
HCP Adding New Telemetry Data Source 1

Adding a New Telemetry Source
Date of Publish: 2018-3-18

https://docs.hortonworks.com

https://docs.hortonworks.com

Contents

Prerequisites to Adding a New Telemetry Data Source....................................... 3

Creating Parsers... 4
Create a Parser for Your New Data Source by Using the Management UI.. 4
Create a Parser for Your New Data Source by Using the CLI... 8
Create Multiple Parsers on One Topology.. 14
Chain Parsers.. 14
Tune Parser Storm Parameters by Using the Management UI..20
Telemetry Data Source Parsers Bundled with HCP.. 20

Snort.. 20
Cisco Adaptive Security Appliance... 21
Bro...21
ArcSight CEF..21
FireEye.. 21
YAF (NetFlow)...21
Indexing...22
pcap... 22

Configuring Indexing... 23
Understanding Indexing..23
Default Configuration... 24
Solr.. 24

Create a New Solr Index Collection.. 24
Elasticsearch..25

Create a New Elasticsearch Index Template... 25
Upgrading to Elasticsearch 5.6.x..25
Add X-Pack Extension to Elasticsearch...29

HDFS...31
Index HDFS Tuning... 31
Turn Off HDFS Writer...31

Troubleshooting Indexing...32
Understanding Global Configuration... 32
Create Global Configurations...33
Verify That Events Are Indexed..36

Streaming Data... 36
Stream Data Using NiFi... 37

HCP Adding New Telemetry Data Source Prerequisites to Adding a New Telemetry Data Source

Prerequisites to Adding a New Telemetry Data Source

Part of customizing your Hortonworks Cybersecurity Platform (HCP) configuration is adding a new telemetry data
source. Before HCP can process the information from your new telemetry data source, you must use one of the
telemetry data collectors to ingest the information into the telemetry ingest buffer. Information moves from the data
ingest buffer into the Apache Metron real-time processing security engine, where it is parsed, enriched, triaged, and
indexed. Finally, certain telemetry events can initiate alerts that can be assessed in the Metron dashboard.

Before you add a new telemetry data source, you must ensure that your system set up meets the Hortonworks
Cybersecurity Platform (HCP) requirements.

• Ensure that the new sensor is installed and set up.
• Ensure that Apache NiFi or another telemetry data collection tool can feed the telemetry data source events into an

Apache Kafka topic.
• Determine your requirements.

For example, you might decide that you need to meet the following requirements:

• Proxy events from the data source logs must be ingested in real-time.
• Proxy logs must be parsed into a standardized JSON structure suitable for analysis by Metron.
• In real-time, new data source proxy events must be enriched so that the domain names contain the IP

information.
• In real-time, the IP within the proxy event must be checked against for threat intelligence feeds.
• If there is a threat intelligence hit, an alert must be raised.
• The SOC analyst must be able to view new telemetry events and alerts from the new data source.

• Set HCP values.

When you install HCP, you set up several hosts. Note the locations of these hosts, their port numbers, and the
Metron version for future use:

KAFKA_HOST The host on which a Kafka broker is installed.

ZOOKEEPER_HOST The host on which an Apache ZooKeeper server is
installed.

PROBE_HOST The host on which your sensor probes are installed. If
you do not have any sensors installed, choose the host
on which an Apache Storm supervisor is running.

NIFI_HOST The host on which you install Apache NiFi.

HOST_WITH_ENRICHMENT_TAG The host in your inventory hosts file that you put in the
"enrichment" group.

SEARCH_HOST The host on which Amazon Elasticsearch or Apache
Solr is running. This is the host in your inventory hosts
file that you put in the "search" group. Pick one of the
search hosts.

SEARCH_HOST_PORT The port of the search host where indexing is
configured. (For example, 9300)

METRON_UI_HOST The host on which your Metron UI web application is
running. This is the host in your inventory hosts file
that you put in the "web" group.

3

HCP Adding New Telemetry Data Source Creating Parsers

METRON_VERSION The release of the Metron binaries you are working
with. (For example, HCP-1.6.1.0)

Creating Parsers

Parsers transform raw data into JSON messages suitable for downstream enrichment and indexing by HCP. There is
one parser for each data source and HCP pipes the information to the Enrichment/Threat Intelligence topology.

You can transform the field output in the JSON messages into information and formats that make the output more
useful. For example, you can change the timestamp field output from GMT to your timezone.

You must make two decisions before you parse a new data source:

• Type of parser to use

HCP supports three types of parsers:

Built-in HCP features several built-in parsers that support many
common security devices.

General Purpose HCP supports three general purpose parsers: Grok,
CSV, and JSON map.

• Grok - Regular expression-based parser extracts
HCP values; ideal for ingesting structured or
semi-structured logs that are well understood and
telemetries with lower volumes of traffic

• CSV - Maps CSV columns to HCP events
• JSON Map - Maps JSON documents into HCP

events

Java A Java parser is appropriate for a telemetry type that is
complex to parse, with high volumes of traffic.

• How to parse

HCP enables you to parse a new data source and transform data fields using the HCP Management module or the
command line interface

Create a Parser for Your New Data Source by Using the Management UI
To add a new data source, you must create a parser that transforms the data source data into JSON messages suitable
for downstream enrichment and indexing by HCP. Although HCP supports both Java and general-purpose parsers,
you can learn the general process of creating parsers by viewing an example using the general-purpose parser Grok.

Procedure

1. Determine the format of the new data source’s log entries, so you can parse them:

a) Use ssh to access the host for the new data source.
b) View the different log files and determine which to parse:

sudo su -
cd /var/log/$NEW_DATASOURCE
ls

The file you want is typically the access.log, but your data source might use a different name.

4

HCP Adding New Telemetry Data Source Creating Parsers

c) Generate entries for the log that needs to be parsed so that you can see the format of the entries:

timestamp | time elapsed | remotehost | code/status | bytes | method |
 URL rfc931 peerstatus/peerhost | type

2. Create a Grok statement file that defines the Grok expression for the log type you identified in Step 1.

Important: You must include timestamp in the Grok expression to ensure that the system uses the event
time rather than the system time.

Refer to the Grok documentation for additional details.

3. Launch the HCP Management module from $METRON_MANAGEMENT_UI_HOST:4200, or follow these
steps:

a) From the Ambari Dashboard, click Metron.
b) Select the Quick Links.
c) Select Metron Management UI.

4. Launch the Management UI.

5. Under Operations, click Sensors.

6. Click

to view the new sensor panel:

5

HCP Adding New Telemetry Data Source Creating Parsers

6

HCP Adding New Telemetry Data Source Creating Parsers

7. In the NAME field, enter the name of the new sensor.

8. In the Kafka Type field, enter the name of the new sensor.

9. In the Parser Type field, choose the type of parser for the new sensor (in this example task, Grok).

Don't worry if you see "No Matching Kafka Topic." The Kafka topic will be created automatically when you save.

10. Enter a Grok statement for the new parser:

a) In the Grok Statement box, click

(expand window) to display the Grok validator panel:

b) For SAMPLE, enter a sample log entry for the data source.
c) For STATEMENT, enter the Grok statement you created for the data source.

The Management UI automatically completes partial words in your Grok statement as you enter them.

Note: You must include timestamp to ensure that the system uses the event time rather than the
system time.

d) Click TEST.

If the validator finds an error, it displays the error information; otherwise, the valid mapping displays in the
PREVIEW field.

Consider repeating substeps a through c to ensure that your Grok statement is valid for all sensor logs.
e) Click SAVE to save the sensor information and add it to the list of sensors.

11. Click the pencil icon to edit the sensor you just added.

12. Scroll down to the Parser Config section.

7

HCP Adding New Telemetry Data Source Creating Parsers

13. In the first open field, indicated by enter field, enter timestampField.

14. In next open field, enter timestamp.

15. Click Save.

16. Continue to build and test the Grok statement until you have entries for each element in the log entry.

Results
This new data source processor topology ingests from the $Kafka topic and then parses the event with the HCP
Grok framework using the Grok pattern. The result is a standard JSON Metron structure that then is added to the
"enrichment" Kafka topic for further processing.

Create a Parser for Your New Data Source by Using the CLI
As an alternative to using the HCP Management module to parse your new data source, you can use the CLI.

Procedure

1. Determine the format of the new data source’s log entries, so you can parse them:

a) Use ssh to access the host for the new data source.
b) Look at the different log files and determine which to parse:

sudo su -
cd /var/log/$NEW_DATASOURCE

8

HCP Adding New Telemetry Data Source Creating Parsers

ls

The file you want is typically the access.log, but your data source might use a different name.
c) Generate entries for the log that needs to be parsed so that you can see the format of the entries:

timestamp | time elapsed | remotehost | code/status | bytes | method |
 URL rfc931 peerstatus/peerhost | type

2. Create a Kafka topic for the new data source:

a) Log in to $KAFKA_HOST as root.
b) Create a Kafka topic with the same name as the new data source:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh
--zookeeper $ZOOKEEPER_HOST:2181 --create --topic $NEW_DATASOURCE
--partitions 1 --replication-factor 1

c) Verify your new topic by listing the Kafka topics:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper
 $ZOOKEEPER_HOST:2181 --list

3. Create a Grok statement file that defines the Grok expression for the log type you identified in Step 1.

Note: You must include timestamp to ensure that the system uses the event time rather than the system
time. For information about setting the grok parser to use the current year, see step 5c.

Refer to the Grok documentation for additional details.

4. Save the Grok pattern and load it into Hadoop Distributed File System (HDFS) in a named location:

a) Create a local file for the new data source:

touch /tmp/$DATASOURCE

b) Open $DATASOURCE and add the Grok pattern defined in Step 3:

vi /tmp/$DATASOURCE

c) Put the $DATASOURCE file into the HDFS directory where Metron stores its Grok parsers.

Existing Grok parsers that ship with HCP are staged under /apps/metron/patterns:

su - hdfs
hadoop fs -rmr /apps/metron/patterns/$DATASOURCE
hdfs dfs -put /tmp/$DATASOURCE /apps/metron/patterns/

5. Define a parser configuration for the Metron Parsing Topology.

a) As root, log into the host with HCP installed:

ssh $HCP_HOST

b) Create a $DATASOURCE parser configuration file at $METRON_HOME/config/zookeeper/parsers/
$DATASOURCE.json:

{
"parserClassName": "org.apache.metron.parsers.GrokParser",
"filterClassName:": null,
"sensorTopic": "$DATASOURCE",
"outputTopic": null,
"errorTopic": null,
"readMetadata" : true,
"mergeMetadata" : true,
"numWorkers": null,

9

HCP Adding New Telemetry Data Source Creating Parsers

"numAckers": null,
"spoutParallelism": 1,
"spoutNumTasks": 1,
"parserParallelism": 1,
"parserNumTasks": 1,
"errorWriterParallism": 1,
"errorWriterNumTasks": 1,
"spoutConfig:" :{},
"securityProtocol:" null,
"stormConfig": {},
"parserConfig": {
 "grokPath": "/apps/metron/patterns/$DATASOURCE",
 "patternLabel": "$DATASOURCE_DELIMITED",
 "timestampField": "timestamp"
},
"fieldTransformations" : [
 {
 "transformation" : "STELLAR"
 ,"output" : ["full_hostname", "domain_without_subdomains"]
 ,"config" : {
 "full_hostname" : "URL_TO_HOST(url)"
 ,"domain_without_subdomains" :
 "DOMAIN_REMOVE_SUBDOMAINS(full_hostname)"
 }
 }
]
}

parserClassName The name of the parser's class in the .jar file.

filterClassName The filter to use.

This can be the fully qualified
name of a class that implements the
org.apache.metron.parsers.interfaces.MessageFilter<JSONObject>
interface. Message filters enable you to ignore
a set of messages by using custom logic. The
existing implementation is STELLAR. The Stellar
implementation enables you to apply a Stellar
statement that returns a Boolean, which passes every
message for which the statement returns true . The
stellar statement is specified by the filter.query
property in the parserConfig. For example, the
following Stellar filter includes messages that contain
a field1 field:

{
 "filterClassName" : "STELLAR"
 ,"parserConfig" : {
 "filter.query" :
 "exists(field1)"
 }
 }

sensorTopic The Kafka topic on which the telemetry is being
streamed. If the topic is prefixed and suffixed by
/ then it is assumed to be a regex and will match
any topic matching the pattern (for example, /bro.*/
matches bro_cust0, bro_cust1 and bro_cust2).

10

HCP Adding New Telemetry Data Source Creating Parsers

readMetadata A Boolean indicating whether to read metadata and
make it available to field transformations (false by
default).

There are two types of metadata supported in HCP:

• Environmental metadata about the whole system

For example, if you have multiple Kafka topics
being processed by one parser, you might want to
tag the messages with the Kafka topic.

• Custom metadata from an individual telemetry
source that you might want to use within Metron

mergeMetadata A Boolean indicating whether to merge metadata
with the message (false by default).

If this property is set to true, then every
metadata field becomes part of the messages
and, consequently, is also available for field
transformations.

numWorkers The number of workers to use in the topology
(default is the storm default of 1).

numAckers The number of acker executors to use in the topology
(default is the Storm default of 1).

spoutParallelism The Kafka spout parallelism (default to 1). You
can override the default on the command line and if
there are multiple sensors they should be in a comma
separated list in the same order as the sensors.

spoutNumTasks The number of tasks for the spout (default to 1). You
can override the default on the command line, and if
there are multiple sensors they should be in a comma
separated list in the same order as the sensors.

parserParallelism The parser bolt parallelism (default to 1). This can
be overridden on the command line , and if there are
multiple sensors should be in a comma separated list
in the same order as the sensors.

parserNumTasks The number of tasks for the parser bolt (default
to 1). If there are multiple sensors, the last one's
configuration will be used. This can be overridden on
the command line.

errorWriterParallelism The error writer bolt parallelism (default to 1). This
can be overridden on the command line.

errorWriterNumTasks The number of tasks for the error writer bolt (default
to 1). This can be overridden on the command line.

spoutConfig A map representing a custom spout configuration
(this is a map). If there are multiple sensors, the
configs will be merged with the last specified taking

11

HCP Adding New Telemetry Data Source Creating Parsers

precedence. This can be overridden on the command
line.

securityProtocol The security protocol to use for reading from
Kafka (this is a string). This can be overridden on
the command line and also specified in the spout
configuration via the security.protocol key. If both
are specified, then they are merged and the CLI will
take precedence. If multiple sensors are used, any non
"PLAINTEXT" value will be used.

stormConfig The storm configuration to use (this is a map). This
can be overridden on the command line. If both are
specified, they are merged with CLI properties taking
precedence.

cacheConfig Cache config for stellar field transformations. This
configures a least frequently used cache. This is
a map with the following keys. If not explicitly
configured (the default), then no cache will be used.

• • stellar.cache.maxSize - The maximum number
of elements in the cache. Default is to not use
a cache.

• stellar.cache.maxTimeRetain - The maximum
amount of time an element is kept in the cache
(in minutes). Default is to not use a cache.

grokPath The path in HDFS (or in the Jar) to the grok
statement. By default attempts to load from HDFS,
then falls back to the classpath, and finally throws an
exception if unable to load a pattern.

patternLabel The top-level pattern of the Grok file.

parserConfig A JSON map defining the parser implementation
configuration.

This configuration file also includes batch sizing
and timeout settings for writer configuration. If you
do not define these properties, the system uses their
default values.

• batchSize - Number of records to batch together
before sending to the writer. Default is 15.

• batchTimeout - Optional. The timeout after which
a batch is flushed even if the batchSize is not met.

 "parserConfig" {
 "batchSize": 15,
 "batchTimeout" : 0
 },

In addition, you can override settings for the kafka
writer within the parserConfig file.

12

HCP Adding New Telemetry Data Source Creating Parsers

fieldTransformations An array of complex objects representing the
transformations to be performed on the message
generated from the parser before writing to the Kafka
topic.

In this example, the Grok parser is designed to
extract the URL, but the only information that you
need is the domain (or even the domain without
subdomains). To obtain this, you can use the Stellar
Field Transformation (under the fieldTransformations
element). The Stellar Field Transformation enables
you to use the Stellar DSL (Domain Specific
Language) to define extra transformations to be
performed on the messages flowing through the
topology.

c) If you want to set the grok parser to use the current year in its timestamp, add the following information to the
transformations function in the datasource json file:

"fieldTransformations" : [
 {
 "transformation" : "STELLAR"
 ,"output" : ["timestamp"]
 ,"config" : {
 "timestamp”: “TO_EPOCH_TIMESTAMP(FORMAT(‘%s %d’,
 timestamp_str , YEAR()), ‘MMM dd HH:mm:ss:yyyy’)”

For example, the datasource json file would change to:

"fieldTransformations" : [
 {
 "transformation" : "STELLAR"
 ,"output" : ["full_hostname", "domain_without_subdomains" ,
 "timestamp"]
 ,"config" : {
 "full_hostname" : "URL_TO_HOST(url)"
 ,"domain_without_subdomains" :
 ,”timestamp”: “TO_EPOCH_TIMESTAMP(FORMAT(‘%s %d’,
 timestamp_str , YEAR()), ‘MMM dd HH:mm:ss:yyyy’)”

"DOMAIN_REMOVE_SUBDOMAINS(full_hostname)"

d) Use the following script to upload configurations to Apache ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh --mode PUSH -i $METRON_HOME/config/
zookeeper -z $ZOOKEEPER_HOST:2181

6. Deploy the new parser topology to the cluster:

If you want to deploy multiple parsers on one topology, refer to Creating Multiple Parsers on One Topology.

a) Log in to the host that has Metron installed as root user.
b) Deploy the new parser topology:

$METRON_HOME/bin/start_parser_topology.sh -k $KAFKA_HOST:6667 -z
 $ZOOKEEPER_HOST:2181 -s $DATASOURCE

c) Use the Apache Storm UI to verify that the new topology is listed and that it has no errors.

This new data source processor topology ingests from the $DATASOURCE Kafka topic that you created earlier
and then parses the event with the HCP Grok framework using the Grok pattern defined earlier.

13

HCP Adding New Telemetry Data Source Creating Parsers

Create Multiple Parsers on One Topology
You can specify multiple parsers to run on one aggregated Storm topology to conserve resources. However, for
performance reasons, you should group multiple parsers that have similar velocity or data flow and perform functions
with similar complexity.

Procedure

1. Use the CLI to create multiple parsers that you want to specify on a single Storm topology.

Refer to Create a Parser for Your New Data Source by Using the CLI.

2. Deploy the new parser topologies to the cluster:

a) Log in to the host that has Metron installed as root user.
b) Deploy the new parsers you want to specify onto one topology:

$METRON_HOME/bin/start_parser_topology.sh -k $KAFKA_HOST:6667 -z
 $ZOOKEEPER_HOST:2181 -s $DATASOURCE_ONE,$DATASOURCE_TWO

Note: If your parser name contains a hyphen, you must enclose the parser name in single quotes (').
If you do not enclose a hyphenated parser name in single quotes, Ambari will assume each word or
character in the hyphenated parser name is a separate parser. For example, Ambari interprets sapower-
windows-x-json,bro as seven parsers instead of one. Even the hyphen is considered a parser.

For clarity and consistency, we recommend enclosing all parser names in single quotes when you
deploy the new parsers onto a topology.

For example:

$METRON_HOME/bin/start_parser_topology.sh -z $ZOOKEEPER_HOST:2181 -s
 'bro-source1','yaf'

c) If you want to override parser parameters, you can add the parameter and its value to the deployment
command.

For a list of parser parameters, see Create a Parser for Your New Data Source by Using the CLI.

For example:

$METRON_HOME/bin/start_parser_topology.sh -z $ZOOKEEPER_HOST:2181
 -s 'bro-source1','yaf' -spoutNumTasks 2,3 -parserParallelism 2 -
parserNumTasks 5

This command will create a topology with the following parameters:

• Bro - spout number of tasks = 2
• YAF - spout number of tasks = 3
• YAF - parser parallelism = 2
• YAF - parser number of tasks = 5

d) Use the Apache Storm UI to verify that the new topology is listed and that it has no errors.

This new data source processor topology ingests from each $DATASOURCE Kafka topic that you created earlier
and then parses the event with the HCP Grok framework using the Grok pattern defined earlier.

Chain Parsers
Many sensors contain metadata that should be ingested along with the data or contain different sensor types that need
to be parsed separately. You can chain multiple parsers for a sensor to individually address the different types of
information in the sensor. For example, you can parse multiple components in a Syslog log file such as timestamp,

14

HCP Adding New Telemetry Data Source Creating Parsers

message type, and message payload, to differentiate the information contained in the log file. To chain parsers, you
need an enveloping parser and sub-parsers for one or more sensor types.
For ease of explanation, the following steps use the Grok parser format example provided in Step 1c.

Procedure

1. Before editing configurations, pull the configurations from ZooKeeper locally:

$METRON_HOME/bin/zk_load_configs.sh --mode PULL -z $ZOOKEEPER -o
 $METRON_HOME/config/zookeeper/ -f

For ease of explanation, steps in this topic use the Grok parser format example provided in Step 2c.

2. Determine the format of the new data source’s log entries, so you can parse them.

3. Create a statement that defines the pattern of the parser expression for the log type for your enveloping parser.

For ease of explanation, we assume that we are using a Grok topology. Refer to the Grok documentation for
additional details.

4. Save the Grok statement and load it into Hadoop Distributed File System (HDFS) in a named location:

a) Create a local file for the new data source:

touch /tmp/$ENVELOPE_DATASOURCE

b) Open $ENVELOPE_DATASOURCE and add the Grok statement defined in Step 3:

vi /tmp/$ENVELOPE_DATASOURCE

c) Put the $ENVELOPE_DATASOURCE file into the HDFS directory where Metron stores its Grok parsers.

Existing Grok parsers that ship with HCP are staged under /apps/metron/patterns:

su - hdfs
hadoop fs -rmr /apps/metron/patterns/$ENVELOPE_DATASOURCE
hdfs dfs -put /tmp/$ENVELOPE_DATASOURCE /apps/metron/patterns/

5. Define the enveloping parser configuration.

a) As root, log into the host with HCP installed:

ssh $HCP_HOST

b) Create a $DATASOURCE envelope parser configuration file at $METRON_HOME/config/zookeeper/
parsers/$ENVELOPE_DATASOURCE.json:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper $ZOOKEEPER
 --create --topic $ENVELOPE_DATASOURCE --partitions 1 --replication-
factor 1

c) Verify your new topic by listing the Kafka topics:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper $ZOOKEEPER
 --list

d) Populate the $ENVELOPE_PARSER Kafka topic with the following:

{
 "parserClassName": "org.apache.metron.parsers.GrokParser",
 "sensorTopic": "$ENVELOPE_DATASOURCE",
 "parserConfig": {
 "grokPath": "/apps/metron/patterns/$ENVELOPE_DATASOURCE",
 "batchSize" : 1,
 "patternLabel": "$DATASOURCE_DELIMITED",
 "timestampField": "timestamp"

15

HCP Adding New Telemetry Data Source Creating Parsers

 "timeFields" : ["timestamp"],
 "dateFormat" : "MMM dd yyyy HH:mm:ss",
 "kafka.topicField" : "logical_source_type"
}

The important parameters to set for this parser are the following:

parserClassName The name of the parser's class in the .jar file.

sensorTopic The Kafka topic on which the telemetry is being
streamed. If the topic is prefixed and suffixed by
/ then it is assumed to be a regex and will match
any topic matching the pattern (for example, /bro.*/
matches bro_cust0, bro_cust1 and bro_cust2).

parserConfig A JSON map defining the parser implementation
configuration.

For an envelope parser, this parameter specifies that
the parser will send messages to the topic specified
in the logical_source_type field. If the field does not
exist, then the message is not sent.

EXAMPLE for Envelope Parser

The following is an example of an envelope parser called pix_syslog_router configured to:

• Parse the timestamp field
• Parse the payload into a field called data (messageField" : "data)
• Parse the tag into a field called pix_type (input": "pix_type)
• Route the enveloped message to the appropriate Kafka topic based on the tag. In this case, it's called

logical_source_type.

The envelope parser will send output to two sub-parsers:

• cisco-6-302 - Connection creation and teardown messages, for example, Built UDP connection for faddr
198.207.223.240/53337 gaddr 10.0.0.187/53 laddr 192.168.0.2/53

• cisco-5-304 - URL access events, for example 192.168.0.2 Accessed URL 66.102.9.99:/

In order for this parser configuration to work, you must create a file called cisco_patterns and populate it with the
following grok expressions:

CISCO_ACTION Built|Teardown|Deny|Denied|denied|requested|permitted|denied
 by ACL|discarded|est-allowed|Dropping|created|deleted
CISCO_REASON Duplicate TCP SYN|Failed to locate egress interface|Invalid
 transport field|No matching connection|DNS Response|DNS Query|(?:
%{WORD}\s*)*
CISCO_DIRECTION Inbound|inbound|Outbound|outbound
CISCOFW302020_302021 %{CISCO_ACTION:action}(?:
%{CISCO_DIRECTION:direction})? %{WORD:protocol} connection
 %{GREEDYDATA:ignore} faddr %{IP:ip_dst_addr}/%{INT:icmp_seq_num}(?:
\(%{DATA:fwuser}\))? gaddr %{IP:ip_src_xlated}/%{INT:icmp_code_xlated}
 laddr %{IP:ip_src_addr}/%{INT:icmp_code}(\(%{DATA:user}\))?
ACCESSED %{URIHOST:ip_src_addr} Accessed URL %{IP:ip_dst_addr}:
%{URIPATHPARAM:uri_path}
CISCO_PIX %{GREEDYDATA:timestamp}: %PIX-%{NOTSPACE:pix_type}:
 %{GREEDYDATA:data}

Place the file at /tmp/cisco_patterns in HDFS by using:

hadoop fs -put ~/cisco_patterns /tmp

16

HCP Adding New Telemetry Data Source Creating Parsers

Parser Configuration

{
 "parserClassName" : "org.apache.metron.parsers.GrokParser"
 ,"sensorTopic" : "pix_syslog_router"
 , "parserConfig": {
 "grokPath": "/tmp/cisco_patterns",
 "batchSize" : 1,
 "patternLabel": "CISCO_PIX",
 "timestampField": "timestamp",
 "timeFields" : ["timestamp"],
 "dateFormat" : "MMM dd yyyy HH:mm:ss",
 "kafka.topicField" : "logical_source_type"
 }
 ,"fieldTransformations" : [
 {
 "transformation" : "REGEX_SELECT"
 ,"input" : "pix_type"
 ,"output" : "logical_source_type"
 ,"config" : {
 "cisco-6-302" : "^6-302.*",
 "cisco-5-304" : "^5-304.*"
 }
 }
]
}

fieldTransformations An array of complex objects representing the
transformations to be performed on the message
generated from the parser before writing to the Kafka
topic.

For this example, this parameter includes the following
options:

• transformation - The REGEX_SELECT field
transformation sets the logical_source_type field
based on the value of the input value.

• input - Determines the subparser type.
• output - The output of the field transform.
• config - The name of the sub-parsers and the

REGEX that matches them.

6. Define one or more sub-parser configurations.

a) As root, log into the host with HCP installed:

ssh $HCP_HOST

b) Create a $DATASOURCE sub-parser configuration file at $METRON_HOME/config/zookeeper/parsers/
$SUBPARSER_DATASOURCE.json:

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper $ZOOKEEPER
 --create --topic $SUBPARSER_DATASOURCE --partitions 1 --replication-
factor 1

c) Populate the $SUBPARSER_DATASOURCE.json file with the following:

{
 "parserClassName": "org.apache.metron.parsers.GrokParser",
 "sensorTopic": "$SUBPARSER_DATASOURCE",

17

HCP Adding New Telemetry Data Source Creating Parsers

 "rawMessageStrategy" : "ENVELOPE"
 ,"rawMessageStrategyConfig" : {
 "messageField" : "data",
 "metadataPrefix" : ""
 "parserConfig": {
 "grokPath": "/apps/metron/patterns/$SUBPARSER_DATASOURCE",
 "batchSize" : 1,
 "patternLabel": "$DATASOURCE_DELIMITED",
 "timestampField": "timestamp"
 "timeFields" : ["timestamp"],
 "dateFormat" : "MMM dd yyyy HH:mm:ss",
 "kafka.topicField" : "logical_source_type"
 }
}

The important parameters to set for this parser are the following:

parserClassName The name of the parser's class in the .jar file.

sensorTopic The Kafka topic on which the telemetry is being
streamed. If the topic is prefixed and suffixed by
/ then it is assumed to be a regex and will match
any topic matching the pattern (for example, /bro.*/
matches bro_cust0, bro_cust1 and bro_cust2).

rawMessageStrategyConfig This is a strategy that indicates how to read data and
metadata. The strategies supported are:

• DEFAULT - Data is read directly from the Kafka
record value and metadata, if any, is read from
the Lafka record key. This strategy defaults to not
reading metadata and not merging metadata.

• ENVELOPE - Data from Kafka record value is
presumed to be a JSON blob. One of these fields
must contain the raw data to pass to the parser.
All other fields should be considered metadata.
The field containing the raw data is specified
in rawMessageStrategyConfig. Data held in
the Kafka key as well as the non-data fields in
the JSON blob passed into the Kafka value are
considered metadata. Note that the exception to
this is that any original_string field is inherited
from the envelope data so that the original string
contains the envelope data. If you do not prefer
this behavior, remove this field from the envelope
data.

rawMessageStrategyConfig The configuration (a map) for the
rawMessageStrategy. Available configurations are
strategy dependent:

• DEFAULT - metadataPrefix defines the key
prefix for metadata (default is metron.metadata).

• ENVELOPE - metadataPrefix defines the key
prefix for metadata (default is metron.metadata)

messageField defines the field from the envelope
to use as the data. All other fields are considered
metadata.

18

HCP Adding New Telemetry Data Source Creating Parsers

parserConfig A JSON map defining the parser implementation
configuration.

For a chained parser, this parameter specifies that the
parser will send messages to the topic specified in the
logical_source_type field. If the field does not exist,
then the message is not sent.

This parameter also includes batch sizing and timeout
settings for writer configuration. If you do not define
these properties, the system uses their default values.

• grokPath - The path in HDFS (or in the Jar) to the
grok statement. By default attempts to load from
HDFS, then falls back to the classpath, and finally
throws an exception if unable to load a pattern..

• batchSize - Number of records to batch together
before sending to the writer. Default is 15.

• patternLabel - The name of the Grok statement
that defines the pattern of the Grok expression.

• kafka.topicField - Specifies the topic as the value
of a particular field.

This field enables the routing capabilities
necessary for handling enveloped date. sIf this
value is unpopulated, the message is dropped.

EXAMPLE for Sub-Parser

The following is an example of a parser called cisco-6-302 configured to append to the existing fields from the
pix_syslog_router the sensor specific fields based on the tag type.

{
 "parserClassName" : "org.apache.metron.parsers.GrokParser"
 ,"sensorTopic" : "cisco-6-302"
 ,"rawMessageStrategy" : "ENVELOPE"
 ,"rawMessageStrategyConfig" : {
 "messageField" : "data",
 "metadataPrefix" : ""
 }
 , "parserConfig": {
 "grokPath": "/tmp/cisco_patterns",
 "batchSize" : 1,
 "patternLabel": "CISCOFW302020_302021"
 }
}

7. Use the following script to upload configurations to Apache ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh --mode PUSH -i $METRON_HOME/config/
zookeeper -z $ZOOKEEPER

8. Deploy the new parser topology to the cluster:

a) Log in to the host that has Metron installed as root user.
b) Deploy the new parser topology:

$METRON_HOME/bin/start_parser_topology.sh -k $KAFKA -z $ZOOKEEPER -s
 $DATASOURCE

c) Use the Apache Storm UI to verify that the new topology is listed and that it has no errors.

19

HCP Adding New Telemetry Data Source Creating Parsers

This new data source processor topology ingests from the $DATASOURCE Kafka topic that you created earlier
and then parses the event with the HCP Grok framework using the Grok pattern defined earlier.

Tune Parser Storm Parameters by Using the Management UI
You can tune some of your Storm parameters using the Management UI.

Procedure

1. From the list of sensors in the main window, select your new sensor.

2. Click the pencil icon in the toolbar.

The Management UI displays the sensor panel for the new sensor.

Note: Your sensor must be running and producing data before you can add tuning information.

3. In the STORM SETTINGS box, click

(expand window).

The Management UI displays the Configure Storm Settings panel.

The Sample field displays a parsed version of a sample message from the sensor. The Management UI tests your
transformations against these parsed messages.

4. You can tune the following Storm parameters:

Spout Parallelism The Kafka spout parallelism (default to 1).

Spout Num Tasks The number of tasks for the spout (default to 1)

Parser Parallelism The parser bolt parallelism (default to 1).

Parser Num Tasks The number of tasks for the parser bolt (default to 1).

Error Writer Parallelism The error writer bolt parallelism (default to 1).

Error Writer Num Tasks The number of tasks for the error writer bolt (default to
1).

Spout Config A map representing a custom spout configuration.

Storm Config The Storm configuration to use (this is a map). If both
a specified, they are merged with the CLI properties
taking precedence.

5. Click SAVE.

Telemetry Data Source Parsers Bundled with HCP
Telemetry data sources are sensors that provide raw events that are captured and pushed into Apache Kafka topics to
be ingested in Hortonworks Cybersecurity Platform (HCP) powered by Metron. HCP features several built -in parsers
that support some common security devices.

Snort
Snort is one of the telemetry data source parsers that are bundled in Hortonworks Cybersecurity Platform (HCP).

20

HCP Adding New Telemetry Data Source Creating Parsers

Snort is a network intrusion prevention systems (NIPS). Snort monitors network traffic and generates alerts based on
signatures from community rules. Hortonworks Cybersecurity Platform (HCP) sends the output of the packet capture
probe to Snort. HCP uses the kafka-console-producer to send these alerts to a Kafka topic. After the Kafka topic
receives Snort alerts, they are retrieved by the parsing topology in Storm.

By default, the Snort parser uses ZoneId.systemDefault() as the source time zone for the incoming data and MM/
dd/yy-HH:mm:ss.SSSSSS as the default date format. Valid time zones are determined according to the Java
ZoneId.getAvailableZoneIds() values. DateFormats should match options at https://docs.oracle.com/javase/8/docs/
api/java/time/format/DateTimeFormatter.html.

Following is a sample configuration with dateFormat and timeZone explicitly set in the parser configuration file:

"parserConfig": {
"dateFormat" : "MM/dd/yy-HH:mm:ss.SSSSSS",
"timeZone" : "America/New_York"
}

Cisco Adaptive Security Appliance
Cisco Adaptive Security Appliance (ASA) is one of the telemetry data source parsers that are bundled in Hortonworks
Cybersecurity Platform (HCP).

Cisco Adaptive Security Appliance (ASA) Software is the core operating system for the Cisco ASA Family. It
delivers firewall capabilities for ASA devices in an array of form factors - standalone appliances, blades, and virtual
appliances - for any distributed network environment.

Bro
The Bro ingest data source is a custom Bro plug-in that pushes DPI (deep packet inspection) metadata into
Hortonworks Cybersecurity Platform (HCP).

Bro is primarily used as a DPI metadata generator. HCP does not currently use the IDS alert features of Bro. HCP
integrates with Bro by way of a Bro plug-in, and does not require recompiling of Bro code.

The Bro plug-in formats Bro output messages into JSON and puts them into a Kafka topic. The JSON message output
by the Bro plug-in is parsed by the HCP Bro parsing topology.

DPI metadata is not a replacement for packet capture (pcap), but rather a complement. Extracting DPI metadata (API
Layer 7 visibility) is expensive, and therefore is performed on only selected protocols. You should enable DPI for
HTTP and DNS protocols so that, while the pcap probe records every single packets it sees on the wire, the DPI
metadata is extracted only for a subset of these packets.

ArcSight CEF
Common Event Format (CEF) is an extensible, text-based format designed to support multiple device types by
offering the most relevant information.

The Common Event Format (CEF) standard format, developed by ArcSight, enables vendors and their customers to
quickly integrate their product information into ESM.

FireEye
FireEye, Inc. provides products and services to protect against advanced cyber threats, such as advanced persistent
threats and spear phishing.

YAF (NetFlow)
The YAF (yet another flowmeter) data source ingests NetFlow data into HCP.

Not everyone wants to ingest pcap data due to space constraints and the load exerted on all infrastructure components.
NetFlow, while not a substitute for pcap, is a high-level summary of network flows that are contained in the pcap
files. If you do not want to ingest pcap, then you should at least enable NetFlow. HCP uses YAF to generate IPFIX

21

HCP Adding New Telemetry Data Source Creating Parsers

(NetFlow) data from the HCP pcap probe, so the output of the probe is IPFIX instead of raw packets. If NetFlow is
generated instead of pcap, then the NetFlow data goes to the generic parsing topology instead of the pcap topology.

Indexing
The Indexing topology takes data ingested into Kafka from enriched topologies and sends the data to an indexing bolt
configured to write to HDFS and either Elasticsearch or Solr.

Indices are written in batch and the batch size is specified in the enrichment configuration file by the batchSize
parameter. This configuration is variable by sensor type.

Errors during indexing are sent to a Kafka topic named indexing_error.

The following figure illustrates the data flow between Kafka, the Indexing topology, and HDFS:

pcap
Packet capture (pcap) is a performant C++ probe that captures network packets and streams them into Kafka. A
pcap Storm topology then streams them into HCP. The purpose of including pcap source with HCP is to provide a
middle tier in which to negotiate retrieving packet capture data that flows into HCP. This packet data is of a form that
libpcap-based tools can read.

The network packet capture probe is designed to capture raw network packets and bulk-load them into Kafka. Kafka
files are then retrieved by the pcap Storm topology and bulk-loaded into Hadoop Distributed File System (HDFS).
Each file is stored in HDFS as a sequence file.

HCP provides three methods to access the pcap data:

• Rest API
• pycapa
• DPDK

There can be multiple probes into the same Kafka topic. The recommended hardware for the probe is an Intel family
of network adapters that are supportable by Data Plane Development Kit (DPDK).

22

HCP Adding New Telemetry Data Source Configuring Indexing

Configuring Indexing

You configure an indexing topology to store enriched data in one or more supported indexes. Configuration includes
understanding supported indexes and the default configuration, specifying index parameters, tuning indexes, turning
off HDFS writer, and, if necessary, seeking support.

Understanding Indexing
The indexing topology is a topology dedicated to taking the data from a topology that has been enriched and storing
the data in one or more supported indices. More specifically, the enriched data is ingested into Kafka, written in an
indexing batch or bolt with a specified size, and sent to one or more specified indices. The configuration is intended
to configure the indexing used for a given sensor type (for example, snort).

The following figure illustrates how the raw topology data is ingested, parsed, enriched, and finally delivered to a
specified index:

Currently, Hortonworks Cybersecurity Platform (HCP) supports the following indices:

• Solr
• Elasticsearch
• HDFS under /apps/metron/enrichment/indexed

Depending on how you configure the indexing topology, it can have HDFS and either Elasticsearch or Solr writers
running.

If you would like to view the sensor output in the Alerts user interface, you must configure the sensor for either Solr
or Elasticsearch.

The Indexing Configuration file is a JSON file stored in Apache ZooKeeper and on disk at $METRON_HOME/
config/zookeeper/indexing.

Errors during indexing are sent to a Kafka queue called index_errors.

Within the sensor-specific configuration, you can configure the individual writers. The following parameters are
currently supported:

index The name of the index to write to (defaulted is the name
of the sensor).

23

HCP Adding New Telemetry Data Source Configuring Indexing

batchSize The size of the batch allowed to be written to the indices
at once (defaulted is 1).

enabled Whether the index or writer is enabled (default is true).

Default Configuration
If you do not configure the individual writers, the sensor-specific configuration uses default values.

You can use this default configuration either by not creating an indexing configuration file or by entering the
following in the file:

{
}

Not specifying a writer configuration causes a warning in the Storm console, such as WARNING: Default and
(likely) unoptimized writer config used for hdfs writer and sensor squid. You can safely ignore this warning.

The default configuration has the following features:

• solr writer

• index name the same as the sensor
• batch size of 1
• enabled

• elasticsearch writer

• index name the same as the sensor
• batch size of 1
• enabled

• hdfs writer

• index name the same as the sensor
• batch size of 1
• enabled

Solr
Solr is an open source enterprise search platform. It is highly reliable, scalable and fault tolerant, providing distributed
indexing, replication and load-balanced querying, automated failover and recovery, centralized configuration and
more.

You can use Zoomdata to customize a dashboard for Solr data.

Create a New Solr Index Collection
When you set up a new sensor, you must create either a new index template if you are using Elasticsearch or a new
index schema if you are using Solr.

Procedure

1. Create a schema.xml file by copying an existing schema.xml file from another sensor and then replace the existing
fields with the fields supported by your new sensor.

You can leave the common fields and type definitions in the new schema.xml file.

For example:

tail -n10 /usr/$METRON_HOME/config/schema/$SENSOR_DIRECTORY/schema.xml

24

HCP Adding New Telemetry Data Source Configuring Indexing

<field name="ip_src_addr" type ="ip" indexed="true" stored="true: />
<field name="ip_src_port" type ="pint" indexed="true" stored="true: />
<field name="ip_src_addr" type ="ip" indexed="true" stored="true: />
<field name="ip_dst_port" type ="pint" indexed="true" stored="true: />

The schema.xml file describes the document fields, their types, and how they are indexed.

Note: If you have two fields with the same name, even if they are supported by different sensors and
defined in different schema.xml files, they must have the same type. For example, if you have the
ip_src_addr field defined in more than one schema.xml file, they must use the same type (such as,
type="ip").

2. Create a Solrconfig.xml file by copying one from an existing sensor.

The Solrconfig.xml file does not vary based on the content of the index.

3. Ensure that the Solr user has permission to access both the schema.xml and solrconfig.xml files.

4. Navigate to the $SOLR_USER and add the schema.xml file and the Solrconfig.xml file to the /usr/hcp/
$METRON_HOME/config/schema directory.

5. As the $SOLR_USER, use create_collection.sh to create the collection for your new sensor:

export SOLR_HOME='opt/lucidworks-hdpsearch/solr/
 export SOLR_USER=solr
 export METRON_HOME=/usr/hcp/current/metron
 export ZOOKEEPER=localhost:2181/solr
 sudo -E su $SOLR_USER -c $METRON_HOME/bin/create_collection.sh $1
 ./create_solr_collection.sh $SENSOR_NAME

You can ignore the error logs.

6. Display the Solr UI to view your new collection.

Refer to Solr Index Schemas for more information.

Elasticsearch
Elasticsearch is a search engine based on the Lucene library. It provides a distributed, multitenant-capable full-text
search engine with an HTTP web interface and schema-free JSON documents.

Elasticsearch features a user interface named Kibana for viewing Elasticsearch data and search results.

Create a New Elasticsearch Index Template
When you set up a new sensor, you must create a new index template if you are using Elasticsearch.

Procedure

Add the following to the properties section of the Elasticsearch template:

"properties": {
 "metron_field": {
 "type": "keyword"
 }
}

Refer to Elastic Index Templates for more information.

Upgrading to Elasticsearch 5.6.x
Hortonworks Cybersecurity Platform (HCP) has deprecated support for Elasticsearch 2.x. You must upgrade to
Elasticsearch 5.x to HCP queries in the current release. In addition to upgrading to Elasticsearch 5.x, you must also
update Elasticsearch type mappings, templates, and existing sensors.

25

https://lucene.apache.org/solr/guide/6_6/defining-fields.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.6/indices-templates.html

HCP Adding New Telemetry Data Source Configuring Indexing

Elasticsearch 5.x requires that all sensor templates include a nested alert field definition. Without this field, an error is
thrown during all searches resulting in no alerts being found. This error is found in the REST service's logs:

QueryParsingException[[nested] failed to find nested object under path
 [alert]];

Elasticsearch Type Mapping Changes
Type mappings in Elasticsearch 5.6.x have changed from ES 2.x.

The following is a list of the major changes in Elasticsearch 5.6.x:

• String fields replaced by text/keyword type
• Strings have new default mappings as follows:

{
 "type": "text",
 "fields": {
 "keyword": {
 "type": "keyword",
 "ignore_above": 256
 }
 }
}

• There is no longer a _timestamp field that you can set "enabled" on.

This field now causes an exception on templates. The Metron model has a timestamp field that is sufficient.

The semantics for string types have changed. In 2.x, index settings are either "analyzed" or "not_analyzed" which
means "full text" and "keyword", respectively. Analyzed text means the indexer will split the text using a text
analyzer, thus allowing you to search on substrings within the original text. "New York" is split and indexed as two
buckets, "New" and "York", so you can search or query for aggregate counts for those terms independently and match
against the individual terms "New" or "York." "Keyword" means that the original text will not be split/analyzed
during indexing and instead treated as a whole unit. For example, "New" or "York" will not match in searches against
the document containing "New York", but searching on "New York" as the full city name will match. In Elasticsearch
5.6 language, instead of using the "index" setting, you now set the "type" to either "text" for full text, or "keyword"
for keywords.

Below is a table listing the changes to how String types are now handled.

26

HCP Adding New Telemetry Data Source Configuring Indexing

sort, aggregate, or access values Elasticsearch 2.x Elasticsearch 5.x Example

no
"my_property" :
 {
 "type":
 "string",
 "index":
 "analyzed"
}

"my_property" :
 {
 "type": "text"
}

Additional defaults: "index":
"true", "fielddata": "false"

"New York" handled via in-mem
search as "New" and "York"
buckets. No aggregation or sort.

yes
"my_property": {
 "type":
 "string",
 "index":
 "analyzed"
}

"my_property": {
 "type":
 "text",
 "fielddata":
 "true"
}

"New York" handled via in-mem
search as "New" and "York"
buckets. Can aggregate and sort.

yes
"my_property": {
 "type":
 "string",
 "index":
 "not_analyzed"
}

"my_property" :
 {
 "type":
 "keyword"
}

"New York" searchable as single
value. Can aggregate and sort. A
search for "New" or "York" will
not match against the whole value.

yes
"my_property": {
 "type":
 "string",
 "index":
 "analyzed"
}

"my_property": {
 "type":
 "text",
 "fields": {
 "keyword": {
 "type":
 "keyword",

 "ignore_above":
 256
 }
 }
}

"New York" searchable as single
value or as text document. Can
aggregate and sort on the sub term
"keyword."

If you want to set default string behavior for all strings for a given index and type, you can do so with a mapping
similar to the following (replace ${your_type_here} accordingly):

curl -XPUT 'http://${ES_HOST}:${ES_PORT}/_template/
default_string_template' -d '
{
 "template": "*",
 "mappings" : {
 "${your_type_here}": {
 "dynamic_templates": [
 {
 "strings": {
 "match_mapping_type": "string",
 "mapping": {
 "type": "text"
 "fielddata": "true"
 }
 }
 }

27

HCP Adding New Telemetry Data Source Configuring Indexing

]
 }
 }
}

By specifying the template property with value *, the template will apply to all indexes that have documents indexed
of the specified type (${your_type_here}).

The following are other settings for types in Elasticsearch:

• doc_values

• • On-disk data structure
• Provides access for sorting, aggregation, and field values
• Stores same values as _source, but in column-oriented fashion better for sorting and aggregating
• Not supported on text fields
• Enabled by default

• fielddata

• In-memory data structure
• Provides access for sorting, aggregation, and field values
• Primarily for text fields
• Disabled by default because the heap space required can be large

Update Elasticsearch Templates to Work with Elasticsearch 5.6.x
HCP requires that all sensor templates have a nested metron_alert field defined to work with Elasticsearch 5.6.x.

Procedure

1. Retrieve the template.

The following example appends index* to get all indexes for the provided sensor:

export ELASTICSEARCH="node1"
 export SENSOR="bro"
 curl -XGET "http://${ELASTICSEARCH}:9200/_template/${SENSOR}_index*?
pretty=true" -o "${SENSOR}.template"

2. Remove an extraneous JSON field so you can put it back later, and add the alert field:

sed -i '' '2d;$d' ./${SENSOR}.template
 sed -i '' '/"properties" : {/ a\
 "metron_alert": { "type": "nested"},' ${SENSOR}.template

3. Verify your changes:

python -m json.tool bro.template

4. Add the template back into Elasticsearch:

curl -XPUT "http://${ELASTICSEARCH}:9200/_template/${SENSOR}_index" -d @
${SENSOR}.template

5. To update existing indexes, update Elasticsearch mapings with the new field for each sensor:

curl -XPUT "http://${ELASTICSEARCH}:9200/${SENSOR}_index*/_mapping/
${SENSOR}_doc" -d '
{
 "properties" : {
 "metron_alert" : {
 "type" : "nested"
 }

28

HCP Adding New Telemetry Data Source Configuring Indexing

 }
}
'
rm ${SENSOR}.template

Update Existing Indexes to Work with Elasticsearch 5x
You must update existing indexes to work with Elasticsearch 5x.

Procedure

Update Elasticsearch mappings with the new field for each sensor:

curl -XPUT "http://${ELASTICSEARCH_HOST}:9200/${SENSOR}_index*/_mapping/
${SENSOR}_doc" -d '
 {
 "properties" : {
 "alert" : {
 "type" : "nested"
 }
 }
 }
 '
 rm ${SENSOR}.template

Add X-Pack Extension to Elasticsearch
You can add the X-Pack extension to Elasticsearch to enable secure connections for Elasticsearch.

Before you begin
Ensure that Elasticsearch and Kibana are installed. You must also choose the X-pack version that matches the version
of Elasticsearch that you are running.

Procedure

1. Use the Storm UI to stop the random_access_indexing topology.

a) From Topology Summary, click random_access_indexing
b) Under Topology actions, click Deactivate.

2. Install X-Pack on Elasticsearch and Kibana.

See Installing X-Pack for information on installing X-Pack.

3. After installing X-pack, navigate to the Elasticsearch node where Elasticsearch Master and the X-Pack were
installed, then add a user name and password for Elasticsearch and Kibana to enable external connections from
Metron components:

For example, the following creates a user xpack_client_user with the password changeme and superuser
credentials:

sudo /usr/share/elasticsearch/bin/x-pack/users useradd xpack_client_user -
p changeme -r superuser

4. Create a file containing the password you created in Step 3 and upload it to HDFS.

For example:

echo changeme > /tmp/xpack-password
sudo -u hdfs hdfs dfs -mkdir /apps/metron/elasticsearch/
sudo -u hdfs hdfs dfs -put /tmp/xpack-password /apps/metron/elasticsearch/
sudo -u hdfs hdfs dfs -chown metron:metron /apps/metron/elasticsearch/
xpack-password

29

https://www.elastic.co/guide/en/x-pack/5.6/installing-xpack.html

HCP Adding New Telemetry Data Source Configuring Indexing

5. Pull the most recent HCP configuration to the local file system by running the following on the node on which
HCP is installed:

$METRON_HOME/bin/zk_load_configs.sh -m PULL -o ${METRON_HOME}/config/
zookeeper -z $ZOOKEEPER -f

6. Set the X-Pack es.client.settings by adding it to $METRON_HOME/config/zookeeper/global.json.

For example, add the following to the global.json file:

{
...
 "es.client.settings" : {
 "xpack.username" : "xpack_client_user",
 "xpack.password.file" : "/apps/metron/elasticsearch/xpack-password"
 }
 ...
}

7. OPTIONAL: Set up SSL connection for Elasticsearch client:

a) Navigate to a node that has an HDFS client, then create a file containing the password you used for your
truststore file and upload it to HDFS.

For example:

echo changeme > /tmp/truststore-password
sudo -u hdfs hdfs dfs -mkdir /apps/metron/elasticsearch/
sudo -u hdfs hdfs dfs -put /tmp/truststore-password /apps/metron/
elasticsearch/
sudo -u hdfs hdfs dfs -chown metron:metron /apps/metron/elasticsearch/
truststore-password

b) Add the following properties to es.client.settings in the $METRON_HOME/config/zookeeper/global.json file:

{
...
 "es.client.settings" : {
 "ssl.enabled": true,
 "keystore.path" : "$LOCAL_FILE_SYSTEM_PATH",
 "keystore.password.file" : "/apps/metron/elasticsearch/truststore-
password"
 }
 ...
}

Note: Make sure you do not overwrite the existing es.client.settings properties.

The truststore.jks file must reside on all Storm supervisor nodes as well as the REST application node.

For more information about configuring Elasticsearch SSL for X-pack, see Encrypted Communication.

8. Add the X-Pack changes to ZooKeeper:

$METRON_HOME/bin/zk_load_configs.sh -m PUSH -i METRON_HOME/config/
zookeeper/ -z $ZOOKEEPER

9. Use Ambari to restart the REST API.

10. Use the Storm UI to restart the random_access_indexing topology.

a) From Topology Summary, click random_access_indexing.
b) Under Topology actions, click Start.

30

https://www.elastic.co/guide/en/elasticsearch/client/java-rest/5.6/_encrypted_communication.html

HCP Adding New Telemetry Data Source Configuring Indexing

HDFS
If you do not configure the individual writers, the sensor-specific configuration uses default values.

You can use this default configuration either by not creating an indexing configuration file or by entering the
following in the file:

{
}

Not specifying a writer configuration causes a warning in the Storm console, such as WARNING: Default and
(likely) unoptimized writer config used for hdfs writer and sensor squid. You can safely ignore this warning.

The default configuration has the following features:

• solr writer

• index name the same as the sensor
• batch size of 1
• enabled

• elasticsearch writer

• index name the same as the sensor
• batch size of 1
• enabled

• hdfs writer

• index name the same as the sensor
• batch size of 1
• enabled

Index HDFS Tuning
For information on tuning indexing, see General Tuning Suggestions.

Turn Off HDFS Writer
You can turn off the HDFS index or writer by modifying the index.json file.

Procedure

Create or modify the index.json file by adding the following:

{
 "solr": {
 "index": "foo",
 "enabled" : true
 },
 "elasticsearch": {
 "index": "foo",
 "enabled" : true
 },
 "hdfs": {
 "index": "foo",
 "batchSize": 100,
 "enabled" : false
 }
}

31

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.9.0/general-tuning-suggestions/content/general_tuning_suggestions.html

HCP Adding New Telemetry Data Source Configuring Indexing

Troubleshooting Indexing
If Ambari indicates that your indexing is stopped after you have started your indexing, this might be a problem with
the Python requests module.

Check the Storm UI to ensure that indexing has started for your topologies. If the Storm UI indicates that the indexing
topology has started, you might need to install the latest version of python-requests. Version 2.6.1 of python-requests
fixes a bug introduced in version 2.5.2 that causes the system modules to break.

Understanding Global Configuration
The global configuration file is a repository of properties that can be used by any configurable component in the
system. The global configuration file can be used to assign a property to multiple parser topologies. For example,
every message from every sensor is validated against global configuration rules. The global configuration file can also
be used to assign properties to enrichments and the profiler which each use a single topology. For example, you can
use the global configuration to configure the enrichment topology’s writer batching settings.

The following is an index of the global configuration properties and their associated Apache Ambari properties if they
are managed by Ambari.

Important:

Any property that is managed by Ambari should only be modified via Ambari. Otherwise, when you restart a
service, Ambari might overwrite your updates.

Table 1: Global Configuration Properties

Property Name Subsystem Type Ambari Property

es.clustername Indexing String es_cluster_name

es.ip Indexing String es_hosts

es.port Indexing String es_port

es.date.format Indexing String es_date_format

fieldValidations Parsing Object N/A

parser.error.topic Parsing String N/A

stellar.function.paths Stellar CSV String N/A

stellar.function.resolver.includes Stellar CSV String N/A

stellar.function.resolver.excludes Stellar CSV String N/A

profiler.period.duration Profiler Integer profiler_period_duration

profiler.period.duration.units Profiler String profiler_period_units

profiler.writer.batchSize Profiler Integer N/A

profiler.writer.batchTimeout Profiler Integer N/A

update.hbase.table REST/Indexing String update_hbase_table

update.hbase.cf REST-Indexing String update_hbase_cf

geo.hdfs.file Enrichment String geo_hdfs_file

enrichment.writer.batchSize Enrichment Integer N/A

enrichment.writer.batchTimeout Enrichment Integer N/A

source.type.field UI String source_type_field

threat.triage.score.field UI String threat_triage_score-_field

32

HCP Adding New Telemetry Data Source Configuring Indexing

You can also create a validation using Stellar. The following validation uses Stellar to validate an ip_src_addr similar
to the "validation":"IP"" example above:

"fieldValidations" : [
 {
 "validation" : "STELLAR",
 "config" : {
 "condition" : "IS_IP(ip_src_addr, 'IPV4')"
 }
 }
]

Create Global Configurations
The global configuration file is accessible to all configurable components in the system. The global configuration
file can be used to assign a property to multiple parser topologies. For example, every message from every sensor
is validated against global configuration rules. The global configuration file can also be used to assign properties to
enrichments and the profiler which each use a single topology. For example, you can use the global configuration to
configure the enrichment topology’s writer batching settings.

Procedure

1. To configure a global configuration file, create a file called global.json at $METRON_HOME/config/zookeeper.

2. Using the following format, populate the file with enrichment values that you want to apply to all sensors:

{
 "es.clustername": "metron",
 "es.ip": "node1",
 "es.port": "9300",
 "es.date.format": "yyyy.MM.dd.HH",
 "fieldValidations" : [
 {
 "input" : ["ip_src_addr", "ip_dst_addr"],
 "validation" : "IP",
 "config" : {
 "type" : "IPV4"
 }
 }
]
}

es.ip A single or collection of elastic search master nodes.

They might be specified using the hostname:port
syntax. If a port is not specified, then a separate global
property es.port is required:

• Example: es.ip : [“10.0.0.1:1234”,
“10.0.0.2:1234”]

• Example: es.ip : “10.0.0.1” (thus requiring es.port
to be specified as well)

• Example: es.ip : “10.0.0.1:1234” (thus not requiring
es.port to be specified)

es.port The port of the elastic search master node.

This is not strictly required if the port is specified in the
es.ip global property as described above. It is expected

33

HCP Adding New Telemetry Data Source Configuring Indexing

that this be an integer or a string representation of an
integer.

• Example: es.port : “1234"
• Example: es.port : 1234

es.clustername The elastic search cluster name to which you want to
write.

• Example: es.clustername : “metron” (providing
your ES cluster is configured to have metron be a
valid cluster name)

es.date.format The format of the date that specifies how the
information is parsed time-wise.

or example:

• es.date.format : “yyyy.MM.dd.HH” (this would
shard by hour creating, for example, a Bro shard of
bro_2016.01.01.01, bro_2016.01.01.02, etc.)

• es.date.format : “yyyy.MM.dd” (this would shard
by day, creating, for example, a Bro shard of
bro_2016.01.01, bro_2016.01.02, etc.)

fieldValidations A validation framework that enables you to construct
validation rules that cross all sensors.

The fieldValidations enrichment value use validation
plugins or assertions about fields or whole messages

input An array of input fields
or a single field. If this is
omitted, then the whole
messages is passed to the
validator.

config A String to Object
map for validation
configuration. This is
optional if the validation
function requires no
configuration.

validation The validation function to
be used. This is one of the
following:

STELLAR Execute
a Stellar
Language
statement.
Expects
the query
string
in the
condition

34

HCP Adding New Telemetry Data Source Configuring Indexing

field of the
config.

IP Validates
that the
input fields
are an IP
address.
By default,
if no
configuration
is set, it
assumes
IPV4, but
you can
specify the
type by
passing in
type with
either IPV6
or IPV4 or
by passing
in a list
[IPV4,IPV6]
in which
case the
input is
validated
against
both.

DOMAIN Validates
that the
fields
are all
domains.

EMAIL Validates
that the
fields are
all email
addresses.

URL Validates
that the
fields are
all URLs.

DATE Validates
that the
fields are
a date.
Expects
format
in the
configuration.

35

HCP Adding New Telemetry Data Source Streaming Data

INTEGER Validates
that the
fields are
an integer.
String
representation
of an
integer is
allowed.

REGEX_MATCHValidates
that the
fields
match a
regex.
Expects
pattern
in the
configuration.

NOT_EMPTYValidates
that the
fields exist
and are
not empty
(after
trimming.)

Verify That Events Are Indexed
After you add your new data source, you should verify that events are indexed and output matches any Stellar
transformation functions you used.

Procedure

From the Alerts UI, search the source:type filter for the $DATASOURCE messages.

By convention, the index of new messages is called $DATASOURCE_index_[timestamp] and the document type is
$DATASOURCE_doc.

Streaming Data

After you add your parser and configure your indexing, you need to stream all raw events from that source into
Kafka.

Although HCP includes parsers for several data sources (for example, Bro, Snort, and YAF), you must still stream the
raw data into HCP through a Kafka topic.

If you choose to use the Snort telemetry data source, you must meet the following configuration requirements:

• When you install and configure Snort, to ensure proper functioning of indexing and analytics, configure Snort to
include the year in the timestamp by modifying thesnort.conf file as follows:

Configure Snort to show year in timestamps

36

HCP Adding New Telemetry Data Source Streaming Data

config show_year

• By default, the Snort parser is configured to use ZoneId.systemDefault() for the source timeZone for the incoming
data and MM/dd/yy-HH:mm:ss.SSSSSS as the default dateFormat. Valid timezones are defined in Java's
ZoneId.getAvailableZoneIds(). DateFormats should use the options defined in https://docs.oracle.com/javase/8/
docs/api/java/time/format/DateTimeFormatter.html. The following sample configuration shows the dateFormat
and timeZone values explicitly set in the parser configuration:

"parserConfig": {
"dateFormat" : "MM/dd/yy-HH:mm:ss.SSSSSS",
 "timeZone" : "America/New_York"

Depending on the type of data you are streaming into HCP, you can use one of the following methods:

• NiFi

This streaming method works for most types of data sources. To use it with HCP, you must install it manually on
port 8089. For information on installing NiFi, see the NiFi documentation.

Important:

NiFi cannot be installed on top of HDP, so you must install NiFi manually to use it with HCP.
• Performant network ingestion probes

This streaming method is ideal for streaming high-volume packet data.
• Real-time and batch threat intelligence feed loaders

This streaming method works for intelligence feeds that you want to view in real-time or collect batches of
information to view or query at a later date.

Stream Data Using NiFi
NiFi provides a highly intuitive streaming user interface that is compatible with most types of data sources.

Procedure

1. Open the NiFi user interface canvas.

2. Drag

(processor icon) to your workspace.

NiFi displays the Add Processor dialog box.

3. Select the TailFile type of processor and click ADD.

NiFi displays a new TailFile processor:

37

HCP Adding New Telemetry Data Source Streaming Data

4. Right-click the processor icon and select Configure to display the Configure Processor dialog box.

a) In the Settings tab, change the name to Ingest $DATASOURCE Events:

b) In the Properties tab, enter the path to the data source file in the Value column for the File(s) to Tail
property:

38

HCP Adding New Telemetry Data Source Streaming Data

5. Click Apply to save your changes and dismiss the Configure Processor dialog box.

6. Add another processor by dragging

(processor icon) to your workspace.

7. Select the PutKafka type of processor and click Add.

8. Right-click the processor and select Configure.

9. In the Settings tab, change the name to Stream to Metron and then select the relationship check boxes for failure
and success.

39

HCP Adding New Telemetry Data Source Streaming Data

10. In the Properties tab, set the following three properties:

Known Brokers $KAFKA_HOST:6667

Topic Name $DATAPROCESSOR

Client Name nifi-$DATAPROCESSOR

40

HCP Adding New Telemetry Data Source Streaming Data

11. Click Apply to save your changes and dismiss the Configure Processor dialog box.

12. Create a connection by dragging the arrow from the Ingest $DATAPROCESSOR Events processor to the Stream
to Metron processor.

NiFi displays Configure Connection dialog box.

41

HCP Adding New Telemetry Data Source Streaming Data

13. In the Details tab, check the failure checkbox under For Relationships.

14. Click APPLY to accept the default settings for the connection.

15. Press Shift and draw a box around both parsers to select the entire flow.

All of the processor icons turn into green arrows:

42

HCP Adding New Telemetry Data Source Streaming Data

16. In the Operate panel, click the arrow icon.

17. Generate some data using the new data processor client.

18. Look at the Storm UI for the parser topology and confirm that tuples are coming in.

19. After about five minutes, you should see a new index called $DATAPROCESSOR_index* in either the Solr
Admin UI or the Elastic Admin UI.

43

	Contents
	Prerequisites to Adding a New Telemetry Data Source
	Creating Parsers
	Create a Parser for Your New Data Source by Using the Management UI
	Create a Parser for Your New Data Source by Using the CLI
	Create Multiple Parsers on One Topology
	Chain Parsers
	Tune Parser Storm Parameters by Using the Management UI
	Telemetry Data Source Parsers Bundled with HCP
	Snort
	Cisco Adaptive Security Appliance
	Bro
	ArcSight CEF
	FireEye
	YAF (NetFlow)
	Indexing
	pcap

	Configuring Indexing
	Understanding Indexing
	Default Configuration
	Solr
	Create a New Solr Index Collection

	Elasticsearch
	Create a New Elasticsearch Index Template
	Upgrading to Elasticsearch 5.6.x
	Elasticsearch Type Mapping Changes
	Update Elasticsearch Templates to Work with Elasticsearch 5.6.x
	Update Existing Indexes to Work with Elasticsearch 5x

	Add X-Pack Extension to Elasticsearch

	HDFS
	Index HDFS Tuning
	Turn Off HDFS Writer

	Troubleshooting Indexing
	Understanding Global Configuration
	Create Global Configurations
	Verify That Events Are Indexed

	Streaming Data
	Stream Data Using NiFi

