
HCP Tuning Guide 1

Use Case Specific Tuning Suggestions
Date of Publish: 2018-11-15

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Use Case Specific Tuning Suggestions..3
Performance Monitoring Tools.. 3

Tooling.. 3
Issues... 7

HCP Tuning Guide Use Case Specific Tuning Suggestions

Use Case Specific Tuning Suggestions

The following discussion outlines a specific tuning exercise we went through for driving 1 Gbps of traffic through a
Metron cluster running with 4 Kafka brokers and 4 Storm Supervisors.

General machine specs:

• 10 GB network cards
• 256 GB memory
• 12 disks
• 32 cores

Performance Monitoring Tools
Before we get to tuning our cluster, it helps to describe what we might actually want to monitor as well as any
potential pain points.

Prior to switching over to the new Storm Kafka client, which leverages the new Kafka consumer API under the hood,
offsets were stored in ZooKeeper. While the broker hosts are still stored in ZooKeeper, this is no longer true for the
offsets which are now stored in Kafka itself. This is a configurable option, and you may switch back to ZooKeeper if
you choose, but Metron is currently using the new defaults. With this in mind, there are some useful tools that come
with Storm and Kafka that we can use to monitor our topologies.

Tooling
You can use the Storm and Kafka tools to monitor your topologies.

Kafka

• Consumer group offset lag viewer
• There is a GUI tool to make creating, modifying, and generally managing your Kafka topics a bit easier - see

kafka-manager
• Console consumer - useful for quickly verifying topic contents

Storm

For more information on the Storm user interface, see Reading and Understanding the Storm UI.

View Kafka Offset Lags Example
You can use the Kafka consumer group offset lag viewer to monitor the delta calculations between the current and
end offset for a partition.

Procedure

1. Set up some environment variables.

export BROKERLIST your broker comma-delimated list of host:ports>
export ZOOKEEPER your zookeeper comma-delimated list of host:ports>
export KAFKA_HOME kafka home dir>
export METRON_HOME your metron home>
export HDP_HOME your HDP home>

2. If you have Kerberos enabled, set up the security protocol.

$ cat /tmp/consumergroup.config
security.protocol=SASL_PLAINTEXT

3

https://github.com/yahoo/kafka-manager
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained

HCP Tuning Guide Use Case Specific Tuning Suggestions

3. Enter the following command to display a table containing offsets for all partitions and consumers associated with
a running topology's consumer group:

${KAFKA_HOME}/bin/kafka-consumer-groups.sh \ --command-config=/tmp/consumergroup.config \ --describe
\ --group enrichments \ --bootstrap-server $BROKERLIST \ --new-consumer

The command displays the following table:

GROUP TOPIC PARTITION CURRENT-
OFFSET LOG-END-OFFSET LAG OWNER
enrichments enrichments 9 29746066
 29746067 1 consumer-2_/xxx.xxx.xxx.xxx
enrichments enrichments 3 29754325
 29754326 1 consumer-1_/xxx.xxx.xxx.xxx
enrichments enrichments 43 29754331
 29754332 1 consumer-6_/xxx.xxx.xxx.xxx
...

Note: Output displays only when the topology is running because the consumer groups only exist while
consumers in the spouts are up and running.

The LAG column lists the current delta calculation between the current and end offset for the partition. The
column value indicates how close you are to keeping up with incoming data. It also indicates whether there are
any problems with specific consumers getting stuck.

4. To watch the offsets and lags change over time, add a watch command and set the refresh rate to 10 seconds:

watch -n 10 -d ${KAFKA_HOME}/bin/kafka-consumer-groups.sh \
 --command-config=/tmp/consumergroup.config \
 --describe \
 --group enrichments \
 --bootstrap-server $BROKERLIST \
 --new-consumer

The watch command runs every 10 seconds and refreshes the screen with new information. The command also
highlights the differences from the current output and the last output screens.

Parser Tuning Example
We'll be using the Bro sensor in this parser tuning example.

We started with a single partition for the inbound Kafka topics and eventually worked our way up to 48 partitions.
And we're using the following pending value, as shown below. The default is 'null' which would result in no limit.

storm-bro.config

 {
 ...
 "topology.max.spout.pending" : 2000
 ...
 }

And the following default spout settings. Again, this can be omitted entirely since we are using the defaults.

spout-bro.config

 {
 ...

 "spout.pollTimeoutMs" : 200,
 "spout.maxUncommittedOffsets" : 10000000,
 "spout.offsetCommitPeriodMs" : 30000

4

HCP Tuning Guide Use Case Specific Tuning Suggestions

 }

And we ran our Bro parser topology with the following options. We did not need to fully match the number of Kafka
partitions with our parallelism in this case, though you could certainly do so if necessary. Notice that we only needed
1 worker.

 /usr/metron/0.4.0/bin/start_parser_topology.sh -k $BROKERLIST -z $ZOOKEEPER
 -s bro -ksp SASL_PLAINTEXT
 -ot enrichments
 -e ~metron/.storm/storm-bro.config \
 -esc ~/.storm/spout-bro.config \
 -sp 24 \
 -snt 24 \
 -nw 1 \
 -pnt 24 \
 -pp 24 \

From the usage docs, here are the options we've used.

 -e,--extra_topology_options (JSON_FILE) Extra options in the form
 of a JSON file with a map
 for content.
 -esc,--extra_kafka_spout_config (JSON_FILE) Extra spout config options
 in the form of a JSON file
 with a map for content.
 Possible keys are:
 retryDelayMaxMs,retryDelay

 Multiplier,retryInitialDelayMs,stateUpdateIntervalMs,

 bufferSizeBytes,fetchMaxWait,fetchSizeBytes,maxOffswt

 Behind,metricsTimeBucketSizeInSecs,socketTimeoutMs
-sp,--spout_p (SPOUT_PARALLELISM_HINT) Spout Parallelism Hint
-snt,--spout_num_tasks (NUM_TASKS) Spout Num Tasks
-nw,--num_workers (NUM_WORKERS) Number of Workers
-pnt,--parser_num_tasks (NUM_TASKS) Parser Num Tasks
-pp,--parser_p (PARALLELISM_HINT) Parser Parallelism Hint

Enrichment Tuning Example
We landed on the same number of partitions for enrichment and indexing as we did for bro - 48.

For configuring Storm, there is a flux file and properties file that we modified. Here are the settings we changed for
Bro in Flux. +Note that the main Metron-specific option we've changed to accommodate the desired rate of data
throughput is max cache size in the join bolts.

More information on Flux can be found here - https://storm.apache.org/releases/1.1.0/flux.html

general storm settings

 topology.workers: 8
 topology.acker.executors: 48
 topology.max.spout.pending: 2000

5

HCP Tuning Guide Use Case Specific Tuning Suggestions

Spout and Bolt Settings

 kafkaSpout
 parallelism=48
 session.timeout.ms=29999
 enable.auto.commit=false
 setPollTimeoutMs=200
 setMaxUncommittedOffsets=10000000
 setOffsetCommitPeriodMs=30000
 enrichmentSplitBolt
 parallelism=4
 enrichmentJoinBolt
 parallelism=8
 withMaxCacheSize=200000
 withMaxTimeRetain=10
 threatIntelSplitBolt
 parallelism=4
 threatIntelJoinBolt
 parallelism=4
 withMaxCacheSize=200000
 withMaxTimeRetain=10
 outputBolt
 parallelism=48

Indexing (HDFS) Tuning
There are 48 partitions set for the indexing partition, per the previous enrichment exercise.

These are the batch size settings for the Bro index.

cat ${METRON_HOME}/config/zookeeper/indexing/bro.json
{
"hdfs" : {
"index": "bro",
 "batchSize": 50,
 "enabled" : true
 }...
}

And here are the settings we used for the indexing topology

General storm settings

topology.workers: 4
topology.acker.executors: 24
topology.max.spout.pending: 2000

Spout and Bolt Settings

hdfsSyncPolicy
 org.apache.storm.hdfs.bolt.sync.CountSyncPolicy
 constructor arg=100000
hdfsRotationPolicy
 bolt.hdfs.rotation.policy.units=DAYS
 bolt.hdfs.rotation.policy.count=1
kafkaSpout
 parallelism: 24

6

HCP Tuning Guide Use Case Specific Tuning Suggestions

 session.timeout.ms=29999
 enable.auto.commit=false
 setPollTimeoutMs=200
 setMaxUncommittedOffsets=10000000
 setOffsetCommitPeriodMs=30000
hdfsIndexingBolt
 parallelism: 24

PCAP Tuning Example
PCAP is a specialized topology that is a Spout-only topology. Both Kafka topic consumption and HDFS writing is
done within a spout to avoid the additional network hop required if using an additional bolt.

General Storm topology properties

topology.workers=16
topology.ackers.executors: 0

__Spout and Bolt properties__

kafkaSpout
 parallelism: 128
 poll.timeout.ms=100
 offset.commit.period.ms=30000
 session.timeout.ms=39000
 max.uncommitted.offsets=200000000
 max.poll.interval.ms=10
 max.poll.records=200000
 receive.buffer.bytes=431072
 max.partition.fetch.bytes=10000000
 enable.auto.commit=false
 setMaxUncommittedOffsets=20000000
 setOffsetCommitPeriodMs=30000

writerConfig
 withNumPackets=1265625
 withMaxTimeMS=0
 withReplicationFactor=1
 withSyncEvery=80000
 withHDFSConfig
 io.file.buffer.size=1000000
 dfs.blocksize=1073741824

Issues
You can run into issues when you tune your system.

__Error__

org.apache.kafka.clients.consumer.CommitFailedException: Commit cannot be
 completed since the group has already rebalanced and assigned
the partitions to another member. This means that the time
 between subsequent calls to poll() was longer than the configured
 session.timeout.ms,
which typically implies that the poll loop is spending too much time message
 processing. You can address this either by increasing the
session timeout or by reducing the maximum size of batches returned in
 poll() with max.poll.records

Suggestions

7

HCP Tuning Guide Use Case Specific Tuning Suggestions

This implies that the spout hasn't been given enough time between polls before committing the offsets. In other
words, the amount of time taken to process the messages is greater than the timeout window. In order to fix this, you
can improve message throughput by modifying the options outlined above, increasing the poll timeout, or both.

8

	Contents
	Use Case Specific Tuning Suggestions
	Performance Monitoring Tools
	Tooling
	View Kafka Offset Lags Example
	Parser Tuning Example
	Enrichment Tuning Example
	Indexing (HDFS) Tuning
	PCAP Tuning Example

	Issues

