HCP Tuning Guide 1

Hortonwor ks Cyber security Platform
Date of Publish: 2018-07-15

http://docs.hortonwor ks.com

http://docs.hortonworks.com

Contents

INtroduction t0 TUNING HCP.....ceoo e 3
General TUNING SUGJESLIONS.......ccciieiieiiie ettt e st e e sne e ere e 3
Component TUNING LEVEIS......ooiiiieee ettt st nnee s 3
(G 113 T T 0 11 0o ST PRORP 4

IS0 0 0 T IV 01 o TR VRSP URUTPRORIN 4

(=16 < R U011 o TR USSR 6
ENFICHMENE TUNING. ..t ettt b e b e b e sae s b e besb e se et e eese e e en s e e e neebeenenneeben 6
Modifying Enrichment Properties USiNg AMDari........c.couoiiiiiin e 7

Modifying Enrichment Properties Using Flux (Advanced)..........ccceerireriienene e 7

1gTo L= G IE] oo TSRS 8
Modifying Index Parameters USiNg AMDari.........cccooiiiiiiiiiniee e 8

Modifying Index Parameters Using FIUX (AdVaNCed).........cocoreriiiiiniins e 8

Use Case Specific TUNING SUGJESLIONS.......coiuiiiiierieeieesereseesreeesiee e esseesseeenseesneas 9
Performance MONITOMNG TOOIS........cuieiiiiirieirieeet ettt sttt sttt sb et b et b e se et se et e se b e seebeseeseseenenreneas 9

LI 0] Lo OSSOSO PP 10

HCP Tuning Guide Introduction to Tuning HCP

Introduction to Tuning HCP

Tuning your Hortonworks Cybersecurity Platform (HCP) architecture can help maximize the performance of the
Apache Metron Storm topologies.

In the simplest terms, HCP powered by Apache Metron is a streaming architecture created on top of Kafka and three
main types of Storm topologies: parsers, enrichment, and indexing. Each parser has its own topology and thereis also
ahighly performant, specialized spout-only topology for streaming PCAP datato HDFS.

The HCP architecture can be tuned almost exclusively using afew primary Storm and Kafka parameters along with a
few Metron-specific options. Y ou can think of the data flow as being similar to water flowing through a pipe, and the
majority of these options assist in tweaking the various pipe widths in the system.

General Tuning Suggestions

Tuning Hortonworks Cybersecurity Platform (HCP) dependsin large part on tuning three areas: Kafka, Storm, and
indexing.

Indexing is where most of your turning issues are likely to occure because it is the most 10 intensive.

The second area that needs tuning is parallelism in both Kafka and Storm. The performance of the Storm topology.
and therefore the performance of Metron, degrades when it cannot ingest data fast enough to keep up with the data
source. Therefore, much of Metron tuning focuses on adjusting the data throughput of the Storm topologies. For more
information on tuning a Storm topology, see Apache Storm Overview.

Thethird areathat requires analysis and tuning is consumer lags on the key Kafka topics: enrichment, indexing,
parser.

When tuning your Metron configuration, consider the following:

* Look at Elasticsearch and Solr tuning

» Assign small valuesfor parallelism, and increase values incrementally
< Aim for an even balance across your topologies

« Check your system logs for the following:

e Empty results - may indicate that your datais broken
» Kafka- Consumer lags on key Kafkatopics
» Load average or system latency - a high load average might indicate underlying stress on the machine
« Exceptions - Any exceptions shown in the Storm log or key topologies can indicate possible problems with
underlying systems and data
e What topology do | want to tune?
* What isthe capacity of Storm topology?

It is also important to consider the growth of your cluster and data flow. Y ou might want to set the number of tasks
higher than the number of executors to accommodate for future performance tuning and rebal ancing without the need
to bring down your topologies.

Component Tuning Levers

There are anumber of services that you can use to tune the performance of your Metron cluster. These services
include Kafka, Storm, and HDFS. Within these services, you can modify parsers, enrichment, and indexing
(Elasticsearch or Solr).

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/storm-overview/content/analyzing_streams_of_data_with_apache_storm.html

HCP Tuning Guide Component Tuning Levers

When you consider tuning your HCP architecture, it isimportant to note where you can modify settings. For example,
Storm gives you the ability to independently set tasks in executors for parser topologies. Thisisimportant if you
want to set the number of tasks higher than the number of executors to accommodate for future performance tuning
and rebalancing without the need to bring down your topol ogies. However, for enrichment and indexing topologies,
HCP uses Flux, and there is no method for specifying the number of tasks from the number of executorsin Flux. By
default, the number of tasks equals the number of executors.

The following lists the major properties for each service that you can modify to tune your cluster:
» Kafka

e Number partitions
* Storm

« Kafkaspout

» Polling frequency

* Polling timeouts

» Offset commit period

e Max uncommitted offsets

e Number workers (OS processes)
* Number executors (threads in a process)
e Number ackers
« Max spout pending
e Spout and bolt parallelism
« HDFS

* Replication factor
* Indexing

* Elasticsearch
* Solr

Kafka Tuning
Themain lever you can adjust to tune Kafka throughput is the number of partitions.

To determine the number of partitions required to attain your desired throughput, cal culate the throughput for asingle
producer (p) and a single consumer (c), and then use that with the desired throughput (t) to roughly estimate the
number of partitionsto use. Y ou would want at least max(t/p, t/c) partitions to attain the desired throughput.

For more information, see How to Choose the Number of Topics or Partitionsin a Kafka Cluster.

Related Information
How to Choose the Number of Topic or Partitionsin a Kafka Cluster

Storm Tuning

There are several Storm properties you can adjust to tune your Storm topologies. Achieving the desired performance
can beiterative and will take some trial and error.

Hortonworks recommends you start your tuning with the Storm topology defaults and smaller numbers in terms of
parallelism. Then you can iteratively increase the values until you achieve your desired level of performance. Usethe
offset lag tool to verify your settings.

The following sections assume |og type messages. However, if your data consists of emails which are much larger in
size, then you should adjust your values accordingly.

Storm Topology Parallelism

https://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/

HCP Tuning Guide

Component Tuning Levers

To provide a uniform distribution to each machine and jvm process, you can modify the values for the number of
tasks, executors, and workers properties. Start with small values and iteratively increase the values so you don't
overwhelm you CPU with too many processes.

Usually your number of tasksis equal to the number of executors, which is the default in Storm. Flux does not
provide a method to independently set the number of tasks, so for enrichments and indexing, which use Flux, num
tasks are always equal to num executors.

Y ou can change the number of workersin the Storm property topology.workers.

The following table lists the variables you can set to adjust the parallelism in a Storm topology and provides

recommendations for their values:

Storm Topology Variables Description Value
num tasks Tasks are instances of a given spout or bolt. Set the number of tasks as a multiple of the
Executors are threads in a process. number of executors.
num executors Executors are threads in a process. Set the number of executors as a multiple of
the number of workers.
num workers Workers are jvm processes. Set the number of workers as amultiple of the
number of machines

Maximum Number of Tuples

The topol ogy.max.spout.pending setting sets the maximum number of tuplesthat can bein afield (for example, not
yet acked) at any given time within your topology. Y ou set this property as aform of back pressure to ensure that you
don't flood your topology.

t opol ogy. max. spout . pendi ng

Topology Acker Executors

The topol ogy.ackers.executors setting specifies how many threads are dedicated to tuple acking. Set this setting to
equal the number of partitionsin your inbound Kafka topic.

t opol ogy. ackers. execut ors

Spout Recommended Defaults

Asageneral rule, it isoptimal to set spout parallelism equal to the number of partitions used in your Kafkatopic. Any
greater parallelism will leave you with idle consumers because Kafka limits the maximum number of consumersto
the number of partitions. Thisisimportant because Kafka has certain ordering guarantees for message delivery per
partition that would not be possible if more than one consumer in a given consumer group is able to read from that
partition.

Y ou can modify the following spout settings in the spout-config.json file. However, if the spout default settings work
for your system, you can omit these settings from the file. These default settings are based on recommendations from
Storm and are provided in the Kafka spout itself.

{
" ;sbout . pol I Ti meout Ms" : 200,
"spout . maxUnconmmi tt edOf f set s" 10000000,
"spout . of f set Commi t Peri odMs" : 30000

}

Related Information

What isthe Task in Storm Parallelism
Understanding the Parallelism of a Storm Topology
Reading and Understanding the Storm Ul

https://stackoverflow.com/questions/17257448/what-is-the-task-in-storm-parallelism
https://storm.apache.org/releases/current/Understanding-the-parallelism-of-a-Storm-topology.html
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/

HCP Tuning Guide Component Tuning Levers

Parser Tuning

Y ou can modify certain parser properties to tune your HCP architecture using the Management module. Modifying
properties using the Management module is simple and can be performed by any user.

Parserstend to vary alot. Some will be very high volume receiving thousands of messages per second and others will
be much lower. Rather than using a standard setting for the number of partitions and parallelism, you should base
your settings on the expected data volume. That said, use the following guidelines:

« The spout parallelism should be roughly the same as your Kafka partitions.
» Consider data flow when assigning Kafka partitions to parsers.

« Keepin mind the aggregate number of partitions when assigning them to partitions. Y ou do not want to assign the
maximum number of partitions to each parser because that can overload your system.

The parser topologies are deployed by a builder pattern that takes parameters from the CLI as set by the Management
module. The parser properties materialize as follows:

Managenment U -> parser json config and CLI -> Storm

The following table lists the parser properties you can modify in the Management module:

Category Management Ul Property Name CLI| Option
Storm topology config Num Workers -nw,--num_workers <NUM_WORKERS>
Num Ackers --na,--num_ackers <NUM_ACKERS>
Storm Config <JSON_FILE>, eg.,
{ "topology.max.spout.pending” : NUM }
Kafka Spout Parallelism -sp,--spout_p
<SPOUT_PARALLELISM_HINT>
Spout Num Tasks -snt,--spout_num_tasks <NUM_TASKS>
Spout Config <JSON_FILE>, eg.,
{ "spout.poll TimeoutMs" : 200 }
Spout Config <JSON_FILE>, eg.,
{ "spout.maxUncommittedOffsets" :
10000000 }
Spout Config <JSON_FILE>, eg.,
{ "spout.offsetCommitPeriodMs" : 30000 }
Parser bolt Parser Num Tasks -pnt,--parser_num_tasks <NUM_TASKS>
Parser Parallelism -pp,--parser_p <PARALLELISM_HINT>
Parser Parallelism -pp,--parser_p <PARALLELISM_HINT>

All of the Storm parameters are available in the STORM SETTINGS section of the Management module.

For the Storm config and Spout config properties, you enter the JSON_FILE information in the appropriate field
using the JSON format supplied in the following table.

For more detail on starting parsers, see Starting and Stopping Parsers.

Enrichment Tuning

Because al of the datais coming together in enrichments, you will probably need larger enrichments settings than
your parallelism settings. Enrichment settings focus more on the compute workload than on the mapping workload in
parsers or the 10 driven workload in indexing. Enrichment makes significant use of caching for performance.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.5.1/administration/content/starting_and_stopping_parsers.html

HCP Tuning Guide

Component Tuning Levers

Y ou can modify many performance tuning properties for enrichment using Ambari or Storm Flux. Modifying
properties using Ambari is ssimple and can be performed by any user. However, you should have knowledge of Storm
Flux usage and formatting before attempting to modify any Flux files.

The enrichment properties materialize as follows:

Anbari U -> properties fi

le -> Flux -> Storm

Modifying Enrichment Properties Using Ambari
Y ou can modify various enrichment properties using Ambari.

To modify the enrichment properties, navigate to Ambari>M etron>Enrichment.

Note: Many of the following settings are relevant only to the split-join topology.

The following table lists the enrichment properties you can modify in Ambari:

Category

Ambari Property Name

Storm topology config

enrichment_workers

enrichment_acker_executors

enrichment_topology_max_spout_pending

Kafka spout

enrichment_kafka_spout_parallelism

Enrichment splitter

enrichment_split_parallelism

Enrichment joiner

enrichment_join_parallelism

Threat intel splitter

threat_intel_split_parallelism

Threat intel joiner

threat_intel_join_parallelism

M odifying Enrichment Properties Using Flux (Advanced)

Some of the tuning enrichment properties can only be modified using Flux. However, if you manually change your
Flux file, if you perform an upgrade, Ambari will overwrite al of your changes. Be sure to save your Flux changes

prior to performing an upgrade.

Important: You should be familiar with Storm Flux before you adjust the values in this section. Changesto
Flux file properties that are managed by Ambari will render Ambari unable to further manage the property.

Y ou can find the enrichment Flux file at SMETRON_HOM E/flux/enrichment/remote.yaml.

The following table lists the enrichment properties you can modify in the flux file:

Category Flux Property or Function Flux Section Location

Kafka spout session.timeout.ms line 201, id: kafkaProps
enable.auto.commit line 201, id: kafkaProps
setPoll TimeoutMs line 230, id: kafkaConfig
setMaxUncommittedOffsets line 230, id: kafkaConfig
setOff setCommitPeriodMs line 230, id: kafkaConfig

Y ou can add Kafka spout properties or functions using two methods:

Flux properties - Flux # kafkaPr ops

Add anew key/value to the kafkaProps section HashMap
on line 201. For example, if you want to set the Kafka
Spout consumer'ssession.timeout.ms to 30 seconds, add
the following:

= nanme: "put

HCP Tuning Guide Component Tuning Levers

args:

"session. ti neout.ns"
- 30000

Flux functions - Flux # kafkaConfig Add anew setter to the kafkaConfig object section on
line 230. For example, if you want to set the Kafka Spout
consumer's poll timeout to 200 milliseconds, add the
following under configMethods:

- name:
"set Pol | Ti neout Ms"
args:
- 200

Index Tuning

Indexing is primarily 10 driven. Tuning indexing tends to focus on the search index (Solr or Elasticsearch). Problems
with indexing running too slow will often manifest as Kafka not commiting in time. This results from the indexing
backing up so that it fails batches and the poll interval in Kafkais exceeded. The issueis actually with the index
rather than Kafka.

Y ou can modify many performance tuning properties for indexing using Ambari or Storm Flux. Modifying properties
using Ambari is simple and can be performed by any user. However, you should have knowledge of Storm Flux usage
and formatting before attempting to modify any Flux files.

The indexing properties materialize as follows:

Anbari U -> properties file -> Flux -> Storm

Modifying Index Parameters Using Ambari

Y ou can modify various indexing properties using Ambari. The HDFS sync policy is not currently managed by
Ambari. To accommodate the HDFS sync policy setting, modify the Flux file directly.

To modify the indexing properties, navigate to Ambari>M etron>Indexing.

The following table lists the indexing properties you can modify in Ambari:

Category Ambari Property Name Storm Property Name
Storm topology config enrichment_workers topology.workers
enrichment_acker_executors topol ogy.acker.executors

enrichment_topology_max_spout_pending topology.max.spout.pending

Kafka spout batch_indexing_kafka_spout_parallelism n/a
Output bolt hdfs_writer_parallelism na
bolt_hdfs rotation_policy_units na
bolt_hdfs rotation_policy_count na

Modifying Index Parameters Using Flux (Advanced)
Some of the tuning indexing properties, for example the HDFS sync policy setting, can only be modified using
Flux. However, if you manually change your Flux file, if you perform an upgrade, Ambari will overwrite all of your
changes. Be sure to back up your Flux changes prior to performing an upgrade.

HCP Tuning Guide Use Case Specific Tuning Suggestions

Important: Y ou should be familiar with Storm Flux before you adjust the values in this section. Changesto
Flux file properties that are managed by Ambari will render Ambari unable to further manage the property.

Y ou can find the indexing Flux file at $M ETRON_HOM E/flux/indexing/batch/remote.yaml.

Category Flux Property Flux Section Location Suggested Value

Kafka spout session.timeout.ms line 80, id: kafkaProps Kafka consumer client property
enable.auto.commit line 80, id: kafkaProps Kafka consumer client property
setPoll TimeoutM's line 108, id: kafkaConfig Kafka consumer client property
setMaxUncommittedOffsets line 108, id: kafkaConfig Kafka consumer client property
setOffsetCommitPeriodMs line 108, id: kafkaConfig Kafka consumer client property

Output bolt hdfsSyncPolicy line 47, id: hdfsWriter See notes below about adding this

prop

To modify index tuning properties, complete the following steps:
1. Add anew setter to the hdfsWriter around line 56.

53 - nane: "w t hRot ati onPolicy"

54 args:

55 - ref: "hdfsRotationPolicy
56 - nane: "w thSyncPolicy"

57 args:

58 - ref: "hdfsSyncPolicy

Lines are 53-55 provided for context.
2. Add an hdfsSyncPolicy after the hdfsRotationPolicy that appears on line 41:

41 - i d: "hdf sRotationPolicy"

.45 - "${bolt.hdfs.rotation.policy.units}"

46

47 - id: "hdfsSyncPolicy"

48 cl assNanme: "org.apache. storm hdfs. bol t. sync. Count SyncPol i cy"
49 constructorArgs:

50 - 100000

Use Case Specific Tuning Suggestions

The following discussion outlines a specific tuning exercise we went through for driving 1 Gbps of traffic through a
Metron cluster running with 4 Kafka brokers and 4 Storm Supervisors.

General machine specs:

e 10 GB network cards
e 256 GB memory

e 12disks

e 32 cores

Performance Monitoring Tools

Before we get to tuning our cluster, it helps to describe what we might actually want to monitor as well as any
potential pain points.

HCP Tuning Guide Use Case Specific Tuning Suggestions

Prior to switching over to the new Storm Kafka client, which leverages the new Kafka consumer API under the hood,
offsets were stored in ZooK eeper. While the broker hosts are still stored in ZooK eeper, thisis no longer true for the
offsets which are now stored in Kafka itself. Thisis aconfigurable option, and you may switch back to ZooK eeper if
you choose, but Metron is currently using the new defaults. With thisin mind, there are some useful tools that come
with Storm and Kafka that we can use to monitor our topologies.

Tooling
Y ou can use the Storm and Kafka tools to monitor your topologies.

Kafka

e Consumer group offset lag viewer

« ThereisaGUI tool to make creating, modifying, and generally managing your Kafkatopics a bit easier - see
kafka-manager
» Console consumer - useful for quickly verifying topic contents

Storm

For more information on the Storm user interface, see Reading and Understanding the Storm UI.

View Kafka Offset L ags Example
Y ou can use the Kafka consumer group offset lag viewer to monitor the delta cal cul ations between the current and
end offset for a partition.

Procedure

1. Set up some environment variables.

export BROKERLI ST your broker comma-delinmated |ist of host:ports>
export ZOOKEEPER your zookeeper conma-delimated |ist of host:ports>
export KAFKA HOVE kafka hone dir>

export METRON HOVE your netron hone>

export HDP_HOVE your HDP home>

2. If you have Kerberos enabled, set up the security protocol.

$ cat /tnp/consunergroup.config
security. protocol =SASL_PLAI NTEXT

3. Enter the following command to display atable containing offsets for all partitions and consumers associated with
arunning topology's consumer group:

${ KAFKA_HOME} /bin/kafka-consumer-groups.sh \ --command-config=/tmp/consumergroup.config \ --describe
\ --group enrichments\ --bootstrap-server $BROKERLIST \ --new-consumer

The command displays the following table:

CGROUP TORPI C PARTI TI ON CURRENT-

OFFSET LOG END- OFFSET LAG OMER

enri chnents enri chnents 9 29746066
29746067 1 CONSUNMEr - 2_/ XXX. XXX. XXX. XXX

enrichnments enrichnments 3 29754325
29754326 1 consumer -1 / XXX. XXX. XXX. XXX

enrichnments enrichnents 43 29754331
29754332 1 CONSUMEr - 6_/ XXX. XXX. XXX. XXX

Note: Output displays only when the topology is running because the consumer groups only exist while
consumers in the spouts are up and running.

10

https://github.com/yahoo/kafka-manager
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained

HCP Tuning Guide Use Case Specific Tuning Suggestions

The LAG column lists the current delta cal culation between the current and end offset for the partition. The
column value indicates how close you are to keeping up with incoming data. It also indicates whether there are
any problems with specific consumers getting stuck.

4. To watch the offsets and lags change over time, add a watch command and set the refresh rate to 10 seconds:

watch -n 10 -d ${ KAFKA HOVE}/ bi n/ kaf ka- consuner - gr oups. sh \
- - conmand- confi g=/t np/ consuner gr oup. config \
--describe \
--group enrichnents \
- - boot st rap-server $BROKERLI ST \
- - new- consumner

The watch command runs every 10 seconds and refreshes the screen with new information. The command also
highlights the differences from the current output and the last output screens.

Parser Tuning Example
Well be using the Bro sensor in this parser tuning example.

We started with a single partition for the inbound K afka topics and eventually worked our way up to 48 partitions.
And we're using the following pending value, as shown below. The default is 'null' which would result in no limit.

storm-bro.config
'l'ibpol ogy. max. spout . pendi ng" : 2000

And the following default spout settings. Again, this can be omitted entirely since we are using the defaults.

spout-bro.config

{
"spout . pol | Ti meout Ms" : 200,
"spout . maxUncommri tt edOf f sets" : 10000000,
"spout . of f set Commi t Peri odMs" : 30000

}

And we ran our Bro parser topology with the following options. We did not need to fully match the number of Kafka
partitions with our parallelism in this case, though you could certainly do so if necessary. Notice that we only needed
1 worker.

/usr/metron/0. 4.0/ bin/start_parser_topol ogy. sh -k $BROKERLI ST -z $ZOOKEEPER
-S bro -ksp SASL_PLAI NTEXT

-ot enrichnents

-e ~netron/.storm stormbro.config \

-esc ~/.stornispout-bro.config \

-sp 24\

-snt 24\

-nw 1\

-pnt 24 \

-pp 24 \

11

HCP Tuning Guide Use Case Specific Tuning Suggestions

From the usage docs, here are the options we've used.

+-e,--extra_topol ogy_options (JSON FI LE) Extra options in the form

+ of a JSON file with a
map
+ for content.
+-esc, --extra_kaf ka_spout _config (JSON_FI LE) Extra spout config
options
+ in the formof a JSON
file
+ with a map for
content.
+ Possi bl e keys are:
+

retryDel ayMaxMs, retryDel ay
I\/UIti;Iier,retryl nitial Del
ayMs, ;t at eUpdat el nt er val Ms
, buf ;rerSi zeByt es, f et chMaxW
ait,f (J-:trt chSi zeByt es, maxOf f s
+

et Behi nd, netri csTi neBucket

+
Si zel nSecs, socket Ti neout Ms
+-sp, --spout _p (SPOUT_PARALLELI SM HI NT) Spout Parall elism Hint
+-snt, --spout _num t asks (NUM_TASKS) Spout Num Tasks
+- nw, - - num wor ker s (NUM_WORKERS) Nunmber of Workers
+-pnt, --parser_num tasks (NUM TASKS) Parser Num Tasks
+- pp, --parser_p (PARALLELI SM HI NT) Par ser

Paral | el i sm Hi nt
+
+

Enrichment Tuning

Because al of the datais coming together in enrichments, you will probably need larger enrichments settings than
your parallelism settings. Enrichment settings focus more on the compute workload than on the mapping workload in
parsers or the O driven workload in indexing. Enrichment makes significant use of caching for performance.

Y ou can modify many performance tuning properties for enrichment using Ambari or Storm Flux. Modifying
properties using Ambari is simple and can be performed by any user. However, you should have knowledge of Storm
Flux usage and formatting before attempting to modify any Flux files.

The enrichment properties materialize as follows:

Anbari U -> properties file -> Flux -> Storm

Indexing (HDFS) Tuning
There are 48 partitions set for the indexing partition, per the previous enrichment exercise.

These are the batch size settings for the Bro index.

cat ${ METRON_HOVE}/ confi g/ zookeeper /i ndexi ng/ bro. j son

{
"hdf s" : {
"i ndex": "bro",

12

HCP Tuning Guide Use Case Specific Tuning Suggestions

"bat chSi ze": 50,
"enabl ed" : true

NEEE
}

And here are the settings we used for the indexing topology
General storm settings

t opol ogy. wor kers: 4
t opol ogy. acker . executors: 24
ggpology.nax.spout.pending: 2000

Spout and Bolt Settings

hdf sSyncPol i cy
or g. apache. storm hdf s. bol t. sync. Count SyncPol i cy
constructor arg=100000
hdf sRot at i onPol i cy
bol t. hdf s. rotation. policy. units=DAYS
bolt. hdfs.rotation. policy.count=1
kaf kaSpout
parallelism 24
session. ti nmeout . ms=29999
enabl e. aut 0. commi t =f al se
set Pol | Ti meout Ms=200
set MaxUnconmi tt edCf f set s=10000000
set O f set Commi t Peri odMs=30000
hdf sl ndexi ngBol t
parallelism 24

PCAP Tuning
PCAP isaspecialized topology that is a Spout-only topology. Both Kafka topic consumption and HDFS writing is
done within a spout to avoid the additional network hop required if using an additional bolt.

General Storm topology properties

t opol ogy. wor ker s=16
t opol ogy. ackers. executors: 0

+ Spout and Bolt properties_
T
+kaf kaSpout

+ parallelism 128

+ pol |l .tineout.ns=100

+ of fset.conmit. period. ms=30000

+ session. ti meout . ms=39000

+ max. uncommi tt ed. of f set s=200000000
+ max. pol | .interval . ns=10

+ max. pol | . recor ds=200000

+ recei ve. buf f er. byt es=431072

+ max. partition.fetch. bytes=10000000
+ enabl e. aut 0. conmi t =f al se

+ set MaxUncommi tt edOf f set s=20000000
+ set Of f set Commi t Peri odMs=30000

13

HCP Tuning Guide Use Case Specific Tuning Suggestions

+

+writerConfig

wi t hNunmPacket s=1265625

wi t hMaxTi neMs=0

wi t hRepl i cat i onFact or =1

wi t hSyncEver y=80000

wi t hHDFSConf i g
io.file.buffer.size=1000000
df s. bl ocksi ze=1073741824

o T R

Debugging
If you experience issues when you tune your system, you can use several tools to determine the source of the issues.

Before using any of the tools, set the following environment variables for your cluster. The following example
illustrates how we would configure the environment variables:

export HDP_HOVE=/ usr/ hdp/ current

export KAFKA HOVE=$HDP_HOVE/ kaf ka- br oker

export STORM Ul =htt p://$STORM HOST: 8744

export ELASTI C=htt p://$ELASTI CSEARCH HOST: 9200
export ZOOKEEPER=$ZOOKEEPER HOST: 2181

export METRON_VERSI ON=1.5. 1

export METRON_HOVE=/ usr/ hcp/ ${ METRON_VERSI| ON}

Note that the output from Storm will be a flattened JSON file. To print the file for readability, pipeit through a JSON
formatter. For example:

[some Storm curl command] | python -mjson.tool

Getting Storm Configuration Details

To get full details about your running topologies, see the Storm view. For information on using the Storm View, see
Using Storm View. If you have never used Apache Ambari Views, see Creating View Instances to get started.

Alternatively, Storm has auseful REST API you can use to get full details about your running topologies. See Storm's
REST API docs for more details.

get Stormcluster summary info including version
curl -XGET ${STORM Ul }'/api/vl/cluster/sumary'

get overall Stormcluster configuration
curl -XGET ${STORM Ul }'/api/vl/cluster/configuration'

get list of topologies and brief summary detail
curl -XGET ${STORM Ul }' /api/vl/topol ogy/sunmmary"

get all topology runtime settings. Plugin the ID for your topol ogy, which
you can get fromthe topol ogy sunmmary conmand or fromthe Storm U . Passing
sys=1 will also return system stats.

curl -XGET ${STORM Ul }'/api/vl/topol ogy/:id?sys=1"'

Getting Kafka Configuration Details

Get |list of Kafka topics

14

https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.1.5/bk_ambari-views/content/ch_using_storm_view.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.1.5/bk_ambari-views/content/creating_view_instances.html
http://storm.apache.org/releases/1.1.2/STORM-UI-REST-API.html

HCP Tuning Guide Use Case Specific Tuning Suggestions

${ HDP_HOVE} / kaf ka- br oker / bi n/ kaf ka-t opi cs. sh --zookeeper $ZOOKEEPER --1i st

CGet Kafka topic details - plugin the desired topic nane in place of

"“enri chnent s"
${ HDP_HQVE} / kaf ka- br oker / bi n/ kaf ka-t opi ¢s. sh --zookeeper $ZOOKEEPER --topic

enrichnments --describe

Getting Metron Topology ZooK eeper Configuration

Provides a full listing of all Metron parser, enrichnment, and indexing

t opol ogy configuration
$METRON_HOVE/ bi n/ zk_| oad_confi gs.sh -m DUMP -z $ZOOKEEPER

| ssues

Y ou can run into issues when you tune your system.

__FError__

or g. apache. kaf ka. cl i ents. consuner. Conmi t Fai | edExcepti on: Conmit cannot be
conpl eted since the group has already rebal anced and assi gned
the partitions to another menber. This nmeans that the tine

bet ween subsequent calls to poll () was |onger than the configured

session. tineout. s,
which typically inplies that the poll loop is spending too nuch time nessage
processing. You can address this either by increasing the

session timeout or by reducing the nmaxi mum si ze of batches returned in

pol |l () with max.poll.records
Loes

Suggestions

Thisimpliesthat the spout hasn't been given enough time between polls before committing the offsets. In other
words, the amount of time taken to process the messages is greater than the timeout window. In order to fix this, you
can improve message throughput by modifying the options outlined above, increasing the poll timeout, or both.

15

	Contents
	Introduction to Tuning HCP
	General Tuning Suggestions
	Component Tuning Levers
	Kafka Tuning
	Storm Tuning
	Parser Tuning
	Enrichment Tuning
	Modifying Enrichment Properties Using Ambari
	Modifying Enrichment Properties Using Flux (Advanced)

	Index Tuning
	Modifying Index Parameters Using Ambari
	Modifying Index Parameters Using Flux (Advanced)

	Use Case Specific Tuning Suggestions
	Performance Monitoring Tools
	Tooling
	View Kafka Offset Lags Example
	Parser Tuning Example
	Enrichment Tuning
	Indexing (HDFS) Tuning
	PCAP Tuning
	Debugging

	Issues

