
HCP Creating Profiles 1

Creating Profiles
Date of Publish: 2018-11-15

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Introduction to HCP Analytics... 3

Using Profilers...3
Install and Configure the Profiler.. 3
Running the Profiler... 5
Streaming Profiler...6

Create a Streaming Profile... 6
Configure the Streaming Profiler... 7
Run the Streaming Profiler...7
Streaming Profiler Properties... 8
Troubleshoot Streaming Profiles By Using Stellar..9
Streaming Profile Examples... 11

Batch Profiler..14
Create a Batch Profile.. 14
Run the Batch Profiler..15
Run the Batch Profiler in Advanced Mode... 16
Configure the Batch Profiler.. 16
Batch Profiler Properties.. 17

Accessing Profiles...17
Selecting Profile Measurements... 17
Specifying Profile Time and Duration... 20
Client Profile Example... 25

HCP Creating Profiles Introduction to HCP Analytics

Introduction to HCP Analytics

Data Scientists are frequently responsible for performing data science life cycle activities, including training,
evaluating, and scoring analytical models. HCP provides the ability to create profiles and models, analyze data using
statistical and mathematical functions and Apache Zeppelin, and create runbooks for SOC analysts and investigators.

Using Profilers

The Profiler is a feature extraction mechanism that can generate a profile that describes the behavior of an entity. An
entity can be a server, user, subnet, or application.

You can use any field contained within a message to generate a profile. A profile can even be produced by combining
fields that originate in different data sources. You can transform the data used in a profile by leveraging the Stellar
language.

Once you generate a profile defining what normal behavior looks like, you can build models that identify anomalous
behavior. To identify anomalous behavior, you can summarize the streaming telemetry data consumed by HCP over
sliding windows. You apply a summary statistic to the data received within a given window. Collecting this summary
across many windows results in a time series that is useful for analysis.

The Profiler is automatically installed and started when you install HCP through Ambari.

HCP provides two types of profilers:

Streaming Profiler Allows you to create profiles based on the stream of
telemetry being captured, enriched, triaged, and indexed
by HCP. This does not allow you to create a profile
based on telemetry that was captured in the past.

Batch Profiler Allows you to generate a profile using archived
telemetry.

Install and Configure the Profiler
The Profiler is automatically installed and started when you install HCP through Ambari.

About this task
The configuration for the Profiler topology is stored in ZooKeeper at /metron/topology/profiler. These properties
also exist in the default installation of HCP at $METRON_HOME/config/zookeeper/profiler.json. You can change
these values two ways: with Ambari or on disk and then uploaded to ZooKeeper using $METRON_HOME/bin/
zk_load_configs.sh.

Procedure

1. Display the Ambari user interface and click the Services tab.

Note: You might need to work with your Platform Engineer to modify Profiler values.

2. Click Metron in the list of services, then click the Configs tab.

3. Click the Profiler tab.

Ambari displays a list of Profiler properties that you can use to configure Profiler.

3

HCP Creating Profiles Using Profilers

4. Use these properties to configure the Profiler, then click the Save button near the top of the window.

The profiler input topic is bound to the enrichment output topic. If that enrichment output topic is changed, then
the profiler will restart as well as the enrichment topology.

Enrichment Output Topic

4

HCP Creating Profiles Using Profilers

Running the Profiler
The Profiler is automatically started when you install HCP. However, you can also manually stop or restart the
Profiler.

Procedure

1. Display the Ambari user interface.

2. Select the Services tab, then select Metron from the list of services.

3. Make sure you have selected the Summary, tab then select Metron Profiler.

Metron displays a complete list of Metron components.

5

HCP Creating Profiles Using Profilers

4. Select the pull down menu next to Metron Profiler / Metron and select the appropriate status:

• Restart
• Stop
• Turn on Maintenance Mode

Streaming Profiler
A streaming profile creates a profile based on telemetry that is currently being captured, enriched, triaged, and
indexed by HCP. Streaming profiles can be used to understand real-time behaviors and trends. You can use the
streaming profiler and the batch profiler to gather and understand both current and historical behaviors and trends.
This information can be used to determine if the profiler feature set matches reality and has predictive value for model
building.

Create a Streaming Profile
Create a streaming profile when you want to create a profile based on telemetry that is currently being captured,
enriched, triaged, and indexed by HCP.

Before you begin
Ensure that the PROFILE_GET client is correctly configured to match your desired Profile configuration before using
it to read that Profile.

Procedure

1. Create a streaming profile definition by editing $METRON_HOME/config/zookeeper/profiler.json.

As an example, in the editor copy/paste the basic "Hello, World" profile below.

{
 "profiles": [
 {
 "profile": "hello-world",
 "foreach": "ip_src_addr",
 "init": {
 "count": "0"
 },
 "update": {
 "count": "count + 1"
 },
 "result": "count"
 }
]
}

You can also include the timestampField to:

• List the system time, which is the time at which you are processing the data.
• List the event time, which is the time contained in the data itself.

2. Upload the profile definition to ZooKeeper:

source /etc/default/metron
cd $METRON_HOME
bin/zk_load_configs.sh -m PUSH -i config/zookeeper/ -z $ZOOKEEPER

You can validate your upload by reading back the Metron configuration from ZooKeeper using the same script.
The result should look-like the following.

bin/zk_load_configs.sh -m DUMP -z $ZOOKEEPER

6

HCP Creating Profiles Using Profilers

...
PROFILER Config: profiler
{
 "profiles": [
 {
 "profile": "hello-world",
 "onlyif": "exists(ip_src_addr)",
 "foreach": "ip_src_addr",
 "init": { "count": "0" },
 "update": { "count": "count + 1" },
 "result": "count"
 }
]
}

3. Ensure that test messages are being sent to the Profiler's input topic in Kafka.

The Profiler will consume messages from the input topic defined in the Profiler's configuration (see Configure the
Streaming Profiler). By default this is the indexing topic.

4. Check the HBase table to validate that the Profiler is writing the profile.

Remember that the Profiler is flushing the profile every 15 minutes. You will need to wait at least this long to start
seeing profile data in HBase.

/usr/hdp/current/hbase-client/bin/hbase shell
hbase(main):001:0> count 'profiler'

5. Use the Profiler Client to read the profile data.

The following PROFILE_GET command reads the data written by the hello-world profile. This assumes that
10.0.0.1 is one of the values for ip_src_addr contained within the telemetry consumed by the Profiler.

source /etc/default/metron
bin/stellar -z $ZOOKEEPER
[Stellar]>>> PROFILE_GET("hello-world", "10.0.0.1", PROFILE_FIXED(30,
 "MINUTES"))
[451, 448]

This result indicates that over the past 30 minutes, the Profiler stored two values related to the source IP address
"10.0.0.1". In the first 15 minute period, the IP 10.0.0.1 was seen in 451 telemetry messages. In the second 15
minute period, the same IP was seen in 448 telemetry messages.

Enter quit to exit Stellar.

Configure the Streaming Profiler
You can customize the streaming profiler to specify various properties available in the profiler.properties file, such as
the name and output of the Kafka topic, the duration of the profile period, and the name of the HBase table to which
the profiles are written.

Procedure

Modify the streaming profiler's properties located at $METRON_HOME/config/profiler.properties to customize them
for your profiler needs.

See Streaming Profiler Properties for more information on these properties.

Run the Streaming Profiler
HCP provides a script called start_profiler_topology.sh to simplify running the Streaming Profiler.

Before you begin
The start_profiler_topology.sh script assumes the following:

7

HCP Creating Profiles Using Profilers

• The script builds the profiles defined in $METRON_HOME/config/zookeeper/profiler.json.
• The properties defined in $METRON_HOME/config/profiler.properties are passed to the profiler.

Procedure

Start the streaming profile by entering the following:

source /etc/default/metron
cd $METRON_HOME
bin/start_profiler_topology.sh

Streaming Profiler Properties
Use the profiler properties to configure the streaming profiler.

Table 1: Profiler Properties

Ambari Configs Field. Settings Description

Profiler Setup

Period Duration profiler.period.duration The duration of each profile period.
This value should be defined along with
profiler.period.duration.units.

Period Units profiler.period.units The units is used to specify the
profiler.period.duration. This value should be
define along with profiler.period.duration.

Window Duration profiler.window.duration The duration of each profile window.

Window Units profiler.window.duration.units The units used to specify the
profiler.window.duration.

Time to Live profiler.ttl If a message has not been applied to a Profile
in this period of time, the Profile will be
terminated and its resources will be cleaned
up. This value should be defined along with
profiler.ttl.units. This time-to-live does not
affect the persisted Profile data in HBase. It
only affects the state stored in memory during
the execution of the latest profile period.
This state will be deleted if the time.to.live is
exceeded.

Time to Live Units profiler.ttl.units The units used to specify the profiler.ttl.

Window Time Lag profiler.window.log The maximum time lag for timestamps.

Window Lag Units profiler.window.log.units The units used to specify the
profiler.window.lag.

Max Routes Per Bolt profiler.max.routes.per.bolt The maximum number of routes that will be
maintained by the bolt. After this value is
exceeded, lesser used routes will be evicted
from the internal cache.

Kafka

Input Topic Start profiler.kafka.start One of EARLIEST, LATEST,
UNCOMMITTED_EARLIEST,
UNCOMMITTED_LATEST

Kafka Writer Batch Size profiler.writer.batchSize The number of records to batch when writing
to Kakfa.

Kafka Writer Batch Timeout profiler.writer.batchTimeout The timeout in ms for batching when writing
to Kakfa.

Storm

8

HCP Creating Profiles Using Profilers

topology.worker.childopts profiler.topology.worker.childopts Extra topology child opts for the storm opts.

Number of Workers profiler.topology.workers The profiler storm topology storm workers

Number of Acker Executors profiler.acker.executors The profiler storm topology acker executors

Profiler Topology Message Timeout topology.message.timeout.secs Maximum amount of time given to the
topology to fully process a tuple tree from the
core-storm API, or a batch from the Trident
API, emitted by a spout. If the message is
not acked within this time frame, Storm fails
the operation on the spout. The default is 30
seconds.

Spout Max Pending Tuples topology.max.spout.pending Maximum number of messages that can be
pending in a spout at any time. The default is
null (no limit).

HBase

HBase Table profiler.hbase.table The name of the HBase table the profiler is
written to. The profiler expects that the table
exists and is writable.

HBase Table Column Family profiler.hbase.cf The column family used to store profile data in
HBase.

HBase Batch Size profiler.hbase.batch The number of puts that are written to HBase
in a single batch.

HBase Flush Interval profiler.hbase.flush.interval The maximum number of seconds between
batch writes to HBase.

N/A profiler.writer.batchSize The size of the batch that is written to Kafka
at once. Defaults to 15 (size of 1 disables
batching).

N/A profiler.writer.batchTimeout The timeout after which a batch will be
flushed even if batchSize has not been
met. Optional. If unspecified or set to 0, it
defaults to a system-determined duration
which is a fraction of the Storm parameter
topology.message.timeout.secs. Ignored if
batchsize is 1 because this disables batching.

Troubleshoot Streaming Profiles By Using Stellar
Troubleshooting issues when programming against a live stream of data can be difficult. The Stellar REPL
(an interactive top level or language shell) is a powerful tool to help work out the kinds of enrichments and
transformations that are needed. The Stellar REPL can also be used to help when developing profiles for the profiler.

About this task
Follow these steps in the Stellar REPL to see how it can be used to help create profiles.

Procedure

1. Launch the Stellar REPL.

$METRON_HOME/bin/stellar
Stellar, Go!
[Stellar]>>>

2. Ensure the following functions are accessible.

[Stellar]>>> %functions PROFILER
PROFILER_APPLY, PROFILER_FLUSH, PROFILER_INIT

9

HCP Creating Profiles Using Profilers

3. Use the SHELL_EDIT function to create a simple hello-world profile that will count the number of messages for
each ip_src_addr. The SHELL_EDIT function will open an editor into which you can add the following profiler
configuration.

[Stellar]>>> conf := SHELL_EDIT()
[Stellar]>>> conf
{
 "profiles": [
 {
 "profile": "hello-world",
 "foreach": "ip_src_addr",
 "init": { "count": "0" },
 "update": { "count": "count + 1" },
 "result": "count"
 }
]
}

You can also include the timestampField to:

• List the system time, which is the time at which you are processing the data.
• List the event time, which is the time contained in the data itself.

4. Create the profile execution environment.

The profiler will output the number of profiles that have been defined, the number of messages that have been
applied, and the number of routes that have been followed. A route is defined when a message is applied to a
specific profile.

• If a message is not needed by any profile, then there are no routes.
• If a message is needed by one profile, then one route has been followed.
• If a message is needed by two profiles, then two routes have been followed.

[Stellar]>>> profiler := PROFILER_INIT(conf)
[Stellar]>>> profiler
Profiler{1 profile(s), 0 messages(s), 0 route(s)}

5. Create a message to simulate the type of telemetry that you expect to be profiled.

This message can be as simple or complex as you like. For the hello-world profile, all you need is a message
containing an ip_src_addr field.

[Stellar]>>> msg := SHELL_EDIT()
[Stellar]>>> msg
{
 "ip_src_addr": "10.0.0.1"
}

6. Apply some telemetry messages to your profiles.

[Stellar]>>> PROFILER_APPLY(msg, profiler)
Profiler{1 profile(s), 1 messages(s), 1 route(s)}

[Stellar]>>> PROFILER_APPLY(msg, profiler)
Profiler{1 profile(s), 2 messages(s), 2 route(s)}

[Stellar]>>> PROFILER_APPLY(msg, profiler)
Profiler{1 profile(s), 3 messages(s), 3 route(s)}

7. Flush the profiler:

[Stellar]>>> values := PROFILER_FLUSH(profiler)
[Stellar]>>> values

10

HCP Creating Profiles Using Profilers

[{period={duration=900000, period=1669628, start=1502665200000,
 end=1502666100000},
profile=hello-world, groups=[], value=3, entity=10.0.0.1}]

A flush occurs in the profiler every 15 minutes. The result is a list of profile measurements. Each measurement is
a map containing detailed information about the profile data that has been generated. The value field is written to
HBase when running the profiler in either Storm or Spark.

There will always be one measurement for each profile, entity pair. This profile counts the number of messages
by IP source address. Notice that the value is 3 for the entity 10.0.0.1 because we applied 3 messages with an
ip_src_addr of 10.0.0.1.

8. In addition to testing with mock data, you can also apply real, live telemetry to your profile.

The following example extracts 10 messages of live, enriched telemetry to test your profile(s):

[Stellar]>>> msgs := KAFKA_GET("indexing", 10)
[Stellar]>>> LENGTH(msgs)
10

This can be useful to test your profile against the complexities that exist in real data.

9. Apply the 10 messages to your profile:

[Stellar]>>> PROFILER_APPLY(msgs, profiler) Profiler{1 profile(s), 10 messages(s), 10 route(s)}

What to do next
After you are satisfied with the data being generated by the profile, then use the profile against your live stream of
telemetry being captured by HCP.

Streaming Profile Examples
You can use the streaming profiler examples to better understand the functionality provided by the profiler. Each
example shows the configuration that would be required to generate the profile.

These examples assume a fictitious input message stream that looks something like the following:

{
 "ip_src_addr": "10.0.0.1",
 "protocol": "HTTPS",
 "length": "10",
 "bytes_in": "234"
},
{
 "ip_src_addr": "10.0.0.2",
 "protocol": "HTTP",
 "length": "20",
 "bytes_in": "390"
},
{
 "ip_src_addr": "10.0.0.3",
 "protocol": "DNS",
 "length": "30",
 "bytes_in": "560"
}

Example 1

The total number of bytes of HTTP data for each host. The following configuration would be used to generate this
profile.

{
 "profiles": [
 {

11

HCP Creating Profiles Using Profilers

 "profile": "example1",
 "foreach": "ip_src_addr",
 "onlyif": "protocol == 'HTTP'",
 "init": {
 "total_bytes": 0.0
 },
 "update": {
 "total_bytes": "total_bytes + bytes_in"
 },
 "result": "total_bytes",
 "expires": 30
 }
]
}

This creates a profile with the following parameters:

• Named ‘example1’
• That for each IP source address
• Only if the 'protocol' field equals 'HTTP'
• Initializes a counter ‘total_bytes’ to zero
• Adds to ‘total_bytes’ the value of the message's ‘bytes_in’ field
• Returns ‘total_bytes’ as the result
• The profile data will expire in 30 days

Example 2

The ratio of DNS traffic to HTTP traffic for each host. The following configuration would be used to generate this
profile.

{
 "profiles": [
 {
 "profile": "example2",
 "foreach": "ip_src_addr",
 "onlyif": "protocol == 'DNS' or protocol == 'HTTP'",
 "init": {
 "num_dns": 1.0,
 "num_http": 1.0
 },
 "update": {
 "num_dns": "num_dns + (if protocol == 'DNS' then 1 else 0)",
 "num_http": "num_http + (if protocol == 'HTTP' then 1 else 0)"
 },
 "result": "num_dns / num_http"
 }
]
}

This creates a profile with the following parameters:

• Named ‘example2’
• That for each IP source address
• Only if the 'protocol' field equals 'HTTP' or 'DNS'
• Accumulates the number of DNS requests
• Accumulates the number of HTTP requests
• Returns the ratio of these as the result

Example 3

12

HCP Creating Profiles Using Profilers

The average of the length field of HTTP traffic. The following configuration would be used to generate this profile.

{
 "profiles": [
 {
 "profile": "example3",
 "foreach": "ip_src_addr",
 "onlyif": "protocol == 'HTTP'",
 "update": { "s": "STATS_ADD(s, length)" },
 "result": "STATS_MEAN(s)"
 }
]
}

This creates a profile with the following parameters:

• Named ‘example3’
• That for each IP source address
• Only if the 'protocol' field is 'HTTP'
• Adds the length field from each message
• Calculates the average as the result

Example 4

It is important to note that the profiler can persist any serializable Object, not just numeric values. An alternative to
the previous example could take advantage of this.

Instead of storing the mean of the length, the profile could store a more generic summary of the length. This summary
can then be used at a later time to calculate the mean, min, max, percentiles, or any other sensible metric. This
provides a much greater degree of flexibility.

{
 "profiles": [
 {
 "profile": "example4",
 "foreach": "ip_src_addr",
 "onlyif": "protocol == 'HTTP'",
 "update": { "s": "STATS_ADD(s, length)" },
 "result": "s"
 }
]
}

The following Stellar REPL session shows how you might use this summary to calculate different metrics with the
same underlying profile data.

Retrieve the last 30 minutes of profile measurements for a specific host.

$ bin/stellar -z node1:2181

[Stellar]>>> stats := PROFILE_GET("example4", "10.0.0.1", PROFILE_FIXED(30,
 "MINUTES"))
[Stellar]>>> stats
[org.apache.metron.common.math.stats.OnlineStatisticsProvider@79fe4ab9, ...]

Calculate different metrics with the same profile data.

[Stellar]>>> STATS_MEAN(GET_FIRST(stats))
15979.0625

[Stellar]>>> STATS_PERCENTILE(GET_FIRST(stats), 90)

13

HCP Creating Profiles Using Profilers

30310.958

Merge all of the profile measurements over the past 30 minutes into a single summary and calculate the 90th
percentile.

[Stellar]>>> merged := STATS_MERGE(stats)
[Stellar]>>> STATS_PERCENTILE(merged, 90)
29810.992

Batch Profiler
A batch profile creates a profile based on telemetry that was captured in the past. This is sometimes referrred to as
profile seeding or backfilling. Batch profiles can be used to understand the historical behaviors and trends of a profile
to determine if the profile has predictive value for model building. You can use the streaming profiler and the batch
profiler to gather and understand both current and historical behaviors and trends. This information can be used to
determine if the profiler feature set matches reality and has predictive value for model building.

Create a Batch Profile
Create a batch profile when you want to create a profile based on telemetry that was captured in the past. Batch
profiles can be used to understand the historical behaviors and trends.

Procedure

1. Create a profile definition by editing $METRON_HOME/config/zookeeper/profiler.json as follows:

cat $METRON_HOME/config/zookeeper/profiler.json
{
 "profiles": [
 {
 "profile": "hello-world",
 "foreach": "'global'",
 "init": { "count": "0" },
 "update": { "count": "count + 1" },
 "result": "count"
 }
],
 "timestampField": "timestamp"
}

If you have not previously created a profile definition, you will need to create the profiler.json file.

Note: All of the properties listed above including the timestampField are required in the profiler
definition.

2. Upload the profile definition to ZooKeeper:

source /etc/default/metron
cd $METRON_HOME
bin/zk_load_configs.sh -m PUSH -i config/zookeeper/ -z $ZOOKEEPER

You can validate your upload by reading back the HCP configuration from ZooKeeper using the same script:

bin/zk_load_configs.sh -m DUMP -z $ZOOKEEPER
...
PROFILER Config: profiler
{
 "profiles": [
 {
 "profile": "hello-world",

14

HCP Creating Profiles Using Profilers

 "onlyif": "exists(ip_src_addr)",
 "foreach": "ip_src_addr",
 "init": { "count": "0" },
 "update": { "count": "count + 1" },
 "result": "count"
 }
]
}

3. Ensure that you have archived telemetry data available for the batch profiler to consume.

By default, HCP stores this in HDFS at /apps/metron/indexing/indexed/*/*.

hdfs dfs -cat /apps/metron/indexing/indexed/*/* | wc -l

4. Check the HBase table to validate that the Profiler is writing the profile.

Remember that the Profiler is flushing the profile every 15 minutes. You will need to wait at least this long to start
seeing profile data in HBase.

/usr/hdp/current/hbase-client/bin/hbase shell
hbase(main):001:0> count 'profiler'

5. Review the batch profiler's properties located at $METRON_HOME/config/batch-profiler.properties to ensure
that the properties are set appropriately for the batch profiler you want to run.

See Batch Profiler Properties for more information on these properties.

6. If you want to run DEBUG logging for the profiler, edit the log4j properties file that resides in $SPARK_HOME/
config:

log4j.logger.org.apache.metron.profiler.spark=DEBUG

If the log4j file does not exist, you can create one.

7. Run the batch profiler.

source /etc/default/metron
cd $METRON_HOME
$METRON_HOME/bin/start_batch_profiler.sh

What to do next
Query for the profile data using the Profiler Client.

Run the Batch Profiler
HCP provides a script called start_batch_profiler.sh to simplify running the batch profiler.

Before you begin
The start_batch_profiler.sh script assumes the following:

• The script builds the profiles defined in $METRON_HOME/config/zookeeper/profiler.json.
• The properties defined in $METRON_HOME/config/batch-profiler.properties are passed to both the profiler and

Spark. You can define both Spark and profiler properties in this same file.
• Spark is installed at /usr/hdp/current/spark-client. This can be overridden if you define an environment variable

called SPARK_HOME prior to executing the script.

Procedure

Start the batch profile by entering the following:

source /etc/default/metron
cd $METRON_HOME

15

HCP Creating Profiles Using Profilers

bin/start_batch_profiler.sh

Run the Batch Profiler in Advanced Mode
As an alternative to using the start_batch_profiler.sh you can run the batch profiler in advanced mode. Running the
batch profiler in advanced mode allows you to specify certain arguments to customize the profiler.

Procedure

Start the batch profile by entering the following:

${SPARK_HOME}/bin/spark-submit \
 --class org.apache.metron.profiler.spark.cli.BatchProfilerCLI \
 --properties-file ${SPARK_PROPS_FILE} \
 ${METRON_HOME}/lib/metron-profiler-spark-*.jar \
 --config ${PROFILER_PROPS_FILE} \
 --profiles ${PROFILES_FILE}

The batch profiler accepts the following arguments when run from the command line. All arguments following the
profiler jar are passed to the profiler. All argument preceeding the profiler jar are passed to Spark.

-p, --profiles The path to a file containing the profile definition in
JSON.

-c, --config The path to a file containing key-value properties for the
profiler. This file contains the properties described in
Batch Profiler Properties.

-g, --globals The path to a file containing key-value properties that
define the global properties. You can use this property to
customize how certain Stellar functions behave during
execution.

-r, --reader The path to a file containing key-value properties that are
passed to the DataFrameReader when reading the input
telemetry. This allows additional customization for how
the input telemetry is read.

Configure the Batch Profiler
You can customize the batch profiler to specify where the profiler runs, the format of the telemetry input, and various
other properties available in the batch profiler properties file.

Procedure

1. To run the batch profiler using Spark on Yarn, specify the location in $METRON_HOME/config/batch-
profiler.properties:

spark.master=yarn

By default, the batch profiler instructs Spark to run in local mode: spark.master=local. This mode is only useful
for testing with a limited set of data.

2. You might also want to set the YARN deploy mode to cluster:

spark.submit.deployMode=cluster

In cluster mode, the Spark driver runs inside an application master process which is managed by YARN on
the cluster, and the client can go away after initiating the application. See the Spark documentation for more
information.

16

HCP Creating Profiles Using Profilers

3. Specify the appropriate input format for the batch profiler to consume by modifying $METRON_HOME/config/
batch-profiler.properties:

profiler.batch.input.format=text
profiler.batch.input.path=hdfs://localhost:8020/apps/metron/indexing/
indexed/*/*

The Profiler can consume archived telemetry stored in a variety of input formats. By default, it is configured to
consume the text/json that HCP archives in HDFS. This is often not the best format for archiving telemetry.

4. Review the batch profiler's properties located at $METRON_HOME/config/batch-profiler.properties to customize
them for your profiler needs.

See Batch Profiler Properties for more information on these properties.

Batch Profiler Properties
Use the batch profiler properties to configure the batch profiler.

By default, the configuration for the batch profiler is stored in the local filesystem at $METRON_HOME/config/
batch-profiler.properties. Refer to the Spark documentation for information about Spark properties you can include in
the batch profiler properties file.

Table 2: Profiler Properties

Settings. Description

profiler.batch.input.path The path to the input data read by the Batch Profiler. Default: hdfs://
localhost:9000/apps/metron/indexing/indexed/*/*

profiler.batch.input.format The format of the input data read by the Batch Profiler. Default: text

profiler.batch.input.begin Only messages with a timestamp after this will be profiled. Default:
undefined; no time constraint

profiler.batch.input.end Only messages with a timestamp before this will be profiled. Default:
undefined; no time constraint

profiler.period.duration The duration of each profile period. Default: 15

profiler.period.duration.units The units used to specify the profiler.period.duration. Default:
MINUTES

profiler.hbase.salt.divisor A salt is prepended to the row key to help prevent hot-spotting.
Default: 1000

profiler.hbase.table The name of the HBase table that profiles are written to. Default:
profiler

profiler.hbase.column.family The column family used to store profiles. Default: P

Accessing Profiles
You can use a client API to access the profiles generated by the HCP Profiler to use for model scoring. HCP provides
a Stellar API to access the profile data but this section provides only instructions for using the Stellar client API.
You can use this API in conjunction with other Stellar functions such as MAAS_MODEL_APPLY to perform model
scoring on streaming data.

Selecting Profile Measurements
The PROFILE_GET command allows you to select all of the profile measurements written.

This command takes the following arguments:

REQUIRED::

17

HCP Creating Profiles Using Profilers

profile The name of the profile

entity The name of the entity

periods The list of profile periods to grab. These are
ProfilePeriod objects. This field is generally the output
of another Stellar function which defines the times to
include.

OPTIONAL:

groups_list List (in square brackets) of groupBy values used to filter
the profile. Default is an empty list, which means that
groupBy was not used when creating the profile. This
list must correspond to the 'groupBy' list used in profile
creation.

The groups_list argument in the client must exactly
correspond to the groupBy configuration in the profile
definition. If groupBy was not used in the profile,
groups_list must be empty in the client. If groupBy was
used in the profile, then the client groups_list is not
optional; it must be the same length as the groupBy list,
and specify exactly one selected group value for each
groupBy criterion, in the same order. For example:

If in Profile, the groupBy
 criteria are: [“DAY_OF_WEEK()”,
 “URL_TO_PORT()”]
Then in PROFILE_GET, an allowed
 groups value would be: [“3”,
 “8080”]
which will select only records from
 Tuesdays with port number 8080.

config_overrides Map (in curly braces) of name:value pairs, each
overriding the global config parameter of the same name.
Default is the empty Map, meaning no overrides.

Note:

There is an older calling format where
groups_list is specified as a sequence of group
names, "varargs" style, instead of a List object.
This format is still supported for backward
compatibility, but it is deprecated, and it is
disallowed if the optional config_overrides
argument is used.

By default, the Profiler creates profiles with a period
duration of 15 minutes. This means that data is
accumulated, summarized, and flushed every 15 minutes.
The Client API must also have knowledge of this
duration to correctly retrieve the profile data. If the
Client is expecting 15 minute periods, it will not be able
to read data generated by a Profiler that was configured
for 1 hour periods, and will return zero results.

18

HCP Creating Profiles Using Profilers

Similarly, all six Client configuration parameters
listed in the table below must match the Profiler
configuration parameter settings from the time the
profile was created. The period duration and other
configuration parameters from the Profiler topology
are stored in a local file system at $METRON_HOME/
config/profiler.properties. The Stellar Client API can
be configured correspondingly by setting the following
properties in HCP's global configuration, on a local
file system at $METRON_HOME/config/zookeeper/
global.json, then uploaded to ZooKeeper (at /metron/
topology/global) by using zk_load_configs.sh:

                              ```
$ cd $METRON_HOME
$ bin/zk_load_configs.sh -m PUSH -i
 config/zookeeper/ -z node1:2181
```


Any of these six Client configuration parameters may be
overridden at run time using the config_overrides Map
argument in PROFILE_GET. The primary use case for
overriding the client configuration parameters is when
historical profiles have been created with a different
Profiler configuration than is currently configured,
and the analyst, needing to access them, does not want
to change the global Client configuration so as not to
disrupt the work of other analysts working with current
profiles.

Table 3: Profiler Client Configuration Parameters

Key Description Required Default

profiler.client.period.durationThe duration
of each profile
period. This
value should
be defined
along with
profiler.client.period.duration.units.

Optional 15

profiler.client.period.duration.unitsThe units used
to specify the
profile period
duration. This
value should
be defined
along with
profiler.client.period.duration.

Optional MINUTES

profiler.client.hbase.tableThe name of
the HBase
table used to
store profile
data.

Optional profiler

19

HCP Creating Profiles Using Profilers

Key Description Required Default

profiler.client.hbase.column.familyThe name of
the HBase
column family
used to store
profile data.

Optional P

profiler.client.salt.divisorThe salt divisor
used to store
profile data.

Optional 1000

hbase.provider.implThe name
of the
HBaseTableProvider
implementation
class.

Optional

Specifying Profile Time and Duration
The third required argument for PROFILE_GET is a list of ProfilePeriod objects. These objects allow you to specify
the timing, frequency, and duration of the PROFILE_GET. This list is produced by another Stellar function. There are
two options available: PROFILE_FIXED and PROFILE_WINDOW.

PROFILE_FIXED PROFILE_FIXED specifies a fixed period to look
back at the profiler data starting from now. These are
ProfilePeriod objects.

REQUIRED: durationAgo How long ago should
values be retrieved from?

units The units of 'durationAgo'.

OPTIONAL: config_overrides Map (in curly braces) of
name:value pairs, each
overriding the global
config parameter of the
same name. Default is the
empty Map, meaning no
overrides.

For example, to
retrieve all the profiles
for the last 5 hours:
PROFILE_GET('profile',
'entity',
PROFILE_FIXED(5,
'HOURS'))

PROFILE WINDOW PROFILE_WINDOW provides a finer-level of
control over selecting windows for profiles. This
profile selector allows you to specify the exact time,
duration, and frequency for the profile. It does this
by a domain specific language that mimics natural
language that defines the excluded windows. You can
use PROFILE_WINDOW to specify:

• Windows relative to the data timestamp (see the
optional now parameter below)

20

HCP Creating Profiles Using Profilers

• Non-contiguous windows to better handle seasonal
data (for example, the last hour for every day for the
last month)

• Profile output excluding holidays
• Only profile output on a specific day of the week

REQUIRED: windowSelector The statement specifying
the window to select.

now Optional - The timestamp
to use for now.

OPTIONAL: config_overrides Map (in curly braces) of
name:value pairs, each
overriding the global
config parameter of the
same name. Default is the
empty Map, meaning no
overrides.

For example, to retrieve all the measurements written for 'profile' and 'entity' for the last hour on the same weekday
excluding weekends and US holidays across the last 14 days:

PROFILE_GET('profile', 'entity', PROFILE_WINDOW('1 hour window every 24
 hours starting from 14 days ago including the current day of the week
 excluding weekends, holidays:us'))

Note: The config_overrides parameter operates exactly as the config_overrides argument in PROFILE_GET.
The only available parameters for override are:

• profiler.client.period.duration
• profiler.client.period.duration.units

Profile Selector Language
The domain specific language for the profile selector can be broken into a series of clauses, some of which are
optional.

Total Temporal Duration The total range of time in which windows may be
specified

Temporal Window Width The size of each temporal window

Skip distance (optional) How far to skip between when one window
starts and when the next begins

Inclusion/Exclusion specifiers (optional) The set of specifiers to further filter the
window

You must specify either a total temporal duration or a temporal window width. The remaining clauses are optional.

From a high level, the domain specific language fits the following three forms, which are composed of the clauses
above:

• time_interval Window (INCLUDING specifier list) (EXCLUDING specifier list)

temporal window width inclusion specifiers exclusion specifier

21

HCP Creating Profiles Using Profilers

• time_interval WINDOW EVERY time_interval FROM time_interval (TO time_interval) (INCLUDING
specifier_list) (EXCLUDING specifier list)

temporal window width skip distance total temporal duration inclusion specifiers exclusion specifier
• FROM time_interval (TO time_interval)

total temporal duration total temporal duration

Total Temporal Duration

Total temporal duration is specified by a phrase: FROM time_interval AGO TO time_interval AGO. This indicates
the beginning and ending of a time interval. This is an inclusive duration.

FROM Can be the words "from" or "starting from".

time_interval A time amount followed by a unit (for example, 1 hour).
Fractional amounts are not supported. The unit may be
"minute", "day", "hour" with any pluralization.

TO Can be the words "until" or "to".

AGO (optional) The word "ago"

The TO time_interval AGO portion is optional. If this portion is unspecified then it is expected that the time interval
ends now.

Due to the vagaries of the English language, the from and the to portions, if both are specified, are interchangeable
with regard to which one specifies the start and which specifies the end. In other words "starting from 1 hour ago to
30 minutes ago" and "starting from 30 minutes ago to 1 hour ago" specify the same temporal duration.

Total Temporal Duration Examples

The domain specific language allows for some flexibility on how to specify a duration. The following are examples of
various ways you can specify the same duration.

• A duration starting 1 hour ago and ending now:

• from 1 hour ago
• from 1 hour
• starting from 1 hour ago
• starting from 1 hour

• A duration starting 1 hour ago and ending 30 minutes ago:

• from 1 hour ago until 30 minutes ago
• from 30 minutes ago until 1 hour ago
• starting from 1 hour ago to 30 minutes ago
• starting from 1 hour to 30 minutes

Temporal Window Width

Temporal window width is the specification of a window. A window may either repeat within a total temporal
duration or it may fill the total temporal duration. This is an inclusive window. A temporal window width is specified
by the phrase: time_interval WINDOW.

time_interval A time amount followed by a unit (for example, 1 hour).
Fractional amounts are not supported. The unit may be
"minute", day", or "hour" with any pluralization.

WINDOW (optional) The word "window".

Temporal Window Width Examples

22

HCP Creating Profiles Using Profilers

• A fixed window starting 2 hours ago and going until now

• 2 hour
• 2 hours
• 2 hours window

• A repeating 30 minute window starting 2 hours ago and repeating every hour until now. This would result in 2 30-
minute wide windows: 2 hours ago and 1 hour ago

• 30 minute window every 1 hour starting from 2 hours ago

temporal window width skip distance total temporal duration
• 30 minute windows every 1 hour from 2 hours ago

temporal window width skip distance total temporal duration

Skip Distance

Skip distance is the amount of time between when one temporal window begins and the next window starts. It is, in
effect, the window period. It is specified by the phrase EVERY time_interval.

time_interval A time amount followed by a unit (for example, 1 hour).
Fractional amounts are not supported. The unit may be
"minute", "day", or "hour" with any pluralization.

EVERY The word/phrase "every" or "for every".

Skip Distance Examples

• A repeating 30 minute window starting 2 hours ago and repeating every hour until now. This would result in 2 30-
minute wide windows: 2 hours ago and 1 hour ago

• 30 minute window every 1 hour starting from 2 hours ago

temporal window width skip distance total temporal duration
• 30 minutes window every 1 hour from 2 hours ago

temporal window width skip distance total temporal duration
• A repeating 30 minute window starting 2 hours ago and repeating every hour until 30 minutes ago. This would

result in 2 30-minute wide windows: 2 hours ago and 1 hour ago

• 30 minute window every 1 hour starting from 2 hours ago until 30 minutes ago

temporal window width skip distance total temporal duration
• 30 minutes window every 1 hour from 2 hours ago to 30 minutes ago

temporal window width skip distance total temporal duration
• 30 minutes window for every 1 hour from 30 minutes ago to 2 hours ago

temporal window width skip distance total temporal duration

Inclusion/Exclusion Specifiers

Inclusion and Exclusion specifiers operate as filters on the set of windows. They operate on the window beginning
timestamp.

For inclusion specifiers, windows that are passed by any of the set of inclusion specifiers are included. Similarly,
windows that are passed by any of the set of exclusion specifiers are excluded. Exclusion specifiers trump inclusion
specifiers.

Specifiers follow one of the following formats depending on if it is an inclusion or exclusion specifier:

• INCLUSION specifier, specifier, ...

INCLUSION can be "include", "includes" or "including"
• EXCLUSION specifier, specifier, ...

23

HCP Creating Profiles Using Profilers

EXCLUSION can be "exclude", "excludes" or "excluding"

The specifiers are a set of fixed specifiers available as part of the language:

• Fixed day of week-based specifiers - includes or excludes if the window is on the specified day of the week

• "monday" or "mondays"
• "tuesday" or "tuesdays"
• "wednesday" or "wednesdays"
• "thursday" or "thursdays"
• "friday" or "fridays"
• "saturday" or "saturdays"
• "sunday" or "sundays"
• "weekday" or "weekdays"
• "weekend" or ""weekends"

• Relative day of week-based specifiers - includes or excludes based on the day of week relative to now

• "current day of the week"
• "current day of week"
• "this day of the week"
• "this day of week"

• Specified date - includes or excludes based on the specified date

• "date" - Takes up to 2 arguments

• The day in yyyy/MM/dd format if no second argument is provided

Example: date:2017/12/25 would include or exclude December 25, 2017
• (optional) The format in which to specify the first argument

Example: date:20171225:yyyyMMdd would include or exclude December 25, 2017
• Holidays - includes or excludes based on if the window starts during a holiday

• "holiday" or "holidays"

• Arguments form the jollyday hierarchy of holidays. For example, "us:nyc" would be holidays for New
York City, USA

Countries supported are those supported in jollyday

Example: holiday:us:nyc would be the holidays of New York City, USA
• If none is specified, it will choose based on locale.

Example: holiday:hu would be the holidays of Hungary

Inclusion/Exclusion Specifiers Examples

The following are inclusion/exclusion specifier examples and identify the various clauses used in these examples.

Assume the following examples are executed at noon.

• A 1 hour window for the past 8 'current day of the week'

• 1 hour window every 24 hours from 56 days ago including this day of the week

temporal window width skip distance total temporal duration inclusion/exclusion specifiers
• A 1 hour window for the past 8 tuesdays

• 1 hour window every 24 hours from 56 days ago including tuesdays

temporal window width skip distance total temporal duration inclusion/exclusion specifiers
• A 30 minute window every tuesday at noon starting 14 days ago until now

• 30 minute window every 24 hours from 14 days ago including tuesdays

24

HCP Creating Profiles Using Profilers

temporal window width skip distance total temporal duration inclusion/exclusion specifiers
• A 30 minute window every day except holidays and weekends at noon starting 14 days ago until now

• 30 minutes every 24 hours from 14 days ago excluding holidays:us, weekends

30 minutes every 24 hours from 14 days ago including weekdays excluding holidays:us, weekends

temporal window width skip distance total temporal duration inclusion/exclusion specifiers
• A 30 minute window at noon every day from 7 days ago including saturdays and excluding weekends. Because

exclusions trump inclusions, the following will never yield any windows

• 30 minute window every 24 hours from 7 days ago including saturdays excluding weekends

temporal window width skip distance total temporal duration inclusion/exclusion specifiers

Client Profile Example
The following are usage examples that show how the Stellar API can be used to read profiles generated by the
Metron Profiler. This API would be used in conjunction with other Stellar functions like MAAS_MODEL_APPLY to
perform model scoring on streaming data.

These examples assume a profile has been defined called ‘snort-alerts’ that tracks the number of Snort alerts
associated with an IP address over time. The profile definition might look similar to the following.

{
 "profiles": [
 {
 "profile": "snort-alerts",
 "foreach": "ip_src_addr",
 "onlyif": "source.type == 'snort'",
 "update": { "s": "STATS_ADD(s, 1)" },
 "result": "STATS_MEAN(s)"
 }
]
}

During model scoring, the entity being scored, in this case a particular IP address, will be known. The following
examples shows how this profile data might be retrieved. Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ over the
past 4 hours.

PROFILE_GET('snort-alerts', '10.0.0.1', PROFILE_FIXED(4, 'HOURS'))

Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ over the past 2 days.

PROFILE_GET('snort-alerts', '10.0.0.1', PROFILE_FIXED(2, 'DAYS'))

If the profile had been defined to group the data by weekday versus weekend, then the following example would
apply:

Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ that occurred on ‘weekdays’ over the past 30 days.

PROFILE_GET('snort-alerts', '10.0.0.1', PROFILE_FIXED(30, 'DAYS'),
 ['weekdays'])

The client may need to use a configuration different from the current Client configuration settings. For example,
perhaps you are on a cluster shared with other analysts, and need to access a profile that was constructed 2 months
ago using different period duration, while they are accessing more recent profiles constructed with the currently
configured period duration. For this situation, you may use the config_overrides argument:

25

HCP Creating Profiles Using Profilers

Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ over the past 2 days, with no groupBy, and overriding the usual
global client configuration parameters for window duration.

PROFILE_GET('profile1', 'entity1', PROFILE_FIXED(2,
 'DAYS', {'profiler.client.period.duration' : '2',
 'profiler.client.period.duration.units' : 'MINUTES'}), [])

Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ that occurred on ‘weekdays’ over the past 30 days, overriding the
usual global client configuration parameters for window duration.

PROFILE_GET('profile1', 'entity1', PROFILE_FIXED(30,
 'DAYS', {'profiler.client.period.duration' : '2',
 'profiler.client.period.duration.units' : 'MINUTES'}), ['weekdays'])

26

	Contents
	Introduction to HCP Analytics
	Using Profilers
	Install and Configure the Profiler
	Running the Profiler
	Streaming Profiler
	Create a Streaming Profile
	Configure the Streaming Profiler
	Run the Streaming Profiler
	Streaming Profiler Properties
	Troubleshoot Streaming Profiles By Using Stellar
	Streaming Profile Examples

	Batch Profiler
	Create a Batch Profile
	Run the Batch Profiler
	Run the Batch Profiler in Advanced Mode
	Configure the Batch Profiler
	Batch Profiler Properties

	Accessing Profiles
	Selecting Profile Measurements
	Specifying Profile Time and Duration
	Profile Selector Language

	Client Profile Example

