
Hortonworks DataFlow

 (December 22, 2017)

Overview

docs.cloudera.com

http://docs.cloudera.com


Hortonworks DataFlow December 22, 2017

ii

Hortonworks DataFlow: Overview
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode


Hortonworks DataFlow December 22, 2017

iii

Table of Contents
1. Overview .....................................................................................................................  1
2. Apache NiFi Overview ..................................................................................................  3

2.1. What is Apache NiFi? ........................................................................................  3
2.2. The core concepts of NiFi .................................................................................. 4
2.3. NiFi Architecture ...............................................................................................  5
2.4. Performance Expectations and Characteristics of NiFi ........................................  7
2.5. High Level Overview of Key NiFi Features .......................................................... 7
2.6. References ......................................................................................................  14

3. Streaming Analytics Manager Overview .....................................................................  16
3.1. Streaming Analytics Manager Modules ............................................................  17
3.2. Streaming Analytics Manager Taxonomy .........................................................  17
3.3. Streaming Analytics Manager Personas ...........................................................  18

3.3.1. Platform Operator Persona ................................................................... 19
3.3.2. Application Developer Persona .............................................................  21
3.3.3. Analyst Persona ....................................................................................  23
3.3.4. SDK Developer Persona ........................................................................  24

4. Schema Registry Overview .........................................................................................  25
4.1. Examples of Interacting with Schema Registry .................................................  26
4.2. Schema Registry Use Cases ..............................................................................  27

4.2.1. Use Case 1: Registering and Querying a Schema for a Kafka Topic .........  27
4.2.2. Use Case 2: Reading/Deserializing and Writing/Serializing Data from
and to a Kafka Topic .....................................................................................  27
4.2.3. Use Case 3: Dataflow Management with Schema-based Routing ...........  28

4.3. Schema Registry Component Architecture .......................................................  28
4.4. Schema Registry Concepts ...............................................................................  29

4.4.1. Schema Entities ....................................................................................  29
4.4.2. Compatibility Policies ............................................................................  30

5. Navigating the HDF Library ........................................................................................  31



Hortonworks DataFlow December 22, 2017

iv

List of Figures
4.1. Schema Registry Usage in Flow Management ..........................................................  26
4.2. Schema entities .......................................................................................................  29



Hortonworks DataFlow December 22, 2017

v

List of Tables
4.1. Schema entity types ................................................................................................  29



Hortonworks DataFlow December 22, 2017

1

1. Overview
To build real-world data in motion apps such as those based on the Internet of Things (IoT),
you need both flow management and stream processing capabilities. What is the difference
between the two?

Data in motion apps typically have the following key requirements:

• Acquisition of Data from data sources within the data center, and across cloud
environments and edge devices.

• Moving and Filtering of Data from edge devices (such as telematic panels on trucks), and
across cloud environments and core data centers.

• Intelligent and Dynamic Routing of Data across regional data centers to core processing
data centers.

• Delivering Data to different downstream systems.

• Joining and Splitting Streams of Data as they move.

• Detecting complex patterns in the streams of data.

• Scoring/Executing Analytics Models within the stream.

• Creating Custom Dashboards to visualize and analyze the streams and insights.

To explain how flow management and stream processing relate to these requirements,
we employ a fictitious use case for trucking company X, which installed sensors on its fleet
of trucks. These sensors emit streams of event data such as speed, braking frequency, and
geo-code location. In this use case, the trucking company is building an IoT trucking app
that monitors trucks in real time.

The following diagram illustrates how each of these requirements would be implemented
in the context of stream processing and flow management:

As part of the stream processing suite available in HDF, Streaming Analytics Manager
provides capabilities for implementing the requirements outlined in blue in the previous
diagram.

To summarize, Streaming Analytics Manager provides the following core capabilities:



Hortonworks DataFlow December 22, 2017

2

• Building stream apps, using the following primitives:

• Connecting to streams

• Joining streams

• Forking streams

• Aggregating over windows

• Extensibility: adding custom processors and user-defined-functions (UDFs)

• Stream analytics: descriptive, predictive, and prescriptive

• Rules engine

• Transformations

• Filtering and routing

• Notifications and alerts

• Deploying stream apps:

• Deploying the stream app on a supported streaming engine:

• Monitoring the stream app with application-specific metrics.

• Exploring and analyzing streaming data; discovering insights:

• Creating dashboards of streaming data

• Exploring streaming data

• Creating streaming cubes



Hortonworks DataFlow December 22, 2017

3

2. Apache NiFi Overview
• What is Apache NiFi? [3]

• The core concepts of NiFi [4]

• NiFi Architecture [5]

• Performance Expectations and Characteristics of NiFi [7]

• High Level Overview of Key NiFi Features [7]

• References [14]

2.1. What is Apache NiFi?
Put simply NiFi was built to automate the flow of data between systems. While the term
dataflow is used in a variety of contexts, we use it here to mean the automated and
managed flow of information between systems. This problem space has been around ever
since enterprises had more than one system, where some of the systems created data and
some of the systems consumed data. The problems and solution patterns that emerged
have been discussed and articulated extensively. A comprehensive and readily consumed
form is found in the Enterprise Integration Patterns.

Some of the high-level challenges of dataflow include:

Systems fail Networks fail, disks fail, software crashes, people make
mistakes.

Data access exceeds capacity to
consume

Sometimes a given data source can outpace some part
of the processing or delivery chain - it only takes one
weak-link to have an issue.

Boundary conditions are mere
suggestions

You will invariably get data that is too big, too small,
too fast, too slow, corrupt, wrong, or in the wrong
format.

What is noise one day becomes
signal the next

Priorities of an organization change - rapidly. Enabling
new flows and changing existing ones must be fast.

Systems evolve at different rates The protocols and formats used by a given system can
change anytime and often irrespective of the systems
around them. Dataflow exists to connect what is
essentially a massively distributed system of components
that are loosely or not-at-all designed to work together.

Compliance and security Laws, regulations, and policies change. Business to
business agreements change. System to system and
system to user interactions must be secure, trusted,
accountable.

Continuous improvement occurs
in production

It is often not possible to come even close to replicating
production environments in the lab.



Hortonworks DataFlow December 22, 2017

4

Over the years dataflow has been one of those necessary evils in an architecture. Now
though there are a number of active and rapidly evolving movements making dataflow a
lot more interesting and a lot more vital to the success of a given enterprise. These include
things like; Service Oriented Architecture , the rise of the API , Internet of Things , and
Big Data . In addition, the level of rigor necessary for compliance, privacy, and security is
constantly on the rise. Even still with all of these new concepts coming about, the patterns
and needs of dataflow are still largely the same. The primary differences then are the
scope of complexity, the rate of change necessary to adapt, and that at scale the edge case
becomes common occurrence. NiFi is built to help tackle these modern dataflow challenges.

2.2. The core concepts of NiFi
NiFi's fundamental design concepts closely relate to the main ideas of Flow Based
Programming. Here are some of the main NiFi concepts and how they map to FBP:

NiFi Term FBP Term Description

FlowFile Information Packet A FlowFile represents each object
moving through the system and for
each one, NiFi keeps track of a map
of key/value pair attribute strings and
its associated content of zero or more
bytes.

FlowFile Processor Black Box Processors actually perform the work.
In Enterprise Integration Pattern terms
a processor is doing some combination
of data routing, transformation, or
mediation between systems. Processors
have access to attributes of a given
FlowFile and its content stream.
Processors can operate on zero or more
FlowFiles in a given unit of work and
either commit that work or rollback.

Connection Bounded Buffer Connections provide the actual linkage
between processors. These act as
queues and allow various processes
to interact at differing rates. These
queues can be prioritized dynamically
and can have upper bounds on load,
which enable back pressure.

Flow Controller Scheduler The Flow Controller maintains the
knowledge of how processes connect
and manages the threads and
allocations thereof which all processes
use. The Flow Controller acts as the
broker facilitating the exchange of
FlowFiles between processors.

Process Group subnet A Process Group is a specific set of
processes and their connections, which
can receive data via input ports and
send data out via output ports. In this
manner, process groups allow creation
of entirely new components simply by
composition of other components.

This design model, also similar to SEDA, provides many beneficial consequences that help
NiFi to be a very effective platform for building powerful and scalable dataflows. A few of
these benefits include:



Hortonworks DataFlow December 22, 2017

5

• Lends well to visual creation and management of directed graphs of processors

• Is inherently asynchronous which allows for very high throughput and natural buffering
even as processing and flow rates fluctuate

• Provides a highly concurrent model without a developer having to worry about the
typical complexities of concurrency

• Promotes the development of cohesive and loosely coupled components which can then
be reused in other contexts and promotes testable units

• The resource constrained connections make critical functions such as back-pressure and
pressure release very natural and intuitive

• Error handling becomes as natural as the happy-path rather than a coarse grained catch-
all

• The points at which data enters and exits the system as well as how it flows through are
well understood and easily tracked

2.3. NiFi Architecture

NiFi executes within a JVM on a host operating system. The primary components of NiFi on
the JVM are as follows:

Web Server The purpose of the web server is to host NiFi's HTTP-based
command and control API.

Flow Controller The flow controller is the brains of the operation. It provides
threads for extensions to run on, and manages the schedule
of when extensions receive resources to execute.



Hortonworks DataFlow December 22, 2017

6

Extensions There are various types of NiFi extensions which are
described in other documents. The key point here is that
extensions operate and execute within the JVM.

FlowFile Repository The FlowFile Repository is where NiFi keeps track of the
state of what it knows about a given FlowFile that is
presently active in the flow. The implementation of the
repository is pluggable. The default approach is a persistent
Write-Ahead Log located on a specified disk partition.

Content Repository The Content Repository is where the actual content
bytes of a given FlowFile live. The implementation of the
repository is pluggable. The default approach is a fairly
simple mechanism, which stores blocks of data in the file
system. More than one file system storage location can be
specified so as to get different physical partitions engaged
to reduce contention on any single volume.

Provenance Repository The Provenance Repository is where all provenance event
data is stored. The repository construct is pluggable with the
default implementation being to use one or more physical
disk volumes. Within each location event data is indexed
and searchable.

NiFi is also able to operate within a cluster.

Starting with the NiFi 1.0 release, a Zero-Master Clustering paradigm is employed. Each
node in a NiFi cluster performs the same tasks on the data, but each operates on a
different set of data. Apache ZooKeeper elects a single node as the Cluster Coordinator,
and failover is handled automatically by ZooKeeper. All cluster nodes report heartbeat and
status information to the Cluster Coordinator. The Cluster Coordinator is responsible for
disconnecting and connecting nodes. Additionally, every cluster has one Primary Node,
also elected by ZooKeeper. As a DataFlow manager, you can interact with the NiFi cluster
through the user interface (UI) of any node. Any change you make is replicated to all nodes
in the cluster, allowing for multiple entry points.



Hortonworks DataFlow December 22, 2017

7

2.4. Performance Expectations and Characteristics
of NiFi

NiFi is designed to fully leverage the capabilities of the underlying host system on which
it is operating. This maximization of resources is particularly strong with regard to CPU
and disk. For additional details, see the best practices and configuration tips in the
Administration Guide.

For IO The throughput or latency one can expect to see varies greatly, depending
on how the system is configured. Given that there are pluggable approaches
to most of the major NiFi subsystems, performance depends on the
implementation. But, for something concrete and broadly applicable, consider
the out-of-the-box default implementations. These are all persistent with
guaranteed delivery and do so using local disk. So being conservative, assume
roughly 50 MB per second read/write rate on modest disks or RAID volumes
within a typical server. NiFi for a large class of dataflows then should be
able to efficiently reach 100 MB per second or more of throughput. That is
because linear growth is expected for each physical partition and content
repository added to NiFi. This will bottleneck at some point on the FlowFile
repository and provenance repository. We plan to provide a benchmarking and
performance test template to include in the build, which allows users to easily
test their system and to identify where bottlenecks are, and at which point
they might become a factor. This template should also make it easy for system
administrators to make changes and to verify the impact.

For CPU The Flow Controller acts as the engine dictating when a particular processor
is given a thread to execute. Processors are written to return the thread as
soon as they are done executing a task. The Flow Controller can be given a
configuration value indicating available threads for the various thread pools
it maintains. The ideal number of threads to use depends on the host system
resources in terms of numbers of cores, whether that system is running other
services as well, and the nature of the processing in the flow. For typical IO-
heavy flows, it is reasonable to make many dozens of threads to be available.

For RAM NiFi lives within the JVM and is thus limited to the memory space it is afforded
by the JVM. JVM garbage collection becomes a very important factor to
both restricting the total practical heap size, as well as optimizing how well
the application runs over time. NiFi jobs can be I/O intensive when reading
the same content regularly. Configure a large enough disk to optimize
performance.

2.5. High Level Overview of Key NiFi Features
This sections provides a 20,000 foot view of NiFi's cornerstone fundamentals, so that you
can understand the Apache NiFi big picture, and some of its the most interesting features.
The key features categories include flow management, ease of use, security, extensible
architecture, and flexible scaling model.

Flow Management Guaranteed Delivery A core philosophy of
NiFi has been that



Hortonworks DataFlow December 22, 2017

8

even at very high
scale, guaranteed
delivery is a must.
This is achieved
through effective
use of a purpose-
built persistent
write-ahead log and
content repository.
Together they are
designed in such a
way as to allow for
very high transaction
rates, effective load-
spreading, copy-
on-write, and play
to the strengths of
traditional disk read/
writes.

Data Buffering w/ Back Pressure
and Pressure Release

NiFi supports
buffering of all
queued data as
well as the ability to
provide back pressure
as those queues reach
specified limits or
to age off data as it
reaches a specified
age (its value has
perished).

Prioritized Queuing NiFi allows the
setting of one or
more prioritization
schemes for how data
is retrieved from a
queue. The default
is oldest first, but
there are times when
data should be pulled
newest first, largest
first, or some other
custom scheme.

Flow Specific QoS (latency v
throughput, loss tolerance, etc.)

There are points of
a dataflow where
the data is absolutely
critical and it is loss
intolerant. There are
also times when it



Hortonworks DataFlow December 22, 2017

9

must be processed
and delivered within
seconds to be of any
value. NiFi enables
the fine-grained flow
specific configuration
of these concerns.

Ease of Use Visual Command and Control Dataflows can
become quite
complex. Being able
to visualize those
flows and express
them visually can help
greatly to reduce
that complexity
and to identify
areas that need to
be simplified. NiFi
enables not only the
visual establishment
of dataflows but it
does so in real-time.
Rather than being
design and deploy
it is much more like
molding clay. If you
make a change to
the dataflow that
change immediately
takes effect. Changes
are fine-grained
and isolated to the
affected components.
You don't need to
stop an entire flow
or set of flows just to
make some specific
modification.

Flow Templates Dataflows tend to
be highly pattern
oriented and while
there are often many
different ways to
solve a problem,
it helps greatly to
be able to share
those best practices.
Templates allow
subject matter experts



Hortonworks DataFlow December 22, 2017

10

to build and publish
their flow designs and
for others to benefit
and collaborate on
them.

Data Provenance NiFi automatically
records, indexes,
and makes available
provenance data as
objects flow through
the system even
across fan-in, fan-
out, transformations,
and more. This
information becomes
extremely critical
in supporting
compliance,
troubleshooting,
optimization, and
other scenarios.

Recovery / Recording a rolling
buffer of fine-grained history

NiFi's content
repository is designed
to act as a rolling
buffer of history.
Data is removed only
as it ages off the
content repository or
as space is needed.
This combined with
the data provenance
capability makes
for an incredibly
useful basis to enable
click-to-content,
download of content,
and replay, all at
a specific point in
an object's lifecycle
which can even span
generations.

Security System to System A dataflow is only as
good as it is secure.
NiFi at every point in a
dataflow offers secure
exchange through the
use of protocols with
encryption such as 2-
way SSL. In addition



Hortonworks DataFlow December 22, 2017

11

NiFi enables the
flow to encrypt and
decrypt content and
use shared-keys or
other mechanisms
on either side of the
sender/recipient
equation.

User to System NiFi enables 2-Way
SSL authentication
and provides
pluggable
authorization so that
it can properly control
a user's access and
at particular levels
(read-only, dataflow
manager, admin).
If a user enters a
sensitive property like
a password into the
flow, it is immediately
encrypted server
side and never again
exposed on the
client side even in its
encrypted form.

Multi-tenant Authorization The authority level
of a given dataflow
applies to each
component, allowing
the admin user to
have fine grained
level of access
control. This means
each NiFi cluster is
capable of handling
the requirements
of one or more
organizations.
Compared to isolated
topologies, multi-
tenant authorization
enables a self-service
model for dataflow
management,
allowing each team
or organization to
manage flows with



Hortonworks DataFlow December 22, 2017

12

a full awareness of
the rest of the flow,
to which they do not
have access.

Extensible Architecture Extension NiFi is at its core built
for extension and as
such it is a platform
on which dataflow
processes can execute
and interact in a
predictable and
repeatable manner.
Points of extension
include: processors,
Controller Services,
Reporting Tasks,
Prioritizers, and
Customer User
Interfaces.

Classloader Isolation For any component-
based system,
dependency problems
can quickly occur.
NiFi addresses this by
providing a custom
class loader model,
ensuring that each
extension bundle
is exposed to a
very limited set of
dependencies. As
a result, extensions
can be built with
little concern for
whether they might
conflict with another
extension. The
concept of these
extension bundles is
called NiFi Archives
and is discussed in
greater detail in the
Developer's Guide.

Site-to-Site Communication
Protocol

The preferred
communication
protocol between
NiFi instances is the
NiFi Site-to-Site (S2S)
Protocol. S2S makes



Hortonworks DataFlow December 22, 2017

13

it easy to transfer
data from one NiFi
instance to another
easily, efficiently,
and securely. NiFi
client libraries can
be easily built and
bundled into other
applications or devices
to communicate
back to NiFi via S2S.
Both the socket
based protocol and
HTTP(S) protocol
are supported in S2S
as the underlying
transport protocol,
making it possible
to embed a proxy
server into the S2S
communication.

Flexible Scaling Model Scale-out (Clustering) NiFi is designed to scale-
out through the use of
clustering many nodes
together as described
above. If a single
node is provisioned
and configured to
handle hundreds of
MB per second, then a
modest cluster could be
configured to handle
GB per second. This
then brings about
interesting challenges
of load balancing and
fail-over between NiFi
and the systems from
which it gets data.
Use of asynchronous
queuing based protocols
like messaging services,
Kafka, etc., can help.
Use of NiFi's site-to-
site feature is also
very effective as it is a
protocol that allows NiFi
and a client (including
another NiFi cluster)
to talk to each other,



Hortonworks DataFlow December 22, 2017

14

share information
about loading, and
to exchange data on
specific authorized ports.

Scale-up & down NiFi is also designed to
scale-up and down in
a very flexible manner.
In terms of increasing
throughput from the
standpoint of the NiFi
framework, it is possible
to increase the number
of concurrent tasks on
the processor under
the Scheduling tab
when configuring. This
allows more processes to
execute simultaneously,
providing greater
throughput. On the
other side of the
spectrum, you can
perfectly scale NiFi down
to be suitable to run
on edge devices where
a small footprint is
desired due to limited
hardware resources.
To specifically solve the
first mile data collection
challenge and edge use
cases, you can find more
details here: https://
cwiki.apache.org/
confluence/display/NIFI/
MiNiFi regarding a child
project effort of Apache
NiFi, MiNiFi (pronounced
"minify", [min-uh-fahy]).

2.6. References
• [eip] Gregor Hohpe. Enterprise Integration Patterns [online]. Retrieved: 27 Dec 2014,

from: http://www.enterpriseintegrationpatterns.com/

• [soa] Wikipedia. Service Oriented Architecture [online]. Retrieved: 27 Dec 2014, from:
http://en.wikipedia.org/wiki/Service-oriented_architecture

https://cwiki.apache.org/confluence/display/NIFI/MiNiFi
https://cwiki.apache.org/confluence/display/NIFI/MiNiFi
https://cwiki.apache.org/confluence/display/NIFI/MiNiFi
https://cwiki.apache.org/confluence/display/NIFI/MiNiFi
http://www.enterpriseintegrationpatterns.com/
http://en.wikipedia.org/wiki/Service-oriented_architecture


Hortonworks DataFlow December 22, 2017

15

• [api] Eric Savitz. Welcome to the API Economy [online]. Forbes.com. Retrieved: 27 Dec
2014, from: http://www.forbes.com/sites/ciocentral/2012/08/29/welcome-to-the-api-
economy/

• [api2] Adam Duvander. The rise of the API economy and consumer-led ecosystems
[online]. thenextweb.com. Retrieved: 27 Dec 2014, from: http://thenextweb.com/
dd/2014/03/28/api-economy/

• [iot] Wikipedia. Internet of Things [online]. Retrieved: 27 Dec 2014, from: http://
en.wikipedia.org/wiki/Internet_of_Things

• [bigdata] Wikipedia. Big Data [online]. Retrieved: 27 Dec 2014, from: http://
en.wikipedia.org/wiki/Big_data

• [fbp] Wikipedia. Flow Based Programming [online]. Retrieved: 28 Dec 2014, from: http://
en.wikipedia.org/wiki/Flow-based_programming#Concepts

• [seda] Matt Welsh. Harvard. SEDA: An Architecture for Highly Concurrent Server
Applications [online]. Retrieved: 28 Dec 2014, from: https://sourceforge.net/projects/
seda/

http://www.forbes.com/sites/ciocentral/2012/08/29/welcome-to-the-api-economy/
http://www.forbes.com/sites/ciocentral/2012/08/29/welcome-to-the-api-economy/
http://thenextweb.com/dd/2014/03/28/api-economy/
http://thenextweb.com/dd/2014/03/28/api-economy/
http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Big_data
http://en.wikipedia.org/wiki/Flow-based_programming#Concepts
http://en.wikipedia.org/wiki/Flow-based_programming#Concepts
https://sourceforge.net/projects/seda/
https://sourceforge.net/projects/seda/


Hortonworks DataFlow December 22, 2017

16

3. Streaming Analytics Manager
Overview

The Hortonworks DataFlow Platform (HDF) provides flow management, stream processing,
and enterprise services for collecting, curating, analyzing and acting on data in motion
across on-premise data centers and cloud environments.

As the following diagram illustrates, Hortonworks Streaming Analytics Manager (SAM) is
an application within the stream processing suite of the HDF platform:

Use Streaming Analytics Manager to design, develop, deploy and manage streaming
analytics apps with a drag-and-drop visualization paradigm. Streaming Analytics
Manager allows you to build streaming analytics apps for event correlation, context
enrichment, complex pattern matching, and analytic aggregations. You can create alerts
and notifications when insights are discovered.

Streaming Analytics Manager is agnostic to the underlying streaming engine, and it can
support multiple streaming substrates such as Storm, Spark Streaming, Flink, etc. The first
streaming engine fully supported is Apache Storm.

This overview chapter describes fundamental concepts related to Streaming Analytics
Manager:

• Overview [1]

• Streaming Analytics Manager Modules [17]

• Streaming Analytics Manager Taxonomy [17]

• Streaming Analytics Manager Personas [18]



Hortonworks DataFlow December 22, 2017

17

3.1. Streaming Analytics Manager Modules
Streaming Analytics Manager is composed of several different modules that cater to
different user personas. The following diagram illustrates Streaming Analytics Manager
modules

You can think of Streaming Analytics Manager as an application that operates on top
of a streaming engine (a "gray box") that allows you build stream apps faster on top of
your selected streaming substrate. The unified streaming API provides the abstraction that
allows you to plug in different streaming engines.

3.2. Streaming Analytics Manager Taxonomy
The following table describes the taxonomy for Streaming Analytics Manager. This
taxonomy will be used throughout the rest of this guide.

Term Description

Streaming Analytics Manager The name of the graphical application for building,
deploying, and managing stream apps.

Stream App A streaming application built using Streaming Analytics
Manager.

My Applications The landing page for the Streaming Analytics Manager
application. The Dashboard has a list of stream apps.

App Tile Located on the dashboard, an app tile provides metrics,
status and lifecyle actions for a stream. Each stream app is
displayed as an app tile.

Stream Builder The Streaming Analytics Manager tool that is used to build
stream apps.

Builder Canvas The canvas of the Stream Builder, on which stream
apps are built. The canvas includes a palette of Builder
components that can be used to build a stream app.

Builder Components Building blocks available on the Builder Canvas palette,
which can be used to build stream apps. There are four
types of Builder components:



Hortonworks DataFlow December 22, 2017

18

Term Description

• Source Builder Component: for creating streams from
data sources such as Kafka topics or HDFS files.

• Processor Builder Component: for manipulating and
processing events in a stream, such as routing, applying
transformations, performing windowing operations,
and applying rules.

• Sink Builder Component: for sending events to other
systems such as HBase, HDFS, and Kafka.

• Custom Builder Component: for creating custom
requirements and adding them to the canvas palette.

Tile component A component tile that has been moved onto the Builder
Canvas, configurable for use in a specific stream app.

Connectors Define connections between component tiles, directing
a flow of tuples and how they flow (such as shuffle
grouping).

Stream Operation A view showing a running stream app, providing metrics
for the app. After you use Stream Builder to build and
deploy a stream app, the Stream Operation view allows
you to monitor the running app.

Service Pool A pool of services that can be used to create different
environments. Services can come from two sources:

• Ambari-managed cluster: if you specify an Ambari
URL, a service pool is populated with all of the services
managed by that Ambari Instance; for example, Storm,
HDFS, HBase, and Kafka.

• Custom service pool: for services not managed by
Ambari, you can create a custom service and add that to
a pool. Examples include Elastic Service and the Schema
Registry Service.

Environment A set of services you choose from one or more service
pools. The environment is then associated with a stream
app, which uses those services in that environment for
various configurations.

Stream Insight Superset The name of the Stream Insight module within SAM for
Business Analysts to create dashboards and visualizations

Insight Data Source A analytics cube powered by Druid where events can be
streamed into for rollups/aggregations/analytics

Insight Slice An insight visualization that can be created from a cube.
An insight can be added to a dashboard

Insight Dashboard Consists of a set of insight slices. Dashboards are created
by the Business analyst in the Stream Insights Superset
module.

3.3. Streaming Analytics Manager Personas
Four main modules within Streaming Analytics Manager offer services to different personas
in an organization:

User Persona Module Module Features and Functionality

IT Engineer, Operations Engineer,
Platform Engineer, Platform Operator

Stream Management • Create service pools and
environments.

• Provision, manage and monitor
stream apps.



Hortonworks DataFlow December 22, 2017

19

User Persona Module Module Features and Functionality

• Scale out or scale in stream apps
based on resource consumption.

Application Developer Stream Builder • The Stream Builder tool assists in
building analytic-focused stream
apps.

• The tool creates streams for event
correlation, context enrichment,
complex pattern matching, and
aggregation. It can create alerts
and notifications when patterns are
detected and insights are discovered.

• The interface uses a drag-and-drop
visual programming paradigm.

Business Analyst, Data Analyst Stream Insight Superset • The Stream Insight tool assists in
generating time-series and real-
time analytics dashboards, charts,
and graphs of metrics, alerts and
notifications.

• The tool provides interactive, ad-
hoc analytics. You can issue ad-hoc
queries, perform multidimensional
analyses, and visualize the results in
rich configurable dashboards.

• The tool offers a self-service ability
to create alerts and notification
dashboards based on insights
derived from the real-time streaming
data flows.

SDK Developer Unified Streaming API • The unified streaming API abstracts
out the underlying streaming engine,
making it more straightforward to
implement custom components.
Initial support is for Storm.

The following subsections describe responsibilities for each persona. For additional
information, see the following chapters in this guide:

Persona Chapter Reference

IT Engineer, Operations Engineer, Platform Engineer,
Platform Operator

Installing and Configuring Streaming Analytics Manager

Managing Stream Apps

Application Developer Running the Sample App

Building an End-to-End Stream App

Business Analyst, Data Analyst Creating Visualizations: Insight Slices

SDK Developer Adding Custom Builder Components

3.3.1. Platform Operator Persona

A platform operator typically manages the Streaming Analytics Manager platform, and
provisions various services and resources for the application development team. Common
responsibilities of a platform operator include:

• Installing and managing the Streaming Analytics Manager application platform.



Hortonworks DataFlow December 22, 2017

20

• Provisioning and providing access to services (e.g big data services like Kafka, Storm,
HDFS, HBase) for use by the development team when building stream apps.

• Provisioning and providing access to environments such as development, testing, and
production, for use by the development team when provisioning stream apps.

3.3.1.1. Services, Service Pools and Environments

To perform these responsibilities, a platform operator works with three important
abstractions in Streaming Analytics Manager:

• Service is an entity that an application developer works with to build stream apps.
Examples of services could be a Storm cluster that the stream app will be deployed to, a
Kafka cluster that is used by the stream app to create a streams, or a HBase cluster that
the stream app writes to.

• Service Pool is a set of services associated with an Ambari managed cluster

• Environment is a named entity that represents a set of services chosen from different
service pools. A stream app is assigned to an environment and the app can only use the
services associated with an environment.

The following diagram illustrates these constructs:

The Service, Service Pool, and Environment abstractions provide the following benefits:

1. Simplicity and ease of use: An application developer can use the Service abstraction
without needing to focus on configuration details. For example, to deploy a stream app



Hortonworks DataFlow December 22, 2017

21

to a Storm cluster, the developer does not need to consider how to configure the Storm
cluster (Nimbus host, ports, and so on). Instead, the developer simply selects the Storm
service from the environment associated with the app. The service abstract out all the
details/complexities.

2. Ease of propagating a stream app between environments: With Service as an
abstraction, it is easy for the stream operator or application developer to move a stream
app from one environment to another. They simply export the stream app and import it
into a different environment.

More Information

See Managing Stream Apps for more information about creating and managing the
Streaming Analytics Manager environment.

3.3.2. Application Developer Persona
The application developer uses the Stream Builder component to design, implement,
deploy, and debug stream apps in Streaming Analytics Manager.

The following subsections describe component building blocks and schema requirements.

More Information

• Getting Started with Streaming Analytics

3.3.2.1. Component Building Blocks

Stream Builder offers several building blocks for stream apps: sources, processors, sinks, and
custom components.

3.3.2.1.1. Sources

Source builder components are used to create data streams. SAM has the following
sources:

• Kafka

• Azure Event Hub

• HDFS

3.3.2.1.2. Processors

Processor builder components are used to manipulate events in the stream.

The following table lists processors that are available with Streaming Analytics Manager.

Processor Name Description

Join • Joins two streams together based on a field from each
stream.

• Two join types are supported: inner and left.

• Joins are based on a window that you can configure
based on time or count.

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_streaming-analytics-manager-user-guide/content/ch_sam-manage.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_getting-started-with-stream-analytics/content/index.html


Hortonworks DataFlow December 22, 2017

22

Processor Name Description

Rule • Allows you to configure rule conditions that route
events to different streams.

• Standard conditional operators are supported for rules.

• Configuring a rule has two modes:

• General: Guided rule creation using drop-down
menus.

• Advanced: Write complex SQL to construct a rule.

• Rules are translated to SQL to be applied on the stream.

• An event goes through all the conditions and if it
matches multiple rules the event is sent to all the
matching output streams.

Aggregate • Performs functions over windows of events.

• Two types of windows are supported: tumbling and
sliding.

• You can create window criteria based on time interval
and count.

• Window functions supported out of the box include:
stddev, stddevp, variance, variancecep, avg, min, max,
sum, count. The system is extensible to add custom
functions as well.

Projection • Applies transformations to the events in the stream

• Extensive set of OOO functions and the ability to add
your own functions

Branch • Performs a standard if-else construct for routing.

• The even is routed to the first rule it matches. Once an
event has matched a rule, no further condition search is
permformed.

PMML • Executes a PMML model that is stored in the Model
Registry. PMML has been minimally tested as part of the
Tech Preview, and should not be used.

3.3.2.1.3. Sinks

Sink builder components are used to send events to other systems.

Streaming Analytics Manager supports the following sinks:

• Kafka

• Druid

• HDFS

• HBase

• Hive

• JDBC

• OpenTSDB



Hortonworks DataFlow December 22, 2017

23

• Notification (OOO support Kafka and the ability to add custom notifications)

• Cassandra

• Solr

3.3.2.1.4. Custom Components

For more information about developing custom components, see SDK Developer Persona.

3.3.2.2. Schema Requirements

Unlike NiFi (the flow management service of the HDF platform), Streaming Analytics
Manager requires a schema for stream apps. More specifically, every Builder component
requires a schema to function.

The primary data stream source is Kafka, which uses the HDF Schema Registry.

The Builder component for Apache Kafka is integrated with the Schema Registry. When
you configure a Kafka source and supply a Kafka topic, Streaming Analytics Manager
calls the Schema Registry. Using the Kafka topic as the key, Streaming Analytics Manager
retrieves the schema. This schema is then displayed on the tile component, and is passed to
downstream components.

3.3.3. Analyst Persona

A business analyst uses the Streaming Analytics Manager Stream Insight module to
create time-series and real-time analytics dashboards, charts and graphs; and create rich
customizable visualizations of data.

Stream Insight Key Concepts

The following table describes key concepts of the Stream Insights module.

Stream Insight Concept Description

Analytics Engine • Stream Insight analytics engine is powered by Druid, an
open source data store designed for OLAP queries on
event data.

• Data can be streamed into the Analytics engine via the
Druid/Analytics Engine Sink that app developers can use
when building streaming apps. The analytics engine sink
can stream data into new/existing insight cubes.

Insight Data Source • A insight data source is powered by Druid that
represents the store for streaming data. The cube
can be queried to do rollups, aggregations and other
powerful analytics

Insight Slice • A visualization that can be created from asking
questions of the data source. An insight can be added to
the dashboard

Dashboard • Consists of a set of slices. Dashboards are created by the
Business analysts to perform descriptive analytics

A business analyst can create a wide array of visualizations to gather insights on streaming
data.



Hortonworks DataFlow December 22, 2017

24

The platform supports over 30+ visualizations the business analyst can create.

More Information

• Creating Insight Slices

• See the Gallery of Superset Visualizations for visualization examples

3.3.4. SDK Developer Persona

Streaming Analytics Manager supports the development of custom functionality through
the use of its SDK.

More Information

Adding Custom Builder Components

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_getting-started-with-stream-analytics/content/ch_sam-create-insights.html#sam-create-insight-slices
http://superset.apache.org/gallery.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_streaming-analytics-manager-user-guide/content/ch_sam-adding-custom-components.html


Hortonworks DataFlow December 22, 2017

25

4. Schema Registry Overview
The Hortonworks DataFlow Platform (HDF) provides flow management, stream processing,
and enterprise services for collecting, curating, analyzing and acting on data in motion
across on-premise data centers and cloud environments.

As the diagram below instructions, Hortonworks Schema Registry is part of the enterprise
services that powers the HDF platform.

Schema Registry provides a shared repository of schemas that allows applications and HDF
components HDF (NiFi, Storm, Kafka, Streaming Analytics Manager, and similar) to flexibly
interact with each other.

Applications built using HDF often need a way to share metadata across 3 dimensions:

• Data format

• Schema

• Semantics or meaning of the data

The Schema Registry design principle is to provide a way to tackle the challenges of
managing and sharing schemas between the components of HDF and in such a way
that the schemas are designed to support evolution such that a consumer and producer
can understand different versions of those schemas but still read all information shared
between both versions and safely ignore the rest.

Hence, the value that Schema Registry provides for HDF and the applications that integrate
with it are the following:

• Centralized registry – Provide reusable schema to avoid attaching schema to every piece
of data

• Version management – Define relationship between schema versions so that consumers
and producers can evolve at different rates

• Schema validation – Enable generic format conversion, generic routing and data quality



Hortonworks DataFlow December 22, 2017

26

Figure 4.1. Schema Registry Usage in Flow Management

4.1. Examples of Interacting with Schema Registry
Schema Registry UI

You can use the Schema Registry UI to create schema groups, schema metadata, and add

schema versions. 

Schema Registry API

You can access the Schema Registry API Swagger documentation directly from the UI.

To do this, append your URL with: /api/swagger/

For example: http://localhost:9090/api/swagger/

Java Client

You can review the following GitHub repositories for examples of how to interact with the
Schema Registry Java Client:

• https://github.com/georgevetticaden/hdp/blob/master/reference-apps/iot-trucking-
app/trucking-data-simulator/src/main/java/hortonworks/hdp/refapp/trucking/
simulator/schemaregistry/TruckSchemaRegistryLoader.java#L48

https://github.com/georgevetticaden/hdp/blob/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/java/hortonworks/hdp/refapp/trucking/simulator/schemaregistry/TruckSchemaRegistryLoader.java#L48
https://github.com/georgevetticaden/hdp/blob/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/java/hortonworks/hdp/refapp/trucking/simulator/schemaregistry/TruckSchemaRegistryLoader.java#L48
https://github.com/georgevetticaden/hdp/blob/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/java/hortonworks/hdp/refapp/trucking/simulator/schemaregistry/TruckSchemaRegistryLoader.java#L48


Hortonworks DataFlow December 22, 2017

27

• https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/schema-registry/
README.md#api-examples

• https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/examples/schema-registry/
avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/
SampleSchemaRegistryClientApp.java

Kafka Serdes

See the following example of using the Schema Registry Kafka Serdes:

https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/examples/schema-registry/
avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/
TruckEventsKafkaAvroSerDesApp.java

4.2. Schema Registry Use Cases
With a basic understanding of Schema Registry, the below sections walks through common
use cases for Schema Registry.

4.2.1. Use Case 1: Registering and Querying a Schema for a
Kafka Topic

When Kafka is integrated into enterprise organization deployments, you typically have
many different Kafka topics used by different apps and users. With the adoption of Kafka
within the enterprise, some key questions that often come up are the following:

• What are the different events in a given Kafka topic?

• What do I put into a given Kafka topic?

• Do all Kafka events have a similar type of schema?

• How do I parse and use the data in a given Kafka topic?

While Kafka topics do not have a schema, having an external store that tracks this
metadata for a given Kafka topic helps to answer these common questions. Schema
Registry addresses this use case.

One important point to note is that Schema Registry is not just a metastore for Kafka.
Schema Registry was designed to be generic schema store for any type of entity or store
(log files, or similar.)

4.2.2. Use Case 2: Reading/Deserializing and Writing/
Serializing Data from and to a Kafka Topic

In addition to storing schema metadata, another key use case is to store metadata for
the format of how data should be read and how it should be written. Schema Registry
supports this use case as well by providing capabilities to store JAR files for serializers and
deserializers and then mapping the serdes to the schema.

https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/schema-registry/README.md#api-examples
https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/schema-registry/README.md#api-examples
https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/SampleSchemaRegistryClientApp.java
https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/SampleSchemaRegistryClientApp.java
https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/SampleSchemaRegistryClientApp.java
https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/TruckEventsKafkaAvroSerDesApp.java
https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/TruckEventsKafkaAvroSerDesApp.java
https://github.com/hortonworks/registry/blob/HDF-2.1.0.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/TruckEventsKafkaAvroSerDesApp.java


Hortonworks DataFlow December 22, 2017

28

4.2.3. Use Case 3: Dataflow Management with Schema-
based Routing

Image if you are using NiFi to move different types of syslog events to downstream
systems. You have data movement requirements where you need to parse the syslog event
to extract the event type, and route the event to a certain downstream system (different
Kafka topics, for example) based on the event type.

Without Schema Registry, NiFi uses regular expressions or other utilities to parse the event
type value from the payload and store into a flowfile attribute. Then NiFi uses routing
processors (RouteOnAttribute, for example) to use the parsed value for routing
decisions. If the structure of the data changes considerably, this type of extract and routing
pattern is brittle and requires frequent changes.

With the introduction of Schema Registry, NiFi queries the registry for schema and then
retrieves the value for a certain element in the schema. In this case, even if the structure
changes, as long as compatibility policies are adhered to, NiFi's extract and routing rules do
not change. This is another common use case for Schema Registry.

4.3. Schema Registry Component Architecture
The below diagram represents the component architecture of Schema Registry.

Schema Registry has three main components:

• Registry web server – Web Application exposing the REST endpoints you can use to
manage schema entities. You can use a web proxy and load balancer with multiple Web
Servers to provide HA and scalability.

• Pluggable storage – Schema Registry uses the following two types of storages:

• Schema Metadata Storage – Relational store that holds the metadata for the schema
entities. Inn-memory storage (for development purposes) and mySQL databases are
supported.

• Serdes Storage – File storage for the serializer and deserializer jars. Local file system
and HDFS storage are supported. Local file system storage is the default.

• Schema Registry Client – A java client that HDF components can use to interact with the
RESTful services.

There are three integration points with HDF:



Hortonworks DataFlow December 22, 2017

29

• Custom NiFi Processors – New processors and controller services in NiFi that interact with
the Schema Registry.

• Kafka Serializer and Deserializer – A Kafka serializer and deserializer that uses Schema
Registry. The Kafka serdes can be found on GitHub.

• Hortonworks Streaming Analytics Manager Processors –

4.4. Schema Registry Concepts

4.4.1. Schema Entities
You can use Schema Registry to work with three types of schema entities:

Figure 4.2. Schema entities

This table provides a more detailed description of the schema entities:

Table 4.1. Schema entity types

Entity Type Description Example

Schema Group A logical grouping of similar schemas. A Schema
Group can be based on any criteria you have for
managing schemas.

Schema Groups can have multiple Schema Metadata
definitions.

• Group Name – truck-sensors-log

• Group Name – truck-sensors-kafka

Schema Metadata Metadata associated with a named schema. A
metadata definition is applied to all the schema
versions that are assigned to it.

Key metadata elements include:

• Schema Name – A unique name for each schema.
Used as a key to look up schemas.

• Schema Type – The format of the schema.

Note: Avro is currently the only supported type.

• Compatibility Policy – The compatibility rules that
exist when the new schemas are registered. See
Compatibility Policies for more information.

• Serializers/Deserializers – A set of serializers and
deserializers that you can upload to the registry
and associate with schema metadata definitions.

• Schema Name – truck_events_avro:v

• Schema Type – avro

• Compatibility Policy –
SchemaCompatibility.BACKWARD

Schema Version The versioned schema associated a schema
metadata definition.

{   
  "type" : "record",   
  "namespace" : "hortonworks.hdp.
refapp.trucking",   

https://github.com/hortonworks/registry/tree/HDF-2.1.0.0/schema-registry/serdes/src/main/java/com/hortonworks/registries/schemaregistry/serdes/avro/kafka


Hortonworks DataFlow December 22, 2017

30

Entity Type Description Example
  "name" : "truckgeoevent",   
  "fields" : [     
    { "name" : "eventTime" ,
 "type" : "string" },     
    { "name" : "eventSource" ,
 "type" : "string" },      
    { "name" : "truckId" ,
 "type" : "int" },      
    { "name" : "driverId" ,
 "type" : "int"},      
    { "name" : "driverName" ,
 "type" : "string"},      
    { "name" : "routeId" ,
 "type" : "int"},      
    { "name" : "route" , "type" :
 "string"},      
    { "name" : "eventType" ,
 "type" : "string"},      
    { "name" : "longitude" ,
 "type" : "double"},      
    { "name" : "latitude" ,
 "type" : "double"},     
    { "name" : "correlationId" ,
 "type" : "long"}   
  ]
}

4.4.2. Compatibility Policies
A key Schema Registry feature is the ability to version schemas as they evolve. Compatibility
policies are created at the schema metadata level, and define evolution rules for each
schema.

After a policy has been defined for a schema, any subsequent version updates must honor
the schema’s original compatibility, otherwise you experience an error.

Compatibility of schemas can be configured with any of the below values:

Backward Compatibility Indicates that new version of a schema would be
compatible with earlier version of that schema. That means
the data written from earlier version of the schema, can be
deserialized with a new version of the schema.

When you have a Backward Compatibility policy on your
schema, you can evolve schemas by deleting portions, but
you cannot add information.

Forward Compatibility Indicates that an existing schema is compatible with
subsequent versions of the schema. That means the data
written from new version of the schema can still be read
with old version of the schema.

Full Compatibility Indicates that a new version of the schema provides both
backward and forward compatibilities.

None Indicates that no compatibility policy is in place.

The default value is None.

You set the compatibility policy when you are adding a schema. Once set, you cannot
change it.



Hortonworks DataFlow December 22, 2017

31

5. Navigating the HDF Library
To navigate the Hortonworks DataFlow (HDF) documentation library, begin by deciding
your current goal.

If you want to... See this document…

Install or upgrade an HDF cluster using Apache Ambari • Release Notes

• Support Matrices

• Planning Your Deployment

Get started with HDF • Getting Started with Apache NFi

• Getting Started with Stream Analytics

Use and administer HDF Flow Management capabilities • Apache NiFi User Guide

• Apache NiFi Administration Guide

• Apache NiFi Developer Guide

• Apache NiFi Expression Language Guide

Use and administer HDF Stream Analytics capabilities • Streaming Analytics Manager User Guide

• Schema Registry User Guide

• Apache Storm Component Guide

• Apache Kafka Component Guide

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_release-notes/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_support-matrices/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_planning-your-deployment-ppc/content/ch_deployment-scenarios.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_getting-started-with-apache-nifi/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_getting-started-with-stream-analytics/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_user-guide/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_administration/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_developer-guide/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_expression-language/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_streaming-analytics-manager-user-guide/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.3/bk_schema-registry-user-guide/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/index.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_kafka-component-guide/content/index.html

	Hortonworks DataFlow
	Table of Contents
	1. Overview
	2. Apache NiFi Overview
	2.1. What is Apache NiFi?
	2.2. The core concepts of NiFi
	2.3. NiFi Architecture
	2.4. Performance Expectations and Characteristics of NiFi
	2.5. High Level Overview of Key NiFi Features
	2.6. References

	3. Streaming Analytics Manager Overview
	3.1. Streaming Analytics Manager Modules
	3.2. Streaming Analytics Manager Taxonomy
	3.3. Streaming Analytics Manager Personas
	3.3.1. Platform Operator Persona
	3.3.1.1. Services, Service Pools and Environments

	3.3.2. Application Developer Persona
	3.3.2.1. Component Building Blocks
	3.3.2.1.1. Sources
	3.3.2.1.2. Processors
	3.3.2.1.3. Sinks
	3.3.2.1.4. Custom Components

	3.3.2.2. Schema Requirements

	3.3.3. Analyst Persona
	3.3.4. SDK Developer Persona


	4. Schema Registry Overview
	4.1. Examples of Interacting with Schema Registry
	4.2. Schema Registry Use Cases
	4.2.1. Use Case 1: Registering and Querying a Schema for a Kafka Topic
	4.2.2. Use Case 2: Reading/Deserializing and Writing/Serializing Data from and to a Kafka Topic
	4.2.3. Use Case 3: Dataflow Management with Schema-based Routing

	4.3. Schema Registry Component Architecture
	4.4. Schema Registry Concepts
	4.4.1. Schema Entities
	4.4.2. Compatibility Policies


	5. Navigating the HDF Library

