
HCP Stellar Quick Reference 1

Stellar Language Quick Reference
Date of Publish: 2019-3-18

https://docs.hortonworks.com

https://docs.hortonworks.com

Contents

Introduction to Stellar Language..3

Stellar Language Keywords...3

Stellar Language Inclusion Checks...3

Stellar Language Comparisons... 4

Stellar Language Equality Check... 4

Stellar Language Lambda Expressions..4

Stellar Language Match Expression...5

Stellar Language Functions... 5

Stellar Benchmarks...20

HCP Stellar Quick Reference Introduction to Stellar Language

Introduction to Stellar Language

For a variety of components (threat intelligence triage and field transformations) we need to perform simple
computation and transformation using the data from messages as variables. For those purposes, there exists a simple,
scaled down DSL created to do simple computation and transformation.

The Stellar query language supports the following:

• Referencing fields in the enriched JSON
• String literals are quoted with either ' or "
• String literals support escaping for ', ", \t, \r, \n, and backslash

• The literal '\'foo\'' would represent 'foo'
• The literal "\"foo\"" would represent "foo"
• The literal 'foo \\ bar' would represent foo \ bar

• Simple boolean operations: and, not, or
• Simple arithmetic operations: *, /, +, - on real numbers or integers
• Simple comparison operations <, >, <=, >=
• Simple equality comparison operations ==, !=
• if/then/else comparisons (for example, if var1 < 10 then 'less than 10' else '10 or more')
• Simple match evaluations (for example, match{ var1 < 10 => 'warn', var1 >= 10 => 'critical', default => 'info'}
• Determining whether a field exists (via exists)
• An in operator that works like the in in Python
• The ability to have parenthesis to make order of operations explicit
• User defined functions, including Lambda expressions

Stellar Language Keywords

You can use Stellar language keywords to identify a syntactic form such as "not", "else", and "or."

The following keywords need to be single quote escaped in order to be used in Stellar expressions:

Table 1: Stellar Language Keywords

not else exists if then

and or in NaN match

default == != <= >

<= + - < ?

* / , { }

=>

Using parens such as: "foo" : "<ok>" requires escaping; "foo": "'<ok>'"

Stellar Language Inclusion Checks

You can use Stellar language inclusion checks such as "in", "and", and "not" to define the content of the Stellar
syntax.

• in supports string contains. For example, 'foo' in 'foobar' == true

3

HCP Stellar Quick Reference Stellar Language Comparisons

• in supports collection contains. For example, 'foo' in ['foo', 'bar'] == true
• in supports map key contains. For example, 'foo' in { 'foo' : 5} == true
• not in is the negation of the in expression. For example, 'grok' not in 'foobar' == true`

Stellar Language Comparisons

You can use Stellar language comparisons to define the Stellar syntax.

• If either side of the comparison is null then return false.
• If both values being compared implement number then the following:

• If either side is a double then get double value from both sides and compare using given operator.
• Else if either side is a float then get float value from both sides and compare using given operator.
• Else if either side is a long then get long value from both sides and compare using given operator.
• Otherwise get the int value from both sides and compare using given operator.

• If both sides are of the same type and are comparable then use the compareTo method to compare values.
• If none of the above are met then an exception is thrown.

Stellar Language Equality Check

You can use the Stellar language equality check to define both sides of a Stellar syntax.

Below is how the == operator is expected to work:

• If either side of the expression is null then check equality using Java's `==` expression.
• Else if both sides of the expression are of Java's type Number then:

• If either side of the expression is a double then use the double value of both sides to test equality.
• Else if either side of the expression is a float then use the float value of both sides to test equality.
• Else if either side of the expression is a long then use long value of both sides to test equality.
• Otherwise use int value of both sides to test equality

• Otherwise use equals method compare the left side with the right side.

The `!=` operator is the negation of the above.

Stellar Language Lambda Expressions

Stellar provides the capability to pass lambda expressions to functions which wish to support that layer of indirection.

• (named_variables) -> stellar_expression : Lambda expression with named variables

For instance, the lambda expression which calls TO_UPPER on a named argument x could be expressed as (x) ->
TO_UPPER(x).

• var -> stellar_expression : Lambda expression with a single named variable, var

• For instance, the lambda expression which calls TO_UPPER on a named argument x could be expressed as x -
> TO_UPPER(x). Note, this is more succinct but equivalent to the example directly above.

• () -> stellar_expression : Lambda expression with no named variables.

• If no named variables are needed, you may omit the named variable section. For instance, the lambda
expression which returns a constant false would be () -> false

where

• named_variables is a comma separated list of variables to use in the Stellar expression

4

HCP Stellar Quick Reference Stellar Language Match Expression

• stellar_expression is an arbitrary stellar expression

In the core language functions, we support basic functional programming primitives such as

• MAP - Applies a lambda expression over a list of input. For instance MAP(['foo', 'bar'], (x) -> TO_UPPER(x))
returns ['FOO', 'BAR']

• FILTER - Filters a list by a predicate in the form of a lambda expression. For instance FILTER(['foo', 'bar'], (x) -
> x == 'foo') returns ['foo']

• REDUCE - Applies a function over a list of input. For instance REDUCE([1, 2, 3], (sum, x) -> sum + x, 0)
returns 6

Important:

Any property that is managed by Ambari should only be modified via Ambari. Otherwise, when you restart a
service, Ambari might overwrite your updates. For more information, see Update Properties.

Stellar Language Match Expression

Stellar provides the capability to write match expressions, which are similar to switch statements commonly found in
C-like languages.

match{ logical_expression1 => evaluation expression1, logical_expression2 =>
 evaluation_expression2, default => default_expression}

Where:

• logical_expression is a Stellar expression that evaluates to true or false. For instance var > 0 or var > 0 AND var2
== 'foo' or IF ... THEN ... ELSE

• evaluation_expression is a Stellar Expression
• default is a required default return value, should no logical expression match

• default is required
• Lambda expressions are supported, but they must be no argument lambdas such as () -> STATEMENT

• Only the first clause that evaluates to true will be executed.

Stellar Language Functions

HCP supports an extensive list of core Stellar language functions.

Table 2: Stellar Core Functions

Function Description Input Returns

ABS Returns the absolute value of a
number

number - The number to take the
absolute value of

The absolute value of the number
passed in.

APPEND_IF_MISSING Appends the suffix to the end
of the string if the string does
not already end with any of the
suffixes.

• string - The string to be
appended.

• suffix - The string suffix
to append to the end of the
string.

• additionalsuffix - Optional -
Additional string suffix that is
a valid terminator.

A new string if prefix was
prepended, the same string
otherwise.

5

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.9.0/managing/content/updating_properties.html

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

ASN_GET Look up an IPV4 address and
returns Autonomous System
Number information about it.

• ip - The IPV4 address to
lookup.

• fields - Optional list
of ASN fields to grab.
Options are network,
autonomous_system_number,
autonomous_system_organization.

If a single field is requested, a
string of the field. If mutiple
fields, a map of string of the the
fields, and null otherwise.

BIN Computes the bin that the value is
in given a set of bounds

• value - the value to bin
• bounds -A list of value

bounds (excluding min and
max) in sorted order

Which bin N the value falls in
such that bound(N-1) <value
<= bound(N). No min and max
bounds are provided, so values
small than the 0'th bound go in the
0'th bin, and values great than the
last bound go in the M'th bin.

BLOOM_ADD Adds an element to the bloom
filter passed in

• bloom - The bloom filter
• value* - The values to add

Bloom Filter

BLOOM_EXISTS If the bloom filter contains the
value

• bloom - The bloom filter
• value - The value to check

True if the filter might contain the
value and false otherwise

BLOOM_INIT Returns an empty bloom filter • expectedInsertions - The
expected insertions

• falsePositiveRate - The false
positive rate you are willing
to tolerate

Bloom Filter

BLOOM_MERGE Returns a merged bloom filter • bloomfilters - A list of bloom
filters to merge

Bloom Filter or null if the list is
empty

CEILING Returns the ceiling of a number. • number - The number to take
the ceiling of

The ceiling of the number passed
in.

CHOP Remove the last character from a
string.

• string- The string to chop last
character from, may be null.

String without last character, null
if null string input.

CHOMP Removes one newline from end
of a string if its there, otherwise
leaves it alone. A newline is "/n",
"/r", "/r/n".

• The string to chomp a
newline from, may be null.

String without newline, null if null
string input.

COS Returns the cosine of a number. • number - The number to take
the cosine of.

The cosine of the number passed
in.

COUNT_MATCHES Counts how many times the
substring appears in the larger
string.

• string - The CharSequence to
check, may be null.

• substring/character - The
number of non-overlapping
occurrences, 0 if either
CharSequence is null.

DATE_FORMAT Takes an epoch timestamp and
converts it to a date format.

• format - DateTime format as
a String

• timestampField - Optional
epoch time in Long format.
Defaults to now.

• timezone - Optional timezone
in String format

Returns: Formatted date.

DAY_OF_MONTH The numbered day within the
month. The first day within the
month has a value if 1.

• dateTime - The datetime
as a long representing the
milliseconds since UNIX
epoch

The numbered day within the
month

6

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

DAY_OF_WEEK The numbered day within the
week. The first day of the week,
Sunday, has a value of 1.

• dateTime - The datetime
as a long representing the
milliseconds since UNIX
epoch

The numbered day within the
week.

DAY_OF_THE_YEAR The day number within the year.
The first day of the year has value
of 1.

• dateTime - The datetime
as a long representing the
milliseconds since UNIX
epoch

The day number within the year

DECODE Decodes the passed string
with the provided encoding,
which must be one of the
encodings returned from
GET_SUPPORTED_ENCODINGS

• string - The string to decode
• encoding - the encoding

to use, must be one of the
encodings returned from
GET_SUPPORTED_ENCODINGS

• verify - (optional), true or
false to determine if string
should be verified as being
encoded with the passed
encoding

• The decoded string on
success

• The original string the string
cannot be decoded

• null on usage error

DOMAIN_REMOVE_SUBDOMAINSRemove subdomains from a
domain

• domain - Fully qualified
domain name

The domain without the
subdomains. (For example,
DOMAIN_REMOVE_SUBDOMAINS
('mail.yahoo.com') yields
'yahoo.com')

DOMAIN_REMOVE_TLD Removes the top level domain
(TLD) suffix from a domain

• domain - Fully qualified
domain name

The domain without
the TLD. (For example,
DOMAIN_REMOVE_TLD('mail.yahoo.co.uk')
yields 'mail.yahoo')

DOMAIN_TO_TLD Extracts the top level domain from
a domain

• domain - Fully qualified
domain name

The domain of the
TLD. (For example,
DOMAIN_TO_TLD('mail.yahoo.com.uk')
'yields 'co.uk')

ENCODE Encodes the passed string
with the provided encoding,
which must be one of the
encodings returned from
GET_SUPPORTED_ENCODINGS

• string - the string to encode
• encoding - the encoding

to use, must be one of the
encodings returned from
GET_SUPPORTED_ENCODINGS

• The encoded string on
success

• null on error

ENDS_WITH Determines whether a string ends
with a suffix

• string - The string to test
• suffix - The proposed suffix

True if the string ends with the
specified suffix and false if
otherwise

ENRICHMENT_EXISTS Interrogates the HBase table
holding the simple HBase
enrichment data and returns
whether the enrichment type and
indicator are in the table

• enrichment_type - The
enrichment type

• indicator - The string
indicator to look up

• nosql_table - The NoSQL
table to use

• column_family - The column
family to use

True if the enrichment indicator
exists and false otherwise

ENRICHMENT_GET Interrogates the HBase table
holding the simple HBase
enrichment data and retrieves the
tabular value associated with the
enrichment type and indicator

• enrichment_type - The
enrichment type

• indicator - The string
indicator to look up

• nosql_table - The NoSQL
table to use

• column_family - The column
family to use

A map associated with the
indicator and enrichment type.
Empty otherwise.

7

https://github.com/apache/metron/blob/master/metron-stellar/stellar-common/README.md#get_supported_encodings
https://github.com/apache/metron/blob/master/metron-stellar/stellar-common/README.md#get_supported_encodings
https://github.com/apache/metron/blob/master/metron-stellar/stellar-common/README.md#get_supported_encodings
https://github.com/apache/metron/blob/master/metron-stellar/stellar-common/README.md#get_supported_encodings

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

EXP Returns Euler's number raised to
the power of the argument.

• number - the power to which
e is raised

Euler's number raised to the
power of the argument.

FILL_LEFT Fills or pads a given string with a
given character, to a given length
on the left.

• input - string
• fill - the fill character
• len - the required length

The filled string

FILL_RIGHT Fills or pads a given string with a
given character, to a given length
on the right.

• input - string
• fill - the fill character
• len - the required length

Last element of the list

FILTER Applies a filter in the form of a
lambda expression to a list. For
example, `FILTER(['foo', 'bar'] ,
(x) -> x == 'foo')` would yield
`['foo'.

• list - List of arguments.
• predicate - The lambda

expression to apply. This
expression is assumed to take
one argument and return a
boolean.

The input list filtered by the
predicate.

FLOOR Returns the floor of a number. • number - The number to take
the floor of

• The floor of the number
passed in.

FORMAT Returns a formatted string using
the specified format string and
arguments. Uses Java's string
formatting conventions

• format - string
• arguments - object(s)

A formatted string

FUZZY_LANGS Returns a list of IETF BCP 47
available to the system, such as
en, fr, de.

A list of IEF BGP 47 language tag
strings

FUZZY_SCORE Returns the Fuzzy Score which
indicates the similarity score
between two strings. One point is
given for every matched character.
Subsequent matches yield two
bonus points. A higher score
indicates a higher similarity.

• string - The full term that
should be matched against.

• string - The query that will be
matched against a term.

• string - The IETF BCP 47
language code to use.

An Integer representing the score.

GEO_GET Look up an IPV4 address and
returns geographic information
about it.

• ip - The IPV4 address to look
up

• fields – Optional list of
GeoIP fields to grab. Options
are locID, country, city
postalCode, dmaCode,
latitude, longitude,
location_point

• len - the required length

If a Single field is requested, a
string of the field. If multiple
fields are requested, a map of
string of fields. Otherwise null.

GEOHASH_CENTROID Compute the centroid (geographic
midpoint or center of gravity) of a
set of geohashes

• hashes - A collection
of geohashes or a map
associating geohashes to
numeric weights

• character_precision? - The
number of characters to use in
the hash. Default is 12.

The geohash of the centroid.

GEO_DIST Compute the distance between
geohashes.

• hash1 - The first point as a
geohash

• hash2 - The second point as a
geohash

• strategy? - The great circle
distance strategy to use.
One of HAVERSINE,
LAW_OF_COSINES, or
VICENTY. Haversine is
default.

The distance in kilometers
between the hashes.

8

https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Law_of_cosines#Using_the_distance_formula
https://en.wikipedia.org/wiki/Vincenty%27s_formulae

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

GEOHASH_FROM_LATLONG Compute geohash given a lat/long. • latitude - The latitude
• longitude - The longitude
• character_precision? - The

number of characters to use in
the hash. Default is 12.

A geohash of the lat/long.

GEOHASH_FROM_LOC Compute geohash given a geo
enrichment location.

• map - the latitude and
logitude in a map (the output
of GEO_GET)

• longitude - The longitude
• character_precision? - The

number of characters to use in
the hash. Default is 12

A geohash of the location.

GEOHASH_MAX_DIST Compute the maximum distance
among a list of geohashes

• hashes - A set of geohashes
• strategy? - The great circle

distance strategy to use.
One of HAVERSINE,
LAW_OF_COSINES, or
VICENTY. Haversine is
default.

The maximum distance in
kilometers between any two
locations

GEOHASH_TO_LATLONG Compute geohash given a lat/long. • • hash - The geohash A map containing the latitude
and longitude of the hash (keys
"latitude" and "longitude")

GET Returns the i'th element of the list • input - List
• i - The index (0-based)

First element of the list

GET_FIRST Returns the first element of the list • input - List First element of this list

GET_HASHES_AVAILABLE Will return all available hashing
algorithms to 'HASH'.

A list containing all supported
hashing algorithms.

GET_LAST Returns the last element of the list • input - List Last element of the list

GET_SUPPORTED_ENCODINGS Returns a list of the encodings that
are currently supported.

A List of String

HASH Hashes a given value using the
given hashing algorithm and
returns a hex encoded string.

• toHash - value to hash.
• hashType - A valid

string representation of
a hashing algorithm. See
'GET_HASHES_AVAILABLE'.

A hex encoded string of a hashed
value using the given algorithm.
If 'hashType' is null then '00',
padded to the necessary length,
will be returned. If 'toHash' is not
able to be hashed or 'hashType' is
null then null is returned.

HLLP_ADD Add value to the
HyperLogLogPlus estimator set.

• hyperLogLogPlus - the hllp
estimator to add a value to

• value+ - value to add to the
set. Takes a single item or a
list.

The HyperLogLogPlus set with a
new value added

HLLP_CARDINALITY HyperLogLogPlus-estimated
cardinality for this set.

• input - hyperLogLogPlus -
the hllp set

Long value representing the
cardinality for this set

HLLP_INIT Initializes the set • p (required) - The precision
value for the sparse set.

• sp - The precision value for
the sparse set. If sp Is not
specified the sparse set will
be disabled.

A new HyperLogLogPlus set

9

https://github.com/apache/metron/tree/master/metron-stellar/stellar-common#geo_get
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Law_of_cosines#Using_the_distance_formula
https://en.wikipedia.org/wiki/Vincenty%27s_formulae
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

HLLP_MERGE Merge hllp sets together • hllp1 - First hllp set
• hllp2 - Second hllp set
• hllpn - Additional sets to

merge

A new merged HyperLogLogPlus
estimator set

IN_SUBNET Returns true if an IP is within a
subnet range

• ip - The IP address in string
form

• cidr+ - One or more IP ranges
specified in CIDR notation
(for example, 192.168.0.0/24)

True if the IP address is within at
least one of the network ranges
and false if otherwise

IS_DATE Determines if the date contained
in the string conforms to the
specified format

• date - The date in string form
• format - The format of the

date

True if the date is in the specified
format and false if otherwise

IS_DOMAIN Tests if a string is a valid
domain. Domain names are
evaluated according to the
standards RFC1034 Section 3, and
RFC1123 section 2.1.

• address - The string to test True if the string is a valid domain
and false if otherwise

IS_EMAIL Tests if a string is a valid email
address

• address -The string to test True if the string is a valid email
address and false if otherwise

IS_EMPTY Returns true if string or collection
is empty or null and false if
otherwise

• input - Object of string or
collection type (for example,
list)

True if the string or collection
is empty or null and false if
otherwise

IS_ENCODING Returns true if the passed string is
encoded in one of the supported
encodings and false if otherwise.

• string - The string to test
• encoding - The name of

the encoding as string. See
GET_SUPPORTED_ENCODINGS

True if the passed string is
encoded in one of the supported
encodings and false if otherwise.

IS_INTEGER Determines whether or not an
object is an integer

• x - The object to test True if the object can be
converted to an integer and false if
otherwise

IS_IP Determine if a string is an IP or
not

• ip - An object which we wish
to test is an IP

• type (optional) - Object of
string or collection type (for
example, list) one of IPv4 or
IPv6. The default is IPv4.

True if the string is an IP and false
if otherwise

IS_NAN Evaluates if the passed number is
NaN. The number is evaluated as
a double.

• number - number to evaluate" True if the number is NaN, false if
it is

IS_URL Tests if a string is a valid URL • url - The string to test True if the string is a valid URL
and false otherwise

JOIN Joins the components in the list of
strings with the specified delimiter

• list - List of strings
• delim - String delimiter

String

KAFKA_GET Retrieves messages from a Kafka
topic. Subsequent calls will
continue retrieving messages
sequentially from the original
offset.

• topic - the name of the Kafka
topic.

• count - The number of Kafka
messages to retrieve.

• config - Optional map of
key/values that override any
global properties.

List of String

10

https://github.com/apache/metron/blob/master/metron-stellar/stellar-common/README.md#get_supported_encodings
https://github.com/apache/metron/blob/master/metron-stellar/stellar-common/README.md#get_supported_encodings

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

KAFKA_PROPS Retrieves the Kafka properties
that are used by other KAFKA_*
functions like KAFKA_GET
and KAFKA_PUT. The Kafka
properties are compiled from a set
of default properties, the global
properties, and any overrides.

• config - An optional map of
key/values that override any
global properties

Map of key/value pairs

KAFKA_PUT Sends messages to a Kafka topic. • topic - The name of the Kafka
topic.

• messages -A list of messages
to write.

• config - Optional map of
key/values that override any
global properties.

N/A

KAFKA_TAIL Retrieves messages from a Kafka
topic always starting with the
most recent message first.

• topic - The name of the Kafka
topic.

• count - The number of Kafka
messages to retrieve.

• config - Optional map of
key/values that override any
global properties.

List of String

LENGTH Returns the length of a string or
size of a collection. Returns 0 for
empty or null strings.

• input - Object of string or
collection type (for example,
list).

• element - Element to add to
list.

Integer

LIST_ADD Adds an element to a list. • list - List to add element to.
•

Resulting list with the item added
at the end.

LN Returns the natural log of a
number.

• number - The number to take
the natural log of

•

The natural log of the number
passed in.

LOG2 Returns the log (base 2) of a
number.

• number - The number to take
the log (base 10) of

•

The log (base 2) of the number
passed in.

LOG10 Returns the log (base 10) of a
number.

• number - The number to take
the log (base 2) of

•

The log (base 10) of the number
passed in.

MAAS_GET_ENDPOINT Inspects ZooKeeper and returns a
map containing the name, version,
and url for the model referred to
by the input parameters

• model_name - The name of
the model

• model_version - The optional
version of the model. If
the model version is not
specified, the most current
version is used.

A map containing the name,
version, url for the REST endpoint
(fields named name, version,
and url). Note that the output
of this function is suitable for
input into the first argument of
MAAS_MODEL_APPLY.

MAAS_MODEL_APPLY Returns the output of a model
deployed via Model as a Service.
Note: Results are cached locally
10 minutes.

• endpoint - A map containing
name, version, and url for the
REST endpoint

• function - The optional
endpoint path; default is
'apply'

• model_args - A dictionary
of arguments for the model
(these become request
params)

The output of the model deployed
as a REST endpoint in map form.
Assumes REST endpoint returns a
JSON map.

11

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

MAP Applies lambda expression
to a list of arguments. e.g.
`MAP(['foo', 'bar'] , (x) ->
TO_UPPER(x))` would yield
`['FOO', 'BAR']`.

• string -List of arguments.
• prefix - The string prefix to

prepend to the start of the
string.

• additionalprefix - Optional -
Additional string prefix that is
valid.

A new String if prefix was
prepended, the same string
otherwise.

MAP_EXISTS Checks for existence of a key in a
map

• key - The key to check for
existence

• map - The may to check for
existence of the key

True if the key is found in the map
and false if otherwise

MAP_GET Gets the value associated with a
key from a map

• key - The key
• map - The map
• default - Optionally the

default value to return if the
key is not in the map.

The object associated with the
key in the map. If no value is
associated with the key and
default is specified, then default is
returned. If no value is associated
with the key or default, then null
is returned.

MAX Returns the maximum value of a
list of input values.

• "list - List of arguments.
The list may only
contain objects that are
mutually comparable /
ordinal (implement
java.lang.Comparable
interface). Multi type numeric
comparisons are supported:
MAX([10,15L,15.3])
would return 15.3, but
MAX(['23',25]) will fail and
return null as strings and
numbers can't be compared.

The maximum value of the list, or
null if the list is empty or the input
values were not comparable.

MIN Returns the minimum value of a
list of input values.

• "list - List of arguments.
The list may only
contain objects that are
mutually comparable /
ordinal (implement
java.lang.Comparable
interface). Multi type numeric
comparisons are supported:
MIN([10,15L,15.3]) would
return 10, but MIN(['23',25])
will fail and return null as
strings and numbers can't be
compared.

The minimum value of the list, or
null if the list is empty or the input
values were not comparable.

MONTH The number representing the
month. The first month, January,
has a value of 0.

• dateTime - The datetime
as a long representing the
milliseconds since UNIX
epoch

The current month (0-based).

MULTISET_ADD Adds to a multiset, which is a
map associating objects to their
instance counts.

• set - The multiset to add to
• o - object to add to multiset

A multiset

MULTISET_INIT Creates an empty multiset, which
is a map associating objects to
their instance counts.

• input? - An initialization of
the multiset

A multiset

MULTISET_MERGE Merges a list of multisets, which
is a map associating objects to
their instance counts.

• sets - A collection of
multisets to merge

A multiset

12

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

MULTISET_REMOVE Removes from a multiset, which
is a map associating objects to
their instance counts.

• set - The multiset to add to
• o - object to add to multiset

A multiset

MULTISET_TO_SET Create a set out of a multiset,
which is a map associating objects
to their instance counts.

• multiset - The multiset to
convert

The set of objects in the multiset
ignoring multiplicity

OBJECT_GET Retrieve and deserialize a
serialized object from HDFS. The
cache can be specified via two
properties in the global config:
"object.cache.size" (default 1000),
"object.cache.expiration.minutes" (default
1440). Note, if these are changed
in global config, topology restart
is required.

• path - The path in HDFS to
the serialized object

The deserialized object.

PREPEND_IF_MISSING Prepends the prefix to the start
of the string if the string does
not already start with any of the
prefixes.

• string - The string to be
prepended.

• prefix - The string prefix to
prepend to the start of the
string.

• additionalprefix - Optional -
Additional string prefix that is
valid.

A new string if prefix was
prepended, the same string
otherwise.

PREPEND_IF_MISSING Prepends the prefix to the start
of the string if the string does
not already start with any of the
prefixes.

• string - The string to be
prepended.

• prefix - The string prefix to
prepend to the start of the
string.

• additionalprefix - Optional -
Additional string prefix that is
valid.

A new String if prefix was
prepended, the same string
otherwise.

PROFILE_FIXED The profile periods associated
with a fixed lookback starting
from now

• durationAgo - How long ago
should values be retrieved
from?

• units - The units of
'durationAgo'

• config_overrides - Optional
- Map (in curly braces)
of name:value pairs, each
overriding the global config
parameter of the same name.
Default is the empty Map,
meaning no overrides.

The selected profile measurement
timestamps. These are
ProfilePeriod objects.

13

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

PROFILE_GET Retrieves a series of values from a
stored profile

• profile - The name of the
profile

• entity - The name of the
entity

• periods - The list of profile
periods to grab. These are
ProfilePeriod objects.

• groups_list -Optional - Must
correspond to the 'groupBy'
list used in profile creation -
List (in square brackets) of
groupBy values used to filter
the profile. Default is the
empty list, meaning groupBy
was not used when creating
the profile.

• config_overrides - Optional
- Map (in curly braces)
of name:value pairs, each
overriding the global config
parameter of the same name.
Default is the empty Map,
meaning no overrides.

The profile measurements

PROFILE_VERBOSE Retrieves a series of
measurements from a stored
profile. Returns a map containing
the profile name, entity, period
id, period start, period end for
each profile measurement.
Provides a more verbose view
of each measurement than
PROFILE_GET.

• profile - The name of the
profile

• entity - The name of the
entity

• periods - The list of profile
periods to fetch. Use
PROFILE_WINDOW or
PROFILE_FIXED.

• groups - Optional - The
groups to retrieve. Must
correspond to the 'groupBy'
used during profile creation.
Defaults to an empty list,
meaning no groups.

The selected profile
measurements.

PROFILE_WINDOW The profiler periods associated
with a window selector statement
from an optional reference
timestamp.

• WindowSelector - The
statement specifying the
window to select.

• now - Optional - The
timestamp to use for now.

• config_overrides - Optional
- Map (in curly braces)
of name:value pairs, each
overriding the global config
parameter of the same name.
Default is the empty Map,
meaning no overrides.

Returns: The selected profile
measurement periods. These are
ProfilePeriod objects.

PROTOCOL_TO_NAME Converts the IANA protocol
number to the protocol name

• IANA number The protocol name associated
with the IANA number

REDUCE Reduces a list by a binary lambda
expression. That is, the expression
takes two arguments. Usage
example: `REDUCE([1, 2, 3] ,
(x, y) -> x + y, 0)` would sum the
input list, yielding `6`.

• list - List of arguments.
• binary operation - The

lambda expression function
to apply to reduce the list.
It is assumed that this takes
two arguments, the first being
the running total and the
second being an item from the
list.initial.

• initial_value - The initial
value to use.

The reduction of the list.

14

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

REGEXP_MATCH Determines whether a regex
matches a string

• input -String to split
• delim - String delimiter

List of strings

REGEXP_REPLACE Replace all occurences of the
regex pattern within the string by
value

• string - The input string
• pattern - The proposed regex

pattern
• value - The value to replace

the regex pattern

The modified input string with
replaced values.

REGEX_GROUP_VAL Returns the value of a group in a
regex against a string

• string - The string to test
• pattern -The proposed regex

pattern
• group - The integer that

selects what group to select,
starting at 1

The value of the group, or null if
not matched or no group at index.

REST_GET Performs a REST GET request
and parses the JSON results into a
map.

• url - URL to the REST
service

• rest_config - Optional -
Map (in curly braces) of
name:value pairs, each
overriding the global config
parameter of the same name.
Default is the empty map,
meaning no overrides.

JSON results as a map.

ROUND Rounds a number to the nearest
integer. This is half-up rounding.

• number - The number to
round

The nearest integer (based on half-
up rounding).

SET_ADD Adds to a set • set - The set to add to
• o - object to add to set

A Set

SET_INIT Creates an new set • Input? - An initialization of
the set

A Set

SET_MERGE Merges a list of sets • sets - A collection of sets to
merge

A Set

SET_REMOVE Removes from a set • set - The set to add to
• o - object to add to set

A Set

SHELL_EDIT Open an editor (optional
initialized with text) and return
whatever is saved from the
editor. The editor to use is pulled
from EDITOR or VISUAL
environment variable.

• string - (Optional) A string
whose content is used to
initialize the editor.

The content that the editor saved
after editor exit.

SHELL_GET_EXPRESSION Get a stellar expression from a
variable.

• variable - Variable name The stellar expression associated
with the variable.

SHELL_LIST_VARS Return the variables in a tabular
form.

• wrap - Length of string to
wrap the columns.

A tabular representation of the
variables.

SHELL_MAP2TABLE Take a map and return a table. • map - Map The map in table form.

SHELL_VARS2MAP Take a set of variables and return
a map.

• variables* - Variable name to
use to create map.

A map associating the variable
name with the stellar expression.

SIN Returns the sine of a number. • number - The number to take
the sine of

The sine of the number passed in.

SPLIT Splits the string by the delimiter • inputs - String to split
• delim - String delimiter

List of strings

15

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

SQRT Returns the square root of a
number.

• number - The number to take
the square root of

The square root of the number
passed in.

STARTS_WITH Determines whether a string starts
with a prefix

• string -the string to test
• prefix - The proposed prefix

True if the string starts with
the specified prefix and false if
otherwise

STATS_ADD Add one or more input values to
those that are used to calculate the
summary statistics

• stats - The Stellar statistics
object. If null, then a new one
is initialized

• value+ - One or more
numbers to add

A Stellar statistics object

STATS_BIN Computes the bin that the value
is in based on the statistical
distribution.

• stats - The Stellar statistics
object

• value - The value to bin
• bound? - A list of percentile

bin bounds (excluding
min and max) or a string
representing a known and
common set of bins. For
convenience, we have
provided QUARTILE,
QUINTILE, and DECILE
which you can pass in as a
string arg. If this argument
is omitted, then we assume a
Quartile bin split.

Which bin N the value falls in
such that bound(N-1) < value
<= bound(N). No min and max
bounds are provided, so values
smaller than the 0'th bound go in
the 0'th bin, and values greater
than the last bound go in the M'th
bin.

STATS_COUNT Calculates the count of the values
accumulated (or in the window if
a window is used)

• stats - The Stellar statistics
object

The count of the values in the
window or NaN if the statistics
object is null

STATS_GEOMETRIC_MEAN Calculates the geometric
mean of the accumulated
values (or in the window if a
window is used). See http://
commons.apache.org.proper/
commons-math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The geometric mean of the values
in the window or NaN if the
statistics object is null

STATS_INIT Initializes a statistics object • window_size - The number
of input data values to
maintain in a rolling window
in memory. If window_size
is equal to 0, then no rolling
window is maintained. Using
no rolling window is less
memory intensive, but cannot
calculate certain statistics like
percentiles and kurtosis.

A Stellar statistics object

STATS_KURTOSIS Calculates the kurtosis of the
accumulated values (or in the
window if a window is used).
See http://commons.apache.org/
proper/commons-math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The kurtosis of the values in the
window or NaN if the statistics
object is null

STATS_MAX Calculates the maximum of the
accumulated values (or in the
window if a window is used)

• stats - The Stellar statistics
object

The maximum of the accumulated
values in the window or NaN if
the statistics object is null

STATS_MEAN Calculates the mean of the
accumulated values (or in the
window if a window is used)

• stats - The Stellar statistics
object

The mean of the values in the
window or NaN if the statistics
objects is null

16

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

STATS_MERGE Merges statistics objects • statistics - A list of statistics
providers

A Stellar statistics object

STATS_MIN Calculates the minimum of the
accumulated values (or in the
window if a window is used)

• stats - The Stellar statistics
object

The minimum of the accumulated
values in the window of NaN if
the statistics object is null

STATS_PERCENTILE Computes the p'th percentile of
the accumulated values (or in the
window if a window is used)

• stats - The Stellar statistics
object

• p - A double where 0<=1
representing the percentile

The p'th percentile of the data or
NaN if the statistics object is null

STATS_POPULATION_VARIANCECalculates the population variance
of the accumulated values (or in
the window if a window is used).
See http://commons.apache.org/
proper/commons-math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The population variance of the
values in the window of NaN if
the statistics object is null

STATS_QUADRATIC_MEAN Calculates the quadratic mean of
the accumulated values (or in the
window if the window is used).
See http://commons.apache.org/
proper/commons-math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The quadratic mean of the values
in the window or NaN if the
statistics object is null

STATS_SD Calculates the standard deviation
of the accumulated values (or in
the window if a window is used).
See http://commons.apache.org/
proper/commons-math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The standard deviation of the
values in the window or NaN if
the statistics object is null

STATS_SKEWNESS Calculates the skewness of the
accumulated values (or in the
window if a window is used).
See http://commons.apache.org/
proper/commons-math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The skewness of the values in the
window of NaN if the statistics
object is null

STATS_SUM Calculates the sum of the
accumulated values (or in the
window if a window is used)

• stats - The Stellar statistics
object

The sum of the values in the
window or NaN if the statistics
object is null

STATS_SUM_LOGS Calculates the sum of the
(natural) log of the accumulated
values (or in the window if a
window is used). See http://
commons.apache.org/proper/
commons-math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The sum of the (natural) log of the
values in the in window or NaN if
the statistics object is null

STATS_SUM_SQUARES Calculates the sum of the squares
of the accumulated values (or in
the window if a window is used)

• stats - The Stellar statistics
object

The sum of the squares of the
values in the window or NaN if
the statistics object is null

STATS_VARIANCE Calculates the variance of the
accumulated values (or in the
window if a window is used).
See http://commons.apache.org/
proper/commons-math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The variance of the values in the
window or NaN if the statistics
object is null

STRING_ENTROPY Computes the base-2 shannon
entropy of a string.

input - string The base-2 shannon entropy
of the string (https://
en.wikipedia.org/wiki/
Entropy_(information_theory)#Definition).
The unit of this is bits.

17

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

SUBSTRING Returns the substring of a string • input - The string to take the
substring of

• start - The starting position (0
-based and inclusive)

• end? - The ending position (0
-based and exclusive)

The substring of the input

SYSTEM_ENV_GET Returns the value associated with
an environment variable

• env_var - Environment
variable name to get the value
for

String

SYSTEM_PROPERTY_GET Returns the value associated with
a Java system property

• key - Property to get the value
for

String

TAN Returns the tangent of a number. • number - The number to take
the tangent of

The tangent of the number passed
in.

TLSH_DIST Will return the hamming distance
between two TLSH hashes (note:
must be computed with the same
params). For more information,
see https://github.com/trendmicro/
tlsh and Jonathan Oliver, Chun
Cheng, and Yanggui Chen, TLSH
- A Locality Sensitive Hash. 4th
Cybercrime and Trustworthy
Computing Workshop, Sydney,
November 2013. For a discussion
of tradeoffs, see Table II on
page 5 of https://github.com/
trendmicro/tlsh/blob/master/
TLSH_CTC_final.pdf

• hash1 - The first TLSH hash
• hash2 - The first TLSH hash
• includeLength? - Include

the length in the distance
calculation or not? Returns:
An integer representing the
distance between hash1
and hash2. The distance is
roughly hamming distance, so
0 is very similar.

TO_DOUBLE Transforms the first argument to a
double precision number

• Input - Object of string or
numeric type

Double version of the first
argument

TO_EPOCH_TIMESTAMP Returns the epoch timestamp
of the dateTime in the specified
format. If the format does not
have a timestamp and you wish
to assume a given timestamp,
you may specify the timezone
optionally.

• dateTime - DateTime in
string format

• format - DateTime format as
string

• timezone - Optional timezone
in a string format

Epoch timestamp

TO_FLOAT Transforms the first argument to
an integer

• Input - Object of string or
numeric type

Float version of the first argument

TO_INTEGER Transforms the first argument to
an integer

• Input - Object of string or
numeric type

Integer version of the first
argument

TO_JSON_LIST Accepts JSON string as an input
and returns a List object parsed
by Jackson. You need to be
aware of content of JSON string
that is to be parsed. For e.g.
GET_FIRST(TO_JSON_LIST('["foo",
2]') would yield foo

• string - The JSON string to be
parsed

A parsed List object

TO_JSON_MAP Accepts JSON string as an
input and returns a Map object
parsed by Jackson. You need
to be aware of content of JSON
string that is to be parsed.
For e.g. MAP_GET('bar',
TO_JSON_MAP('{ "foo" : 1,
"bar" : 2}')would yield 2

• string - The JSON string to be
parsed

A parsed Map object

18

https://github.com/trendmicro/tlsh
https://github.com/trendmicro/tlsh
https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf
https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf
https://github.com/trendmicro/tlsh/blob/master/TLSH_CTC_final.pdf

HCP Stellar Quick Reference Stellar Language Functions

Function Description Input Returns

TO_JSON_OBJECT Accepts JSON string as an input
and returns a JSON Object
parsed by Jackson. You need
to be aware of content of JSON
string that is to be parsed.
For e.g. MAP_GET('bar',
TO_JSON_OBJECT('{ "foo" : 1,
"bar" : 2}')would yield 2

• string - The JSON string to be
parsed

A parsed JSON object

TO_LONG Transforms the first argument to a
long integer

• input - Object of string or
numeric type

Long version of the first argument

TO_LOWER Transforms the first argument to a
lowercase string

• Input -String String

TO_STRING Transforms the first argument to a
string

• Input - Object String

TO_UPPER Transforms the first argument to
an uppercase string

• Input -String Uppercase string

TRIM Trims white space from both sides
of a string

• Input -String String

URL_TO_HOST Extract the hostname from a URL • url - URL in string form The hostname from the URL
as a string (for example
URL_TO_HOST('http://
www.yahoo.com/foo') would
yield 'www.yahoo.com'

URL_TO_PATH Extract the path from a URL • url - URL in string form The path from the URL
as a string (for example
URL_TO_PATH('http://
www.yahoo.com/foo') would
yield 'foo'

URL_TO_PORT Extract the port from a URL. If
the port is not explicitly stated in
the URL, then an implicit port is
inferred based on the protocol.

• url - URL in string form The port used in the URL
as an integer (for example
URL_TO_PORT('http://
www.yahoo.com/foo') would
yield 80)

URL_TO_PROTOCOL Extract the protocol from a URL • url - URL in string form The protocol from the URL
as a string (for example
URL_TO_PROTOCOL('http://
www.yahoo.com/foo') would
yield 'http'

WEEK_OF_MONTH The numbered week within the
month. The first week within the
month has a value of 1.

• dateTime -The datetime
as a long representing the
milliseconds since UNIX
epoch

The numbered week within the
month

WEEK_OF_YEAR The numbered week within the
year. The first week in the year
has a value of 1.

• dateTime - The datetime
as a long representing the
milliseconds since UNIX
epoch

The numbered week within the
year

YEAR The number representing the year • dateTime -The datetime
as a long representing the
milliseconds since UNIX
epoch

The current year

ZIP Zips lists into a single list
where the ith element is an list
containing the ith items from the
constituent lists. See python and
wikipedia for more context.

• lists* - Lists to zip. • Returns: The zip of the lists.
The returned list is the min
size of all the lists. e.g.,
ZIP([1, 2], [3, 4, 5]) ==
[[1, 3], [2, 4]]

19

https://docs.python.org/3/library/functions.html#zip
https://en.wikipedia.org/wiki/Convolution_(computer_science)

HCP Stellar Quick Reference Stellar Benchmarks

Function Description Input Returns

ZIP_LONGEST Zips lists into a single list
where the ith element is an list
containing the ith items from the
constituent lists. See python and
wikipedia for more context.

• lists* - Lists to zip. • Returns: The zip of the
lists. The returned list is
the max size of all the lists.
Empty elements are null e.g.,
ZIP_LONGEST([1, 2], [3,
4, 5]) == [[1, 3], [2, 4], [null,
5]]

The following is an example query (in other words, a function which returns a boolean) which would be seen possibly
in threat triage:

IN_SUBNET(ip, '192.168.0.0/24') or ip in ['10.0.0.1', '10.0.0.2'] or
 exists(is_local)

This evaluates to true precisely when one of the following is true:

• The value of the ip field is in the 192.168.0.0/24 subnet
• The value of the ip field is 10.0.0.1 or 10.0.0.2
• The field is_local exists

The following is an example transformation which might be seen in a field transformation:

TO_EPOCH_TIMESTAMP(timestamp, 'yyyy-MM-dd HH:mm:ss', MAP_GET(dc, dc2tz,
 'UTC'))

For a message with a timestamp and dc field, we want to set the transform the timestamp to an epoch timestamp given
a timezone which we will lookup in a separate map, called dc2tz.

This will convert the timestamp field to an epoch timestamp based on the

• Format yyyy-MM-dd HH:mm:ss
• The value in dc2tz associated with the value associated with field dc, defaulting to UTC

Stellar Benchmarks

A microbenchmarking utility is included to assist in executing microbenchmarks for Stellar functions.

The utility can be executed via maven using the `exec` plugin, like so, from the `metron-common` directory:

mvn -DskipTests clean package && \
mvn exec:java -
Dexec.mainClass="org.apache.metron.common.stellar.benchmark.StellarMicrobenchmark"
 -Dexec.args="..."

where exec.args can be one of the following:

 -e,--expressions <FILE> Stellar expressions
 -h,--help Generate Help screen
 -n,--num_times <NUM> Number of times to run per expression (after
 warmup). Default: 1000
 -o,--output <FILE> File to write output.
 -p,--percentiles <NUM> Percentiles to calculate per run. Default:
 50.0,75.0,95.0,99.0
 -v,--variables <FILE> File containing a JSON Map of variables to use
 -w,--warmup <NUM> Number of times for warmup per expression.
 Default: 100

20

https://docs.python.org/3/library/itertools.html#itertools.zip_longest
https://en.wikipedia.org/wiki/Convolution_(computer_science)

HCP Stellar Quick Reference Stellar Benchmarks

For instance, to run with a set of Stellar expression in file /tmp/expressions.txt:

```
 # simple functions
 TO_UPPER('john')
 TO_LOWER(name)
 # math functions
 1 + 2*(3 + int_num) / 10.0
 1.5 + 2*(3 + double_num) / 10.0
 # conditionals
 if ('foo' in ['foo']) OR one == very_nearly_one then 'one' else 'two'
 1 + 2*(3 + int_num) / 10.0
 #Network funcs
 DOMAIN_TO_TLD(domain)
 DOMAIN_REMOVE_SUBDOMAINS(domain)

And variables in file /tmp/variables.json:

{
  "name" : "john",
  "int_num" : 1,
  "double_num" : 17.5,
  "one" : 1,
  "very_nearly_one" : 1.000001,
  "domain" : "www.google.com"
}

Written to file /tmp/output.txt would be the following command:

mvn -DskipTests clean package && \
mvn exec:java -
Dexec.mainClass="org.apache.metron.common.stellar.benchmark.StellarMicrobenchmark"
 \
-Dexec.args="-e /tmp/expressions.txt -v /tmp/variables.json -o ./
output.json"
 

21


	Contents
	Introduction to Stellar Language
	Stellar Language Keywords
	Stellar Language Inclusion Checks
	Stellar Language Comparisons
	Stellar Language Equality Check
	Stellar Language Lambda Expressions
	Stellar Language Match Expression
	Stellar Language Functions
	Stellar Benchmarks

