
HCP Enriching Telemetry Events 1

Enriching Telemetry Events
Date of Publish: 2018-10-15

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Enriching Telemetry Events..3
Setting Up Enrichment Configurations.. 3

Sensor Configuration.. 4
Bulk Loading Sources.. 5
Configure an Extractor Configuration File.. 7
Configure Element-to-Enrichment Mapping..9
Run the Enrichment Loader... 10
Map Fields to HBase Enrichments Using the Management Module... 10
Map Fields to HBase Enrichments Using CLI...11
Stream Enrichment Information... 12

HCP Enriching Telemetry Events Enriching Telemetry Events

Enriching Telemetry Events

After you have parsed and normalized the raw security telemetry events, the next step is to enrich the data elements of
the normalized event.

Enrichments add external data from data stores (such as HBase). Hortonworks Cybersecurity Platform (HCP) uses
a combination of HBase, Storm, and the telemetry messages in json format to enrich the data in real time to make it
relevant and consumable. For example, the GEO enrichment provide latitude and longitude coordinates plus the city,
state, and country for an external IP address. You can use this enriched information immediately rather than needing
to hunt in different silos for the relevant information.

HCP supports two types of configurations: global and sensor specific. The sensor specific configuration configures
the individual enrichments and threat intelligence enrichments for a given sensor type (for example, squid). This
section describes sensor specific configurations.

HCP provides two types of enrichment:

• Telemetry events
• Threat intelligence information

The telemetry data sources for which HCP includes parsers (for example, Bro, Snort, and YAF) already include
enrichment topologies that activate when you start the data sources in HCP:, but you can add your own enrichment
sources to suit your needs:

• Asset
• GeoIP
• User

One of the advantages of the enrichment topology is that it groups messages by HBase key. Whenever you execute a
Stellar function, you can add a caching layer, thus decreasing the need to call HBase for every event.

Prior to enabling an enrichment capability within HCP, the enrichment store (which for HCP is primarily HBase)
must be loaded with enrichment data. The dataload utilities convert raw data sources to a primitive key (type,
indicator) and value and place it in HBase. You can load enrichment data from the local file system or HDFS, or
you can use the parser framework to stream data into the enrichment store. The enrichment loader transforms the
enrichment into a JSON format that Apache Metron can use. Additionally, the loading framework can detect and
remove old data from the enrichment store automatically.

HCP supports three types of enrichment loaders:

• Bulk load from HDFS via MapReduce
• Taxii Loader
• Flat File ingestion

After you load the stores, you can incorporate into the enrichment topology an enrichment bolt to a specific field or
tag within a Metron message. The bolt can detect when it can enrich a field and then take an enrichment from the
enrichment store and tag the message with it. The enrichment is then stored within the bolt's in-memory cache. HCP
uses the underlying Storm routing capabilities to ensure that similar enrichment values are sent to the appropriate
bolts that already have these values cached in-memory.

Setting Up Enrichment Configurations
You can use the enrichment topology to enhance messages with external data and manage threat intelligence data.

The enrichment topology is a topology dedicated to performing the following:

• Taking the data from the parsing topologies normalized into the Metron data format (for example, a JSON Map
structure with original_messageand timestamp.

3

HCP Enriching Telemetry Events Enriching Telemetry Events

• Enriching messages with external data from data stores (for example, hbase) by adding new fields based on
existing fields in the messages.

• Marking messages as threats based on data in external data stores.
• Marking threat alerts with a numeric triage level based on a set of Stellar rules.

The configuration for the `enrichment` topology, the topology primarily responsible for enrichment and threat
intelligence enrichment, is defined by JSON documents stored in ZooKeeper.

There are two types of configurations, global and sensor specific.

Sensor Configuration
You can use the sensor-specific configuration to configure the individual enrichments and threat intelligence
enrichments for a given sensor type (for example, Snort). The sensor configuration format is a JSON object stored in
Apache ZooKeeper.

The sensor enrichment configuration uses the following fields:

fieldToTypeMap In the case of a simple HBase enrichment (a key/value
lookup), the mapping between fields and the enrichment
types associated with those fields must be known. This
enrichment type is used as part of the HBase key. Note:
applies to hbaseEnrichment only. | `"fieldToTypeMap" :
{ "ip_src_addr" : ["asset_enrichment"] }` |

fieldMap The map of enrichment bolts names to configuration
handlers which know how to divide the message.
The simplest of which is just a list of fields. More
complex examples would be the Stellar enrichment
which provides tellar statements. Each field listed
in the array arg is sent to the enrichment referenced
in the key. Cardinality of fields to enrichments is
many-to-many. | `"fieldMap": {"hbaseEnrichment":
["ip_src_addr","ip_dst_addr"]}` |

config The general configuration for the enrichment.

The `config` map is intended to house enrichment specific configuration. For instance, for hbaseEnrichment, the
mappings between the enrichment types to the column families is specified.

The fieldMap contents are of interest because they contain the routing and configuration information for the
enrichments. When we say 'routing', we mean how the messages get split up and sent to the enrichment adapter bolts.

The simplest, by far, is just providing a simple list as in

"fieldMap": {
 "geo": [
 "ip_src_addr",
 "ip_dst_addr"
],
 "host": [
 "ip_src_addr",
 "ip_dst_addr"
],
 "hbaseEnrichment": [
 "ip_src_addr",
 "ip_dst_addr"
]
 }

Based on this sample config, both ip_src_addr and ip_dst_addr will go to the `geo`, `host`, and `hbaseEnrichment`
adapter bolts.

4

HCP Enriching Telemetry Events Enriching Telemetry Events

Bulk Loading Sources
Hortonworks Cybersecurity Platform (HCP) is designed to work with STIX/Taxii threat feeds, but can also be bulk
loaded with threat data from a CSV file.

You can bulk load enrichment information from the following sources:

• CSV File Ingestion
• HDFS via MapReduce
• Taxii Loader

CSV File

The shell script $METRON_HOME/bin/flatfile_loader.sh reads data from local disk and loads the enrichment data
into an HBase table. This loader uses the special configuration parameter inputFormatHandler to specify how to
consider the data. The two implementations are BY_LINE and org.apache.metron.dataloads.extractor.inputformat.
WholeFileFormat.

The default is BY_LINE, which makes sense for a list of CSVs in which each line indicates a unit of information to
be imported. However, if you are importing a set of STIX documents, then you want each document to be considered
as input to the Extractor.

The parameters for the utility are as follows:

Short Code Long Code Required? Description

-h No Generates the help screen or set of
options

-e --extractor_config Yes JSON document describing the
extractor for this input data source

-t --hbase_table Yes The HBase table to import into

-c --hbase_cf Yes The HBase table column family to
import into

-i --input Yes The input data location on
local disk. If this is a file, then
that file is loaded. If this is a
directory, then the files are loaded
recursively under that directory.

-l --log4j No The log4j properties file to load

-n --enrichment_config No The JSON document describing
the enrichments to configure.
Unlike other loaders, this is run
first if specified.

HDFS Through MapReduce

The shell script $METRON_HOME/bin/flatfile_loader.sh starts the MapReduce job to load data from HDFS to an
HBase table. The following is as example of the syntax:

$METRON_HOME/bin/flatfile_loader.sh -i /tmp/top-10k.csv -t enrichment -c t -
e ./extractor.json -m MR

The parameters for the utility are as follows:

Short Code Long Code Is Required? Description

-h No Generate the help screen or set of
options

-e --extractor_config Yes JSON document describing the
extractor for this input data source

5

HCP Enriching Telemetry Events Enriching Telemetry Events

Short Code Long Code Is Required? Description

-t --hbase_table Yes The HBase table to import to

-c --hbase_cf Yes The HBase table column family to
import to

-i --input Yes The input data location on
local disk. If this is a file, then
that file is loaded. If this is a
directory, then the files are loaded
recursively under that directory.

-l --log4j No The log4j properties file to load

-n --enrichment_config No The JSON document describing
the enrichments to configure.
Unlike other loaders, this is run
first if specified.

Taxii Loader

You can use the shell script $METRON_HOME/bin/threatintel_taxii_load.sh to poll a Taxii server for STIX
documents and ingest them into HBase.

This Taxii server is often an aggregation server such as Soltra Edge.

This loader requires a configuration file describing the connection information to the Taxii server and Enrichment and
Extractor configurations. The following is an example of a configuration file:

 {
 "endpoint" : "http://localhost:8282/taxii-discovery-service"
 ,"type" : "DISCOVER"
 ,"collection" : "guest.Abuse_ch"
 ,"table" : "threat_intel"
 ,"columnFamily" : "cf"
 ,"allowedIndicatorTypes" : ["domainname:FQDN", "address:IPV_4_ADDR"]
}

endpoint The URL of the endpoint

type POLL or DISCOVER, depending on the endpoint

collection The Taxii collection to ingest.

table The HBase table to import to.

columnFamily The column family to import to.

allowedIndicatorTypes An array of acceptable threat intelligence types

The parameters for the utility are as follows:

Short Code Long Code Is Required? Description

-h No Generate the help screen or set of
options

-e --extractor_config Yes JSON document describing the
extractor for this input data source

-c --taxii_connection_config Yes The JSON configuration file to
configure the connection

6

HCP Enriching Telemetry Events Enriching Telemetry Events

Short Code Long Code Is Required? Description

-p --time_between_polls No The time between polling the
Taxii server, in milliseconds.
Default: 1 hour

-b --begin_time No Start time to poll the Taxii server
(all data from that point will be
gathered in the first pull). The
format for the date is yyyy-MM-
dd HH:mm:ss.

-l --log4j No The Log4j properties to load

-n --enrichment_config No The JSON document describing
the enrichments to configure.
Unlike other loaders, this is run
first if specified.

Configure an Extractor Configuration File
You use the extractor configuration file to bulk load the enrichment store into HBase.

Procedure

1. On the host on which Metron is installed, log in as root.

2. Determine the schema of the enrichment source.

3. Create an extractor configuration file called extractor_config_temp.json and populate it with the enrichment
source schema:

{
 "config" : {
 "columns" : {
 "domain" : 0
 ,"owner" : 1
 ,"home_country" : 2
 ,"registrar": 3
 ,"domain_created_timestamp": 4
 }
 ,"indicator_column" : "domain"
 ,"type" : "whois"
 ,"separator" : ","
 }
 ,"extractor" : "CSV"
}

4. Transform and filter the enrichment data as it is loaded into HBase by using Stellar extractor properties in the
extractor configuration file.

HCP supports the following Stellar extractor properties:

value_transform Transforms fields defined in the columns mapping with
Stellar transformations. New keys introduced in the
transform are added to the key metadata:

"value_transform" : {
 "domain" :
 "DOMAIN_REMOVE_TLD(domain)"

value_filter Allows additional filtering with Stellar predicates
based on results from the value transformations. In the

7

HCP Enriching Telemetry Events Enriching Telemetry Events

following example, records whose domain property is
empty after removing the TLD are omitted:

"value_filter" : "LENGTH(domain) >
 0",
 "indicator_column" : "domain",

indicator_transform Transforms the indicator column independent of the
value transformations. You can refer to the original
indicator value by using indicator as the variable name,
as shown in the following example:

"indicator_transform" : {
 "indicator" :
 "DOMAIN_REMOVE_TLD(indicator)"

In addition, if you prefer to piggyback your
transformations, you can refer to the variable domain,
which allows your indicator transforms to inherit
transformations to this value.

indicator_filter Allows additional filtering with Stellar predicates
based on results from the value transformations. In the
following example, records with empty indicator values
after removing the TLD are omitted:

"indicator_filter" :
 "LENGTH(indicator) > 0",
 "type" : "top_domains",

Including all of the supported Stellar extractor properties in the extractor configuration file, looks similar to the
following:

{
 "config" : {
 "zk_quorum" : "$ZOOKEEPER_HOST:2181",
 "columns" : {
 "rank" : 0,
 "domain" : 1
 },
 "value_transform" : {
 "domain" : "DOMAIN_REMOVE_TLD(domain)"
 },
 "value_filter" : "LENGTH(domain) > 0",
 "indicator_column" : "domain",
 "indicator_transform" : {
 "indicator" : "DOMAIN_REMOVE_TLD(indicator)"
 },
 "indicator_filter" : "LENGTH(indicator) > 0",
 "type" : "top_domains",
 "separator" : ","
 },
 "extractor" : "CSV"
 }

If you run a file import with this data and extractor configuration, you get the following two extracted data
records:

8

HCP Enriching Telemetry Events Enriching Telemetry Events

Indicator Type Value

google top_domains { "rank" : "1", "domain" : "google" }

yahoo top_domains { "rank" : "2", "domain" : "yahoo" }

5. To access properties that reside in the global configuration file, provide a ZooKeeper quorum by using the
zk_quorum property.

If the global configuration looks like "global_property" : "metron-ftw", enter the following to expand the
value_transform:

"value_transform" : {
 "domain" : "DOMAIN_REMOVE_TLD(domain)",
 "a-new-prop" : "global_property"
 },

The resulting value data looks like the following:

Indicator Type Value

google top_domains { "rank" : "1", "domain" : "google", "a-new-
prop" : "metron-ftw" }

yahoo top_domains { "rank" : "2", "domain" : "yahoo", "a-new-
prop" : "metron-ftw" }

6. Remove any non-ASCII invisible characters included when you cut and pasted the value_transform information:

iconv -c -f utf-8 -t ascii extractor_config_temp.json -o
 extractor_config.json

The extractor_config.json file is not stored by the loader. If you want to reuse it, you must store it yourself.

Configure Element-to-Enrichment Mapping
Configure which element of a tuple should be enriched with which enrichment type. This configuration is stored in
Apache ZooKeeper.

Procedure

1. On the host with Metron installed, log in as root.

2. Cut and paste the following syntax into a file called enrichment_config_temp.json, being sure to customize
$ZOOKEEPER_HOST and $DATASOURCE to your specific values, where $DATASOURCE refers to the name
of the data source you use to bulk load the enrichment:

{
 "zkQuorum" : "$ZOOKEEPER_HOST:2181"
 ,"sensorToFieldList" : {
 "$DATASOURCE" : {
 "type" : "ENRICHMENT"
 ,"fieldToEnrichmentTypes" : {
 "domain_without_subdomains" : ["whois"]
 }
 }
 }
}

3. Remove any non-ASCII invisible characters in the pasted syntax in Step 2:

iconv -c -f utf-8 -t ascii enrichment_config_temp.json -o
 enrichment_config.json

9

HCP Enriching Telemetry Events Enriching Telemetry Events

Run the Enrichment Loader
After you configure the extractor configuration file and the element-enrichment mapping, you must run the loader
to move the data from the enrichment source to the HCP enrichment store and store the enrichment configuration in
Apache ZooKeeper.

Procedure

1. Use the loader to move the enrichment source to the enrichment store in ZooKeeper:

$METRON_HOME/bin/flatfile_loader.sh -n enrichment_config.json -i
 whois_ref.csv -t enrichment -c t -e extractor_config.json

HCP loads the enrichment data into Apache HBase and establishes a ZooKeeper mapping. The data is extracted
using the extractor and the configuration is defined in the extractor_config.json file and populated into an HBase
table called enrichment.

2. Verify that the logs were properly ingested to HBase:

hbase shell
scan 'enrichment'

3. Verify that the ZooKeeper enrichment tag was properly populated:

$METRON_HOME/bin/zk_load_configs.sh -m DUMP -z $ZOOKEEPER_HOST:2181

4. Generate some data by using a client for your particular data source to execute requests.

 Map Fields to HBase Enrichments Using the Management Module
After you establish dataflow to the HBase table, you must use the HCP Management module or the CLI to ensure that
the enrichment topology is enriching the data flowing past. You can use the Management module to refine the parser
output in three ways: transformations, enrichments, threat intel.

Before you begin
Your sensor must be running and producing data to load sample data.

Procedure

1. From the list of sensors in the main window, select your new sensor.

2. Click the pencil icon in the toolbar.

The Management module displays the sensor panel for the new sensor.

3. In the Schema panel, click

.

4. Review the resulting message, field, and value information displayed in the Schema panel.

10

HCP Enriching Telemetry Events Enriching Telemetry Events

The Sample field displays a parsed version of a sample message from the sensor. The Management module tests
your transformations against these parsed messages.

You can use the right and left arrow to view the parsed version of each sample message available from the sensor.

5. Apply transformations to an existing field by clicking

or create a new field by clicking

.

6. If you create a new field, complete the fields.

7. Click SAVE.

8. If you want to suppress fields from showing in the Index, click

.

9. Click SAVE.

 Map Fields to HBase Enrichments Using CLI
As an alternative to using the HCP Management module to map fields to HBase enrichment, you can use the CLI.

Procedure

1. Edit the new data source enrichment configuration at $METRON_HOME/config/zookeeper/enrichments/
$DATASOURCE to associate the ip_src_addr with the user enrichment:

{
 "index" : "squid",

11

HCP Enriching Telemetry Events Enriching Telemetry Events

 "batchSize" : 1,
 "enrichment" : {
 "fieldMap" : {
 "hbaseEnrichment" : ["ip_src_addr"]
 },
 "fieldToTypeMap" : {
 "ip_src_addr" : ["whois"]
 },
 "config" : { }
 },
 "threatIntel" : {
 "fieldMap" : { },
 "fieldToTypeMap" : { },
 "config" : { },
 "triageConfig" : {
 "riskLevelRules" : { },
 "aggregator" : "MAX",
 "aggregationConfig" : { }
 }
 },
 "configuration" : { }
}

2. Push this configuration to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

What to do next

After you finish enriching telemetry events, you should ensure that the enriched data is displaying on the Metron
dashboard.

Stream Enrichment Information
Streaming enrichment information is useful when you need enrichment information in real time. This type of
information is most useful in real time as opposed to waiting for a bulk load of the enrichment information. You
incorporate streaming intelligence feeds slightly differently than when you use bulk loading. The enrichment
information resides in its own parser topology instead of in an extraction configuration file. The parser file defines the
input structure and how that data is used in enrichment. Streaming information goes to Apache HBase rather than to
Apache Kafka, so you must configure the writer by using both the writerClassName and simple HBase enrichment
writer (shew) parameters.

Procedure

1. Define a parser topology in $METRON_HOME/zookeeper/parsers/user.json:

touch $METRON_HOME/config/zookeeper/parsers/user.json

2. Populate the file with the parser topology definition.

For example, the following commands associate IP addresses with user names for the Squid information.

{
 "parserClassName" : "org.apache.metron.parsers.csv.CSVParser"
 ,"writerClassName" :
 "org.apache.metron.enrichment.writer.SimpleHbaseEnrichmentWriter"
 ,"sensorTopic":"user"
 ,"parserConfig":
 {

12

HCP Enriching Telemetry Events Enriching Telemetry Events

 "shew.table" : "enrichment"
 ,"shew.cf" : "t"
 ,"shew.keyColumns" : "ip"
 ,"shew.enrichmentType" : "user"
 ,"columns" : {
 "user" : 0
 ,"ip" : 1
 }
 }
}

parserClassName The parser name.

writerClassName The writer destination. For streaming parsers, the
destination is SimpleHbaseEnrichmentWriter.

sensorTopic Name of the sensor topic.

shew.table The simple HBase enrichment writer (shew) table to
which you want to write.

shew.cf The simple HBase enrichment writer (shew) column
family.

shew.keyColumns The simple HBase enrichment writer (shew) key.

shew.enrichmentType The simple HBase enrichment writer (shew)
enrichment type.

columns The CSV parser information. In this example, the user
name and IP address.

This file fully defines the input structure and how that data can be used in enrichment.

3. Push the configuration file to Apache ZooKeeper:

a) Create a Kafka topic sized to manage your estimated data flow:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --zookeeper
 $ZOOKEEPER_HOST:2181 --replication-factor 1 --partitions 1 --topic user

Push the configuration file to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

4. Start the user parser topology:

$METRON_HOME/bin/start_parser_topology.sh -s user -z $ZOOKEEPER_HOST:2181
 -k $KAKFA_HOST:6667

The parser topology listens for data streaming in and pushes the data to HBase. Data is flowing into the HBase
table, but you must ensure that the enrichment topology can be used to enrich the data flowing past.

5. Edit the new data source enrichment configuration at $METRON_HOME/config/zookeeper/enrichments/squid to
associate the ip_src_addr with the user name:

{
 "enrichment" : {
 "fieldMap" : {

13

HCP Enriching Telemetry Events Enriching Telemetry Events

 "hbaseEnrichment" : ["ip_src_addr"]
 },
 "fieldToTypeMap" : {
 "ip_src_addr" : ["user"]
 },
 "config" : { }
 },
 "threatIntel" : {
 "fieldMap" : { },
 "fieldToTypeMap" : { },
 "config" : { },
 "triageConfig" : {
 "riskLevelRules" : { },
 "aggregator" : "MAX",
 "aggregationConfig" : { }
 }
 },
 "configuration" : { }
}

6. Push the new data source enrichment configuration to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -z $ZOOKEEPER_HOST:2181 -i
 $METRON_HOME/zookeeper

14

	Contents
	Enriching Telemetry Events
	Setting Up Enrichment Configurations
	Sensor Configuration

	Bulk Loading Sources
	Configure an Extractor Configuration File
	Configure Element-to-Enrichment Mapping
	Run the Enrichment Loader
	Map Fields to HBase Enrichments Using the Management Module
	Map Fields to HBase Enrichments Using CLI
	Stream Enrichment Information

