworks Cybersecurity
Package

January 26, 2018

8

• SEARCH_HOST_PORT = The port of the search host where indexing is configured. (For
example, 9300).

• METRON_UI_HOST = The host where your Metron UI web application is running. This
is the host in your inventory hosts file that you put under the group "web."

• METRON_VERSION = The release of the Metron binaries you are working with. (For
example, HCP-1.4.0.0)

3.1.2. Streaming Data into HCP
The first step in adding a new data source telemetry is to stream all raw events from the
telemetry data source into its own Kafka topic.

Note

Although HCP includes parsers for several data sources (for example, Bro, Snort,
and YAF), you must still stream the raw data into HCP through a Kafka topic.

By default, the Snort parser is configured to use ZoneId.systemDefault()
for the source `timeZone` for the incoming data and MM/dd/yy-
HH:mm:ss.SSSSSS as the default `dateFormat`. Valid timezones are per Java's
ZoneId.getAvailableZoneIds(). DateFormats should be valid per the options
defined in https://docs.oracle.com/javase/8/docs/api/java/
time/format/DateTimeFormatter.html. Below is a sample configuration
with the `dateFormat` and `timeZone` explicitly set in the parser config.

"parserConfig": {
"dateFormat" : "MM/dd/yy-HH:mm:ss.SSSSSS",
 "timeZone" : "America/New_York"

Note

When you install and configure Snort, you must configure Snort to include the
year in the timestamp by modifying the snort.conf file as follows:

Configure Snort to show year in timestamps
config show_year

This is important for the proper functioning of indexing and analytics.

Depending on the type of data you are streaming into HCP, you can use one of the
following methods:

NiFi This type of streaming method works for most types of
data sources. For information on installing NiFi, see the
NiFi documentation.

Important

NiFi cannot be installed on top of HDP, so
you must install NiFi manually to use it with
HCP.

Hortonworks Cybersecurity
Package

January 26, 2018

9

Note

Ensure that the NiFi web application is using
port 8089.

Performant network ingestion
probes

This type of streaming method is ideal for streaming
high volume packet data. See Setting up pcap to View
Your Raw Data for more information.

Real-time and batch threat
intelligence feed loaders

This type of streaming method is used for real-time
and batch threat intelligence feed loaders. For more
information see Using Threat Intelligence Feeds.

3.1.2.1. Creating a NiFi Flow to Stream Events to HCP

This section provides instructions to create a flow to capture events from the new data
source and push them into HCP.

1.
Drag the first icon on the toolbar (the processor icon) to your workspace.

NiFi displays the Add Processor dialog box.

2. Select the TailFile type of processor and click Add.

NiFi displays a new TailFile processor.

Figure 3.1. New TailFile Processor

3. Right-click the processor icon and select Configure to display the Configure Processor
dialog box.

• In the Settings tab, change the name to Ingest $DATASOURCE Events.

Hortonworks Cybersecurity
Package

January 26, 2018

10

Figure 3.2. Configure Processor Dialog Box Settings Tab

• In the Properties tab, enter the path to the datasource file in the Value column for
the File(s) to Tail property:

Figure 3.3. NiFi Configure Processor

4. Add another processor by dragging the Processor icon to the main window.

5. Select the PutKafka type of processor and click Add.

6. Right-click the processor and select Configure.

Hortonworks Cybersecurity
Package

January 26, 2018

11

7. In the Settings tab, change the name to Stream to Metron and then click the
relationship check boxes for failure and success.

Figure 3.4. Configure Processor Settings Tab

8. In the Properties tab, set the following three properties:

• Known Brokers: $KAFKA_HOST:6667

• Topic Name: $DATAPROCESSOR

• Client Name: nifi-$DATAPROCESSOR

Figure 3.5. Configure Processor Properties Tab

Hortonworks Cybersecurity
Package

January 26, 2018

12

9. Create a connection by dragging the arrow from the Ingest $DATAPROCESSOR Events
processor to the Stream to Metron processor.

NiFi displays a Create Connection dialog box.

Figure 3.6. nifi_create_connection.png

10.Click Add to accept the default settings for the connection.

11.Press the Shift key and draw a box around both parsers to select the entire flow; then
click the play button (green arrow).

You should see all of the processor icons turn into green arrows.

Figure 3.7. NiFi Dataflow

12.Click (Start button in the Operate panel.

Hortonworks Cybersecurity
Package

January 26, 2018

13

Figure 3.8. Operate Panel

13.Generate some data using the new data processor client.

You should see metrics on the processor of data being pushed into Metron.

14.Look at the Storm UI for the parser topology and you should see tuples coming in.

15.After about five minutes, you should see a new Elastic Search index called
$DATAPROCESSOR_index* in the Elastic Admin UI.

For more information about creating a NiFi data flow, see the NiFi documentation.

3.1.3. Parsing a New Data Source to HCP

Parsers transform raw data (textual or raw bytes) into JSON messages suitable for
downstream enrichment and indexing by HCP. There is one parser for each data source and
the information is piped to the Enrichment/Threat Intelligence topology.

You can transform the field output in the JSON messages into information and formats to
make the output more useful. For example, you can change the timestamp field output
from GMT to your timezone.

You must make the following decisions before you parse a new data source:

• Type of parser you will use for your data source

For more information about which parser to use, see Parsers [101].

HCP supports two types of parsers: Java and general purpose:

• General Purpose - HCP supports two general purpose parsers: Grok and CSV. These
parsers are ideal for structured or semi structured logs that are well understood and
telemetries with lower volumes of traffic.

• A Java parser is appropriate for a telemetry type that is complex to parse, with high
volumes of traffic.

• How you will parse the new data source

Hortonworks Cybersecurity
Package

January 26, 2018

14

HCP enables you to parse a new data source and transform data fields using the HCP
Management module or the command line interface. Both methods are described in the
following sections:

• Using the Management Module [16]

• Using the CLI [22]

• What data you intend to search, sort, and aggregate when using the Alerts UI.

String values are mapped by default with a "type": "text" mapping that does not work
with the Alerts UI. In order to properly enable sorting and aggregate operations, you
have two options:

• Explicitly add a mapping for that property to an Elasticsearch template. You call also
refer to Section 3.3.6.1, “Updating Elasticsearch Templates to Work with Elasticsearch
5.x” [47] for information about using Elasticsearch 5.x.

• Add a global mapping to Elasticsearch that will automatically map that property to a
type that is searchable/sortable/aggregatable for all indexes.

For example, you can set a template to match all indexes that maps strings to text with
fielddata enabled:

curl -XPUT 'http://${ES_HOST}:${ES_PORT}/_template/
default_string_template' -d '
{
 "template": "*",
 "mappings" : {
 "${your_type_here}": {
 "dynamic_templates": [
 {
 "strings": {
 "match_mapping_type": "string",
 "mapping": {
 "type": "text",
 "fielddata": "true"
 }
 }
 }

For information on the difference between types=text and type=keyword, see
Section 3.1.3.1, “Type Mapping Changes” [14].

3.1.3.1. Type Mapping Changes

Type mappings in Elasticsearch 5.6.2 have changed from ES 2.x. This section provides an
overview of the most significant changes.

The following is a list of the major changes in Elasticsearch 5.6.2:

• String fields replaced by text/keyword type

• Strings have new default mappings as follows:

{

Hortonworks Cybersecurity
Package

January 26, 2018

15

 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above": 256
 }
 }
}

• There is no longer a _timestamp field that you can set "enabled" on.

This field now causes an exception on templates. The Metron model has a timestamp
field that is sufficient.

The semantics for string types have changed. In 2.x, index settings are either "analyzed"
or "not_analyzed" which means "full text" and "keyword", respectively. Analyzed text
means the indexer will split the text using a text analyzer, thus allowing you to search on
substrings within the original text. "New York" is split and indexed as two buckets, "New"
and "York", so you can search or query for aggregate counts for those terms independently
and match against the individual terms "New" or "York." "Keyword" means that the original
text will not be split/analyzed during indexing and instead treated as a whole unit. For
example, "New" or "York" will not match in searches against the document containing "New
York", but searching on "New York" as the full city name will match. In Elasticsearch 5.6
language, instead of using the "index" setting, you now set the "type" to either "text" for full
text, or "keyword" for keywords.

Below is a table listing the changes to how String types are now handled.

sort, aggregate, or access
values

Elasticsearch 2.x Elasticsearch 5.x Example

no
"my_property" : {
 "type": "string",
 "index": "analyzed"
}

"my_property" : {
 "type": "text"
}

Additional defaults: "index":
"true", "fielddata": "false"

"New York" handled via
in-mem search as "New"
and "York" buckets. No
aggregation or sort.

yes
"my_property": {
 "type": "string",
 "index": "analyzed"
}

"my_property": {
 "type": "text",
 "fielddata": "true"
}

"New York" handled via
in-mem search as "New"
and "York" buckets. Can
aggregate and sort.

yes
"my_property": {
 "type": "string",
 "index":
 "not_analyzed"
}

"my_property" : {
 "type": "keyword"
}

"New York" searchable as
single value. Can aggregate
and sort. A search for "New"
or "York" will not match
against the whole value.

yes
"my_property": {
 "type": "string",
 "index": "analyzed"
}

"my_property": {
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above":
 256
 }
 }
}

"New York" searchable
as single value or as text
document, can aggregate
and sort on the sub term
"keyword."

If you want to set default string behavior for all strings for a given index and type, you can
do so with a mapping similar to the following (replace ${your_type_here} accordingly):

Hortonworks Cybersecurity
Package

January 26, 2018

16

curl -XPUT 'http://${ES_HOST}:${ES_PORT}/_template/default_string_template'
 -d '
{
 "template": "*",
 "mappings" : {
 "${your_type_here}": {
 "dynamic_templates": [
 {
 "strings": {
 "match_mapping_type": "string",
 "mapping": {
 "type": "text"
 "fielddata": "true"
 }
 }
 }
]
 }
 }
}

By specifying the template property with value *, the template will apply to all indexes
that have documents indexed of the specified type (${your_type_here}).

The following are other settings for types in ES:

• doc_values

• On-disk data structure

• Provides access for sorting, aggregation, and field values

• Stores same values as _source, but in column-oriented fashion better for sorting and
aggregating

• Not supported on text fields

• Enabled by default

• fielddata

• In-memory data structure

• Provides access for sorting, aggregation, and field values

• Primarily for text fields

• Disabled by default because the heap space required can be large

3.1.3.2. Using the Management Module

This section explains how to use the HCP Management module to parse a new data source
and transform data fields.

Although HCP supports both Java and general purpose parsers, the following workflow
uses the general purpose parser, Grok.

Hortonworks Cybersecurity
Package

January 26, 2018

17

1. Determine the format of the new data source’s log entries, so you can parse them:

a. Look at the different log files that can be created and determine which log file needs
to be parsed:

sudo su -
cd /var/log/$NEW_DATASOURCE
ls

The file you want is typically the access.log, but your data source might use a
different name.

b. Generate entries for the log that needs to be parsed so that you can see the format of
the entries.

For example:

timestamp | time elapsed | remotehost | code/status | bytes | method |
 URL rfc931 peerstatus/peerhost | type

2. Create a Kafka topic for the new data source:

a. Log in to $KAFKA_HOST as root.

b. Create a Kafka topic named the same as the new data source:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh
--zookeeper $ZOOKEEPER_HOST:2181 --create --topic $NEW_DATASOURCE
--partitions 1 --replication-factor 1

c. List all of the Kafka topics, to ensure that the new topic exists:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper
 $ZOOKEEPER_HOST:2181 --list

3. Create a Grok statement file that defines the Grok expression for the log type you
identified in Step 1.

Refer to the Grok documentation for additional details.

4. Launch the HCP Management module:

a. From the Ambari Dashboard panel, click Metron.

b. Make sure you have the Summary tab selected.

c. Select the Metron Management UI from the Summary list.

The Metron Management UI tool should display in a separate browser tab.

Alternatively, you can launch the module from
$METRON_MANAGEMENT_UI_HOST:4200 in a browser.

5. Click Sensors on the left side of the window, under Operations.

6.

Click (the add button) in the lower right corner of the screen.

Hortonworks Cybersecurity
Package

January 26, 2018

18

The Management module displays a panel used to create the new sensor.

Figure 3.9. New Sensor Panel

7. In the NAME field, enter the name of the new sensor.

If a Kafka topic already exists for the sensor name, the module displays a message similar
to Kafka Topic Exists. Emitting. If no matching Kafka topic is found, the module displays
No Matching Kafka Topic.

8. In the Parser Type field, choose the type of parser for the new sensor.

If you chose a Grok parser type and no Kafka type is detected, the module prompts for a
Grok Statement.

9. If no Kafka topic exists for your sensor, create a Kafka topic for the sensor.

a. In the Kafka Topic text box, click the arrow to display the Configure Kafka Topic
dialog box

b. Enter the partition and replication factor for the Kafka type associated with the new
sensor, and then click Save.

10.Enter a Grok statement for the new parser:

Hortonworks Cybersecurity
Package

January 26, 2018

19

a.

In the Grok Statement box, click the (expand window button) to display the
Grok Validator panel.

Figure 3.10. Grok Validator Panel

b. In the SAMPLE text field, enter a sample log entry for the data source.

c. In the STATEMENT text field, enter the Grok statement you created for the data
source, and then click TEST.

The Management module will automatically complete partial words in your Grok
statement as you enter them.

The validator displays the results of the test. If the validator finds an error, it displays
the error information. If the validation succeeds, it displays the valid mapping in the
PREVIEW field.

Hortonworks Cybersecurity
Package

January 26, 2018

20

Note

You should perform the Grok validation using several different sensor log
entries to ensure that the Grok statement is valid for all sensor logs. To
display additional sensor log entries, click the forward or backward arrow
icon on the side of the SAMPLE text box.

d. Click SAVE to save the Grok statement for the sensor.

11.Click SAVE to save the sensor information and add it to the list of Sensors.

This new data source processor topology ingests from the $Kafka topic and then parses
the event with the HCP Grok framework using the Grok pattern. The result is a standard
JSON Metron structure that then is added to the "enrichment" Kafka topic for further
processing.

12.Add your transformation information:

Note

Your sensor must be running and producing data before you can add
transformation information.

a.

In the Schema box, click (expand window button).

The Management module populates the panel with message, field, and value
information.

Hortonworks Cybersecurity
Package

January 26, 2018

21

The Sample field, at the top of the panel, displays a parsed version of a sample
message from the sensor. The Management module will test your transformations
against these parsed messages.

You can use the right and left arrow buttons in the Sample field to view the parsed
version of each sample message available from the sensor.

You can apply transformations to an existing field or create a new field. Typically
users choose to create and transform a new field, rather than transforming an
existing field.

b.

To add a new transformation, either click the next to a field or click the

(plus sign) at the bottom of the Schema panel.

The module displays a new dialog box for your transformations.

Figure 3.11. New Schema Information Panel

c. In the dialog box, choose the field you want to transform from the INPUT FIELD box,
enter the name of the new field in the NAME field, and then choose a function with
the appropriate parameters in the TRANSFORMATIONS box.

Hortonworks Cybersecurity
Package

January 26, 2018

22

d. Click SAVE to save your additions.

The Management module populates the Transforms field with the number of
transformations applied to the sensor.

If you change your mind and want to remove a transformation, click the "x" next to
the field.

e.
You can also suppress fields with the transformation feature by clicking (suppress
icon).

This icon prevents the field from being displayed, but it does not remove the field
entirely.

f. Click SAVE in the parser panel to save the transformation information.

3.1.3.3. Using the CLI

This section shows you how to use the Grok parser to parse a new data source using the
CLI.

1. Determine the format of the new data source’s log entries, so that you can parse them:

a. Use ssh to access the host for the new data source.

b. Look at the different log files that can be created and determine which log file
needs to be parsed. This is typically the access.log, but your data source might use a
different name.

sudo su -
cd /var/log/$NEW_DATASOURCE
ls

c. Generate entries for the log that needs to be parsed so you can see the format of the
entries.

For example:

timestamp | time elapsed | remotehost | code/status | bytes | method |
 URL rfc931 peerstatus/peerhost | type

2. Create a Kafka topic for the new data source:

a. Log in to $KAFKA_HOST as root.

b. Create a Kafka topic named the same as the new data source:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh
--zookeeper $ZOOKEEPER_HOST:2181 --create --topic $NEW_DATASOURCE
--partitions 1 --replication-factor 1

c. List all of the Kafka topics, to ensure that the new topic exists:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper
 $ZOOKEEPER_HOST:2181 --list

Hortonworks Cybersecurity
Package

January 26, 2018

23

3. Create a Grok statement.

a. Define the Grok expression for the log type you identified in Step 1 by creating a Grok
statement file.

Refer to the Grok documentation for additional details.

b. Validate the Grok pattern to make sure it is valid.

You can use a tool such as Grok Constructor to validate your Grok pattern.

c. Save the Grok pattern and load it into Hadoop Distributed File System (HDFS) in a
named location:

i. Create a local file for the new data source:

touch /tmp/$DATASOURCE

ii. Open $DATASOURCE and add the Grok pattern defined in Step 3b:

vi /tmp/$DATASOURCE

iii. Put the $DATASOURCE file into the HDFS directory where Metron stores its Grok
parsers.

Existing Grok parsers that ship with HCP are staged under /apps/metron/
patterns:

su - hdfs
hadoop fs -rmr /apps/metron/patterns/$DATASOURCE
hdfs dfs -put /tmp/$DATASOURCE /apps/metron/patterns/

4. Define a parser configuration for the Metron Parsing Topology.

After the Grok pattern is staged in HDFS, you must define a parser configuration for the
Metron Parsing Topology. The Metron Parsing Topology (also known as the Normalizing
Topology) is designed to take a sensor input (in its native format) and turn it into a
Metron JSON Object. For more information about the Metron parsing topology, see
Parsers [101].

a. ssh as root into host with HCP installed.

b. Create a $DATASOURCE parser configuration file at $METRON_HOME/config/
zookeeper/parsers/$DATASOURCE.json:

For example:

{
"parserClassName": "org.apache.metron.parsers.GrokParser",
"sensorTopic": "$DATASOURCE",
"readMetadata" : true
"mergeMetadata" : true
"metron.metadata.topic : topic"
"metron.metadata.customer_id : "my_customer_id"
"filterClassName" : "STELLAR"
,"parserConfig" : {
"filter.query" : "exists(field1)"

http://grok.zope.org/documentation/
http://grokconstructor.appspot.com/

Hortonworks Cybersecurity
Package

January 26, 2018

24

"parserConfig": {
 "grokPath": "/apps/metron/patterns/$DATASOURCE",
 "patternLabel": "$DATASOURCE_DELIMITED",
 "timestampField": "timestamp"
},
"fieldTransformations" : [
 {
 "transformation" : "STELLAR"
 ,"output" : ["full_hostname", "domain_without_subdomains"]
 ,"config" : {
 "full_hostname" : "URL_TO_HOST(url)"
 ,"domain_without_subdomains" :
 "DOMAIN_REMOVE_SUBDOMAINS(full_hostname)"
 }
 }
]
}

Where:

parserClassName The name of the parser's class that is in the jar file.

filterClassName The filter to use. This may be a fully qualified
classname of a Class that implements the
org.apache.metron.parsers.interfaces.MessageFilter<JSONObject>
interface. Message Filters are intended to allow the
user to ignore a set of messages via custom logic. The
existing implementations are:

• STELLAR : Allows you to apply a stellar statement
which returns a boolean, which will pass every
message for which the statement returns true
. The Stellar statement that is to be applied is
specified by the filter.query property in the
parserConfig. Example Stellar Filter which
includes messages which contain a field1 field:

 {
 "filterClassName" : "STELLAR"
 ,"parserConfig" : {
 "filter.query" : "exists(field1)"
 }
 }

sensorTopic The Kafka topic on which the telemetry is being
streamed.

readMetadata A Boolean indicating whether or not to
read metadata and make it available to field
transformations (false by default).

There are two types of metadata supported in HCP:

• Environmental metadata : Metadata about the
system at large

Hortonworks Cybersecurity
Package

January 26, 2018

25

• For example, if you have multiple Kafka topics
being processed by one parser, you might want
to tag the messages with the Kafka topic.

• Custom metadata: Custom metadata from an
individual telemetry source that you might want to
use within Metron.

mergeMetadata Boolean indicating whether to merge metadata with
the message or not (false by default).

If this property is set to True, then every metadata
field will become part of the messages and,
consequently, also available for use in field
transformations.

parserConfig The configuration file.

grokPath The path for the Grok statement.

patternLabel The top-level pattern of the Grok file.

fieldTransformations An array of complex objects representing the
transformations to be done on the message
generated from the parser before writing out to the
Kafka topic.

In this example, the Grok parser is designed to
extract the URL, but the only information that
you need is the domain (or even the domain
without subdomains). To obtain this, you can
use the Stellar Field Transformation (under the
fieldTransformations element). The Stellar Field
Transformation allows you to use the Stellar
DSL (Domain Specific Language) to define extra
transformations to be performed on the messages
flowing through the topology. For more information
on using the fieldTransformations element in the
parser configuration, see Parsers [101].

spoutParallelism The kafka spout parallelism (default to 1). This can
be overridden on the command line.

spoutNumTasks The number of tasks for the spout (default to 1). This
can be overridden on the command line.

parserParallelism The parser bolt parallelism (default to 1). This can be
overridden on the command line.

parserNumTasks The number of tasks for the parser bolt (default to
1). This can be overridden on the command line.

Hortonworks Cybersecurity
Package

January 26, 2018

26

errorWriterParallelism The error writer bolt parallelism (default to 1). This
can be overridden on the command line.

errorWriterNumTasks The number of tasks for the error writer bolt (default
to 1). This can be overridden on the command line.

numWorkers The number of workers to use in the topology
(default is the storm default of 1).

numAckers The number of acker executors to use in the
topology (default is the storm default of 1).

spoutConfig A map representing a custom spout config (this is a
map). This can be overridden on the command line.

securityProtocol The security protocol to use for reading from kafka
(this is a string). This can be overridden on the
command line and also specified in the spout config
via the security.protocol key. If both are
specified, then they are merged and the CLI will take
precedence.

stormConfig The storm config to use (this is a map). This can
be overridden on the command line. If both are
specified, they are merged with CLI properties taking
precedence.

c. Use the following script to upload configurations to Apache ZooKeeper:

 $METRON_HOME/bin/zk_load_configs.sh --mode PUSH -i $METRON_HOME/config/
zookeeper -z $ZOOKEEPER_HOST:2181

Note

You might receive the following warning messages when you execute the
previous command. You can safely ignore these warning messages.

log4j:WARN No appenders could be found for logger (org.apache.
curator.framework.imps.CuratorFrameworkImpl).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.
html#noconfig for more info.

5. Deploy the new parser topology to the cluster:

a. Log in to the host that has Metron installed as root user.

b. Deploy the new parser topology:

$METRON_HOME/bin/start_parser_topology.sh -k $KAFKA_HOST:6667 -z
 $ZOOKEEPER_HOST:2181 -s $DATASOURCE

c. Use the Apache Storm UI to ensure that the new topology is listed and that it has no
errors.

Hortonworks Cybersecurity
Package

January 26, 2018

27

This new data source processor topology ingests from $DATASOURCE Kafka topic that you
created earlier and then parses the event with the HCP Grok framework using the Grok
pattern defined earlier. The result of the parsing is a standard JSON Metron structure that
is added to the enrichment Kafka topic for further processing.

3.1.4. Verifying That the Events Are Indexed

After you finish adding your new data source, you should verify that the data source events
are indexed and the output matches any Stellar transformation functions you used.

By convention, the index where the new messages are indexed is called
$DATASOURCE_index_[timestamp] and the document type is $DATASOURCE_doc.

From the Alerts UI, search the source:type filter for the $DATASOURCE messages. For more
information about using the Alerts UI, see Triaging Alerts.

3.2. Enriching Telemetry Events
After the raw security telemetry events have been parsed and normalized, the next
step is to enrich the data elements of the normalized event. Enrichments add external
data from data stores (such as HBase). Examples of enrichments are GEO where an
external IP address is enriched with GeoIP information (lat/long coordinates + City/
State/Country) and HOST enrichment where an IP gets enriched with Host details (for
example, IP corresponds to Host X which is part of a web server farm for an e-commerce
application). This information makes the data more useful and relevant, which assists the
SOC analyst and SOC investigator in researching alerts. Threat intelligence is another type
of enrichment. For information about threat intelligence see Using Threat Intelligence.

HCP provides the following enrichment sources but you can add your own enrichment
sources to suit your needs:

• Asset

• GeoIP

• User

Note

The telemetry data sources for which HCP includes parsers (for example, Bro,
Snort, and YAF) already include enrichment topologies. These topologies will
become effective when you start the data sources in HCP.

One of the features of the enrichment topology is that it groups messages together by the
HBase key. An advantage of grouping messages together is that whenever you execute a
Stellar function, you can add a caching layer, thus decreasing the need to do a call to HBase
for every event.

Prior to enabling an enrichment capability within HCP, the enrichment store (which for
HCP is primarily HBase) must be loaded with enrichment data. Enrichment data can either
be bulk loaded from the local file system, HDFS, or be streamed into the enrichment

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_user-guide/content/triaging_alerts.html

Hortonworks Cybersecurity
Package

January 26, 2018

28

store via the parser framework. The enrichment loader transforms the enrichment into
a JSON format that is understandable to Metron. The loading framework has additional
capabilities for aging data out of the enrichment stores based on time. Once the stores
are loaded, an enrichment bolt that can interact with the enrichment store can be
incorporated into the enrichment topology.

Each enrichment bolt can enrich a specific field/tag within a Metron message. When a bolt
recognizes that it is able to enrich a field, it reaches into the enrichment store, pulls out
the enrichment, and tags the message with the enrichment. The enrichment is then stored
within the bolt's in-memory cache. HCP uses the underlying Storm routing capabilities to
make sure that similar enrichment values are sent to the appropriate bolts that already
have these values cached in-memory.

HCP provides the following enrichment sources but you can add your own enrichment
sources to suit your needs:

• Asset

• GeoIP

• User

To configure an enrichment source, complete the following steps:

• Prerequisites [7]

• Bulk Loading Enrichment Information [28]

• Streaming Enrichment Information [38]

For more information about the Metron enrichment framework, see Enrichment
Framework [108].

3.2.1. Bulk Loading Enrichment Information

Enrichment data can either be bulk loaded from HDFS or be streamed into enrichment
store via pluggable loading framework. This section provides a description of the bulk
loading sources supported by HCP and the steps to bulk load enrichment data.

• Bulk Loading Sources [28]

• Configuring an Extractor Configuration File [31]

• Configuring Element-to-Enrichment Mapping [33]

• Running the Enrichment Loader [34]

• Mapping Fields to HBase Enrichments [34]

3.2.1.1. Bulk Loading Sources

You can bulk load enrichment information from the following sources:

Hortonworks Cybersecurity
Package

January 26, 2018

29

• Flat File Ingestion

• HDFS via MapReduce

• Taxii Loader

CSV File

The shell script $METRON_HOME/bin/flatfile_loader.sh will read data from local
disk and load the enrichment or threat intel data into an HBase table.

One special thing to note here is that there is a special configuration parameter to the
Extractor config that is only considered during this loader:

inputFormatHandler This specifies how to consider the data. The
two implementations are BY_LINE and
org.apache.metron.dataloads.extractor.inputformat.
WholeFileFormat

The default is BY_LINE, which makes sense for a list of CSVs where each line indicates a
unit of information which can be imported. However, if you are importing a set of STIX
documents, then you want each document to be considered as input to the Extractor.

The parameters for the utility are as follows:

Short Code Long Code Is Required? Description

-h No Generate the help screen/
set of options

-e --extractor_config Yes JSON document describing
the extractor for this input
data source

-t --hbase_table Yes The HBase table to import
into

-c --hbase_cf Yes The HBase table column
family to import into

-i --input Yes The input data location
on local disk. If this is a
file, then that file will be
loaded. If this is a directory,
then the files will be loaded
recursively under that
directory.

-l --log4j No The log4j properties file to
load

-n --enrichment_config No The JSON document
describing the enrichments
to configure. Unlike other
loaders, this is run first if
specified.

HDFS via MapReduce

The shell script $METRON_HOME/bin/flatfile_loader.sh will kick off MapReduce job
to load data stated in HDFS into an HBase table. The following is as example of the syntax:

$METRON_HOME/bin/flatfile_loader.sh -i /tmp/top-10k.csv -t enrichment -c t -
e ./extractor.json -m MR

Hortonworks Cybersecurity
Package

January 26, 2018

30

The parameters for the utility are as follows:

Short Code Long Code Is Required? Description

-h No Generate the help screen/
set of options

-e --extractor_config Yes JSON document describing
the extractor for this input
data source

-t --hbase_table Yes The HBase table to import
into

-c --hbase_cf Yes The HBase table column
family to import into

-i --input Yes The input data location
on local disk. If this is a
file, then that file will be
loaded. If this is a directory,
then the files will be loaded
recursively under that
directory.

-l --log4j No The log4j properties file to
load

-n --enrichment_config No The JSON document
describing the enrichments
to configure. Unlike other
loaders, this is run first if
specified.

Taxii Loader

The shell script $METRON_HOME/bin/threatintel_taxii_load.sh can be used to
poll a Taxii server for STIX documents and ingest them into HBase.

It is quite common for this Taxii server to be an aggregation server such as Soltra Edge.

In addition to the Enrichment and Extractor configs described in the following sections,
this loader requires a configuration file describing the connection information to the Taxii
server. The following is an example of a configuration file:

{
 "endpoint" : "http://localhost:8282/taxii-discovery-service"
 ,"type" : "DISCOVER"
 ,"collection" : "guest.Abuse_ch"
 ,"table" : "threat_intel"
 ,"columnFamily" : "cf"
 ,"allowedIndicatorTypes" : ["domainname:FQDN", "address:IPV_4_ADDR"]
}

where:

endpoint The URL of the endpoint.

type POLL or DISCOVER depending on the endpoint.

collection The Taxii collection to ingest.

table The HBase table to import into.

columnFamily The column family to import into.

Hortonworks Cybersecurity
Package

January 26, 2018

31

allowedIndicatorTypes An array of acceptable threat intelligence types (see the
"Enrichment Type Name" column of the Stix table above for
the possibilities).

The parameters for the utility are as follows:

Short Code Long Code Is Required? Description

-h No Generate the help screen/
set of options

-e --extractor_config Yes JSON document describing
the extractor for this input
data source

-c --taxii_connection_config Yes The JSON config file to
configure the connection

-p --time_between_polls No The time between
polling the Taxii server in
milliseconds. (default: 1
hour)

-b --begin_time No Start time to poll the Taxii
server (all data from that
point will be gathered in
the first pull). The format
for the date is yyyy-MM-dd
HH:mm:ss

-l --log4j No The Log4j properties to load

-n --enrichment_config No The JSON document
describing the enrichments
to configure. Unlike other
loaders, this is run first if
specified.

3.2.1.2. Configuring an Extractor Configuration File

The extractor configuration file is used to bulk load the enrichment store into HBase.
Complete the following steps to configure the extractor configuration file:

1. Log in as root to the host on which Metron is installed.

2. Determine the schema of the enrichment source.

3. Create an extractor configuration file called extractor_config_temp.json and
populate it with the enrichment source schema.

For example:

{
 "config" : {

"columns" : {
"domain" : 0
,"owner" : 1
,"home_country" : 2
,"registrar": 3
,"domain_created_timestamp": 4

}
,"indicator_column" : "domain"
,"type" : "whois"
,"separator" : ","

Hortonworks Cybersecurity
Package

January 26, 2018

32

}
,"extractor" : "CSV"

}

4. You can transform and filter the enrichment data as it is loaded into HBase by using
Stellar extractor properties in the extractor configuration file. HCP supports the
following Stellar extractor properties:

value_transform Transforms fields defined in the columns mapping with
Stellar transformations. New keys introduced in the
transform are added to the key metadata. For example:

"value_transform" : {
 "domain" : "DOMAIN_REMOVE_TLD(domain)"

value_filter Allows additional filtering with Stellar predicates based on
results from the value transformations. In the following
example, records whose domain property is empty after
removing the TLD are omitted.

"value_filter" : "LENGTH(domain) > 0",
 "indicator_column" : "domain",

indicator_transform Transforms the indicator column independent of
the value transformations. You can refer to the original
indicator value by using indicator as the variable name,
as shown in the following example. In addition, if you prefer
to piggyback your transformations, you can refer to the
variable domain, which allows your indicator transforms to
inherit transformations done to this value during the value
transformations.

"indicator_transform" : {
 "indicator" : "DOMAIN_REMOVE_TLD(indicator)"

indicator_filter Allows additional filtering with Stellar predicates based on
results from the value transformations. In the following
example, records whose indicator value is empty after
removing the TLD are omitted.

"indicator_filter" : "LENGTH(indicator) > 0",
 "type" : "top_domains",

If you include all of the supported Stellar extractor properties in the extractor
configuration file, it will look similar to the following:

 {
 "config" : {
 "zk_quorum" : "$ZOOKEEPER_HOST:2181",
 "columns" : {
 "rank" : 0,
 "domain" : 1
 },
 "value_transform" : {
 "domain" : "DOMAIN_REMOVE_TLD(domain)"
 },

Hortonworks Cybersecurity
Package

January 26, 2018

33

 "value_filter" : "LENGTH(domain) > 0",
 "indicator_column" : "domain",
 "indicator_transform" : {
 "indicator" : "DOMAIN_REMOVE_TLD(indicator)"
 },
 "indicator_filter" : "LENGTH(indicator) > 0",
 "type" : "top_domains",
 "separator" : ","
 },
 "extractor" : "CSV"
 }

Running a file import with the above data and extractor configuration will result in the
following two extracted data records:

Indicator Type Value

google top_domains { "rank" : "1", "domain" : "google" }

yahoo top_domains { "rank" : "2", "domain" : "yahoo" }

5. To access properties that reside in the global configuration file, provide a ZooKeeper
quorum via the zk_quorum property. If the global configuration looks like
"global_property" : "metron-ftw", enter the following to expand the
value_transform:

"value_transform" : {
 "domain" : "DOMAIN_REMOVE_TLD(domain)",
 "a-new-prop" : "global_property"
 },

The resulting value data will look like the following:

Indicator Type Value

google top_domains { "rank" : "1", "domain" : "google", "a-
new-prop" : "metron-ftw" }

yahoo top_domains { "rank" : "2", "domain" : "yahoo", "a-
new-prop" : "metron-ftw" }

6. Remove any non-ASCII invisible characters that might have been included when you cut
and pasted:

iconv -c -f utf-8 -t ascii extractor_config_temp.json -o extractor_config.
json

Note

The extractor_config.json file is not stored anywhere by the loader. This file is
used once by the bulk loader to parse the enrichment dataset. It is up the user
to keep this configuration file for future use, if needed.

3.2.1.3. Configuring Element-to-Enrichment Mapping

Configure which element of a tuple should be enriched with which enrichment type.

This configuration is stored in ZooKeeper.

Hortonworks Cybersecurity
Package

January 26, 2018

34

1. Log in as root user to the host that has Metron installed.

2. Cut and paste the following into a file called enrichment_config_temp.json,
being sure to customize $ZOOKEEPER_HOST and $DATASOURCE to your specific values,
where $DATASOURCE refers to the name of the datasource that is used to bulk load the
enrichment:

{
 "zkQuorum" : "$ZOOKEEPER_HOST:2181"
 ,"sensorToFieldList" : {
 "$DATASOURCE" : {
 "type" : "ENRICHMENT"
 ,"fieldToEnrichmentTypes" : {
 "domain_without_subdomains" : ["whois"]
 }
 }
 }
}

3. Remove any non-ASCII invisible characters that might have been included when you cut
and pasted:

iconv -c -f utf-8 -t ascii enrichment_config_temp.json -o enrichment_config.
json

3.2.1.4. Running the Enrichment Loader

After the enrichment source and enrichment configuration are defined, you must run the
loader to move the data from the enrichment source to the HCP enrichment store and
store the enrichment configuration in ZooKeeper.

1. Use the loader to move the enrichment source to the enrichment store in ZooKeeper:

$METRON_HOME/bin/flatfile_loader.sh -n enrichment_config.json -i whois_ref.
csv -t enrichment -c t -e extractor_config.json

HCP loads the enrichment data into Apache HBase and establishes a ZooKeeper
mapping. The data is extracted using the extractor and configuration defined in
the extractor_config.json file and populated into an HBase table called
enrichment.

2. Verify that the logs were properly ingested into HBase:

hbase shell
scan 'enrichment'

3. Verify that the ZooKeeper enrichment tag was properly populated:

$METRON_HOME/bin/zk_load_configs.sh -m DUMP -z $ZOOKEEPER_HOST:2181

4. Generate some data by using a client for your particular data source to execute requests.

3.2.1.5. Mapping Fields to HBase Enrichments

Now that you have data flowing into the HBase table, you need to ensure that the
enrichment topology can be used to enrich the data flowing past.

Hortonworks Cybersecurity
Package

January 26, 2018

35

You can perform this step using either the HCP Management module or the CLI. Both of
these methods are described in the following subsections.

3.2.1.5.1. Management Module Method

Now that you have parsed the data source, you can refine the parser output in three ways:

• Transformations

• Enrichments

• Threat Intel

Each of the parser outputs is added or modified in the Schema field. To modify any of the
parser outputs, complete the following steps:

Note

To load sample data from your sensor, the sensor must be running and
producing data.

1. Select the new sensor from the list of sensors on the main window.

2.
Click the pencil icon in the list of tool icons for the new sensor.

The Management Module displays the sensor panel for the new sensor.

3.

In the Schema box, click (expand window button).

The Management module displays a second panel and
populates the panel with message, field, and value information.

Hortonworks Cybersecurity
Package

January 26, 2018

36

The Sample field, at the top of the panel, displays a parsed version of a sample message
from the sensor. The Management module will test your transformations against these
parsed messages.

You can use the right and left arrow buttons in the Sample field to view the parsed
version of each sample message available from the sensor.

4. You can apply transformations to an existing field or create a new field. Click

the (edit icon) next to a field to apply transformations to that field. Or click

(plus sign) at the bottom of the Schema panel to create new fields.

Typically users store transformations in a new field rather than overriding existing fields.

For both options, the Management module expands the panel with a dialog box
containing fields in which you can enter field information.

Figure 3.12. New Schema Information Panel

5. In the dialog box, enter the name of the new field in the NAME field, choose an
input field from the INPUT FIELD box, and choose your transformation from the
TRANSFORMATIONS field or enrichment from the ENRICHMENTS field.

Hortonworks Cybersecurity
Package

January 26, 2018

37

For example, to create a new field showing the lower case version of the method field,
do the following:

• Enter method-uppercase in the NAME field.

• Choose method from the INPUT FIELD.

• Choose TO_UPPER in the TRANSFORMATIONS field.

Your new schema information panel should look like this:

Figure 3.13. Populated New Schema Information Panel

6. Click SAVE to save your changes.

7.
You can suppress fields from showing in the Index by clicking (suppress icon).

8. Click SAVE to save the changed information.

The Management module updates the Schema field with the number of changes applied
to the sensor.

Hortonworks Cybersecurity
Package

January 26, 2018

38

3.2.1.5.2. CLI Method

1. Edit the new data source enrichment configuration at $METRON_HOME/config/
zookeeper/enrichments/$DATASOURCE to associate the ip_src_addr with the
user enrichment.

For example:

{
"index" : "squid",
"batchSize" : 1,
"enrichment" : {
"fieldMap" : {
"hbaseEnrichment" : ["ip_src_addr"]

},
"fieldToTypeMap" : {
"ip_src_addr" : ["whois"]

},
"config" : { }

},
"threatIntel" : {
"fieldMap" : { },
"fieldToTypeMap" : { },
"config" : { },
"triageConfig" : {
"riskLevelRules" : { },
"aggregator" : "MAX",
"aggregationConfig" : { }

}
},
"configuration" : { }

}

2. Push this configuration to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

After you have finished enriching the telemetry events, ensure that the enriched data is
displaying on the Metron dashboard. For instructions on adding a new telemetry data
source to the Metron Dashboard, see Adding a New Data Source.

3.2.2. Streaming Enrichment Information
Streaming enrichment information is useful when you need enrichment information in
real time. Our example steps through how to associate IP addresses with user names for
the Squid information. This type of information is most useful in real time as opposed to
waiting for a bulk load of the enrichment information.

Streaming intelligence feeds are incorporated slightly differently than bulk loading.
The enrichment information resides in its own parser topology instead of an extraction
configuration file. The parser file defines the input structure and how that data can be used
in enrichment. Streaming information goes to HBase rather than to Kafka so you need to
configure the writer by defining both the writerClassName and Simple HBase Enrichment
Writer (shew) parameters.

The following steps illustrate how to associate IP addresses from Squid with user names.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_user-guide/content/setup_prerequisites.html

Hortonworks Cybersecurity
Package

January 26, 2018

39

1. Define a parser topology in $METRON_HOME/zookeeper/parsers/user.json to
handle the streaming data:

touch $METRON_HOME/config/zookeeper/parsers/user.json

2. Populate the file with the parser topology definition. For example:

{
 "parserClassName" : "org.apache.metron.parsers.csv.CSVParser"
 ,"writerClassName" : "org.apache.metron.enrichment.writer.
SimpleHbaseEnrichmentWriter"
 ,"sensorTopic":"user"
 ,"parserConfig":
 {
 "shew.table" : "enrichment"
 ,"shew.cf" : "t"
 ,"shew.keyColumns" : "ip"
 ,"shew.enrichmentType" : "user"
 ,"columns" : {
 "user" : 0
 ,"ip" : 1
 }
 }
}

where

parserClassName The parser name.

writerClassName The writer destination. For streaming parsers, the
destination is SimpleHbaseEnrichmentWriter.

sensorTopic Name of the sensor topic.

shew.table The simple HBase enrichment writer (shew) table to which
we want to write.

shew.cf The simple HBase enrichment writer (shew) column family.

shew.keyColumns The simple HBase enrichment writer (shew) key.

shew.enrichmentType The simple HBase enrichment writer (shew) enrichment
type.

columns The CSV parser information. For our example, this
information is the user name and IP address.

This file fully defines the input structure and how that data can be used in enrichment.

3. Push the configuration file to ZooKeeper:

a. Create a Kafka topic:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --zookeeper
 $ZOOKEEPER_HOST:2181 --replication-factor 1 --partitions 1 --topic user

Hortonworks Cybersecurity
Package

January 26, 2018

40

When you create the Kafka topic, consider how much data will be flowing into this
topic.

b. Push the configuration file to ZooKeeper.

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

4. Start the user parser topology by running the following:

$METRON_HOME/bin/start_parser_topology.sh -s user -z $ZOOKEEPER_HOST:2181 -k
 $KAKFA_HOST:6667

The parser topology listens for data streaming in and pushes the data to HBase. Now
you have data flowing into the HBase table, but you need to ensure that the enrichment
topology can be used to enrich the data flowing past.

5. Edit the new data source enrichment configuration at $METRON_HOME/config/
zookeeper/enrichments/squid to associate the ip_src_addr with the user
name for more user enrichment.

{
"enrichment" : {
"fieldMap" : {
"hbaseEnrichment" : ["ip_src_addr"]

},
"fieldToTypeMap" : {
"ip_src_addr" : ["user"]

},
"config" : { }

},
"threatIntel" : {
"fieldMap" : { },
"fieldToTypeMap" : { },
"config" : { },
"triageConfig" : {
"riskLevelRules" : { },
"aggregator" : "MAX",
"aggregationConfig" : { }

}
},
"configuration" : { }

}

6. Push the new data source enrichment configuration to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

3.3. Configuring Indexing
The indexing topology is a topology dedicated to taking the data from a topology that has
been enriched and storing the data in one or more supported indices. More specifically, the
enriched data is ingested into Kafka, written in an indexing batch or bolt with a specified
size, and sent to one or more specified indices. The configuration is intended to configure
the indexing used for a given sensor type (for example, snort).

Hortonworks Cybersecurity
Package

January 26, 2018

41

This section provides the following information:

• Overview [41]

• Default Configuration [41]

• Specifying Index Parameters [42]

• Indexing (HDFS) Tuning [45]

• Turning Off HDFS Writer [46]

• Support for HCP 1.4.1 [46]

• Section 3.3.7, “Troubleshooting Indexing” [47]

3.3.1. Overview

Currently, HCP supports the following indices:

• Elasticsearch

• Solr

• HDFS under /apps/metron/enrichment/indexed

Depending on how you start the indexing topology, it can have HDFS and either
Elasticsearch or SOLR writers running.

Just like the Global Configuration file, the Indexing Configuration file format
is a JSON file stored in ZooKeeper and on disk at $METRON_HOME/config/zookeeper/
indexing.

Errors during indexing are sent to a Kafka queue called index_errors.

Within the sensor-specific configuration, you can configure the individual writers. The
parameters currently supported are:

• index: The name of the index to write to (defaulted to the name of the sensor).

• batchSize: The size of the batch that is written to the indices at once (defaulted to 1).

• enabled: Whether the index or writer is enabled (default true).

3.3.2. Default Configuration

If you do not configure the individual writers, the sensor-specific configuration will use the
default values. You can choose to use this default configuration by either not creating the
Indexing Configuration file or by entering the following in the file:

{
}

Hortonworks Cybersecurity
Package

January 26, 2018

42

If a writer configuration is unspecified, then a warning is indicated in the Storm console.
For example, WARNING: Default and (likely) unoptimized writer config
used for hdfs writer and sensor squid. You can ignore this warning message if
you intend to use the default configuration.

This default configuration uses the following configuration:

• elasticsearch writer

• index name the same as the sensor

• batch size of 1

• enabled

• hdfs writer

• index name the same as the sensor

• batch size of 1

• enabled

3.3.3. Specifying Index Parameters

You can specify the parameters for the writers rather than using the default values.

You can use either the Management Module or the CLI to specify writer parameters:

• Specifying Index Parameters using the Management Module [42]

• Specifying Index Parameters Using the CLI [43]

Note

Certain properties are managed by Ambari. You should only modify these
properties in Ambari. If you modify these properties outside of Ambari,
Ambari will overwrite them with the contents of the Global Configuration file
whenever you restart a Metron topology.

For a list of the properties managed by Ambari, see Updating
Properties [86].

3.3.3.1. Specifying Index Parameters using the Management Module

1.

Edit your sensor by clicking (the edit button) next your sensor in the Management
Module.

2. Click the Advanced button next to Save and Cancel.

The Management Module expands the panel to display the Advanced fields.

Hortonworks Cybersecurity
Package

January 26, 2018

43

Figure 3.14. Management Module Advanced Panel

3. Enter index configuration information for your sensor.

4. Click Save to save your changes and push your configuration to ZooKeeper.

3.3.3.2. Specifying Index Parameters Using the CLI

To specify the parameters for the writers rather than using the default values, you can
use the following syntax in the Indexing Configuration file, located at $METRON_HOME/
config/zookeeper/indexing.

Hortonworks Cybersecurity
Package

January 26, 2018

44

Important

Any property that is managed by Ambari should only be modified via Ambari.
Otherwise, when you restart a service, Ambari might overwrite your updates.
For more information about properties managed by Ambari, see Updating
Properties [86].

1. Create the Indexing Configuration file at $METRON_HOME/config/zookeeper/
indexing.

touch /$METRON_HOME/config/zookeeper/indexing/$sensor_name.json

2. Populate the $sensor_name.json file with index configuration information for each
of your sensors, using syntax similar to the following:

{
 "elasticsearch": {
 "index": "foo",
 "batchSize" : 100,
 "enabled" : true
 },
 "hdfs": {
 "index": "foo",
 "batchSize": 1,
 "enabled" : true
 },
 "alert": {
 "type": "nested"
}

This syntax specifies the following parameter values:

• Elasticsearch writer or index

• index name of "foo"

• batch size of 100

• enabled

• HDFS writer or index

• index name of "foo"

• batch size of 1

• enabled

• alert

This field must be set to "type": "nested". If this field is not set, Elasticsearch can
throw an error and the field will not be queryable.

3. Push the configuration to ZooKeeper:

 /usr/metron/$METRON_VERSION/bin/zk_load_configs.sh --mode PUSH -i /usr/
metron/$METRON_VERSION/config/zookeeper -z $ZOOKEEPER_HOST:2181

Hortonworks Cybersecurity
Package

January 26, 2018

45

3.3.4. Indexing (HDFS) Tuning
There are 48 partitions set for the indexing partition, per the enrichment exercise above.

These are the batch size settings for the Bro index.

cat ${METRON_HOME}/config/zookeeper/indexing/bro.json
{
"hdfs" : {
"index": "bro",
 "batchSize": 50,
 "enabled" : true
 }...
}

And here are the settings we used for the HDFS indexing topology:

General storm settings

topology.workers: 4
topology.acker.executors: 24
topology.max.spout.pending: 2000

Spout and Bolt Settings

hdfsSyncPolicy
 org.apache.storm.hdfs.bolt.sync.CountSyncPolicy
 constructor arg=100000
hdfsRotationPolicy
 bolt.hdfs.rotation.policy.units=DAYS
 bolt.hdfs.rotation.policy.count=1
kafkaSpout
 parallelism: 24
 session.timeout.ms=29999
 enable.auto.commit=false
 setPollTimeoutMs=200
 setMaxUncommittedOffsets=10000000
 setOffsetCommitPeriodMs=30000
hdfsIndexingBolt
 parallelism: 24

3.3.4.1. PCAP Tuning

PCAP is a specialized topology that is a Spout-only topology. Both Kafka topic consumption
and HDFS writing is done within a spout to avoid the additional network hop required if
using an additional bolt.

General Storm topology properties

topology.workers=16
topology.ackers.executors: 0

 +__Spout and Bolt properties__
 +
 +kafkaSpout

Hortonworks Cybersecurity
Package

January 26, 2018

46

 + parallelism: 128
 + poll.timeout.ms=100
 + offset.commit.period.ms=30000
 + session.timeout.ms=39000
 + max.uncommitted.offsets=200000000
 + max.poll.interval.ms=10
 + max.poll.records=200000
 + receive.buffer.bytes=431072
 + max.partition.fetch.bytes=10000000
 + enable.auto.commit=false
 + setMaxUncommittedOffsets=20000000
 + setOffsetCommitPeriodMs=30000
 +
 +writerConfig
 + withNumPackets=1265625
 + withMaxTimeMS=0
 + withReplicationFactor=1
 + withSyncEvery=80000
 + withHDFSConfig
 + io.file.buffer.size=1000000
 + dfs.blocksize=1073741824
 +
 +

3.3.5. Turning Off HDFS Writer
You can also turn off the HDFS index or writer using the following syntax in the
index.json file.

Create or modify

{
 "elasticsearch": {
 "index": "foo",
 "enabled" : true
 },
 "hdfs": {
 "index": "foo",
 "batchSize": 100,
 "enabled" : false
 }
}

3.3.6. Support for HCP 1.4.1
Elasticsearch 5.x requires that all sensors templates have a nested alert field defined.
Without this field, an error is thrown during all searches resulting in no alerts being found.
This error is found in the REST service's logs:

QueryParsingException[[nested] failed to find nested object under path
 [alert]];

As a result, Elasticsearch 5.x requires changes to support HCP queries. See the following
sections for these changes:

• Updating Elasticsearch Templates to Work with Elasticsearch 5.x [47]

• Updating Existing Indexes to Work with Elasticsearch 5.x [47]

Hortonworks Cybersecurity
Package

January 26, 2018

47

3.3.6.1. Updating Elasticsearch Templates to Work with Elasticsearch 5.x

To update your existing Elasticsearch templates for each sensor so any new indexes have
the appropriate field, perform the following steps:

1. Update the Elasticsearch template for each sensor, so any new indice will have the alert
field.

1. Retrieve the template:

$SENSOR can contain wildcards, so if rollover has occurred, it's not necessary to do
each index individually. The following example appends index* to get all indexes for
the provided sensor.

export ELASTICSEARCH="node1"
 export SENSOR="bro"
 curl -XGET "http://${ELASTICSEARCH}:9200/_template/${SENSOR}_index*?
pretty=true" -o "${SENSOR}.template"

2. Remove an extraneous JSON field so you can put it back later, and add the alert field

sed -i '' '2d;$d' ./${SENSOR}.template
 sed -i '' '/"properties" : {/ a\
 "alert": { "type": "nested"},' ${SENSOR}.template

2. Verify your changes:

python -m json.tool bro.template

3. Add the template back into Elasticsearch:

curl -XPUT "http://${ELASTICSEARCH}:9200/_template/${SENSOR}_index" -d @
${SENSOR}.template

3.3.6.2. Updating Existing Indexes to Work with Elasticsearch 5.x

To update existing indexes to work with Elasticsearch 5.x, perform the following

1. Update Elasticsearch mappings with the new field for each sensor.

curl -XPUT "http://${ELASTICSEARCH_HOST}:9200/${SENSOR}_index*/_mapping/
${SENSOR}_doc" -d '
 {
 "properties" : {
 "alert" : {
 "type" : "nested"
 }
 }
 }
 '
 rm ${SENSOR}.template

3.3.7. Troubleshooting Indexing

If Ambari indicates that your indexing is stopped after you have started your indexing, this
might be a problem with the Python requests module.

Hortonworks Cybersecurity
Package

January 26, 2018

48

Check the Storm UI to to ensure that indexing has started for your topologies. If the Storm
UI indicates that the topology indexing has started, you might need to install the latest
version of of python-requests. Version 2.6.1 of python-requests fixes a bug introduced in
version 2.5.2 that causes the system modules to break. See https://pypi.python.org/pypi/
requestsfor more information.

3.4. Using Threat Intelligence Feeds
The threat intelligence topology takes a normalized JSON message and cross references
it against threat intelligence, tags it with alerts if appropriate, runs the results against
the scoring component of machine learning models where appropriate, and stores
the telemetry in a data store. This section provides the following steps for using threat
intelligence feeds:

• Prerequisites [48]

• Bulk Loading Enrichment Information [28]

• Creating a Streaming Threat Intel Feed Source [58]

Threat intelligence topologies perform the following tasks:

• Mark messages as threats based on data in external data stores

• Mark threat alerts with a numeric triage level based on a set of Stellar rules

3.4.1. Prerequisites

Perform the following tasks before configuring threat intelligence feeds:

1. Choose your threat intelligence sources.

2. Recommended but not required: Install a threat intelligence feed aggregator, such as
SoltraEdge.

3.4.2. Bulk Loading Threat Intelligence Information

This section provides a description of bulk loading threat intelligence sources supported by
HCP and the steps to bulk threat intelligence feeds.

• Bulk Loading Threat Intelligence Sources [48]

• Configuring an Extractor Configuration File [51]

• Configure Mapping for the Intelligence Feed [54]

• Running the Threat Intel Loader [54]

• Mapping Fields to HBase Threat Intel [55]

3.4.2.1. Bulk Loading Threat Intelligence Sources

You can bulk load threat intelligence information from the following sources:

https://pypi.python.org/pypi/requests
https://pypi.python.org/pypi/requests

Hortonworks Cybersecurity
Package

January 26, 2018

49

• Flat File Ingestion (CVS)

• HDFS via MapReduce

• Taxii Loader

CSV File

The shell script $METRON_HOME/bin/flatfile_loader.sh will read data from local
disk and load the enrichment or threat intel data into an HBase table.

One special thing to note here is that there is a special configuration parameter to the
Extractor config that is only considered during this loader:

inputFormatHandler This specifies how to consider the data. The
two implementations are BY_LINE and
org.apache.metron.dataloads.extractor.inputformat.WholeFileFormat

The default is BY_LINE, which makes sense for a list of CSVs where each line indicates a
unit of information which can be imported. However, if you are importing a set of STIX
documents, then you want each document to be considered as input to the Extractor.

Start the user parser topology by running the following:

$METRON_HOME/bin/start_parser_topology.sh -s user -z $ZOOKEEPER_HOST:2181 -k
 $KAKFA_HOST:6667

The parser topology listens for data streaming in and pushes the data to HBase. Now
you have data flowing into the HBase table, but you need to ensure that the enrichment
topology can be used to enrich the data flowing past.

The parameters for the utility are as follows:

Short Code Long Code Is Required? Description

-h No Generate the help screen/
set of options

-e --extractor_config Yes JSON document describing
the extractor for this input
data source

-t --hbase_table Yes The HBase table to import
into

-c --hbase_cf Yes The HBase table column
family to import into

-i --input Yes The input data location
on local disk. If this is a
file, then that file will be
loaded. If this is a directory,
then the files will be loaded
recursively under that
directory.

-l --log4j No The log4j properties file to
load

-n --enrichment_config No The JSON document
describing the enrichments
to configure. Unlike other
loaders, this is run first if
specified.

Hortonworks Cybersecurity
Package

January 26, 2018

50

HDFS via MapReduce

The shell script $METRON_HOME/bin/flatfile_loader.sh will kick off MapReduce job
to load data stated in HDFS into an HBase table. The following is as example of the syntax:

$METRON_HOME/bin/flatfile_loader.sh -i /tmp/top-10k.csv -t enrichment -c t -
e ./extractor.json -m MR

The parameters for the utility are as follows:

Short Code Long Code Is Required? Description

-h No Generate the help screen/
set of options

-e --extractor_config Yes JSON document describing
the extractor for this input
data source

-t --hbase_table Yes The HBase table to import
into

-c --hbase_cf Yes The HBase table column
family to import into

-i --input Yes The input data location
on local disk. If this is a
file, then that file will be
loaded. If this is a directory,
then the files will be loaded
recursively under that
directory.

-l --log4j No The log4j properties file to
load

-n --enrichment_config No The JSON document
describing the enrichments
to configure. Unlike other
loaders, this is run first if
specified.

Taxii Loader

The shell script $METRON_HOME/bin/threatintel_taxii_load.sh can be used to
poll a Taxii server for STIX documents and ingest them into HBase. Taxii loader is a stand-
alone Java application that never stops.

It is quite common for this Taxii server to be an aggregation server such as Soltra Edge.

In addition to the Enrichment and Extractor configs described in the following sections,
this loader requires a configuration file describing the connection information to the Taxii
server. The following is an example of a configuration file:

{
 "endpoint" : "http://localhost:8282/taxii-discovery-service"
 ,"type" : "DISCOVER"
 ,"collection" : "guest.Abuse_ch"
 ,"table" : "threat_intel"
 ,"columnFamily" : "cf"
 ,"allowedIndicatorTypes" : ["domainname:FQDN", "address:IPV_4_ADDR"]
}

where:

Hortonworks Cybersecurity
Package

January 26, 2018

51

endpoint The URL of the endpoint

type POLL or DISCOVER depending on the endpoint.

collection The Taxii collection to ingest

table The HBase table to import into

columnFamily The column family to import into

allowedIndicatorTypes an array of acceptable threat intel types (see the
"Enrichment Type Name" column of the Stix table above for
the possibilities).

The parameters for the utility are as follows:

Short Code Long Code Is Required? Description

-h No Generate the help screen/
set of options

-e --extractor_config Yes JSON Document describing
the extractor for this input
data source

-c --taxii_connection_config Yes The JSON config file to
configure the connection

-p --time_between_polls No The time between
polling the Taxii server in
milliseconds. (default: 1
hour)

-b --begin_time No Start time to poll the Taxii
server (all data from that
point will be gathered in
the first pull). The format
for the date is yyyy-MM-dd
HH:mm:ss

-l --log4j No The Log4j Properties to load

-n --enrichment_config No The JSON document
describing the enrichments
to configure. Unlike other
loaders, this is run first if
specified.

3.4.2.2. Configuring an Extractor Configuration File

After you have a threat intelligence feed source, you must configure an extractor
configuration file that describes the source.

1. Log in as root user to the host on which Metron is installed.

2. Create a file called extractor_config_temp.json and add the following content:

{
"config" : {

"columns" : {
"domain" : 0
,"source" : 1

}
,"indicator_column" : "domain"

Hortonworks Cybersecurity
Package

January 26, 2018

52

,"type" : "zeusList"
,"separator" : ","

}
,"extractor" : "CSV"

}

3. You can transform and filter the enrichment data as it is loaded into HBase by using
Stellar extractor properties in the extractor configuration file. HCP supports the
following Stellar extractor properties:

value_transform Transforms fields defined in the columns mapping with
Stellar transformations. New keys introduced in the
transform are added to the key metadata. For example:

"value_transform" : {
 "domain" : "DOMAIN_REMOVE_TLD(domain)"

value_filter Allows additional filtering with Stellar predicates based on
results from the value transformations. In the following
example, records whose domain property is empty after
removing the TLD are omitted.

"value_filter" : "LENGTH(domain) > 0",
 "indicator_column" : "domain",

indicator_transform Transforms the indicator column independent of
the value transformations. You can refer to the original
indicator value by using indicator as the variable name,
as shown in the following example. In addition, if you prefer
to piggyback your transformations, you can refer to the
variable domain, which allows your indicator transforms to
inherit transformations done to this value during the value
transformations.

"indicator_transform" : {
 "indicator" : "DOMAIN_REMOVE_TLD(indicator)"

indicator_filter Allows additional filtering with Stellar predicates based on
results from the value transformations. In the following
example, records whose indicator value is empty after
removing the TLD are omitted.

"indicator_filter" : "LENGTH(indicator) > 0",
 "type" : "top_domains",

If you include all of the supported Stellar extractor properties in the extractor
configuration file, it will look similar to the following:

{
 "config" : {
 "zk_quorum" : "$ZOOKEEPER_HOST:2181",
 "columns" : {
 "rank" : 0,
 "domain" : 1
 },
 "value_transform" : {

Hortonworks Cybersecurity
Package

January 26, 2018

53

 "domain" : "DOMAIN_REMOVE_TLD(domain)"
 },
 "value_filter" : "LENGTH(domain) > 0",
 "indicator_column" : "domain",
 "indicator_transform" : {
 "indicator" : "DOMAIN_REMOVE_TLD(indicator)"
 },
 "indicator_filter" : "LENGTH(indicator) > 0",
 "type" : "top_domains",
 "separator" : ","
 },
 "extractor" : "CSV"
}

Running a file import with the above data and extractor configuration will result in the
following two extracted data records:

Indicator Type Value

google top_domains { "rank" : "1", "domain" : "google" }

yahoo top_domains { "rank" : "2", "domain" : "yahoo" }

4. To access properties that reside in the global configuration file, provide a ZooKeeper
quorum via the zk_quorum property. If the global configuration looks like
"global_property" : "metron-ftw", enter the following to expand the
value_transform:

"value_transform" : {
 "domain" : "DOMAIN_REMOVE_TLD(domain)",
 "a-new-prop" : "global_property"
 },

The resulting value data will look like the following:

Indicator Type Value

google top_domains { "rank" : "1", "domain" : "google", "a-
new-prop" : "metron-ftw" }

yahoo top_domains { "rank" : "2", "domain" : "yahoo", "a-
new-prop" : "metron-ftw" }

5. Remove any non-ASCII characters:

iconv -c -f utf-8 -t ascii extractor_config_temp.json -o extractor_config.
json

6. Configure the mapping for the element-to-threat intelligence feed.

This step configures which element of a tuple to cross-reference with which threat
intelligence feed. This configuration is stored in ZooKeeper.

a. Log in as root user to the host that has Metron installed.

b. Cut and paste the following file into a file called
enrichment_config_temp.json":

{
 "zkQuorum" : "$ZOOKEEPER_HOST:2181"
 ,"sensorToFieldList" : {

Hortonworks Cybersecurity
Package

January 26, 2018

54

 "$DATASOURCE" : {
 "type" : "THREAT_INTEL"
 ,"fieldToEnrichmentTypes" : {
 "domain_without_subdomains" : ["zeusList"]
 }
 }
 }
}

c. Remove the non-ASCII characters:

iconv -c -f utf-8 -t ascii enrichment_config_temp.json -o
 enrichment_config.json

3.4.2.3. Configure Mapping for the Intelligence Feed

1. Configure the mapping for the element-to-threat intelligence feed.

This step configures which element of a tuple to cross-reference with which threat
intelligence feed. This configuration is stored in ZooKeeper.

a. Log in as root user to the host on which Metron is installed.

b. Cut and paste the following file into a file called
enrichment_config_temp.json":

{
 "zkQuorum" : "$ZOOKEEPER_HOST:2181"
 ,"sensorToFieldList" : {
 "$DATASOURCE" : {
 "type" : "THREAT_INTEL"
 ,"fieldToEnrichmentTypes" : {
 "domain_without_subdomains" : ["zeusList"]
 }
 }
 }
}

c. Remove the non-ASCII characters:

iconv -c -f utf-8 -t ascii enrichment_config_temp.json -o
 enrichment_config.json

3.4.2.4. Running the Threat Intel Loader

After you have defined the threat intelligence source, threat intelligence extractor, and
threat intelligence mapping configuration, run the loader to move the data from the threat
intelligence source to the Metron threat intelligence store and to store the enrichment
configuration in ZooKeeper.

1. Log in to $HOST_WITH_ENRICHMENT_TAG as root.

2. Run the loader:

$METRON_HOME/bin/flatfile_loader.sh -n enrichment_config.json -i
 domainblocklist.csv -t threatintel -c t -e extractor_config.json

Hortonworks Cybersecurity
Package

January 26, 2018

55

This command adds the threat intelligence data into HBase and establishes a ZooKeeper
mapping. The data is extracted using the extractor and configuration defined in
the extractor_config.json file and populated into an HBase table called
threatintel.

3. Verify that the logs were properly ingested into HBase:

hbase shell
scan 'threatintel'

You should see a configuration for the sensor that looks something like the following:

Figure 3.15. Threat Intel Configuration

4. Generate some data to populate the Metron Dashboard.

3.4.2.5. Mapping Fields to HBase Threat Intel

Now that you have data flowing into the HBase table, you need to ensure that the threat
intel topology can be used to enrich the data flowing past.

You can perform this step using either the HCP Management module or the CLI. Both of
these methods are described in the following subsections.

3.4.2.5.1. Management Module Method

Defining the threat intel topology is very similar to defining the transformation and
enrichment topology.

Each of the parser outputs is added or modified in the Schema field. To modify any of the
parser outputs, complete the following steps:

Note

To load sample data from your sensor, the sensor must be running and
producing data.

1. Select the new sensor from the list of sensors on the main window.

Hortonworks Cybersecurity
Package

January 26, 2018

56

2.
Click the pencil icon in the list of tool icons for the new sensor.

The Management module displays the sensor panel for the new sensor.

3.

In the Schema box, click (expand window button).

The Management module displays a second panel and
populates the panel with message, field, and value information.

The Sample field, at the top of the panel, displays a parsed version of a sample message
from the sensor. The Management module will test your threat intel against these
parsed messages.

You can use the right and left arrow buttons in the Sample field to view the parsed
version of each sample message available from the sensor.

4. You can apply threat intel to an existing field or create a new field. Click the

 (edit icon) next to a field to apply transformations to that field. Or click

(plus sign) at the bottom of the Schema panel to create new fields.

Typically users choose to create and transform a new field, rather than transforming an
existing field.

For both options, the Management Module expands the panel with a dialog box
containing fields in which you can enter field information.

Hortonworks Cybersecurity
Package

January 26, 2018

57

Figure 3.16. New Schema Information Panel

5. In the dialog box, enter the name of the new field in the NAME field, choose an input
field from the INPUT FIELD box, and choose your transformation from the THREAT
INTEL field .

6. Click SAVE to save your changes.

7.
You can suppress fields from the Index by clicking (suppress icon).

8. Click SAVE to save the changed information.

The Management module updates the Schema field with the number of changes applied
to the sensor.

3.4.2.5.2. CLI Method

1. Edit the new data source threat intel configuration at $METRON_HOME/config/
zookeeper/enrichments/$DATASOURCE to associate the ip_src_addr with the
user enrichment.

For example:

{
"index" : "squid",
"batchSize" : 1,
"enrichment" : {

Hortonworks Cybersecurity
Package

January 26, 2018

58

"fieldMap" : {
"hbaseEnrichment" : ["ip_src_addr"]

},
"fieldToTypeMap" : {
"ip_src_addr" : ["whois"]

},
"config" : { }

},
"threatIntel" : {
"fieldMap" : { },
"fieldToTypeMap" : { },
"config" : { },
"triageConfig" : {
"riskLevelRules" : { },
"aggregator" : "MAX",
"aggregationConfig" : { }

}
},
"configuration" : { }

}

2. Push this configuration to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

After you have finished enriching the telemetry events, ensure that the enriched data is
displaying on the Metron dashboard. For instructions on adding a new telemetry data
source to the Metron Dashboard, see Adding a New Data Source.

3.4.3. Creating a Streaming Threat Intel Feed Source

Streaming intelligence feeds and are incorporated slightly differently than data from a flat
CSV file. This section describes how to define a streaming source.

Because we are defining a streaming source, we need to define a parser topology to handle
the streaming data. In order to do that, we will need to create a file in $METRON_HOME/
zookeeper/parsers/user.json.

1. Define a parser topology to handle the streaming data:

touch $METRON_HOME/zookeeper/parsers/user.json

2. Populate the file the parser topology definition.

The following example assumes CSV data where the first field is a user and the second
field is an ip address (for example, my_username,127.0.0.1).

{
 "parserClassName" : "org.apache.metron.parsers.csv.CSVParser"
 ,"writerClassName" : "org.apache.metron.enrichment.writer.
SimpleHbaseEnrichmentWriter"
 ,"sensorTopic":"user"
 ,"parserConfig":
 {
 "shew.table" : "threatintel"
 ,"shew.cf" : "t"
 ,"shew.keyColumns" : "ip"

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_user-guide/content/setup_prerequisites.html

Hortonworks Cybersecurity
Package

January 26, 2018

59

 ,"shew.enrichmentType" : "user"
 ,"columns" : {
 "user" : 0
 ,"ip" : 1
 }
 }
}

where

parserClassName The parser name.

writerClassName The writer destination. For streaming parsers, the
destination is SimpleHbaseEnrichmentWriter.

sensorTopic Name of the sensor topic.

shew.table The simple HBase enrichment writer (shew) table to which
we want to write.

shew.cf The simple HBase enrichment writer (shew) column family.

shew.keyColumns The simple HBase enrichment writer (shew) key.

shew.enrichmentType The simple HBase enrichment writer (shew) enrichment
type.

columns The CSV parser information. For our example, this
information is the user name and IP address.

This file fully defines the input structure and how that data can be used in enrichment.

3. Push the configuration file to ZooKeeper:

a. Create a Kafka topic:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --zookeeper
 $ZOOKEEPER_HOST:2181 --replication-factor 1 --partitions 1 --topic user

When you create the Kafka topic, consider how much data will be flowing into this
topic.

b. Push the configuration file to ZooKeeper.

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

Now that you are ingesting data into HBase, you need to use that enrichment data to
enrich a separate datasource.

4. Set up an enrichment for $METRON_HOME/config/zookeeper/enrichments/
$DATASOURCE to associate the ip_src_addr with the user enrichment that you streamed
in from above.

For example:

{

Hortonworks Cybersecurity
Package

January 26, 2018

60

"enrichment" : {
"fieldMap" : {
"hbaseEnrichment" : ["ip_src_addr"]

},
"fieldToTypeMap" : {
"ip_src_addr" : ["user"]

},
"config" : { }

},
"threatIntel" : {
"fieldMap" : { },
"fieldToTypeMap" : { },
"config" : { },
"triageConfig" : {
"riskLevelRules" : { },
"aggregator" : "MAX",
"aggregationConfig" : { }

}
},
"configuration" : { }

}

5. Push this configuration to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

3.5. Prioritizing Threat Intelligence
Not all threat intelligence indicators are equal. Some require immediate response, while
others can be dealt with or investigated as time and availability permits. As a result you
need to triage and rank threats by severity.

In HCP, you assign severity by associating possibly complex conditions with numeric scores.
Then, for each message, you use a configurable aggregation function to evaluate the set of
conditions and to aggregate the set of numbers for matching conditions This aggregated
score is added to the message in the threat.triage.level field. For more information
about Stellar and threat triage configurations, see Using Stellar to Set up Threat Triage
Configurations [114].

This section details the steps to understand and create severity rules, configure them in
ZooKeeper, and view the resulting alerts in the HCP Investigation module:

• Prerequisites [60]

• Performing Threat Triage Using the Management Module [61]

• Uploading the Threat Triage Configuration to ZooKeeper [65]

• Viewing Triaged or Scored Alerts [66]

3.5.1. Prerequisites

Before you can prioritize a threat intelligence enrichment, you must ensure that the
enrichment is working properly

Hortonworks Cybersecurity
Package

January 26, 2018

61

3.5.2. Performing Threat Triage Using the Management
Module

To create a threat triage rule configuration, you must first define your rules. These rules
identify the conditions in the data source data flow and associate alert scores with those
conditions. Following are some examples:

Rule 1 If a threat intelligence enrichment type is alerted, imagine that you want to
receive an alert score of 5.

Rule 2 If the URL ends with neither .com nor .net, then imagine that you want to
receive an alert score of 10.

To create these rules, complete the following steps:

1.

On the sensor panel, in the Threat Triage field, click the icon (expand window).

The module displays the Threat Triage Rules panel.

Figure 3.17. Threat Triage Rules Panel

2. Click the + button to add a rule.

The module displays the Edit Rule panel.

Hortonworks Cybersecurity
Package

January 26, 2018

62

Figure 3.18. Edit Rule Panel

3. Assign a name to the new rule by entering the name in the NAME field.

4. In the Text field, enter the syntax for the new rule.

For example:

Exists(IsAlert)

5. Use the SCORE ADJUSTMENT slider to choose the threat score for the rule.

6. Click SAVE to save the new rule.

The new rule is listed in the Threat Triage Rules panel.

7. Choose how you want to aggregate your rules by choosing a value from the Aggregator
menu.

You can choose between:

MAX The maximum of all of the associated values for matching queries.

MIN The minimum of all of the associated values for matching queries.

MEAN the mean of all of the associated values for matching queries.

POSITIVE_MEAN The mean of the positive associated values for the matching queries.

8. You can use the Rules section and the Sort by pull down menu below the Rules section
to filter how threat triages display.

Hortonworks Cybersecurity
Package

January 26, 2018

63

For example, to display only high levels alerts, click the box containing the red indicator.
To sort the high level alerts from highest to lowest, choose Highest Score from the Sort
by pull down menu.

9. Click SAVE on the Sensor panel to save your changes.

3.5.3. Performing Threat Triage Using the CLI

The perform threat triage using the CLI, you must complete the following steps:

• Creating the Threat Triage Rule Configuration [63]

• Uploading the Threat Triage Configuration to ZooKeeper [65]

• Viewing Triaged or Scored Alerts [66]

3.5.3.1. Creating the Threat Triage Rule Configuration

The goal of threat triage is to prioritize the alerts that pose the greatest threat and need
urgent attention. To create a threat triage rule configuration, you must first define your
rules. Each rule has a predicate to determine whether or not the rule applies. The threat
score from each applied rule is aggregated into a single threat triage score that is used to
prioritize high risk threats.

Following are some examples:

Rule 1 If a threat intelligence enrichment type zeusList is alerted, imagine that you want
to receive an alert score of 5.

Rule 2 If the URL ends with neither .com nor .net, then imagine that you want to
receive an alert score of 10.

Rule 3 For each message, the triage score is the maximum score across all conditions.

These example rules become the following example configuration:

“triageConfig” : {
 “riskLevelRules” : [
{
“name” : “zeusList is alerted"
“comment” : “Threat intelligence enrichment type zeusList is alerted."
“rule”: "exists(threatintels.hbaseThreatIntel.domain_without_subdomains.
zeusList)”
“score” : 5
}
{
“name” : “Does not end with .com or .net"
“comment” : “The URL ends with neither .com nor .net."
“rule”: “not(ENDS_WITH(domain_without_subdomains, ‘.com’) or
 ENDS_WITH(domain_without_subdomains, ‘.net’))“ : 10
“score” : 10
}
]
 ,“aggregator” : “MAX”

Hortonworks Cybersecurity
Package

January 26, 2018

64

 ,”aggregationConfig” : { }
}

You can use the 'reason' field to generate a message explaining why a rule fired. One or
more rules may fire when triaging a threat. Having detailed, contextual information about
the environment when a rule fired can greatly assist actioning the alert. For example:

Rule 1 For hostname, the value exceeds threshold of value-threshold, receive an alert
score of 10.

This example rule becomes the following example configuration:

“triageConfig” : {
 “riskLevelRules” : [
 {
 “name” : “Abnormal Value"
 “comment” : “The value has exceeded the threshold",
 "reason": "FORMAT('For '%s' the value '%d' exceeds threshold of '%d',
 hostname, value, value_threshold)"
 “rule”: "value > value_threshold”,
 “score” : 10
 }
],
 “aggregator” : “MAX”,
 ”aggregationConfig” : { }
}

If the value threshold is exceeded, Threat Triage will generate a message similar to the
following:

"threat.triage.score": 10.0,
"threat.triage.rules.0.name": "Abnormal Value",
"threat.triage.rules.0.comment": "The value has exceeded the threshold",
"threat.triage.rules.0.score": 10.0,
"threat.triage.rules.0.reason": "For '10.0.0.1' the value '101' exceeds
 threshold of '42'"

where

riskLevelRules This is a list of rules (represented as Stellar expressions) associated
with scores with optional names and comments.

name The name of the threat triage rule.

comment A comment describing the rule.

reason An optional Stellar expression that when executed results
in a custom message describing why the rule fired.

rule The rule, represented as a Stellar statement.

score Associated threat triage score for the rule.

aggregator An aggregation function that takes all non-zero scores representing
the matching queries from riskLevelRules and aggregates them
into a single score.

Hortonworks Cybersecurity
Package

January 26, 2018

65

You can choose between:

MAX The maximum of all of the associated values for
matching queries.

MIN The minimum of all of the associated values for
matching queries.

MEAN the mean of all of the associated values for
matching queries.

POSITIVE_MEAN The mean of the positive associated values for the
matching queries.

3.5.3.2. Uploading the Threat Triage Configuration to ZooKeeper

To apply this example triage configuration, you must modify the configuration for the new
sensor in the enrichment topology.

1. Log in as root user to the host on which Metron is installed.

2. Modify $METRON_HOME/config/zookeeper/sensors/$DATASOURCE.json.

Because the configuration in ZooKeeper might be out of sync with the configuration on
disk, ensure that they are in sync by downloading the ZooKeeper configuration first:

$METRON_HOME/bin/zk_load_configs.sh -m PULL -z $ZOOKEEPER_HOST:2181 -f -o
 $METRON_HOME/config/zookeeper

3. Validate that the enrichment configuration for the data source exists:

cat $METRON_HOME/config/zookeeper/enrichments/$DATASOURCE.json

4. In the $METRON_HOME/config/zookeeper/enrichments/$DATASOURCE.json
file, add the following to the triageConfig section in the threat intelligence section.

For example:

"threatIntel" : {
 "fieldMap" : {
 "hbaseThreatIntel" : ["domain_without_subdomains"]
 },
 "fieldToTypeMap" : {
 "domain_without_subdomains" : ["zeusList"]
 },
 "config" : { },
 "triageConfig" : {
 "riskLevelRules" : {
 "exists(threatintels.hbaseThreatIntel.domain_without_subdomains.
zeusList)" : 5
 , "not(ENDS_WITH(domain_without_subdomains, '.com') or
 ENDS_WITH(domain_without_subdomains, '.net'))" : 10
 }
 ,"aggregator" : "MAX"
 ,"aggregationConfig" : { }
 }

Hortonworks Cybersecurity
Package

January 26, 2018

66

 }
 }

5. Ensure that the aggregator field indicates MAX.

6. Push the configuration back to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/config/zookeeper

3.5.3.3. Viewing Triaged or Scored Alerts

You can view triaged alerts in the indexing topic in Kafka or in the triaged alert panel in the
HCP Metron dashboard.

An alert in the indexing topic in Kafka will appear similar to the following:

> THREAT_TRIAGE_PRINT(conf)
##
Name # Comment # Triage Rule # Score # Reason
##
Abnormal DNS Port # # source.type == "bro" and protocol == "dns" and
 ip_dst_port != 53 # 10 # FORMAT("Abnormal DNS Port: expected: 53, found: %s:
%d", ip_dst_addr, ip_dst_port) #
##

The following figure shows you an example of a triaged alert panel in the HCP Metron
dashboard. For URLs from cnn.com, no threat alert is shown, so no triage level is set. Notice
the lack of a threat.triage.level field:

Figure 3.19. Investigation Module Triaged Alert Panel

3.6. Setting Up Enrichment Configurations
The `enrichment` topology is a topology dedicated to taking the data from the parsing
topologies that have been normalized into the Metron data format (for example, a JSON
Map structure with `original_message` and `timestamp`) and

• Enriching messages with external data from data stores (for example, hbase) by adding
new fields based on existing fields in the messages.

• Marking messages as threats based on data in external data stores.

• Marking threat alerts with a numeric triage level based on a set of Stellar rules.

The configuration for the `enrichment` topology, the topology primarily responsible for
enrichment and threat intelligence enrichment, is defined by JSON documents stored in
ZooKeeper.

There are two types of configurations, global and sensor specific.

Hortonworks Cybersecurity
Package

January 26, 2018

67

3.6.1. Sensor Configuration
The sensor specific configuration is intended to configure the individual enrichments and
threat intelligence enrichments for a given sensor type (for example, `snort`).

Just like the global config, the sensor configuration format is a JSON object stored in
ZooKeeper. The configuration is a complex JSON object with the following top level fields:

• enrichment : A complex JSON object representing the configuration of the enrichments

• threatIntel : A complex JSON object representing the configuration of the threat
intelligence enrichments

The sensor enrichment configuration uses the following fields:

• fieldToTypeMap - In the case of a simple HBase enrichment (a key/value lookup), the
mapping between fields and the enrichment types associated with those fields must
be known. This enrichment type is used as part of the HBase key. Note: applies to
hbaseEnrichment only. | `"fieldToTypeMap" : { "ip_src_addr" : ["asset_enrichment"] }` |

• fieldMap - The map of enrichment bolts names to configuration handlers which
know how to divide the message. The simplest of which is just a list of fields. More
complex examples would be the stellar enrichment which provides stellar statements.
Each field listed in the array arg is sent to the enrichment referenced in the key.
Cardinality of fields to enrichments is many-to-many. | `"fieldMap": {"hbaseEnrichment":
["ip_src_addr","ip_dst_addr"]}` |

• config - The general configuration for the enrichment.

The `config` map is intended to house enrichment specific configuration. For instance,
for the `hbaseEnrichment`, the mappings between the enrichment types to the column
families is specified.

The `fieldMap`contents are of interest because they contain the routing and configuration
information for the enrichments. When we say 'routing', we mean how the messages get
split up and sent to the enrichment adapter bolts.

The simplest, by far, is just providing a simple list as in

"fieldMap": {
 "geo": [
 "ip_src_addr",
 "ip_dst_addr"
],
 "host": [
 "ip_src_addr",
 "ip_dst_addr"
],
 "hbaseEnrichment": [
 "ip_src_addr",
 "ip_dst_addr"
]
 }

Based on this sample config, both `ip_src_addr` and `ip_dst_addr` will go to the `geo`,
`host`, and `hbaseEnrichment` adapter bolts.

Hortonworks Cybersecurity
Package

January 26, 2018

68

3.7. Global Configuration
Global configurations are applied to all data sources as opposed to other configurations
that are applied to a specific sensor. For example, every message from every sensor is
validated against global configuration rules.

Various parts of the HCP stack use the global configuration and methods for using and
modifying the global configuration properties are documented throughout the HCP
documentation. The following is an index of the global configuration properties and their
associated Ambari properties if they are managed by Ambari.

Important

Any property that is managed by Ambari should only be modified via Ambari.
Otherwise, when you restart a service, Ambari might overwrite your updates.
For more information, see Updating Properties [86].

Table 3.1. Global Configuration Properties

Property Name Subsystem Type Ambari Property

es.clustername Indexing String es_cluster_name

es.ip Indexing String es_hosts

es.port Indexing String es_port

es.date.format Indexing String es_date_format

fieldValidations Parsing Object N/A

parser.error.topic Parsing String N/A

stellar.function.paths Stellar CSV String N/A

stellar.function.resolver.includesStellar CSV String N/A

stellar.function.resolver.excludesStellar CSV String N/A

profiler.period.duration Profiler Integer profiler_period_duration

profiler.period.duration.units Profiler String profiler_period_units

update.hbase.table REST/Indexing String update_hbase_table

update.hbase.cf REST-Indexing String update_hbase_cf

geo.hdfs.file Enrichment String geo_hdfs_file

1. To configure a global configuration file, create a file called global.json at
$METRON_HOME/config/zookeeper.

2. Populate the file with enrichment configurations you want to apply to all sensors.

The file should have the following format:

{
 "es.clustername": "metron",
 "es.ip": "node1",
 "es.port": "9300",
 "es.date.format": "yyyy.MM.dd.HH",
 "fieldValidations" : [
 {
 "input" : ["ip_src_addr", "ip_dst_addr"],
 "validation" : "IP",
 "config" : {

Hortonworks Cybersecurity
Package

January 26, 2018

69

 "type" : "IPV4"
 }
 }
]
}

where

es.ip A single or collection of elastic search master nodes.

They may be specified via the widely accepted hostname:port
syntax. If a port is not specified, then a separate global property
es.port is required:

• Example: es.ip : [“10.0.0.1:1234”, “10.0.0.2:1234”]

• Example: es.ip : “10.0.0.1” (thus requiring es.port to be
specified as well)

• Example: es.ip : “10.0.0.1:1234” (thus not requiring
es.port to be specified)

es.port The port of the elastic search master node.

This is not strictly required if the port is specified in the es.ip
global property as described above. It is expected that this be
an integer or a string representation of an integer.

• Example: es.port : “1234"

• Example: es.port : 1234

es.clustername The elastic search cluster name to which you want to write.

• Example: es.clustername : “metron” (providing your ES
cluster is configured to have metron be a valid cluster name)

es.date.format We shard the indices first by sensor and then by date.

This provides the granularity time-wise that we shard.

• Example: es.date.format : “yyyy.MM.dd.HH” (this
would shard by hour creating, for example, a Bro shard of
bro_2016.01.01.01, bro_2016.01.01.02, etc.)

• Example: es.date.format : “yyyy.MM.dd” (this would
shard by day, creating, for example, a Bro shard of
bro_2016.01.01, bro_2016.01.02, etc.)

fieldValidations A validation framework that enables you to construct validation
rules that cross all sensors.

This is done in the form of validation plugins where assertions
about fields or whole messages can be made.

Hortonworks Cybersecurity
Package

January 26, 2018

70

input An array of input fields or a single field. If this is
omitted, then the whole messages is passed to
the validator.

config A String to Object map for validation
configuration. This is optional if the validation
function requires no configuration.

validation The validation function to be used. This is one of
the following:

STELLAR Execute a Stellar Language
statement. Expects the query
string in the condition field
of the config.

IP Validates that the input fields
are an IP address. By default,
if no configuration is set, it
assumes IPV4, but you can
specify the type by passing
in type with either IPV6 or
IPV4 or by passing in a list
[IPV4,IPV6] in which case
the input(s) will be validated
against both.

DOMAIN Validates that the fields are all
domains.

EMAIL Validates that the fields are all
email addresses.

URL Validates that the fields are all
URLs.

DATE Validates that the fields are a
date. Expects format in the
config.

INTEGER Validates that the fields are an
integer. String representation
of an integer is allowed.

REGEX_MATCH Validates that the fields match
a regex. Expects pattern in
the config.

NOT_EMPTY Validates that the fields exist
and are not empty (after
trimming.)

Hortonworks Cybersecurity
Package

January 26, 2018

71

You can also create a validation using Stellar. The following validation uses Stellar to
validate an ip_src_addr similar to the "validation":"IP"" example above:

"fieldValidations" : [
 {
 "validation" : "STELLAR",
 "config" : {
 "condition" : "IS_IP(ip_src_addr, 'IPV4')"
 }
 }
]

3.8. Configuring the Profiler
A profile describes the behavior of an entity on a network. This feature is typically used by a
data scientist and you should coordinate with the data scientist determine if they will need
your assistance with customizing the Profiler values.

The Profiler is installed in the HCP install and runs as an independent Storm topology.
The configuration for the Profiler topology is stored in ZooKeeper at /metron/
topology/profiler. These properties also exist in the default installation of HCP
at $METRON_HOME/config/zookeeper/profiler.json. The values can be
changed on disk and then uploaded to ZooKeeper using $METRON_HOME/bin/
zk_load_configs.sh.

For more information on creating a profile, see Creating Profiles.

Note

The Profiler can persist any serializable object, not just numeric values.

Table 3.2. Profiler Properties

Settings. Description

profiler.workers The number of worker processes to create for the
topology.

profiler.executors The number of executors to spawn per component.

profiler.input.topic The name of the Kafka topic from which to consume data.

profiler.output.topic The name of the Kafka topic to which profile data is
written. Only used with profiles that use the [`triage`
result field](#result).

profiler.period.duration The duration of each profile period.
This value should be define along with
profiler.period.duration.units.

profiler.period.duration.units The units used to specify the profile period
duration. This value should be defined along with
profiler.period.duration.

profiler.ttl If a message has not been applied to a Profile in this
period of time, the Profile will be forgotten and its
resources will be cleaned up. This value should be defined
along with `profiler.ttl.units`.

profiler.ttl.units The units used to specify the `profiler.ttl`

profiler.hbase.salt.divisor A salt is prepended to the row key to help prevent
hotspotting. This constant is used to generate the sale.
Ideally, this constant should be roughly equal to the
number of nodes in the HBase cluster.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_analytics/content/selecting_profiles.html

Hortonworks Cybersecurity
Package

January 26, 2018

72

profiler.hbase.table The name of the HBase table that profiles are written to.

profiler.hbase.column.family The column family used to store profiles.

profiler.hbase.batch The number of puts that are written in a single batch.

profiler.hbase.flush.interval.seconds The maximum number of seconds between batch writes
to HBase.

3.9. Creating an Index Template
To work with a new data source data in the Metron dashboard, you need to ensure that
the data is landing in the search index (Elasticsearch) with the correct data types. This can
be achieved by defining an index template.

Note

You will need to update the Index template after you add or change
enrichments for a data source.

1. Run the following command to create an index template for the new data source.

The following is an example of an index template for a new sensor called 'sensor1'.

• The template applies to any indices that are named sensor1_index*.

• The index has one document type that must be named sensor1_doc.

• The index is expected to contain timestamps.

• The properties section defines the types of each field. This example defines the five
common fields that most sensors contain.

• Additional fields can be added following the five that are already defined.

curl -XPOST $SEARCH_HOST:$SEARCH_PORT/_template/$DATASOURCE_index -d '
{
 "template": "sensor1_index*",
 "mappings": {
 "sensor1_doc": {
 "properties": {
 "timestamp": {
 "type": "date",
 "format": "epoch_millis"
 },
 "ip_src_addr": {
 "type": "ip"
 },
 "ip_src_port": {
 "type": "integer"
 },
 "ip_dst_addr": {
 "type": "ip"
 },
 "ip_dst_port": {
 "type": "integer"
 }
 }
 }

Hortonworks Cybersecurity
Package

January 26, 2018

73

 }
}

2. By default, Elasticsearch will attempt to analyze all fields of type string. This means
that Elasticsearch will tokenize the string and perform additional processing to enable
free-form text search. In many cases, you want to treat each of the string fields as
enumerations. This is why most fields in the index template are `not_analyzed`.

3. An index template will only apply for indices that are created after the template is
created. Delete the existing indices for the new data source so that new ones can be
generated with the index template.

curl -XDELETE $SEARCH_HOST:9200/$DATSOURCE*

4. Wait for the new data source index to be re-created. This might take a minute or two
based on how fast the new data source data is being consumed in your environment.

curl -XGET $SEARCH_HOST:9200/$DATASOURCE*

3.10. Configuring the Metron Dashboard to View
the New Data Source Telemetry Events

After HCP is configured to parse, index, and persist telemetry events and NiFi is pushing
data to HCP, you can view streaming telemetry data in the Metron Dashboard. See HCP
User Guide for information about configuring the Metron Dashboard.

3.11. Setting up pcap to View Your Raw Data
The pcap data source creates a Storm topology that can rapidly ingest raw data directly
into HDFS from Kafka. As a result, you can store all of your cybersecurity data in its raw
form in HDFS and review or query it at a later date. HCP supports two pcap components:

• The pycapa tool aimed at low-volume packet capture

Pycapa is a open-source Python-based probe created by Cisco.

• The Fastcapa tool aimed at high-volume packet capture.

Fastcapa is a probe that performs fast network packet capture by leveraging Linux
kernel-bypass and user space networking technology. The probe will bind to a network
interface, capture network packets, and send the raw packet data to Kafka. This
provides a scalable mechanism for ingesting high-volumes of network packet data into a
Hadoop cluster.

Fastcapa leverages the Data Plane Development Kit (DPDK). DPDK is a set of libraries and
drivers to perform fast packet processing in Linux user space.

The rest of this chapter provides or points to instructions for setting up pycapa and
Fastcapa and using pcap and Fastcapa:

• Setting up pycapa [74]

• Starting pcap [74]

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_user-guide/content/index.html
https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_user-guide/content/index.html
http://dpdk.org/

Hortonworks Cybersecurity
Package

January 26, 2018

74

• Setting up Fastcapa [76]

• Using Fastcapa [79]

3.11.1. Setting up pycapa

You can set up pycapa by completing the following steps. This installation assumes the
following environment variables:

PYCAPA_HOME=/opt/pycapa
PYTHON27_HOME =/opt/rh/python27/root

1. Install the following packages:

 epel-release
centos-release-scl
"@Development tools"
python27
python27-scldevel
python27-python-virtualenv
libpcap-devel
libselinux-python

For example:

yum -y install epel-release centos-release-scl
yum -y install "@Development tools" python27 python27-scldevel python27-
python-virtualenv libpcap-devel libselinux-python

2. Set up the following directory:

mkdir $PYCAPA_HOME && chmod 755 $PYCAPA_HOME

3. Create the following virtual environment:

export LD_LIBRARY_PATH="/opt/rh/python27/root/usr/lib64"
${PYTHON27_HOME}/usr/bin/virtualenv pycapa-venv

4. Copy incubator-metron/metron-sensors/pycapa from the Metron source tree
into $PYCAPA_HOME on the node on which you would like to install pycapa.

5. Build pycapa:

cd ${PYCAPA_HOME}/pycapa
activate the virtualenv
source ${PYCAPA_HOME}/pycapa-venv/bin/activate
pip install -r requirements.txt
python setup.py install

6. Start the pycapa packet capture producer:

cd ${PYCAPA_HOME}/pycapa-venv/bin
pycapa --producer --topic pcap -i $ETH_INTERFACE -k $KAFKA_HOST:6667

3.11.2. Starting pcap

To start pcap, HCP provides a utility script. This script takes no arguments and is very simple
to run. Complete the following steps to start pcap:

Hortonworks Cybersecurity
Package

January 26, 2018

75

1. Log into the host on which you are running Metron.

2. If you are running HCP on an Ambari-managed cluster, perform the following steps. If
you are running a VM or a cluster that is not managed by Ambari, skip to Step 3.

a. Update the $METRON_HOME/config/pcap.properties by changing kafka.zk
to the appropriate server.

You can retrieve the appropriate server information from Ambari in Kafka service >
Configs > Kafka Broker > zookeeper.connect.

b. On the HDFS host, create /apps/metron/pcap, change its ownership to
metron:hadoop, and change its permissions to 775.

hdfs dfs -mkdir /apps/metron/pcap
hdfs dfs -chown metron:hadoop /apps/metron/pcap
hdfs dfs -chmod 755 /apps/metron/pcap

c. Create a Metron user's home directory on HDFS and change its ownership to the
Metron user.

hdfs dfs -mkdir /user/metron
hdfs dfs -chown metron:hadoop /user/metron
hdfs dfs -chmod 755 /user/metron

d. Create a pcap topic in Kafka.

i. Switch to metron user:

su - metron

ii. Create a Kafka topic named pcap:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh \
--zookeeper $ZOOKEEPER_HOST:2181 \
--create \
--topic pcap \
--partitions 1 \
--replication-factor 1

iii. List all of the Kafka topics, to ensure that the new pcap topic exists:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper
 $ZOOKEEPER_HOST:2181 --list

3. Start the pcap topology:

$METRON_HOME/bin/start_pcap_topology.sh

If HCP is installed on an Ambari-managed cluster, proceed the previous command with
su - metron.

4. Check the Storm topology to ensure that packets are being captured.

After Storm has captured a sufficient number of packets, you can check to ensure it is
creating files on HDFS:

hadoop fs -ls /apps/metron/pcap

Hortonworks Cybersecurity
Package

January 26, 2018

76

3.11.3. Setting up Fastcapa

You can install Fastcapa one of two ways: automated or manual. The automated
installation is the simplest method, but it requires that you are running CentOS 7.1. If you
are not running CentOS 7.1 or would like more visibility into the installation process, you
can manually install Fastcapa.

• Automated Installation [76]

• Manual Installation [76]

3.11.3.1. Prerequisites

The following system requirements must be met to run the Fastcapa probe:

• Linux kernel >= 2.6.34

• A DPDK supported ethernet device; NIC

• Port(s) on the ethernet device that can be dedicated for exclusive use by Fastcapa

3.11.3.2. Automated Installation

The process of installing Fastcapa has several steps and involves building DPDK, loading
specific kernel modules, enabling huge page memory, and binding compatible network
interface cards.

The best documentation is code that actually does this for you. An Ansible role that
performs the entire installation procedure can be found at https://github.com/apache/
metron/blob/master/metron-deployment/development/fastcapa. Use this to install
Fastcapa or as a guide for manual installation. The automated installation assumes CentOS
7.1 and is directly tested against bento/centos-7.1.

3.11.3.3. Manual Installation

The following manual installation steps assume that they are executed on CentOS 7.1.
Some minor differences might result if you use a different Linux distribution.

• Enable Transparent Huge Pages [76]

• Install DPDK [77]

• Install Librdkafka [78]

• Install Fastcapa [79]

• Using Fastcapa in a Kerberized Environment [82]

3.11.3.4. Enable Transparent Huge Pages

The probe performs its own memory management by leveraging transparent huge pages.
In Linux, Transparent Huge Pages (THP) can be enabled either dynamically or on boot.

http://dpdk.org/doc/nics
https://github.com/apache/metron/blob/master/metron-deployment/development/fastcapa
https://github.com/apache/metron/blob/master/metron-deployment/development/fastcapa

Hortonworks Cybersecurity
Package

January 26, 2018

77

It is recommended that these be allocated on boot to increase the chance that a larger,
physically contiguous chunk of memory can be allocated.

The size of THPs that are supported will vary based on your CPU. These typically include 2
MB and 1 GB THPs. For better performance, allocate 1 GB THPs if supported by your CPU.

1. Ensure that your CPU supports 1 GB THPs. A CPU flag pdpe1gb indicates whether or not
the CPU supports 1 GB THPs.

grep --color=always pdpe1gb /proc/cpuinfo | uniq

2. Add the following boot parameters to the Linux kernel. Edit /etc/default/grub and
add the additional kernel parameters to the line starting with GRUB_CMDLINE_LINUX.

GRUB_CMDLINE_LINUX=... default_hugepagesz=1G hugepagesz=1G hugepages=16

3. Rebuild the grub configuration then reboot. The location of the Grub configuration file
will differ across Linux distributions.

cp /etc/grub2-efi.cfg /etc/grub2-efi.cfg.orig
/sbin/grub2-mkconfig -o /etc/grub2-efi.cfg

4. Once the host has been rebooted, ensure that the THPs were successfully allocated.

$ grep HugePage /proc/meminfo
AnonHugePages: 933888 kB
HugePages_Total: 16
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0

The total number of huge pages that you have been allocated should be distributed
fairly evenly across each NUMA node. In the following example, a total of 16 THPs were
requested and 8 have been assigned on each of the 2 NUMA nodes.

$ cat /sys/devices/system/node/node*/hugepages/hugepages-1048576kB/
nr_hugepages
8
8

5. Once the THPs have been reserved, they need to be mounted to make them available to
the probe.

cp /etc/fstab /etc/fstab.orig
mkdir -p /mnt/huge_1GB
echo "nodev /mnt/huge_1GB hugetlbfs pagesize=1GB 0 0" >> /etc/fstab
mount -fav

3.11.3.5. Install DPDK

1. Install the required dependencies.

yum -y install "@Development tools"
yum -y install pciutils net-tools glib2 glib2-devel git
yum -y install kernel kernel-devel kernel-headers

2. Decide where DPDK will be installed.

Hortonworks Cybersecurity
Package

January 26, 2018

78

export DPDK_HOME=/usr/local/dpdk/

3. Download, build, and install DPDK.

wget http://fast.dpdk.org/rel/dpdk-16.11.1.tar.xz -O - | tar -xJ
cd dpdk-stable-16.11.1/
make config install T=x86_64-native-linuxapp-gcc DESTDIR=$DPDK_HOME

4. Find the PCI address of the ethernet device that you plan on using to capture network
packets. In the following example we plan on binding enp9s0f0 which has a PCI
address of 09:00.0.

$ lspci | grep "VIC Ethernet"
09:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
0a:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)

5. Bind the device. Replace the device name and PCI address with what is appropriate for
your environment.

ifdown enp9s0f0
modprobe uio_pci_generic
$DPDK_HOME/sbin/dpdk-devbind --bind=uio_pci_generic "09:00.0"

6. Ensure that the device was bound. It should be shown as a 'network device using DPDK-
compatible driver.'

$ dpdk-devbind --status
Network devices using DPDK-compatible driver
==
0000:09:00.0 'VIC Ethernet NIC' drv=uio_pci_generic unused=enic
Network devices using kernel driver
===================================
0000:01:00.0 'I350 Gigabit Network Connection' if=eno1 drv=igb unused=
uio_pci_generic

3.11.3.6. Install Librdkafka

The probe has been tested with Librdkafka 0.9.4.

1. Choose an installation path. In the following example, the libs will actually be installed at
/usr/local/lib; note that lib is appended to the prefix.

export RDK_PREFIX=/usr/local

2. Download, build, and install.

wget https://github.com/edenhill/librdkafka/archive/v0.9.4.tar.gz -O - |
 tar -xz
cd librdkafka-0.9.4/
./configure --prefix=$RDK_PREFIX
make
make install

3. Ensure that the installation location is on the search path for the runtime shared library
loader.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$RDK_PREFIX/lib

https://github.com/edenhill/librdkafka/releases/tag/v0.9.4

Hortonworks Cybersecurity
Package

January 26, 2018

79

3.11.3.7. Install Fastcapa

1. Set the required environment variables.

export RTE_SDK=$DPDK_HOME/share/dpdk/
export RTE_TARGET=x86_64-native-linuxapp-gcc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$RDK_HOME

2. Build Fastcapa. The resulting binary will be placed at build/app/fastcapa.

cd metron/metron-sensors/fastcapa
make

3.11.4. Using Fastcapa
Follow these steps to run Fastcapa.

1. Create a configuration file that at a minimum specifies your Kafka broker.

An example configuration file, conf/fastcapa.conf, is available that documents
other useful parameters.

[kafka-global]
metadata.broker.list = kafka-broker1:9092

2. Bind the capture device.

This is only needed if the device is not already bound. In this example, the device
enp9s0f0with a PCI address of 09:00:0 is bound. Use values specific to your
environment.

ifdown enp9s0f0
modprobe uio_pci_generic
$DPDK_HOME/sbin/dpdk-devbind --bind=uio_pci_generic "09:00.0"

3. Run Fastcapa.

fastcapa -c 0x03 --huge-dir /mnt/huge_1GB -- -p 0x01 -t pcap -c /etc/
fastcapa.conf

4. Terminate Fastcapa with SIGINT or by entering CTRL-C.

The probe will cleanly shut down all of the workers and allow the backlog of packets to
drain.

To terminate the process without clearing the queue, send a SIGKILL or be entering
killall -9 fastcapa.

3.11.4.1. Parameters

Fastcapa accepts three sets of parameters.

• Command-line parameters passed directly to DPDK's Environmental Abstraction Layer
(EAL)

• Command-line parameters that define how Fastcapa will interact with DPDK. These
parameters are separated on the command line by a double-dash (--).

Hortonworks Cybersecurity
Package

January 26, 2018

80

• A configuration file that defines how Fastcapa interacts with Librdkafka.

3.11.4.1.1. Environmental Abstraction Layer Parameters

The most commonly used EAL parameter involves specifying which logical CPU cores should
be used for processing. This can be specified in any of the following ways.

 -c COREMASK Hexadecimal bitmask of cores to run on
 -l CORELIST List of cores to run on
 The argument format is <c1>[-c2][,c3[-c4],...]
 where c1, c2, etc are core indexes between 0 and 128
 --lcores COREMAP Map lcore set to physical cpu set
 The argument format is
 '<lcores[@cpus]>[<,lcores[@cpus]>...]'
 lcores and cpus list are grouped by '(' and ')'
 Within the group, '-' is used for range separator,
 ',' is used for single number separator.
 '()' can be omitted for single element group,
 '@' can be omitted if cpus and lcores have the same
 value

To get more information about other EAL parameters, run the following.

fastcapa -h

3.11.4.1.1.1. Fastcapa-Core Parameters

Name Command Description Default

Port Mask -p PORT_MASK A bit mask identifying which
ports to bind.

0x01

Burst Size -b BURST_SIZE Maximum number of
packets to receive at one
time.

32

Receive Descriptors -r NB_RX_DESC The number of descriptors
for each receive queue (the
size of the receive queue.)
Limited by the ethernet
device in use.

1024

Transmission Ring Size -x TX_RING_SIZE The size of each
transmission ring. This must
be a power of 2.

2048

Number Receive Queues -q NB_RX_QUEUE Number of receive queues
to use for each port. Limited
by the ethernet device in
use.

2

Kafka Topic -t KAFKA_TOPIC The name of the Kafka
topic.

pcap

Configuration File -c KAFKA_CONF Path to a file containing
configuration values.

Stats -s KAFKA_STATS Appends performance
metrics in the form of JSON
strings to the specified file.

To get more information about the Fastcapa specific parameters, run the following. Note
that this puts the -h after the double-dash --.

fastcapa -- -h

Hortonworks Cybersecurity
Package

January 26, 2018

81

3.11.4.1.1.2. Fastcapa-Kafka Configuration File

The path to the configuration file is specified with the -c command line argument. The file
can contain any global or topic-specific, producer-focused configuration values accepted by
Librdkafka.

The configuration file is a .ini-like Glib configuration file. The global configuration values
should be placed under a [kafka-global] header and topic-specific values should be
placed under [kafka-topic].

A minimally viable configuration file would only need to include the Kafka broker to
connect to.

[kafka-global]
metadata.broker.list = kafka-broker1:9092, kafka-broker2:9092

The configuration parameters that are important for either basic functioning or
performance tuning of Fastcapa include the following.

Global configuration values that should be located under the [kafka-global] header.

Name Description Default

metadata.broker.list Initial list of brokers as a CSV list of
broker host or host:port

client.id Client identifier.

queue.buffering.max.messages Maximum number of messages
allowed on the producer queue

100000

queue.buffering.max.ms Maximum time, in milliseconds, for
buffering data on the producer queue

1000

message.copy.max.bytes Maximum size for message to be
copied to buffer. Messages larger
than this will be passed by reference
(zero-copy) at the expense of larger
iovecs.

65535

batch.num.messages Maximum number of messages
batched in one MessageSet

10000

statistics.interval.ms How often statistics are emitted; 0 =
never

0

compression.codec Compression codec to use for
compressing message sets; {none,
gzip, snappy, lz4 }

none

Topic configuration values that should be located under the [kafka-topic] header.

Name Description Default

compression.codec Compression codec to use for
compressing message sets; {none,
gzip, snappy, lz4 }

none

request.required.acks How many acknowledgements the
leader broker must receive from ISR
brokers before responding to the
request; { 0 = no ack, 1 = leader ack,
-1 = all ISRs }

1

message.timeout.ms Local message timeout. This value
is only enforced locally and limits
the time a produced message waits

300000

https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md
https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md

Hortonworks Cybersecurity
Package

January 26, 2018

82

Name Description Default

for successful delivery. A time of 0 is
infinite.

queue.buffering.max.kbytes Maximum total message size sum
allowed on the producer queue

3.11.4.1.2. Output

When running the probe some basic counters are output to stdout. Of course during
normal operation these values will be much larger.

 ------ in ------ --- queued --- ----- out ----- ---- drops ----
[nic] 8 - - -
[rx] 8 0 8 0
[tx] 8 0 8 0
[kaf] 8 1 7 0

• [nic] + in : The ethernet device is reporting that it has seen 8 packets.

• [rx] + in : The receive workers have consumed 8 packets from the device.

• [rx] + out : The receive workers have enqueued 8 packets onto the transmission
rings.

• [rx] + drops : If the transmission rings become full it will prevent the receive workers
from enqueuing additional packets. The excess packets are dropped. This value will never
decrease.

• [tx] + in : The transmission workers have consumed 8 packets.

• [tx] + out : The transmission workers have packaged 8 packets into Kafka messages.

• [tx] + drops : If the Kafka client library accepted fewer packets than expected. This
value can increase or decrease over time as additional packets are acknowledged by the
Kafka client library at a later point in time.

• [kaf] + in : The Kafka client library has received 8 packets.

• [kaf] + out : A total of 7 packets has successfully reached Kafka.

• [kaf] + queued : There is 1 packet within the rdkafka queue waiting to be sent.

3.11.5. Using Fastcapa in a Kerberized Environment
The Fastcapa probe can be used in a Kerberized environment. Follow these additional steps
to use Fastcapa with Kerberos. The following assumptions have been made. These might
need to be altered to fit your environment.

• The Kafka broker is at kafka1:6667

• ZooKeeper is at zookeeper1:2181

• The Kafka security protocol is SASL_PLAINTEXT

• The keytab used is located at /etc/security/keytabs/
metron.headless.keytab

Hortonworks Cybersecurity
Package

January 26, 2018

83

• The service principal is metron@EXAMPLE.COM

1. Build Librdkafka with SASL support (--enable-sasl).

wget https://github.com/edenhill/librdkafka/archive/v0.9.4.tar.gz -O - |
 tar -xz
cd librdkafka-0.9.4/
./configure --prefix=$RDK_PREFIX --enable-sasl
make
make install

2. Validate Librdkafka supports SASL. Run the following command and ensure that sasl is
returned as a built-in feature.

$ examples/rdkafka_example -X builtin.features
builtin.features = gzip,snappy,ssl,sasl,regex

If it is not, ensure that you have libsasl or libsasl2 installed. On CentOS, this can
be installed with the following command.

yum install -y cyrus-sasl cyrus-sasl-devel cyrus-sasl-gssapi

3. Grant access to your Kafka topic. In this example, the Kafka topic is simply named pcap.

$KAFKA_HOME/bin/kafka-acls.sh --authorizer kafka.security.auth.
SimpleAclAuthorizer \
 --authorizer-properties zookeeper.connect=zookeeper1:2181 \
 --add --allow-principal User:metron --topic pcap

4. Obtain a Kerberos ticket.

kinit -kt /etc/security/keytabs/metron.headless.keytab metron@EXAMPLE.COM

5. Add the following additional configuration values to your Fastcapa configuration file.

security.protocol = SASL_PLAINTEXT
sasl.kerberos.keytab = /etc/security/keytabs/metron.headless.keytab
sasl.kerberos.principal = metron@EXAMPLE.COM

6. Now run Fastcapa as you normally would. It should have no problem landing packets in
your kerberized Kafka broker.

3.12. Troubleshooting Parsers
This section provides some troubleshooting solutions for parser issues.

3.12.1. Storm is Not Receiving Data From a New Data
Source

1. Ensure that your Grok parser statement is valid.

You can use GrokConstructor to test your parser statement.

If you need to modify your Grok parser statement, you must kill the topology for your
new data source in the Storm UI and then resubmit your data source.

Hortonworks Cybersecurity
Package

January 26, 2018

84

a. Log into HOST $HOST_WITH_ENRICHMENT_TAG as root.

b. Deploy the new parser topology:

$METRON_HOME/bin/start_parser_topology.sh -k $KAFKA_HOST:6667 -z
 $ZOOKEEPER_HOST:2181 -s $DATASOURCE

c. Go to the Storm UI. You should now see the new topology. Ensure that the topology
has no errors.

2. Ensure that the Kafka topic you created for your new data source is receiving data.

3. Check your NiFi configuration to ensure that data is flowing between the Kafka topic for
your new data source into HCP.

3.12.2. Determining Which Events Are Not Being Processed

Events that are not processed end up in a dead letter queue. There are two types of events.
One, where the event could not be parsed at all. Two, where the event was parsed, but
failed validation

Hortonworks Cybersecurity
Package

January 26, 2018

85

4. Monitor and Management
Hortonworks Cybersecurity Package (HCP) powered by Apache Metron provides a number
of options for monitoring and managing your system. Before you perform any of these
monitoring and management tasks, we suggest that you become familiar with HCP data
throughput by referring to Understanding Throughput.

The rest of this chapter provides detailed instructions on performing the following
monitoring and management tasks:

• Updating ZooKeeper [87]

• Managing Sensors [87]

• Monitoring Sensors [91]

• Starting and Stopping Parsers [95]

• Starting and Stopping Enrichments [96]

• Starting and Stopping Indexing [98]

• Modifying the Elasticsearch Template [99]

• Pruning Data From Elasticsearch [99]

• Backing up the Metron Dashboard [100]

• Restoring Your Metron Dashboard Backup [100]

4.1. Understanding Throughput
The data flow for HCP is performed in real-time and contains the following steps:

1. Information from telemetry data sources is ingested into Kafka files through the
telemetry event buffer. This information is the raw telemetry data consisting of host
logs, firewall logs, emails, and network data. Depending on the type of data you are
streaming into HCP, you can use one of the following telemetry data collectors to ingest
the data:

NiFi This type of streaming method works for most
types of telemetry data sources. See the NiFi
documentation for more information,

Performant network ingestion
probes

This type of streaming method is ideal for streaming
high volume packet data. See Viewing pcap Data for
more information.

Real-time and batch threat
intelligence feed loaders

This type of streaming method is used for real-time
and batch threat intelligence feed loaders.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_user-guide/content/pcap_inspector_utility.html

Hortonworks Cybersecurity
Package

January 26, 2018

86

2. Once the information is ingested into Kafka files, the data is parsed into a normalized
JSON structure that HCP can read. This information is parsed using a Java or general
purpose parser and then it is uploaded to ZooKeeper. A Kafka file containing the parser
information is created for every telemetry data source.

3. The information is then enriched with asset, geo, and threat intelligence information.

4. The information is then indexed, stored, and any resulting alerts are sent to the Metron
dashboard.

4.2. Updating Properties
HCP configuration information is stored in ZooKeeper as a series of JSON files. There are
multiple locations from which you can populate the ZooKeeper configurations:

• $METRON_HOME/config/zookeeper

• Management UI

• Ambari

• Stellar REPL

However, Ambari explicitly manages some of these configuration properties. If you change
a property explicitly managed by Ambari from one of the other mechanisms outside of
Ambari, such as the Management UI, Ambari will not be aware of this change and will
overwrite it whenever the Metron topology is restarted. Therefore, you should modify
Ambari-managed properties only in Ambari.

For example, the es.ip property is managed explicitly by Ambari. If you modify es.ip
and change the global.json file outside Ambari, you will not see this change in Ambari.
Meanwhile, the indexing topology would be using the new value stored in ZooKeeper.
You will not receive any errors notifying you of the discrepancy between ZooKeeper and
Ambari. However, when you restart the Metron topology component via Ambari, the
es.ip property would be set back to the value stored in Ambari.

See the following table for a list of Ambari-managed properties. All other properties can be
managed in one of the mechanisms outside Ambari.

Table 4.1. Properties Managed by Ambari

Global Configuration Property Name Ambari Name

es.clustername es_cluster_name

es.ip es_hosts

es.port es_port

es.date.format es_date_format

profiler.period.duration profiler_period_duration

profiler.period.duration.units profiler_period_units

update.hbase.table update_hbase_table

update.hbase.cf update_hbase_cf

geo.hdfs.file geo_hdfs_file

Hortonworks Cybersecurity
Package

January 26, 2018

87

4.3. Updating ZooKeeper
ZooKeeper configurations should be stored on disk in the following structure starting at
$METRON_HOME/bin/zk_load_configs.sh:

global.json The global config

sensors The subdirectory containing sensor enrichment configuration JSON (for
example, snort.json, bro.json)

By default, this directory as deployed by the ansible infrastructure is at $METRON_HOME/
config/zookeeper.

While the configs are stored on disk, they must be loaded into ZooKeeper to be used.
To this end, there is a utility program to assist in this called $METRON_HOME/bin/
zk_load_config.sh.

This has the following options:

-f,--force Force operation

-h,--help Generate Help screen

-i,--input_dir <DIR> The input directory containing the configuration files
named like "$source.json"

-m,--mode <MODE> The mode of operation: DUMP, PULL, PUSH

-o,--output_dir <DIR> The output directory which will store the JSON
configuration from ZooKeeper

-z,--zk_quorum
<host:port,[host:port]*>

ZooKeeper Quorum URL (zk1:port,zk2:port,...)

Usage examples:

• To dump the existing configs from ZooKeeper on the single node vagrant machine:

$METRON_HOME/bin/zk_load_configs.sh -z node1:2181 -m DUMP

• To push the configs into ZooKeeper on the single node vagrant machine:

$METRON_HOME/bin/zk_load_configs.sh -z node1:2181 -m PUSH -i
$METRON_HOME/config/zookeeper

• To pull the configs from ZooKeeper to the single node vagrant machine disk:

$METRON_HOME/bin/zk_load_configs.sh -z node1:2181 -m PULL -o
$METRON_HOME/config/zookeeper -f

4.4. Managing Sensors
You can manage your sensors and associated topologies using either the HCP Management
module or the Storm UI. The following procedures use the HCP Management module

Hortonworks Cybersecurity
Package

January 26, 2018

88

to manage sensors. For information on using Storm to manage sensors, see the Storm
documentation.

• Starting and Stopping a Sensor [88]

• Modifying a Sensor [88]

• Deleting a Sensor [90]

4.4.1. Starting and Stopping a Sensor

After you install a sensor, you can start or stop it using the Management Module.

To start or stop a sensor, select the sensor in the main window, then click (start button)

to start the sensor or (stop button) to stop the sensor in (tool bar) on
the right side of the window.

Figure 4.1. Management Module Main Window

Starting or stopping the sensor might take a few minutes. When the operation completes
successfully, you should see the Status for the sensor change to the Running or Stopped.

4.4.2. Modifying a Sensor

You can modify any sensor listed in HCP Management module.

1. Select Sensors in the Operations panel on the left side of the window, and then click

 (edit button) for the sensor you want to modify.

Hortonworks Cybersecurity
Package

January 26, 2018

89

The Management module displays a panel populated with the sensor configuration
information.

Figure 4.2. Sensor Panel

2. You can modify the following information for the sensor:

• Sensor name

• Parser type

• Schema information

Hortonworks Cybersecurity
Package

January 26, 2018

90

• Threat triage information

3. Click Save to save your changes.

4.4.3. Deleting a Sensor

You can delete a sensor if you don't need it.

Important

You must take the sensor offline before deleting it.

1. In the Ambari user interface, click the Services tab, then Metron from the list of services.

2. Click the Configs tab and then click Parsers.

Figure 4.3. ambari_configs_parsers.png

3. Remove the parser you want to delete from the Metron Parsers field.

4. Next, display the Management module.

5. Select the check box next to the appropriate sensor in the Sensors table.

You can delete more than one sensor at a time by clicking multiple check boxes.

6. From the Actions menu, choose Delete.

Hortonworks Cybersecurity
Package

January 26, 2018

91

The Management module deletes the sensor from ZooKeeper.

7. Finally, delete the json file for the sensor on the Ambari master node:

ssh $AMBARI_MASTER_NODE
cd $METRON_HOME/config/zookeeper/parser
rm $DATASOURCE.json

4.5. Monitoring Sensors
You can use the Metron Error Dashboard to monitor sensor error messages and
troubleshoot them.

The Metron user interface provides two dashboards: the Metron Dashboard and the
Metron Error Dashboard. The first dashboard, the Metron Dashboard, provides sensor-
specific data that can be used to identify, investigate, and analyze cybersecurity data. This
first dashboard is described extensively in the HCP User Guide. The second dashboard,
the Metron Error Dashboard, receives information on all errors detected by HCP. This
section describes the Error Dashboard in detail and provides instruction on how to use the
dashboard to monitor sensor errors and troubleshoot problems and contains the following
sections:

• Displaying the Metron Error Dashboard [91]

• Default Metron Error Dashboard [92]

• Loading Metron Templates [93]

4.5.1. Displaying the Metron Error Dashboard

Prior to displaying the Metron Error Dashboard, ensure that you have completed the
following:

• Created an Index template

The Metron Dashboard user interface defaults to displaying the Metron Dashboard. To
display the Metron Error Dashboard, complete the following steps:

1.
Click (Load Saved Dashboard icon) in the upper right corner of the Metron
Dashboard, then choose Metron Error Dashboard from the list of dashboards.

2.

Click (timeframe tab) in the upper right corner of the Metron Error
Dashboard to choose the timeframe you need the error dashboard to cover

The Metron Error dashboard receives the following information for all error messages:

• Exception

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.4.1/bk_user-guide/content/index.html
http://dev.hortonworks.com.s3.amazonaws.com/HDPDocuments/HCS1/HCS-1-trunk/bk_administration/content/creating_an_index_template.html

Hortonworks Cybersecurity
Package

January 26, 2018

92

• Hostname - which machine the error occurred on

• Stack trace

• Time - When the error occurred

• Message

• Raw Message - original message

• Raw_message_bytes - The bytes of the original message

• Hash - To determine if there is a duplicate message

• Source_type - Identifies source sensor

• Error type - Parser error, etc.

4.5.2. Default Metron Error Dashboard

The following list contains a description of each of the sections that display by default in
the Metron Error dashboard.

Total Error Messages The total number of error messages received during the
interim you have specified.

Unique Error Messages The total number of unique error messages received during
the interim you have specified.

Errors Over Time A detailed message panel displays the raw data from your
search query.

Error Source When you submit a search query, the 500 most recent
documents that match the query are listed in the
Documents table which is displayed in the center of the
Discover window.

Errors by Error Type A list of all of the fields associated with a selected index
pattern. This list is displayed on the left side of the Discover
window.

Error Type Proportion Use the line chart when you want to display high density
time series. This chart is useful for comparing one series with
another.

Errors by Type You can use the mark down widget panel to provide
explanations or instructions for the dashboard.

List of Errors You can use a metric panel to display a single large number
such as the number of hits or the average of a numeric field.

The default Error dashboard should look similar to the following:

Hortonworks Cybersecurity
Package

January 26, 2018

93

Figure 4.4. Error Dashboard

4.5.3. Loading Metron Templates
HCP provides templates for the Metron UI dashboards. You might want to load or reload
these templates if the Metron UI is not displaying the default dashboard panes, or if you
would like to return to the default format.

To load the Metron templates, complete the following steps:

1. Display the Ambari UI:

https://$METRON_HOME:8080

Hortonworks Cybersecurity
Package

January 26, 2018

94

2. Click the Services tab and select Kibana in the left pane of the window.

Figure 4.5. Ambari Services Tab

3. From the Service Actions pull down menu, select Load Template.

4. Click the OK button to confirm your selection.

Figure 4.6. Confirmation Dialog Box

Ambari displays a dialog box listing the background operations it is running.

Hortonworks Cybersecurity
Package

January 26, 2018

95

Figure 4.7. Ambari Background Operations

5. Click the OK button to dismiss the dialog box.

Ambari has completed loading the Metron template. You should be able to see the
default formatting in the Metron dashboards.

4.6. Starting and Stopping Parsers
You might want to stop or start parsers as you refine or focus your cybersecurity
monitoring. You can easily stop and start parsers by using Ambari.

To start or stop a parser, complete the following steps:

1. Display the Ambari tool and navigate to Services > Metron > Summary.

Figure 4.8. Ambari Metron Summary Window

2. Under Summary, click on Metron Parsers to display the Components window.

The Components window displays a list of Metron hosts and which components reside
on each host.

Hortonworks Cybersecurity
Package

January 26, 2018

96

Figure 4.9. Components Window

3. Click the Started/Stopped button by Metron Parsers to change the status of the Parsers
then click the Confirmation button to verify that you want to start or stop the parsers.

Ambari displays the Background Operation Running dialog box.

4. Click Stop Metron Parsers.

Ambari displays the Stop Metron Parsers dialog box.

5. Click the entry for your Metron cluster, then click Metron Parser Stop again.

Ambari displays a dialog box for your Metron cluster which lists the actions as is stops
the parsers.

4.7. Starting and Stopping Enrichments
You might want to stop or start enrichments as you refine or focus your cybersecurity
monitoring. You can easily stop and start enrichments by using Ambari.

To start or stop the enrichments, complete the following steps:

1. Display the Ambari tool and navigate to Services > Metron > Summary.

Hortonworks Cybersecurity
Package

January 26, 2018

97

Figure 4.10. Ambari Metron Summary Window

2. Under Summary, click on Metron Enrichments to display the Components window.

This window displays a list of HCP hosts and which components reside on each host.

Figure 4.11. Components Window

3. Click the Started/Stopped button by Metron Enrichments to change the status of the
Enrichments then click the Confirmation button to verify that you want to start or stop
the enrichments.

Ambari displays the Background Operation Running dialog box.

4. Click Stop Metron Enrichments.

Ambari displays the Stop Metron Enrichments dialog box.

5. Click the entry for your Metron cluster, then click Metron Enrichments Stop again.

Ambari displays a dialog box for your Metron cluster which lists the actions as is stops
the enrichments.

Hortonworks Cybersecurity
Package

January 26, 2018

98

4.8. Starting and Stopping Indexing
You might want to stop or start indexing as you refine or focus your cybersecurity
monitoring. You can easily stop and start indexing by using Ambari.

To start or stop indexing, complete the following steps:

1. Display the Ambari tool and navigate to Services > Metron > Summary.

Figure 4.12. Ambari Metron Summary Window

2. Under Summary, click on Metron Indexing to display the Components window.

This window displays a list of HCP hosts and which components reside on each host.

Figure 4.13. Components Window

3. Click the Started/Stopped button by Metron Indexing to change the status of the
Indexing then click the Confirmation button to verify that you want to start or stop the
indexing.

Ambari displays the Background Operation Running dialog box.

4. Click Stop Metron Indexing.

Hortonworks Cybersecurity
Package

January 26, 2018

99

Ambari displays the Stop Metron Indexing dialog box.

5. Click the entry for your Metron cluster, then click Metron Indexing Stop again.

Ambari displays a dialog box for your Metron cluster which lists the actions as it stops
the indexing.

4.9. Modifying the Elasticsearch Template
You can modify the Elasticsearch template to change the settings in your HCP environment.
Some of these settings will help optimize your system performance.

• indexing.workers

• indexing.executors

• bolt.hdfs.batch.size

1. Display the Ambari tool and navigate to Services > Metron > Summary > Advanced.

2. Click Advanced metron-env.

Ambari displays the contents of the metron-env file which includes the
elasticsearch.properties template.

3. Modify the appropriate properties, then click Save at the top of the window.

4.10. Pruning Data From Elasticsearch
Elasticsearch provides tooling to prune index data through its Curator utility. For more
information about the Curator utility, see Curator Reference.

The following is a sample invocation that you can configure through Cron to prune indexes
based on timestamp in the index name.

/opt/elasticsearch-curator/curator_cli --host localhost delete_indices --
filter_list '
 {
 "filtertype": "age",
 "source": "name",
 "timestring": "%Y.%m.%d",
 "unit": "days",
 "unit_count": 10,
 "direction": "older”
 }'

Using name as the source tells Curator to look for a timestring within the index or
snapshot name, and convert that into an epoch timestamp (epoch implies UTC).

For finer-grained control over the indexes that will be pruned, you can also provide multiple
filters as an array of JSON objects to filter_list. There is an implicit logical AND when
chaining multiple filters.

https://www.elastic.co/guide/en/elasticsearch/client/curator/5.4/index.html

Hortonworks Cybersecurity
Package

January 26, 2018

100

--filter_list '[{"filtertype":"age","source":"creation_date",
"direction":"older","unit":"days","unit_count":13},
{"filtertype":"pattern","kind":"prefix","value":"logstash"}]'

4.11. Backing up the Metron Dashboard
You can back up your Metron dashboard to avoid losing your customizations by using the
following command:

python packaging/ambari/metron-mpack/src/main/resources/common-services/
KIBANA/5.6.2/package/scripts/dashboard/dashboardindex.py \
 $ES_HOST 9200 \
 $SOME_PATH/dashboard.p -s

4.12. Restoring Your Metron Dashboard Backup
To restore a back up of your Metron dashboard, use the following command:

python packaging/ambari/metron-mpack/src/main/resources/common-services/
KIBANA/5.6.2/package/scripts/dashboard/dashboardindex.py \
 $ES_HOST 9200 \
 $SOME_PATH/dashboard.p

Note

This method of writing the Kibana dashboard to Elasticsearch will overwrite the
entire .kibana index.

Hortonworks Cybersecurity
Package

January 26, 2018

101

5. Concepts
This chapter provides more in-depth information about the terminology used in the rest of
this guide. This chapter contains detailed information on the following:

• Parsers [101]

• Telemetry Data Source Parsers Bundled with Hortonworks Cybersecurity Package [105]

• Enrichment Framework [108]

• Fastcapa [118]

5.1. Parsers
Parsers are pluggable components that transform raw data (textual or raw bytes) into
JSON messages suitable for downstream enrichment and indexing. Data flows through
the parser bolt via Kafka and into the enrichments topology in Storm. Errors are collected
with the context of the error (for example stacktrace) and the original message causing
the error and sent to an error queue. Invalid messages as determined by global validation
functions are also treated as errors and sent to an error queue.

HCP supports two types of parsers: Java and general purpose. Each of these parsers plus
the parser configuration are described in the following sections.

• Java Parsers [101]

• General Purpose Parsers [101]

• Parser Configuration [103]

5.1.1. Java Parsers
The Java parser is written in Java and conforms with the MessageParser interface. This kind
of parser is optimized for speed and performance and is built for use with higher-velocity
topologies. Java parsers are not easily modifiable; to make changes to them, you must
recompile the entire topology.

Currently, the Java adapters included with HCP are as follows:

• org.apache.metron.parsers.ise.BasicIseParser

• org.apache.metron.parsers.bro.BasicBroParser

• org.apache.metron.parsers.sourcefire.BasicSourcefireParser

• org.apache.metron.parsers.lancope.BasicLancopeParser

5.1.2. General Purpose Parsers
The general purpose parser is primarily designed for lower-velocity topologies or for quickly
setting up a temporary parser for a new telemetry. General purpose parsers are defined
using a config file, and you need not recompile the topology to change them. HCP supports
two general purpose parsers: Grok and CSV.

Hortonworks Cybersecurity
Package

January 26, 2018

102

Grok parser

The Grok parser class name (parserClassName) is
org.apache.metron,parsers.GrokParser.

Grok has the following entries and predefined patterns for parserConfig:

grokPath The patch in HDFS (or in the Jar) to the Grok statement

patternLabel The pattern label to use from the Grok statement

timestampField The field to use for timestamp

timeFields A list of fields to be treated as time

dateFormat The date format to use to parse the time fields

timezone The timezone to use. UTC is the default.

CSV Parser

The CSV parser class name (parserClassName) is
org.apache.metron.parsers.csv.CSVParser

CSV has the following entries and predefined patterns for parserConfig:

timestampFormat The date format of the timestamp to use. If unspecified, the parser
assumes the timestamp is starts at UNIX epoch.

columns A map of column names you wish to extract from the CSV to their
offsets. For example, { 'name' : 1,'profession' : 3}
would be a column map for extracting the 2nd and 4th columns
from a CSV.

separator The column separator. The default value is ",".

JSON Map Parser

The JSON parser class name (parserClassName) is
org.apache.metron.parsers.csv.JSONMapParser

JSON has the following entries and predefined patterns for parserConfig:

mapStrategy A strategy to indicate how to handle multi-dimensional Maps. This is one
of:

DROP Drop fields which contain maps

UNFOLD Unfold inner maps. So { "foo" : { "bar" : 1} } would
turn into {"foo.bar" : 1}

ALLOW Allow multidimensional maps

ERROR Throw an error when a multidimensional map is encountered

timestamp This field is expected to exist and, if it does not, then current time is
inserted.

Hortonworks Cybersecurity
Package

January 26, 2018

103

5.1.3. Parser Configuration
The configuration for the various parser topologies is defined by JSON documents stored in
ZooKeeper. The JSON document is structured in the following way:

parserClassName The fully qualified class name for the parser to be used.

sensorTopic The Kafka topic to send the parsed messages to.

parserConfig A JSON Map representing the parser implementation specific
configuration.

fieldTransformations An array of complex objects representing the transformations
to be done on the message generated from the parser before
writing out to the Kafka topic.

The fieldTransformations is a complex object which defines
a transformation that can be done to a message. This
transformation can perform the following:

• Modify existing fields to a message

• Add new fields given the values of existing fields of a
message

• Remove existing fields of a message

5.1.3.1. fieldTransformation Configuration

In this example, the host name is extracted from the URL by way of the URL_TO_HOST
function. Domain names are removed by using DOMAIN_REMOVE_SUBDOMAINS, thereby
creating two new fields (full_hostname and domain_without_subdomains) and
adding them to each message.

Figure 5.1. Configuration File with Transformation Information

The format of a fieldTransformation is as follows:

input An array of fields or a single field representing the input. This is
optional; if unspecified, then the whole message is passed as input.

Hortonworks Cybersecurity
Package

January 26, 2018

104

output The outputs to produce from the transformation. If unspecified, it is
assumed to be the same as inputs.

transformation The fully qualified class name of the transformation to be used. This is
either a class which implements FieldTransformation or a member of
the FieldTransformations enum.

config A String to Object map of transformation specific configuration.

HCP currently implements the following fieldTransformations options:

REMOVE This transformation removes the specified input fields. If you want a
conditional removal, you can pass a Metron Query Language statement
to define the conditions under which you want to remove the fields.

The following example removes field1 unconditionally:

{
...
 "fieldTransformations" : [
 {
 "input" : "field1"
 , "transformation" : "REMOVE"
 }
]
}

The following example removes field1 whenever field2 exists and has a
corresponding value equal to 'foo':

{
...
 "fieldTransformations" : [
 {
 "input" : "field1"
 , "transformation" : "REMOVE"
 , "config" : {
 "condition" : "exists(field2) and field2 ==
 'foo'"
 }
 }
]
}

IP_PROTOCOL This transformation maps IANA protocol numbers to consistent string
representations.

The following example maps the protocol field to a textual
representation of the protocol:

{
...
 "fieldTransformations" : [
 {
 "input" : "protocol"
 , "transformation" : "IP_PROTOCOL"
 }
]

Hortonworks Cybersecurity
Package

January 26, 2018

105

}

STELLAR, lo This transformation executes a set of transformations expressed as Stellar
Language statements.

The following example adds three new fields to a message:

utc_timestamp The UNIX epoch timestamp based on the timestamp
field, a dc field which is the data center the message
comes from and a dc2tz map mapping data centers
to timezones.

url_host The host associated with the url in the url field.

url_protocol The protocol associated with the url in the url field.

{
...
 "fieldTransformations" : [
 {
 "transformation" : "STELLAR"
 ,"output" : ["utc_timestamp", "url_host",
 "url_protocol"]
 ,"config" : {
 "utc_timestamp" : "TO_EPOCH_TIMESTAMP(timestamp,
 'yyyy-MM-dd
HH:mm:ss', MAP_GET(dc, dc2tz, 'UTC'))"
 ,"url_host" : "URL_TO_HOST(url)"
 ,"url_protocol" : "URL_TO_PROTOCOL(url)"
 }
 }
]
 ,"parserConfig" : {
 "dc2tz" : {
 "nyc" : "EST"
 ,"la" : "PST"
 ,"london" : "UTC"
 }
 }
}

Note that the dc2tz map is in the parser config, so it is accessible in the
functions.

5.2. Telemetry Data Source Parsers Bundled with
Hortonworks Cybersecurity Package

Telemetry data sources are sensors that provide raw events that are captured and pushed
into Kafka topics to be ingested in Hortonworks Cybersecurity Package (HCP) powered by
Metron. This section describes the telemetry data sources bundled with HCP 1.0:

• Snort [106]

• Bro [106]

• YAF (NetFlow) [107]

Hortonworks Cybersecurity
Package

January 26, 2018

106

• Indexing [107]

• pcap [107]

For information about how to add telemetry data sources, see Adding a New Telemetry
Data Source [6].

5.2.1. Snort
Snort is one of the more popular network intrusion prevention systems (NIPS). Snort
monitors network traffic and produces alerts that are generated based on signatures from
community rules. HCP plays the output of the packet capture probe to Snort and whenever
Snort alerts are triggered. HCP uses the kafka-console-producer to send these alerts to a
Kafka topic. After the Kafka topic receives Snort alerts, they are retrieved by the parsing
topology in Storm.

By default, the Snort parser is configured to use ZoneId.systemDefault() for the source
`timeZone` for the incoming data and MM/dd/yy-HH:mm:ss.SSSSSS as the default
`dateFormat`. Valid timezones are per Java's ZoneId.getAvailableZoneIds(). DateFormats
should be valid per options listed on the following website: https://docs.oracle.com/
javase/8/docs/api/java/time/format/DateTimeFormatter.html. Below is a sample
configuration with the `dateFormat` and `timeZone` explicitly set in the parser config.

"parserConfig": {
"dateFormat" : "MM/dd/yy-HH:mm:ss.SSSSSS",
"timeZone" : "America/New_York"
}

Note

When you install and configure Snort, you must configure Snort to include the
year in the timestamp by modifying the snort.conf file as follows:

Configure Snort to show year in timestamps
config show_year

This is important for the proper functioning of indexing and analytics.

5.2.2. Bro
The Bro ingest data source is a custom Bro plug-in that pushes DPI (deep packet inspection)
metadata into HCP.

Bro is primarily used as a DPI metadata generator. HCP does not currently use the IDS alert
features of Bro. HCP integrates with Bro by way of a Bro plug-in, and does not require
recompiling of Bro code.

The Bro plug-in formats Bro output messages into JSON and puts them into a Kafka topic.
The JSON message output by the Bro plug-in is designed to be parsed by the HCP Bro
parsing topology.

DPI metadata is not a replacement for packet capture (pcap), but rather a complement.
Extracting DPI metadata (API Layer 7 visibility) is expensive, and therefore is performed
on only selected protocols. You should enable DPI for HTTP and DNS protocols so that,

Hortonworks Cybersecurity
Package

January 26, 2018

107

while the pcap probe records every single packets it sees on the wire, the DPI metadata is
extracted only for a subset of these packets.

5.2.3. YAF (NetFlow)

The YAF (yet another flowmeter) data source ingests NetFlow data into HCP.

Not everyone wants to ingest pcap data due to space constraints and the load exerted
on all infrastructure components. NetFlow, while not a substitute for pcap, is a high-level
summary of network flows that would be contained in the pcap files. If you do not want
to ingest pcap, then you should at least enable NetFlow. HCP uses YAF to generate IPFIX
(NetFlow) data from the HCP pcap probe, so the output of the probe is IPFIX instead of
raw packets. If NetFlow is generated instead of pcap, then the NetFlow data goes to the
generic parsing topology instead of the pcap topology.

5.2.4. Indexing

The Indexing topology takes data ingested into Kafka from enriched topologies and sends
the data to an indexing bolt configured to write to one or more of the following indices:

• Elasticsearch or Solr

• HDFS under /apps/metron/enrichment/indexed

Indices are written in batch and the batch size is specified in the Enrichment Configuration
file by the batchSize parameter. This configuration is variable by sensor type.

Errors during indexing are sent to a Kafka topic named indexing_error.

The following figure illustrates the data flow between Kafka, the Indexing topology, and
HDFS.

Figure 5.2. Indexing Architecture

5.2.5. pcap

Packet capture (pcap) is a performant C++ probe that captures network packets and
streams them into Kafka. A pcap Storm topology then streams them into HCP. The
purpose of including pcap source with HCP is to provide a middle tier in which to negotiate
retrieving packet capture data that flows into HCP. This packet data is of a form that
libpcap-based tools can read.

Hortonworks Cybersecurity
Package

January 26, 2018

108

The network packet capture probe is designed to capture raw network packets and bulk-
load them into Kafka. Kafka files are then retrieved by the pcap Storm topology and
bulk-loaded into Hadoop Distributed File System (HDFS). Each file is stored in HDFS as a
sequence file.

HCP provides three methods to access the pcap data:

• Rest API

• pycapa

• DPDK

There can be multiple probes into the same Kafka topic. The recommended hardware
for the probe is an Intel family of network adapters that are supportable by Data Plane
Development Kit (DPDK).

5.3. Enrichment Framework
Enrichments add additional context to the streaming message. The enrichment framework
takes the data from the parsing topologies that have been normalized into the HCP data
format (JSON files) and performs the following enhancements:

• Enriches messages with external data from data stores by adding new information based
on existing fields in the messages

• Marks messages as threats based on data in external data stores

• Marks threat alerts with a numeric triage level based on a set of Stellar rules

The configuration for the enrichment topology is defined by JSON documents stored in
ZooKeeper. HCP features two types of configurations:

• Sensor Enrichment Configuration [109]

• Global Configuration [115]

The following figure illustrates the enrichment flow for both individual sensor enrichment
and threat intelligence enrichment.

Figure 5.3. HCP Enrichment Flow

Hortonworks Cybersecurity
Package

January 26, 2018

109

5.3.1. Sensor Enrichment Configuration

The sensor enrichment configuration configures enrichments for a given sensor (for
example, Snort). The sensor enrichment configuration configures two types of enrichments:
individual sensor enrichments and threat intelligence enrichments. The configuration for
both types of enrichments is a complex JSON object with the following top-level fields:

index The name of the sensor

batchSize The size of the batch that is written to the indices at once

enrichment A complex JSON object representing the configuration of the enrichments

threatIntel A complex JSON object representing the configuration of the threat
intelligence enrichments

The remaining configuration differs for the two types of enrichments. See the following
sections for information about both of these configuration types.

5.3.1.1. Individual Sensor Enrichments

HCP includes the following individual sensor enrichments:

Geo Provides GeoIP information, which includes coordinates, city, state, and country
information, to any external IP address.

Asset Provides the host name for an IP address. If the IP address is known, then the
enrichment provides everything else that is known of the asset from the LDAP,
AD, or enterprise inventory stores.

User Provides the user that owns the session/alert associated with the IP-application
pair.

The JSON documents for the individual enrichment configurations are structured as follows:

Table 5.1. Individual Enrichment Configuration Fields

Field Description Example

fieldToTypeMap In the case of a simple HBase
enrichment (in other words, a key/
value lookup), the mapping between
fields and the enrichment types
associated with those fields must be
known. This enrichment type is used
as part of the HBase key.

"fieldToTypeMap" : {
"ip_src_addr" : [
"asset_enrichment"] }

fieldMap The map of enrichment bolts names
to configuration handlers which know
how to split the message up. The
simplest of which is just a list of fields.
More complex examples would be the
STELLAR enrichment which provides
STELLAR statements. Each field is sent
to the enrichment referenced in the
key.

"fieldMap":
{"hbaseEnrichment":
["ip_src_addr","ip_dst_addr"]}

config The general configuration for the
enrichment.

"config":
{"typeToColumnFamily": {
"asset_enrichment" : "cf" } }

Hortonworks Cybersecurity
Package

January 26, 2018

110

The config map is intended to house enrichment-specific configurations. For example,
hbaseEnrichment specifies the mappings between the enrichment types to the column
families.

The fieldMap contents contain the routing and configuration information for the
enrichments. Routing defines how the messages is split up and sent to the enrichment
adapter bolts. The simplest fieldMapcontents provides a simple list as in:

 "fieldMap": {
 "geo": [
 "ip_src_addr",
 "ip_dst_addr"
],
 "host": [
 "ip_src_addr",
 "ip_dst_addr"
],
 "hbaseEnrichment": [
 "ip_src_addr",
 "ip_dst_addr"
]
 }

Based on this sample config, both ip_src_addr and ip_dst_addr will go to the geo,
host, and hbaseEnrichment adapter bolts.

5.3.1.2. Stellar Enrichment Configuration

For the geo, host, and hbaseEnrichment, this is sufficient. However, more complex
enrichments might contain their own configuration. Currently, the stellar enrichment is
more adaptable and thus requires a more nuanced configuration.

At its most basic, we want to take a message and apply a couple of enrichments, such as
converting the hostname field to lowercase. We do this by specifying the transformation
inside of the config for the stellar fieldMap. There are two syntaxes that are
supported, specifying the transformations as a map with the key as the field and the value
the stellar expression:

"fieldMap": {
 ...
 "stellar" : {
 "config" : {
 "hostname" : "To_LOWER(hostname)"
 }
 }
 }

Another approach is to make the transformations as a list with the same var := expr
syntax as is used in the Stellar REPL, such as:

"fieldMap": {
 ...
 "stellar" : {
 "config" : [
 "hostname := TO_LOWER(hostname)"
]
 }

Hortonworks Cybersecurity
Package

January 26, 2018

111

 }

Sometimes arbitrary stellar enrichments may take enough time that you would prefer to
split some of them into groups and execute the groups of stellar enrichments in parallel.
Take, for instance, if you wanted to do an HBase enrichment and a profiler call which were
independent of one another. This use case is supported by splitting the enrichments up as
groups.

For example:

 "fieldMap": {
 ...
 "stellar" : {
 "config" : {
 "malicious_domain_enrichment" : {
 "is_bad_domain" : "ENRICHMENT_EXISTS('malicious_domains',
 ip_dst_addr, 'enrichments', 'cf')"
 },
 "login_profile" : [
 "profile_window := PROFILE_WINDOW('from 6 months ago')",
 "global_login_profile := PROFILE_GET('distinct_login_attempts',
 'global', profile_window)",
 "stats := STATS_MERGE(global_login_profile)",
 "auth_attempts_median := STATS_PERCENTILE(stats, 0.5)",
 "auth_attempts_sd := STATS_SD(stats)",
 "profile_window := null",
 "global_login_profile := null",
 "stats := null"
]
 }
 }
 }

Here we want to perform two enrichments that hit HBase and we would rather not
run in sequence. These enrichments are entirely independent of one another (i.e.
neither relies on the output of the other). In this case, we've created a group called
malicious_domain_enrichment to inquire about whether the destination address
exists in the HBase enrichment table in the malicious_domains enrichment type. This is
a simple enrichment, so we can express the enrichment group as a map with the new field
is_bad_domain being a key and the stellar expression associated with that operation
being the associated value.

In contrast, the stellar enrichment group login_profile is interacting with the
profiler, has multiple temporary expressions (for example, profile_window,
global_login_profile, and stats) that are useful only within the context of this
group of stellar expressions. In this case, we would need to ensure that we use the list
construct when specifying the group and remember to set the temporary variables to null
so they are not passed along.

In general, things to note from this section are as follows:

• The stellar enrichments for the stellar enrichment adapter are specified in the
config for the stellar enrichment adapter in the fieldMap

• Groups of independent (for example, no expression in any group depend on the output
of an expression from an other group) may be executed in parallel

Hortonworks Cybersecurity
Package

January 26, 2018

112

• If you have the need to use temporary variables, you may use the list construct. Ensure
that you assign the variables to null before the end of the group.

• Ensure that you do not assign a field to a stellar expression which returns an object which
JSON cannot represent.

• Fields assigned to Maps as part of stellar enrichments have the maps unfolded, similar to
the HBase Enrichment

• For example the stellar enrichment for field foo which assigns a map such as foo :=
{ 'grok' : 1, 'bar' : 'baz'} would yield the following fields:

• foo.grok == 1

• foo.bar == 'baz'

5.3.1.3. Threat Intelligence Enrichments

HCP provides an extensible framework to plug in threat intelligence sources. Each threat
intelligence source has two components: an enrichment data source and an enrichment
bolt. The threat intelligence feeds are bulk loaded and streamed into a threat intelligence
store similarly to how the enrichment feeds are loaded. The keys are loaded in a key-value
format. The key is the indicator and the value is the JSON formatted description of what
the indicator is. Hortonworks recommends using a threat feed aggregator such as Soltra to
dedup and normalize the feeds via STIX/TAXII. HCP provides an adapter that is able to read
Soltra-produced STIX/TAXII feeds and stream them into HBase. HCP additionally provides
a flat file and STIX bulk loader that can normalize, dedup, and bulk load or stream threat
intelligence data into HBase even without the use of a threat feed aggregator.

The JSON documents for the threat intelligence enrichment configurations are structured in
the following way:

Table 5.2. Threat Intelligence Enrichment Configuration

Field Description Example

fieldToTypeMap In the case of a simple HBase threat
intelligence enrichment (in other
words, a key/value lookup), the
mapping between fields and the
enrichment types associated with
those fields must be known. This
enrichment type is used as part of the
HBase key.

"fieldToTypeMap" : {
"ip_src_addr" : [
"malicious_ips"] }

fieldMap The map of threat intelligence
enrichment bolts names to fields in
the JSON messages. Each field is sent
to the threat intelligence enrichment
bolt referenced in the key.

"fieldMap":
{"hbaseThreatIntel":
["ip_src_addr","ip_dst_addr"]}

triageConfig The configuration of the threat triage
scorer. In the situation where a threat
is detected, a score is assigned to
the message and embedded in the
indexed message.

"riskLevelRules" : {
"IN_SUBNET(ip_dst_addr,
'192.168.0.0/24')" : 10 }

config The general configuration for the
threat intelligence.

"config":
{"typeToColumnFamily": {
"malicious_ips" : "cf" } }

Hortonworks Cybersecurity
Package

January 26, 2018

113

The config map is intended to house threat intelligence specific configurations. For
instance, the hbaseThreatIntel threat intelligence adapter specifies the mappings
between the enrichment types and the column families.

The triageConfig field utilizes the following fields:

Table 5.3. triageConfig Fields

Field Description Example

riskLevelRules The mapping of Metron Query
Language (see above) queries to a
score.

"riskLevelRules" :
{ "IN_SUBNET(ip_dst_addr,
'192.168.0.0/24')" : 10 }

aggregator An aggregation function that takes
all non-zero scores representing
the matching queries from
riskLevelRules and aggregates
them into a single score.

"MAX"

The supported aggregator functions are as follows:

MAX The maximum of all of the associated values for matching queries

MIN The minimum of all of the associated values for matching queries

MEAN The mean of all of the associated values for matching queries

POSITIVE_MEAN The mean of the positive associated values for the matching queries

The following is an example configuration for the YAF sensor:

{
 "index": "yaf",
 "batchSize": 5,
 "enrichment": {
 "fieldMap": {
 "geo": [
 "ip_src_addr",
 "ip_dst_addr"
],
 "host": [
 "ip_src_addr",
 "ip_dst_addr"
],
 "hbaseEnrichment": [
 "ip_src_addr",
 "ip_dst_addr"
]
 }
 ,"fieldToTypeMap": {
 "ip_src_addr": [
 "playful_classification"
],
 "ip_dst_addr": [
 "playful_classification"
]
 }
 },
 "threatIntel": {
 "fieldMap": {

Hortonworks Cybersecurity
Package

January 26, 2018

114

 "hbaseThreatIntel": [
 "ip_src_addr",
 "ip_dst_addr"
]
 },
 "fieldToTypeMap": {
 "ip_src_addr": [
 "malicious_ip"
],
 "ip_dst_addr": [
 "malicious_ip"
]
 },
 "triageConfig" : {
 "riskLevelRules" : {
 "ip_src_addr == '10.0.2.3' or ip_dst_addr == '10.0.2.3'" : 10
 },
 "aggregator" : "MAX"
 }
 }
}

5.3.1.4. Using Stellar to Set up Threat Triage Configurations

The threat triage configuration defines conditions by associating them with scores.
Because this is a per-sensor configuration, this fits nicely within the sensor enrichment
configuration held in ZooKeeper. This configuration fits well within the threatIntel section
of the configuration like so:

{
 ...
 ,"threatIntel" : {
 ...
 , "triageConfig" : {
 "riskLevelRules" : {
 "condition1" : level1
 , "condition2" : level2
 ...
 }
 ,"aggregator" : "MAX"
 }
 }
}

riskLevelRules Correspond to the set of condition to numeric level mappings that
define the threat triage for this particular sensor.

aggregator An aggregation function that takes all non-zero scores representing
the matching queries from riskLevelRules and aggregates them into a
single score.

The current supported aggregation functions are:

MAX The maximum of all of the associated values for matching queries

MIN The minimum of all of the associated values for matching queries

MEAN The mean of all of the associated values for matching queries

Hortonworks Cybersecurity
Package

January 26, 2018

115

POSITIVE_MEAN The mean of the positive associated values for the matching queries

5.3.2. Global Configuration

Global enrichments are applied to all data sources as opposed to other enrichments that
are applied at the field level. In other words, every message from every sensor is validated
against the global configuration rules. The format of the global enrichment is a JSON string-
to-object map that is stored in ZooKeeper.

This configuration is stored in ZooKeeper and looks something like the following:

{
 "es.clustername": "metron",
 "es.ip": "node1",
 "es.port": "9300",
 "es.date.format": "yyyy.MM.dd.HH",
 "fieldValidations" : [
 {
 "input" : ["ip_src_addr", "ip_dst_addr"],
 "validation" : "IP",
 "config" : {
 "type" : "IPV4"
 }
 }
]
}

Inside the global configuration is a framework that validates all messages coming from
all parsers. This is performed using validation plug-ins that make assertions about fields or
whole messages.

The format for this framework is a fieldValidations field inside the global
configuration. This is associated with an array of field validation objects structured that are
defined in Global Configuration [68].

5.3.3. Using Stellar for Queries

You can use Stellar to create queries.

The Stellar query language supports the following:

• Referencing fields in the enriched JSON

• Simple boolean operations: and, not, or

• Simple arithmetic operations: *, /, +, - on real numbers or integers

• Simple comparison operations <, >, <=, >=

• if/then/else comparisons (in other words, if var1 < 10 then 'less than 10' else '10 or more')

• Determining whether a field exists (via exists)

• The ability to have parenthesis to make order of operations explicit

• User defined functions

Hortonworks Cybersecurity
Package

January 26, 2018

116

The following is an example of a Stellar query:

IN_SUBNET(ip, '192.168.0.0/24') or ip in ['10.0.0.1', '10.0.0.2'] or
 exists(is_local)

This query evaluates to “true” precisely when one of the following is true:

• The value of the ip field is in the 192.168.0.0/24 subnet.

• The value of the ip field is 10.0.0.1 or 10.0.0.2.

• The field is_local exists.

5.3.4. Using Stellar to Transform Sensor Data Elements

You can use Stellar to customize sensor data elements to more useful information. For
example, you can transform a timestamp to be specific to your timezone.

TO_EPOCH_TIMESTAMP(timestamp, 'yyyy-MM-dd HH:mm:ss', MAP_GET(dc, dc2tz,
 'UTC'))

For a message with a timestamp and dc field, we want to transform the timestamp to an
epoch timestamp given a timezone that we will look up in a separate map, called dc2tz.

This converts the timestamp field to an epoch timestamp based on the following:

• Format yyyy-MM-dd HH:mm:ss

• The value in dc2tz associated with the value associated with field dc, defaulting to UTC

The following is a list of Stellar transformation functions currently supported by HCP:

TO_LOWER(string) Transforms the first argument to a lowercase string

TO_UPPER(string) Transforms the first argument to an uppercase string

TO_STRING(string) Transforms the first argument to a string

TO_INTEGER(x) Transforms the first argument to an integer

TO_DOUBLE(x) Transforms the first argument to a double

TRIM(string) Trims white space from both sides of a string

JOIN(list, delim) Joins the components of the list with the specified
delimiter

SPLIT(string, delim) Splits the string by the delimiter. Returns a list.

GET_FIRST(list) Returns the first element of the list

GET_LAST(list) Returns the last element of the list

GET(list, i) Returns the i'th element of the list (i is 0-based).

Hortonworks Cybersecurity
Package

January 26, 2018

117

MAP_GET(key, map, default) Returns the value associated with the key in the map.
If the key does not exist, the default will be returned. If
the default is unspecified, then null will be returned.

DOMAIN_TO_TLD(domain) Returns the TLD of the domain

DOMAIN_REMOVE_TLD(domain) Removes the TLD of the domain.

REMOVE_TLD(domain) Removes the TLD from the domain

URL_TO_HOST(url) Returns the host from a URL

URL_TO_PROTOCOL(url) Returns the protocol from a URL

URL_TO_PORT(url) Returns the port from a URL

URL_TO_PATH(url) Returns the path from a URL

TO_EPOCH_TIMESTAMP(dateTime,
format, timezone)

Returns the epoch timestamp of the dateTime given the
format

If the format does not have a timestamp and you wish
to assume a given timestamp, you may specify the
timezone optionally.

5.3.5. Management Utility

You should store your configurations on disk in the following structure, starting at
$BASE_DIR:

• global.json: The global configuration

• sensors: The subdirectory containing sensor-enrichment configuration JSON (for
example, snort.json or bro.json)

By default, this directory is deployed by the Ansible infrastructure at $METRON_HOME/
config/zookeeper.

While the configs are stored on disk, they must be loaded into ZooKeeper to be used. You
can use the $METRON_HOME/bin/zk_load_config.sh utility program to do this.

This has the following options:

-f,--force Force operation

-h,--help Generate Help screen

-i,--input_dir <DIR> The input directory containing configuration files with
names such as "$source.json"

-m,--mode <MODE> The mode of operation: DUMP, PULL, or PUSH

-o,--output_dir (DIR) The output directory that will store the JSON
configuration from ZooKeeper

Hortonworks Cybersecurity
Package

January 26, 2018

118

-z,--zk_quorum <host:port,
[host:port]*>

ZooKeeper quorum URL (zk1:port,zk2:port,…)

Following are some usage examples:

• To dump the existing configs from ZooKeeper on the single-node vagrant machine:
$METRON_HOME/bin/zk_load_configs.sh -z node1:2181 -m DUMP

• To push the configs into ZooKeeper on the single-node vagrant machine:
$METRON_HOME/bin/zk_load_configs.sh -z node1:2181 -m PUSH -i
$METRON_HOME/config/zookeeper

• To pull the configs from ZooKeeper to the single-node vagrant machine disk:
$METRON_HOME/bin/zk_load_configs.sh -z node1:2181 -m PULL -o
$METRON_HOME/config/zookeeper -f

5.4. Fastcapa
The probe leverages a poll-mode, burst-oriented mechanism to capture packets from a
network interface and transmit them efficiently to a Kafka topic. Each packet is wrapped
within a single Kafka message and the current timestamp, as epoch microseconds in
network byte order, is attached as the message's key.

The probe leverages Receive Side Scaling (RSS), a feature provided by some ethernet
devices that allows processing of received data to occur across multiple processes and
logical cores. It does this by running a hash function on each packet, whose value assigns
the packet to one, of possibly many, receive queues. The total number and size of these
receive queues are limited by the ethernet device in use. More capable ethernet devices will
offer a greater number and greater sized receive queues.

• Increasing the number of receive queues allows for greater parallelization of receive side
processing.

• Increasing the size of each receive queue can allow the probe to handle larger,
temporary spikes of network packets that can often occur.

A set of receive workers, each assigned to a unique logical core, are responsible for fetching
packets from the receive queues. There can only be one receive worker for each receive
queue. The receive workers continually poll the receive queues and attempt to fetch
multiple packets on each request. The maximum number of packets fetched in one request
is known as the 'burst size'. If the receive worker actually receives 'burst size' packets, then
it is likely that the queue is under pressure and more packets are available. In this case the
worker immediately fetches another 'burst size' set of packets. It repeats this process up to
a fixed number of times while the queue is under pressure.

The receive workers then enqueue the received packets into a fixed size ring buffer known
as a transmit ring. There is always one transmit ring for each receive queue. A set of
transmit workers then dequeue packets from the transmit rings. There can be one or more
transmit workers assigned to any single transmit ring. Each transmit worker has its own
unique connection to Kafka.

• Increasing the number of transmit workers allows for greater parallelization when
writing data to Kafka.

Hortonworks Cybersecurity
Package

January 26, 2018

119

• Increasing the size of the transmit rings allows the probe to better handle temporary
interruptions and latency when writing to Kafka.

After receiving the network packets from the transmit worker, the Kafka client library
internally maintains its own send queue of messages. Multiple threads are then responsible
for managing this queue and creating batches of messages that are sent in bulk to a Kafka
broker. No control is exercised over this additional send queue and its worker threads,
which can be an impediment to performance. This is an opportunity for improvement that
can be addressed as follow-on work.

	Hortonworks Cybersecurity Package
	Table of Contents
	1. HCP Information Roadmap
	2. Introduction to Hortonworks CyberSecurity Suite
	2.1. HCP Architecture
	2.1.1. Real-time Processing Security Engine
	2.1.2. Telemetry Data Collectors
	2.1.3. Data Services and Integration Layer

	2.2. Understanding HCP Terminology

	3. Configuring and Customizing
	3.1. Adding a New Telemetry Data Source
	3.1.1. Prerequisites
	3.1.2. Streaming Data into HCP
	3.1.2.1. Creating a NiFi Flow to Stream Events to HCP

	3.1.3. Parsing a New Data Source to HCP
	3.1.3.1. Type Mapping Changes
	3.1.3.2. Using the Management Module
	3.1.3.3. Using the CLI

	3.1.4. Verifying That the Events Are Indexed

	3.2. Enriching Telemetry Events
	3.2.1. Bulk Loading Enrichment Information
	3.2.1.1. Bulk Loading Sources
	3.2.1.2. Configuring an Extractor Configuration File
	3.2.1.3. Configuring Element-to-Enrichment Mapping
	3.2.1.4. Running the Enrichment Loader
	3.2.1.5. Mapping Fields to HBase Enrichments
	3.2.1.5.1. Management Module Method
	3.2.1.5.2. CLI Method

	3.2.2. Streaming Enrichment Information

	3.3. Configuring Indexing
	3.3.1. Overview
	3.3.2. Default Configuration
	3.3.3. Specifying Index Parameters
	3.3.3.1. Specifying Index Parameters using the Management Module
	3.3.3.2. Specifying Index Parameters Using the CLI

	3.3.4. Indexing (HDFS) Tuning
	3.3.4.1. PCAP Tuning

	3.3.5. Turning Off HDFS Writer
	3.3.6. Support for HCP 1.4.1
	3.3.6.1. Updating Elasticsearch Templates to Work with Elasticsearch 5.x
	3.3.6.2. Updating Existing Indexes to Work with Elasticsearch 5.x

	3.3.7. Troubleshooting Indexing

	3.4. Using Threat Intelligence Feeds
	3.4.1. Prerequisites
	3.4.2. Bulk Loading Threat Intelligence Information
	3.4.2.1. Bulk Loading Threat Intelligence Sources
	3.4.2.2. Configuring an Extractor Configuration File
	3.4.2.3. Configure Mapping for the Intelligence Feed
	3.4.2.4. Running the Threat Intel Loader
	3.4.2.5. Mapping Fields to HBase Threat Intel
	3.4.2.5.1. Management Module Method
	3.4.2.5.2. CLI Method

	3.4.3. Creating a Streaming Threat Intel Feed Source

	3.5. Prioritizing Threat Intelligence
	3.5.1. Prerequisites
	3.5.2. Performing Threat Triage Using the Management Module
	3.5.3. Performing Threat Triage Using the CLI
	3.5.3.1. Creating the Threat Triage Rule Configuration
	3.5.3.2. Uploading the Threat Triage Configuration to ZooKeeper
	3.5.3.3. Viewing Triaged or Scored Alerts

	3.6. Setting Up Enrichment Configurations
	3.6.1. Sensor Configuration

	3.7. Global Configuration
	3.8. Configuring the Profiler
	3.9. Creating an Index Template
	3.10. Configuring the Metron Dashboard to View the New Data Source Telemetry Events
	3.11. Setting up pcap to View Your Raw Data
	3.11.1. Setting up pycapa
	3.11.2. Starting pcap
	3.11.3. Setting up Fastcapa
	3.11.3.1. Prerequisites
	3.11.3.2. Automated Installation
	3.11.3.3. Manual Installation
	3.11.3.4. Enable Transparent Huge Pages
	3.11.3.5. Install DPDK
	3.11.3.6. Install Librdkafka
	3.11.3.7. Install Fastcapa

	3.11.4. Using Fastcapa
	3.11.4.1. Parameters
	3.11.4.1.1. Environmental Abstraction Layer Parameters
	3.11.4.1.1.1. Fastcapa-Core Parameters
	3.11.4.1.1.2. Fastcapa-Kafka Configuration File

	3.11.4.1.2. Output

	3.11.5. Using Fastcapa in a Kerberized Environment

	3.12. Troubleshooting Parsers
	3.12.1. Storm is Not Receiving Data From a New Data Source
	3.12.2. Determining Which Events Are Not Being Processed

	4. Monitor and Management
	4.1. Understanding Throughput
	4.2. Updating Properties
	4.3. Updating ZooKeeper
	4.4. Managing Sensors
	4.4.1. Starting and Stopping a Sensor
	4.4.2. Modifying a Sensor
	4.4.3. Deleting a Sensor

	4.5. Monitoring Sensors
	4.5.1. Displaying the Metron Error Dashboard
	4.5.2. Default Metron Error Dashboard
	4.5.3. Loading Metron Templates

	4.6. Starting and Stopping Parsers
	4.7. Starting and Stopping Enrichments
	4.8. Starting and Stopping Indexing
	4.9. Modifying the Elasticsearch Template
	4.10. Pruning Data From Elasticsearch
	4.11. Backing up the Metron Dashboard
	4.12. Restoring Your Metron Dashboard Backup

	5. Concepts
	5.1. Parsers
	5.1.1. Java Parsers
	5.1.2. General Purpose Parsers
	5.1.3. Parser Configuration
	5.1.3.1. fieldTransformation Configuration

	5.2. Telemetry Data Source Parsers Bundled with Hortonworks Cybersecurity Package
	5.2.1. Snort
	5.2.2. Bro
	5.2.3. YAF (NetFlow)
	5.2.4. Indexing
	5.2.5. pcap

	5.3. Enrichment Framework
	5.3.1. Sensor Enrichment Configuration
	5.3.1.1. Individual Sensor Enrichments
	5.3.1.2. Stellar Enrichment Configuration
	5.3.1.3. Threat Intelligence Enrichments
	5.3.1.4. Using Stellar to Set up Threat Triage Configurations

	5.3.2. Global Configuration
	5.3.3. Using Stellar for Queries
	5.3.4. Using Stellar to Transform Sensor Data Elements
	5.3.5. Management Utility

	5.4. Fastcapa

