
HCP Tuning Guide 1

Component Tuning Variables
Date of Publish: 2018-12-21

https://docs.hortonworks.com/

https://docs.hortonworks.com/

Contents

Component Tuning Variables Overview..3

Kafka Partitions..3

Storm Tuning.. 4

Enrichment Tuning...6

Index Tuning... 6

HCP Tuning Guide Component Tuning Variables Overview

Component Tuning Variables Overview

There are a number of services that you can use to tune the performance of your Metron cluster. These services
include Kafka, Storm, and HDFS. Within these services, you can modify variables for topologies, including parsers,
enrichment, and indexing (Elasticsearch or Solr).

When you consider tuning your HCP architecture, it is important to note where you can modify variables. For
example, Storm gives you the ability to independently set tasks in executors for parser topologies. This is important
if you want to set the number of tasks higher than the number of executors to accommodate for future performance
tuning and rebalancing without the need to bring down your topologies. However, for enrichment and indexing
topologies, HCP uses Flux, and there is no method for specifying the number of tasks from the number of executors
in Flux. By default, the number of tasks equals the number of executors.

The following lists the major variables for each service that you can modify to tune your cluster:

• Kafka

• Number partitions
• Storm

• Kafka spout

• Polling frequency
• Polling timeouts
• Offset commit period
• Max uncommitted offsets

• Number workers (OS processes)
• Number executors (threads in a process)
• Number ackers
• Max spout pending
• Spout and bolt parallelism

• HDFS

• Batch size
• Replication factor

• Indexing

• Elasticsearch
• Solr

Kafka Partitions

The main lever you can adjust to tune Kafka throughput is the number of partitions.

When you calculate the number of Kafka partions, it is important to remember that it is the unit of parallelism. A
topic with more partitions has higher throughput and higher latency than a topic with less. It is important to determine
the correct number of partitions because too many will lead to unnecessarily higher latency while too few will not
meet throughput expectations. This parameter is not directly configured via Metron but rather when manually creating
the associated Kafka topics.

3

HCP Tuning Guide Storm Tuning

Storm Tuning

There are several Storm properties you can adjust to tune your Storm topologies. Achieving the desired performance
can be iterative and will take some trial and error.

Hortonworks recommends you start your tuning with the Storm topology defaults and smaller numbers in terms of
parallelism. Then you can iteratively increase the values until you achieve your desired level of performance. Use the
offset lag tool to verify your settings.

The following sections assume log type messages. However, if your data consists of emails which are much larger in
size, then you should adjust your values accordingly.

Kafka Spouts

The Kafka spouts value is the number of threads in Storm that will read from a Kafka topic. It is important to match
the number of spouts with the number of partitions. If there are less consumer threads than Kafka spouts, the Storm
topology may not be able to keep up with incoming events. If there are more consumer threads than required, they
will often stay idle while still consuming resources. This is important because Kafka has certain ordering guarantees
for message delivery per partition that would not be possible if more than one consumer in a given consumer group is
able to read from that partition.

You can modify the following spout settings in the spout-config.json file. However, if the spout default settings work
for your system, you can omit these settings from the file. These default settings are based on recommendations from
Storm and are provided in the Kafka spout itself.

{
 ...
 "spout.pollTimeoutMs" : 200,
 "spout.maxUncommittedOffsets" : 10000000,
 "spout.offsetCommitPeriodMs" : 30000
}

Storm Topology Parallelism

To provide a uniform distribution to each machine and jvm process, you can modify the values for the number of
tasks, executors, and workers properties. Start with small values and iteratively increase the values so you don't
overwhelm you CPU with too many processes.

The following table lists the variables you can set to adjust the parallelism in a Storm topology and provides
recommendations for their values:

Storm Topology Variables Description Value

num tasks Tasks are instances of a given spout or bolt. Set the number of tasks as a multiple of the
number of executors.

num executors Executors are threads in a process. Set the number of executors as a multiple of
the number of workers.

num workers Storm workers are OS processes on Storm
nodes.

The number of workers should relate to
the number of dedicated storm nodes. It is
generally good practice in a Storm topology
to allocate one worker per node where each
worker has approximately the same number
of executors (spouts, parsers, ackers, and error
writers). However, it may not be efficient
to do this for certain low volume parsing
topologies. In this case, it may be better to
have the combined workers of multiple low
volume topologies match the number of nodes.
For example, 4 workers for 3 low volume
tpologies on a cluster with 12 nodes.

4

HCP Tuning Guide Storm Tuning

Storm Workers

Storm workers are OS processes on Storm nodes. The number of Storm workers should relate to the number of
dedicated storm nodes. It is generally good practice in a Storm topology to allocate 1 worker per node where each
worker has approximately the same number of executors (spouts, parsers, ackers and error writers). When increasing
the number of workers on a Storm topology, you need to also increase the number of executors. Otherwise, you are
simply executing at the same level of parallelism, just spread across more worker nodes. However, it may not be
efficient to do this for certain low volume parsing topologies. In this case, it may be better to have the combined
workers of multiple low volume topologies match the number of nodes. For example, 4 workers each for 3 low
volume topologies on a cluster with 12 nodes.

You can change the number of workers in the Storm property topology.workers.

Storm Executors

Storm executors refers to the threads within a worker which process events. In Metron (which uses Flux), the number
of tasks will always equal the number of executors. As a result, the number of executors maps directly to the number
of bolt/spout instances in a topology.

Usually your number of tasks is equal to the number of executors, which is the default in Storm. Flux does not
provide a method to independently set the number of tasks, so for enrichments and indexing, which use Flux, num
tasks are always equal to num executors.

Storm Ackers

Storm ackers are responsible for tracking completed events within a topology. After an event is processed, a
checksum is sent to the acker, which when processed, will mark the event as processed. This ensures that no events
are lost and they all are processed. The number of ackers can be initially set to either 1 per Storm worker or 1
per Kafka partition. One of these will generally be more than necessary and after tuning for other components is
complete, the number of ackers can be lowered based on the capacity seen during testing.

The topology.ackers.executors setting specifies how many threads are dedicated to tuple acking. Set this setting to
equal the number of partitions in your inbound Kafka topic.

topology.ackers.executors

Max Spout Pending

This parameter limits the number of unacked tuples allowed in a topology. Setting this parameter prevents the
topology from becoming overloaded and causing tuples to time out and fail. Setting this too low can result in low
throughput with executors not reaching capacity. Setting this too high can lead to increased latency within topologies
and possibly failures when there is a spike in events ingested.

You set this property as a form of back pressure to ensure that you don't flood your topology.

topology.max.spout.pending

Spout Recommended Defaults

As a general rule, it is optimal to set spout parallelism equal to the number of partitions used in your Kafka topic. Any
greater parallelism will leave you with idle consumers because Kafka limits the maximum number of consumers to
the number of partitions. This is important because Kafka has certain ordering guarantees for message delivery per
partition that would not be possible if more than one consumer in a given consumer group is able to read from that
partition.

You can modify the following spout settings in the spout-config.json file. However, if the spout default settings work
for your system, you can omit these settings from the file. These default settings are based on recommendations from
Storm and are provided in the Kafka spout itself.

{
 ...
 "spout.pollTimeoutMs" : 200,
 "spout.maxUncommittedOffsets" : 10000000,

5

HCP Tuning Guide Enrichment Tuning

 "spout.offsetCommitPeriodMs" : 30000
}

Enrichment Tuning

Because all of the data is coming together in enrichments, you will probably need larger enrichments settings than
your parallelism settings. Enrichment settings focus more on the compute workload than on the mapping workload in
parsers or the IO driven workload in indexing. Enrichment makes significant use of caching for performance.

You can modify many performance tuning properties for enrichment using Ambari or Storm Flux. Modifying
properties using Ambari is simple and can be performed by any user. However, you should have knowledge of Storm
Flux usage and formatting before attempting to modify any Flux files.

The enrichment properties materialize as follows:

Ambari UI -> properties file -> Flux -> Storm

Index Tuning

Indexing is primarily IO driven. Tuning indexing tends to focus on the search index (Solr or Elasticsearch). Problems
with indexing running too slow will often manifest as Kafka not commiting in time. This results from the indexing
backing up so that it fails batches and the poll interval in Kafka is exceeded. The issue is actually with the index
rather than Kafka.

You can modify many performance tuning properties for indexing using Ambari or Storm Flux. Modifying properties
using Ambari is simple and can be performed by any user. However, you should have knowledge of Storm Flux usage
and formatting before attempting to modify any Flux files.

The indexing properties materialize as follows:

Ambari UI -> properties file -> Flux -> Storm

6

	Contents
	Component Tuning Variables Overview
	Kafka Partitions
	Storm Tuning
	Enrichment Tuning
	Index Tuning

