
Data Access 3

Integrating Hive and Kafka
Date of Publish: 2019-03-15

https://docs.hortonworks.com/

https://docs.hortonworks.com/

Contents

Apache Hive-Kafka integration.. 3
Create a table for a Kafka stream..3
Querying Kafka data...4

Query live data from Kafka... 4
Perform ETL by ingesting data from Kafka into Hive..6
Writing data to Kafka...6

Write transformed Hive data to Kafka...7
Set consumer and producer properties as table properties.. 8
Kafka storage handler and table properties... 8

Data Access Apache Hive-Kafka integration

Apache Hive-Kafka integration

As an Apache Hive user, you can connect to, analyze, and transform data in Apache Kafka from Hive. You can
offload data from Kafka to the Hive warehouse. Using Hive-Kafka integration, you can perform actions on real-time
data and incorporate streamed data into your application.

You connect to Kafka data from Hive by creating an external table that maps to a Kafka topic. The table definition
includes a reference to a Kafka storage handler that connects to Kafka. On the external table, Hive-Kafka integration
supports ad hoc queries, such as questions about data changes in the stream over a period of time. You can transform
Kafka data in the following ways:

• Perform data masking
• Join dimension tables or any stream
• Aggregate data
• Change the SerDe encoding of the original stream
• Create a persistent stream in a Kafka topic

You can achieve data offloading by controlling its position in the stream. The Hive-Kafka connector supports the
following serialization and deserialization formats:

• JsonSerDe (default)
• OpenCSVSerde
• AvroSerDe

Related Information
Apache Kafka Documentation

Create a table for a Kafka stream
You can create an external table in Apache Hive that represents an Apache Kafka stream to query real-time data in
Kafka. You use a storage handler and table properties that map the Hive database to a Kafka topic and broker. If the
Kafka data is not in JSON format, you alter the table to specify a serializer-deserializer for another format.

Procedure

1. Get the name of the Kafka topic you want to query to use as a table property.
For example: "kafka.topic" = "wiki-hive-topic"

2. Construct the Kafka broker connection string.
For example: "kafka.bootstrap.servers"="kafka.hostname.com:9092"

3. Create an external table named kafka_table by using 'org.apache.hadoop.hive.kafka.KafkaStorageHandler', as
shown in the following example:

CREATE EXTERNAL TABLE kafka_table
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES
 ("kafka.topic" = "test-topic",
 "kafka.bootstrap.servers"="localhost:9092");

4. If the default JSON serializer-deserializer is incompatible with your data, choose another format in one of the
following ways:

3

https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

• Alter the table to use another supported serializer-deserializer. For example, if your data is in Avro format, use
the Kafke serializer-deserializer for Avro:

ALTER TABLE kafka_table SET TBLPROPERTIES
 ("kafka.serde.class"="org.apache.hadoop.hive.serde2.avro.AvroSerDe");

• Create an external table that specifies the table in another format. For example, create a table named that
specifies the Avro format in the table definition:

CREATE EXTERNAL TABLE kafka_t_avro
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES
 ("kafka.topic" = "test-topic",
 "kafka.bootstrap.servers"="localhost:9092"
 -- STORE AS AVRO IN KAFKA
 "kafka.serde.class"="org.apache.hadoop.hive.serde2.avro.AvroSerDe");

Related Information
Apache Kafka Documentation

Querying Kafka data
You can get useful information, including Kafka record metadata from a table of Kafka data by using typical Hive
queries.

Each Kafka record consists of a user payload key (byte []) and value (byte[]), plus the following metadata fields:

• Partition int32
• Offset int64
• Timestamp int64

The Hive row represents the dual composition of Kafka data:

• The user payload serialized in the value byte array
• The metadata: key byte array, partition, offset, and timestamp fields

In the Hive representation of the Kafka record, the key byte array is called __key and is of type binary. You can cast
__key at query time. Hive appends __key to the last column derived from value byte array, and appends the partition,
offset, and timestamp to __key columns that are named accordingly.

Related Information
Apache Kafka Documentation

Query live data from Kafka
You can get useful information from a table of Kafka data by running typical queries, such as counting the number of
records streamed within an interval of time or defining a view of streamed data over a period of time.

Before you begin
This task requires Kafka 0.11 or later to support time-based lookups and prevent full stream scans.

About this task
This task assumes you created a table named kafka_table for a Kafka stream.

4

https://kafka.apache.org/0110/documentation.html
https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

Procedure

1. List the table properties and all the partition or offset information for the topic.
DESCRIBE EXTENDED kafka_table;

2. Count the number of Kafka records that have timestamps within the past 10 minutes.

SELECT COUNT(*) FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP -
 interval '10' MINUTES);

Such a time-based seek requires Kafka 0.11 or later, which has a Kafka broker that supports time-based lookups;
otherwise, this query leads to a full stream scan.

3. Define a view of data consumed within the past 15 minutes and mask specific columns.

CREATE VIEW last_15_minutes_of_kafka_table AS SELECT `timestamp`, `user`,
 delta,
 ADDED FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP -
 interval '15' MINUTES) ;

4. Create a dimension table.

CREATE TABLE user_table (`user` string, `first_name` string , age int,
 gender string, comments string) STORED as ORC ;

5. Join the view of the stream over the past 15 minutes to user_table, group by gender, and compute aggregates over
metrics from fact table and dimension tables.

SELECT SUM(added) AS added, SUM(deleted) AS deleted, AVG(delta) AS delta,
 AVG(age) AS avg_age , gender
 FROM last_15_minutes_of_kafka_table
 JOIN user_table ON `last_15_minutes_of_kafka_table`.`user` =
 `user_table`.`user`
 GROUP BY gender LIMIT 10;

6. Perform a classical user retention analysis over the Kafka stream consisting of a stream-to-stream join that runs
adhoc queries on a view defined over the past 15 minutes.

-- Stream join over the view itself
-- Assuming l15min_wiki is a view of the last 15 minutes
SELECT COUNT(DISTINCT activity.`user`) AS active_users,
COUNT(DISTINCT future_activity.`user`) AS retained_users
FROM l15min_wiki AS activity
LEFT JOIN l15min_wiki AS future_activity ON activity.`user` =
 future_activity.`user`
AND activity.`timestamp` = future_activity.`timestamp` - interval '5'
 minutes ;

-- Stream-to-stream join
-- Assuming wiki_kafka_hive is the entire stream.
SELECT floor_hour(activity.`timestamp`), COUNT(DISTINCT activity.`user`)
 AS active_users,
COUNT(DISTINCT future_activity.`user`) as retained_users
FROM wiki_kafka_hive AS activity
LEFT JOIN wiki_kafka_hive AS future_activity ON activity.`user` =
 future_activity.`user`
AND activity.`timestamp` = future_activity.`timestamp` - interval '1'
 hour
GROUP BY floor_hour(activity.`timestamp`);

5

Data Access Apache Hive-Kafka integration

Related Information
Apache Kafka Documentation

Write transformed Hive data to Kafka

Perform ETL by ingesting data from Kafka into Hive
You can extract, transform, and load a Kafka record into Hive in a single transaction.

Procedure

1. Create a table to represent source Kafka record offsets.

CREATE TABLE kafka_table_offsets(partition_id int, max_offset bigint,
 insert_time timestamp);

2. Initialize the table.

INSERT OVERWRITE TABLE kafka_table_offsets
SELECT `__partition`, min(`__offset`) - 1, CURRENT_TIMESTAMP
FROM wiki_kafka_hive
GROUP BY `__partition`, CURRENT_TIMESTAMP;

3. Create the destination table.

CREATE TABLE orc_kafka_table (partition_id int, koffset bigint, ktimestamp
 bigint,
 `timestamp` timestamp , `page` string, `user` string, `diffurl` string,
 `isrobot` boolean, added int, deleted int, delta bigint
) STORED AS ORC;

4. Insert Kafka data into the ORC table.

FROM wiki_kafka_hive ktable JOIN kafka_table_offsets offset_table
ON (ktable.`__partition` = offset_table.partition_id
AND ktable.`__offset` > offset_table.max_offset)
INSERT INTO TABLE orc_kafka_table
SELECT `__partition`, `__offset`, `__timestamp`,
 `timestamp`, `page`, `user`, `diffurl`, `isrobot`, added , deleted ,
 delta
INSERT OVERWRITE TABLE kafka_table_offsets
SELECT `__partition`, max(`__offset`), CURRENT_TIMESTAMP
GROUP BY `__partition`, CURRENT_TIMESTAMP;

5. Check the insertion.

SELECT MAX(`koffset`) FROM orc_kafka_table LIMIT 10;

SELECT COUNT(*) AS c FROM orc_kafka_table
GROUP BY partition_id, koffset HAVING c > 1;

6. Repeat step 4 periodically until all the data is loaded into Hive.

Writing data to Kafka
You can extract, transform, and load a Hive table to a Kafka topic for real-time streaming of a large volume of Hive
data. You need some understanding of write semantics and the metadata columns required for writing data to Kafka.

6

https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

Write semantics

The Hive-Kafka connector supports the following write semantics:

• At least once (default)
• Exactly once

At least once (default) The default semantic. At least once is the most common
write semantic used by streaming engines. The internal
Kafka producer retries on errors. If a message is not
delivered, the exception is raised to the task level, which
causes a restart, and more retries. The At least once
semantic leads to one of the following conclusions:

• If the job succeeds, each record is guaranteed to be
delivered at least once.

• If the job fails, some of the records might be lost and
some might not be sent.

In this case, you can retry the query, which eventually
leads to the delivery of each record at least once.

Exactly once Following the exactly once semantic, the Hive job
ensures that either every record is delivered exactly once,
or nothing is delivered. You can use only Kafka brokers
supporting the Transaction API (0.11.0.x or later).
To use this semantic, you must set the table property
"kafka.write.semantic"="EXACTLY_ONCE".

Metadata columns

In addition to the user row payload, the insert statement must include values for the following extra columns:

__key Although you can set the value of this metadata
column to null, using a meaningful key value to avoid
unbalanced partitions is recommended. Any binary value
is valid.

__partition Use null unless you want to route the record to a
particular partition. Using a nonexistent partition value
results in an error.

__offset You cannot set this value, which is fixed at -1.

__timestamp You can set this value to a meaningful timestamp,
represented as the number of milliseconds since epoch.
Optionally, you can set this value to null or -1, which
means that the Kafka broker strategy sets the timestamp
column.

Related Information
Apache Kafka Documentation

Write transformed Hive data to Kafka
You can change streaming data and include the changes in a stream. You extract a Kafka input topic, transform the
record in Hive, and load a Hive table back into a Kafka record.

7

https://kafka.apache.org/0110/documentation.html

Data Access Apache Hive-Kafka integration

About this task

This task assumes that you already queried live data from Kafka. When you transform the record in the Hive
execution engine, you compute a moving average over a window of one minute. The resulting record that you write
back to another Kafka topic is named moving_avg_wiki_kafka_hive.

.

Procedure

1. Create an external table to represent the Hive data that you want to load into Kafka.

CREATE EXTERNAL TABLE moving_avg_wiki_kafka_hive
(`channel` string, `namespace` string,`page` string, `timestamp`
 timestamp , avg_delta double)
STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
TBLPROPERTIES
 ("kafka.topic" = "moving_avg_wiki_kafka_hive",
 "kafka.bootstrap.servers"="kafka.hostname.com:9092",
 -- STORE AS AVRO IN KAFKA
 "kafka.serde.class"="org.apache.hadoop.hive.serde2.avro.AvroSerDe");

2. Insert data that you select from the Kafka topic back into the Kafka record.

INSERT INTO TABLE moving_avg_wiki_kafka_hive
SELECT `channel`, `namespace`, `page`, `timestamp`,
 AVG(delta) OVER (ORDER BY `timestamp` ASC ROWS BETWEEN 60 PRECEDING AND
 CURRENT ROW) AS avg_delta,
 null AS `__key`, null AS `__partition`, -1 AS `__offset`, to_epoch_milli
(CURRENT_TIMESTAMP) AS `__timestamp`
FROM l15min_wiki;

The timestamps of the selected data are converted to milliseconds since epoch for clarity.

Related Information
Query live data from Kafka

Set consumer and producer properties as table properties
You can use Kafka consumer and producer properties in the TBLPROPERTIES clause of a Hive query. By prefixing
the key with kafka.consumer or kafka.producer, you can set the table properties.

Procedure

For example, if you want to inject 5000 poll records into the Kafka consumer, use the following syntax.

ALTER TABLE kafka_table SET TBLPROPERTIES
 ("kafka.consumer.max.poll.records"="5000");

Kafka storage handler and table properties
You use the Kafka storage handler and table properties to specify the query connection and configuration.

Kafka storage handler

You specify 'org.apache.hadoop.hive.kafka.KafkaStorageHandler' in queries to connect to, and transform a Kafka
topic into, a Hive table. In the definition of an external table, the storage handler creates a view over a single Kafka

8

Data Access Apache Hive-Kafka integration

topic. For example, to use the storage handler to connect to a topic, the following table definition specifies the storage
handler and required table properties: the topic name and broker connection string.

CREATE EXTERNAL TABLE kafka_table
 (`timestamp` timestamp , `page` string, `newPage` boolean,
 added int, deleted bigint, delta double)
 STORED BY 'org.apache.hadoop.hive.kafka.KafkaStorageHandler'
 TBLPROPERTIES
 ("kafka.topic" = "test-topic",
 "kafka.bootstrap.servers"="localhost:9092");

You set the following table properties forwith the Kafka storage handler:

kafka.topic The Kafka topic to connect to

kafka.bootstrap.servers The broker connection string

Storage handler-based optimizations

The storage handler can optimize reads using a filter push-down when you execute a query such as the following
time-based lookup supported on Kafka 0.11 or later:

SELECT COUNT(*) FROM kafka_table
 WHERE `__timestamp` > 1000 * to_unix_timestamp(CURRENT_TIMESTAMP -
 interval '10' MINUTES) ;

The Kafka consumer supports seeking on the stream based on an offset, which the storage handler leverages to push
down filters over metadata columns. The storage handler in the example above performs seeks based on the Kafka
record __timestamp to read only recently arrived data.

The following logical operators and predicate operators are supported in the WHERE clause:

Logical operators: OR, AND

Predicate operators: <, <=, >=, >, =

The storage handler reader optimizes seeks by performing partition pruning to go directly to a particular partition
offset used in the WHERE clause:

SELECT COUNT(*) FROM kafka_table
 WHERE (`__offset` < 10 AND `__offset` > 3 AND `__partition` = 0)
 OR (`__partition` = 0 AND `__offset` < 105 AND `__offset` > 99)
 OR (`__offset` = 109);

The storage handler scans partition 0 only, and then read only records between offset 4 and 109.

Kafka metadata

In addition to the user-defined payload schema, the Kafka storage handler appends to the table some additional
columns, which you can use to query the Kafka metadata fields:

__key Kafka record key (byte array)

__partition Kafka record partition identifier (int 32)

__offset Kafka record offset (int 64)

__timestamp Kafka record timestamp (int 64)

The partition identifier, record offset, and record timestamp plus a key-value pair constitute a Kafka record. Because
the key-value is a 2-byte array, you must use SerDe classes to transform the array into a set of columns.

9

Data Access Apache Hive-Kafka integration

Table Properties

You use certain properties in the TBLPROPERTIES clause of a Hive query that specifies the Kafka storage handler.

Property Description Required Default

kafka.topic Kafka topic name to map the table
to

Yes null

kafka.bootstrap.servers Table property indicating the
Kafka broker connection string

Yes null

kafka.serde.class Serializer and Deserializer class
implementation

No org.apache.hadoop.hive.serde2.JsonSerDe

hive.kafka.poll.timeout.ms Parameter indicating Kafka
Consumer poll timeout period in
milliseconds. (This is independent
of internal Kafka consumer
timeouts.)

No 5000 (5 Seconds)

hive.kafka.max.retries Number of retries for Kafka
metadata fetch operations

No 6

hive.kafka.metadata.poll.timeout.ms Number of milliseconds before
consumer timeout on fetching
Kafka metadata

No 30000 (30 Seconds)

kafka.write.semantic Writer semantic with
allowed values of NONE,
AT_LEAST_ONCE,
EXACTLY_ONCE

No AT_LEAST_ONCE

10

	Contents
	Apache Hive-Kafka integration
	Create a table for a Kafka stream
	Querying Kafka data
	Query live data from Kafka

	Perform ETL by ingesting data from Kafka into Hive
	Writing data to Kafka
	Write transformed Hive data to Kafka

	Set consumer and producer properties as table properties
	Kafka storage handler and table properties

