
Apache NiFi 3

NiFi System Properties
Date of Publish: 2019-03-15

https://docs.hortonworks.com/

https://docs.hortonworks.com/

Contents

System Properties... 3
Core Properties... 3
State Management...5
H2 Settings..5
FlowFile Repository..5
Swap Management..6
Content Repository... 7
File System Content Repository Properties... 7
Volatile Content Repository Properties..8
Provenance Repository... 8
Write Ahead Provenance Repository Properties..9
Encrypted Write Ahead Provenance Repository Properties.. 11
Persistent Provenance Repository Properties... 12
Volatile Provenance Repository Properties..13
Component Status Repository.. 13
Site to Site Properties...14
Site to Site Routing Properties for Reverse Proxies..14

Site to Site protocol sequence..15
Reverse Proxy Configurations..16
Site to Site and Reverse Proxy Examples..16

Web Properties..20
Security Properties.. 21
Identity Mapping Properties... 22
Cluster Common Properties... 22
Cluster Node Properties..23
Claim Management...24
ZooKeeper Properties... 24
Kerberos Properties...25
Custom Properties...25

Apache NiFi System Properties

System Properties

The nifi.properties file in the conf directory is the main configuration file for controlling how NiFi runs. This section
provides an overview of the properties in this file and includes some notes on how to configure it in a way that will
make upgrading easier. After making changes to this file, restart NiFi in order for the changes to take effect.

Note: The contents of this file are relatively stable but do change from time to time. It is always a good idea
to review this file when upgrading and pay attention for any changes. Consider configuring items below
marked with an asterisk (*) in such a way that upgrading will be easier. For details, see a full discussion on
upgrading at the end of this section. Note that values for periods of time and data sizes must include the unit
of measure, for example "10 secs" or "10 MB", not simply "10".

Core Properties

The first section of the nifi.properties file is for the Core Properties. These properties apply to the core framework as a
whole.

Property Description

nifi.flow.configuration.file* The location of the flow configuration file (i.e., the file that contains
what is currently displayed on the NiFi graph). The default value is ./
conf/flow.xml.gz.

nifi.flow.configuration.archive.enabled* Specifies whether NiFi creates a backup copy of the flow automatically
when the flow is updated. The default value is true.

nifi.flow.configuration.archive.dir* The location of the archive directory where backup copies of
the flow.xml are saved. The default value is ./conf/archive. NiFi
removes old archive files to limit disk usage based on archived
file lifespan, total size, and number of files, as specified with
nifi.flow.configuration.archive.max.time, max.storage and max.count
properties respectively. If none of these limitation for archiving is
specified, NiFi uses default conditions, that is 30 days for max.time
and 500 MB for max.storage. This cleanup mechanism takes into
account only automatically created archived flow.xml files. If
there are other files or directories in this archive directory, NiFi
will ignore them. Automatically created archives have filename
with ISO 8601 format timestamp prefix followed by <original-
filename>. That is <year><month><day>T<hour><minute><second>
+<timezone offset>_<original filename>. For example,
20160706T160719+0900_flow.xml.gz. NiFi checks filenames when it
cleans archive directory. If you would like to keep a particular archive
in this directory without worrying about NiFi deleting it, you can do so
by copying it with a different filename pattern.

nifi.flow.configuration.archive.max.time* The lifespan of archived flow.xml files. NiFi will delete expired
archive files when it updates flow.xml if this property is specified.
Expiration is determined based on current system time and the last
modified timestamp of an archived flow.xml. If no archive limitation is
specified in nifi.properties, NiFi removes archives older than 30 days.

nifi.flow.configuration.archive.max.storage* The total data size allowed for the archived flow.xml files. NiFi will
delete the oldest archive files until the total archived file size becomes
less than this configuration value, if this property is specified. If no
archive limitation is specified in nifi.properties, NiFi uses 500 MB for
this.

nifi.flow.configuration.archive.max.count* The number of archive files allowed. NiFi will delete the oldest archive
files so that only N latest archives can be kept, if this property is
specified.

3

Apache NiFi System Properties

nifi.flowcontroller.autoResumeState Indicates whether -upon restart- the components on the NiFi graph
should return to their last state. The default value is true.

nifi.flowcontroller.graceful.shutdown.period Indicates the shutdown period. The default value is 10 secs.

nifi.flowservice.writedelay.interval When many changes are made to the flow.xml, this property specifies
how long to wait before writing out the changes, so as to batch the
changes into a single write. The default value is 500 ms.

nifi.administrative.yield.duration If a component allows an unexpected exception to escape, it
is considered a bug. As a result, the framework will pause (or
administratively yield) the component for this amount of time. This is
done so that the component does not use up massive amounts of system
resources, since it is known to have problems in the existing state. The
default value is 30 secs.

nifi.bored.yield.duration When a component has no work to do (i.e., is "bored"), this is the
amount of time it will wait before checking to see if it has new data to
work on. This way, it does not use up CPU resources by checking for
new work too often. When setting this property, be aware that it could
add extra latency for components that do not constantly have work to
do, as once they go into this "bored" state, they will wait this amount of
time before checking for more work. The default value is 10 ms.

nifi.queue.backpressure.count When drawing a new connection between two components, this is the
default value for that connection's back pressure object threshold. The
default is 10000 and the value must be an integer.

nifi.queue.backpressure.size When drawing a new connection between two components, this is the
default value for that connection's back pressure data size threshold.
The default is 1 GB and the value must be a data size including the unit
of measure.

nifi.authorizer.configuration.file* This is the location of the file that specifies how authorizers are
defined. The default value is ./conf/authorizers.xml.

nifi.login.identity.provider.configuration.file* This is the location of the file that specifies how username/
password authentication is performed. This file is only considered if
nifi.security.user.login.identity.provider is configured with a provider
identifier. The default value is ./conf/login-identity-providers.xml.

nifi.templates.directory* This is the location of the directory where flow templates are saved (for
backward compatibility only). Templates are stored in the flow.xml.gz
starting with NiFi 1.0. The template directory can be used to (bulk)
import templates into the flow.xml.gz automatically on NiFi startup.
The default value is ./conf/templates.

nifi.ui.banner.text This is banner text that may be configured to display at the top of the
User Interface. It is blank by default.

nifi.ui.autorefresh.interval The interval at which the User Interface auto-refreshes. The default
value is 30 secs.

nifi.nar.library.directory The location of the nar library. The default value is ./lib and probably
should be left as is.NOTE: Additional library directories can be
specified by using the nifi.nar.library.directory. prefix with unique
suffixes and separate paths as values. For example, to provide two
additional library locations, a user could also specify additional
properties with keys of:nifi.nar.library.directory.lib1=/nars/lib1
nifi.nar.library.directory.lib2=/nars/lib2 Providing three total locations,
including nifi.nar.library.directory.

nifi.nar.working.directory The location of the nar working directory. The default value is ./work/
nar and probably should be left as is.

nifi.documentation.working.directory The documentation working directory. The default value is ./work/
docs/components and probably should be left as is.

4

Apache NiFi System Properties

nifi.processor.scheduling.timeout Time to wait for a Processor's life-cycle operation (@OnScheduled
and @OnUnscheduled) to finish before other life-cycle operation (e.g.,
stop) could be invoked. The default value is 1 min.

State Management

The State Management section of the Properties file provides a mechanism for configuring local and cluster-wide
mechanisms for components to persist state.

Property Description

nifi.state.management.configuration.file The XML file that contains configuration for the local and cluster-wide
State Providers. The default value is ./conf/state-management.xml.

nifi.state.management.provider.local The ID of the Local State Provider to use. This value must match the
value of the id element of one of the local-provider elements in the
state-management.xml file.

nifi.state.management.provider.cluster The ID of the Cluster State Provider to use. This value must match the
value of the id element of one of the cluster-provider elements in the
state-management.xml file. This value is ignored if not clustered but is
required for nodes in a cluster.

nifi.state.management.embedded.zookeeper.start Specifies whether or not this instance of NiFi should start an
embedded ZooKeeper Server. This is used in conjunction with the
ZooKeeperStateProvider.

nifi.state.management.embedded.zookeeper.properties Specifies a properties file that contains the configuration
for the embedded ZooKeeper Server that is started (if the
nifi.state.management.embedded.zookeeper.start property is set to true)

H2 Settings

The H2 Settings section defines the settings for the H2 database, which keeps track of user access and flow controller
history.

Property Description

nifi.database.directory* The location of the H2 database directory. The default value is ./
database_repository.

nifi.h2.url.append This property specifies additional arguments to add to
the connection string for the H2 database. The default
value should be used and should not be changed. It is:
;LOCK_TIMEOUT=25000;WRITE_DELAY=0;AUTO_SERVER=FALSE.

FlowFile Repository

The FlowFile repository keeps track of the attributes and current state of each FlowFile in the system. By default, this
repository is installed in the same root installation directory as all the other repositories; however, it is advisable to
configure it on a separate drive if available.

Property Description

5

Apache NiFi System Properties

nifi.flowfile.repository.implementation The FlowFile Repository implementation. The default value is
org.apache.nifi.controller.repository.WriteAheadFlowFileRepository
and should only be changed with caution. To store flowfiles in
memory instead of on disk (accepting data loss in the event of
power/machine failure or a restart of NiFi), set this property to
org.apache.nifi.controller.repository.VolatileFlowFileRepository.

nifi.flowfile.repository.wal.implementation If the repository implementation is configured to use the
WriteAheadFlowFileRepository, this property can be used to specify
which implementation of the Write-Ahead Log should be used. The
default value is org.apache.nifi.wali.SequentialAccessWriteAheadLog.
This version of the write-ahead log was added in version 1.6.0 of
Apache NiFi and was developed in order to address an issue that
exists in the older implementation. In the event of power loss or an
operating system crash, the old implementation was susceptible to
recovering FlowFiles incorrectly. This could potentially lead to the
wrong attributes or content being assigned to a FlowFile upon restart,
following the power loss or OS crash. However, one can still choose
to opt into using the previous implementation and accept that risk,
if desired (for example, if the new implementation were to exhibit
some unexpected error). To do so, set the value of this property to
org.wali.MinimalLockingWriteAheadLog. If the value of this property
is changed, upon restart, NiFi will still recover the records written
using the previously configured repository and delete the files written
by the previously configured implementation.

nifi.flowfile.repository.directory* The location of the FlowFile Repository. The default value is ./
flowfile_repository.

nifi.flowfile.repository.partitions The number of partitions. The default value is 256.

nifi.flowfile.repository.checkpoint.interval The FlowFile Repository checkpoint interval. The default value is 2
mins.

nifi.flowfile.repository.always.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. This is very expensive and can significantly reduce NiFi
performance. However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the operating system
crashes. The default value is false.

Swap Management

NiFi keeps FlowFile information in memory (the JVM) but during surges of incoming data, the FlowFile information
can start to take up so much of the JVM that system performance suffers. To counteract this effect, NiFi "swaps" the
FlowFile information to disk temporarily until more JVM space becomes available again. These properties govern
how that process occurs.

Property Description

nifi.swap.manager.implementation The Swap Manager implementation. The default value is
org.apache.nifi.controller.FileSystemSwapManager and should not be
changed.

nifi.queue.swap.threshold The queue threshold at which NiFi starts to swap FlowFile information
to disk. The default value is 20000.

nifi.swap.in.period The swap in period. The default value is 5 sec.

nifi.swap.in.threads The number of threads to use for swapping in. The default value is 1.

nifi.swap.out.period The swap out period. The default value is 5 sec.

nifi.swap.out.threads The number of threads to use for swapping out. The default value is 4.

6

Apache NiFi System Properties

Content Repository

The Content Repository holds the content for all the FlowFiles in the system. By default, it is installed in the same
root installation directory as all the other repositories; however, administrators will likely want to configure it on a
separate drive if available. If nothing else, it is best if the Content Repository is not on the same drive as the FlowFile
Repository. In dataflows that handle a large amount of data, the Content Repository could fill up a disk and the
FlowFile Repository, if also on that disk, could become corrupt. To avoid this situation, configure these repositories
on different drives.

Property Description

nifi.content.repository.implementation The Content Repository implementation. The default value
is org.apache.nifi.controller.repository.FileSystemRepository
and should only be changed with caution. To store flowfile
content in memory instead of on disk (at the risk of data loss
in the event of power/machine failure), set this property to
org.apache.nifi.controller.repository.VolatileContentRepository.

File System Content Repository Properties

Property Description

nifi.content.repository.implementation The Content Repository implementation. The default value
is org.apache.nifi.controller.repository.FileSystemRepository
and should only be changed with caution. To store flowfile
content in memory instead of on disk (at the risk of data loss
in the event of power/machine failure), set this property to
org.apache.nifi.controller.repository.VolatileContentRepository.

nifi.content.claim.max.appendable.size The maximum size for a content claim. The default value is 1 MB.

nifi.content.claim.max.flow.files The maximum number of FlowFiles to assign to one content claim. The
default value is 100.

nifi.content.repository.directory.default* The location of the Content Repository. The default value is ./
content_repository.NOTE: Multiple content repositories can be
specified by using the nifi.content.repository.directory. prefix
with unique suffixes and separate paths as values. For example,
to provide two additional locations to act as part of the content
repository, a user could also specify additional properties with
keys of:nifi.content.repository.directory.content1=/repos/content1
nifi.content.repository.directory.content2=/repos/content2 Providing
three total locations, including nifi.content.repository.directory.default.

nifi.content.repository.archive.max.retention.period If archiving is enabled (see nifi.content.repository.archive.enabled
below), then this property specifies the maximum amount of time to
keep the archived data. The default value is 12 hours.

nifi.content.repository.archive.max.usage.percentage If archiving is enabled (see nifi.content.repository.archive.enabled
below), then this property must have a value that indicates the content
repository disk usage percentage at which archived data begins to be
removed. If the archive is empty and content repository disk usage
is above this percentage, then archiving is temporarily disabled.
Archiving will resume when disk usage is below this percentage. The
default value is 50%.

nifi.content.repository.archive.enabled To enable content archiving, set this to true and specify a value for the
nifi.content.repository.archive.max.usage.percentage property above.
Content archiving enables the provenance UI to view or replay content
that is no longer in a dataflow queue. By default, archiving is enabled.

7

Apache NiFi System Properties

nifi.content.repository.always.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. This is very expensive and can significantly reduce NiFi
performance. However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the operating system
crashes. The default value is false.

nifi.content.viewer.url The URL for a web-based content viewer if one is available. It is blank
by default.

Volatile Content Repository Properties

Property Description

nifi.volatile.content.repository.max.size The Content Repository maximum size in memory. The default value
is 100 MB.

nifi.volatile.content.repository.block.size The Content Repository block size. The default value is 32 KB.

Provenance Repository

The Provenance Repository contains the information related to Data Provenance. The next four sections are for
Provenance Repository properties.

Property Description

8

Apache NiFi System Properties

nifi.provenance.repository.implementation The Provenance Repository implementation. The default value is
org.apache.nifi.provenance.WriteAheadProvenanceRepository.
Three additional repositories are available as well. To store
provenance events in memory instead of on disk (in which
case all events will be lost on restart, and events will be
evicted in a first-in-first-out order), set this property to
org.apache.nifi.provenance.VolatileProvenanceRepository. This leaves
a configurable number of Provenance Events in the Java heap, so the
number of events that can be retained is very limited.

A third and fourth option are available:
org.apache.nifi.provenance.PersistentProvenanceRepository and
org.apache.nifi.provenance.EncryptedWriteAheadProvenanceRepository.
The PersistentProvenanceRepository was originally written with the
simple goal of persisting Provenance Events as they are generated
and providing the ability to iterate over those events sequentially.
Later, it was desired to be able to compress the data so that more
data could be stored. After that, the ability to index and query the
data was added. As requirements evolved over time, the repository
kept changing without any major redesigns. When used in a
NiFi instance that is responsible for processing large volumes of
small FlowFiles, the PersistentProvenanceRepository can quickly
become a bottleneck. The WriteAheadProvenanceRepository
was then written to provide the same capabilities as the
PersistentProvenanceRepository while providing far better
performance. The WriteAheadProvenanceRepository was added
in version 1.2.0 of NiFi. Since then, it has proven to be very stable
and robust and as such was made the default implementation. The
PersistentProvenanceRepository is now considered deprecated and
should no longer be used. If administering an instance of NiFi that
is currently using the PersistentProvenanceRepository, it is highly
recommended to upgrade to the WriteAheadProvenanceRepository.
Doing so is as simple as changing the implementation property value
from org.apache.nifi.provenance.PersistentProvenanceRepository
to org.apache.nifi.provenance.WriteAheadProvenanceRepository.
Because the Provenance Repository is backward compatible, there will
be no loss of data or functionality.

The EncryptedWriteAheadProvenanceRepository builds upon the
WriteAheadProvenanceRepository and ensures that data is encrypted at
rest.

NOTE: The WriteAheadProvenanceRepository will make use of
the Provenance data stored by the PersistentProvenanceRepository.
However, the PersistentProvenanceRepository may not be able to
read the data written by the WriteAheadProvenanceRepository.
Therefore, once the Provenance Repository is changed to use the
WriteAheadProvenanceRepository, it cannot be changed back to
the PersistentProvenanceRepository without deleting the data in the
Provenance Repository.

Write Ahead Provenance Repository Properties

Property Description

nifi.provenance.repository.directory.default* The location of the Provenance Repository. The default value is ./
provenance_repository.NOTE: Multiple provenance repositories
can be specified by using the nifi.provenance.repository.directory.
prefix with unique suffixes and separate paths as values. For example,
to provide two additional locations to act as part of the provenance
repository, a user could also specify additional properties with
keys of:nifi.provenance.repository.directory.provenance1=/repos/
provenance1 nifi.provenance.repository.directory.provenance2=/
repos/provenance2 Providing three total locations, including
nifi.provenance.repository.directory.default.

9

Apache NiFi System Properties

nifi.provenance.repository.max.storage.time The maximum amount of time to keep data provenance information.
The default value is 24 hours.

nifi.provenance.repository.max.storage.size The maximum amount of data provenance information to store
at a time. The default value is 1 GB. The Data Provenance
capability can consume a great deal of storage space because
so much data is kept. For production environments, values of
1-2 TB or more is not uncommon. The repository will write to
a single "event file" (or set of "event files" if multiple storage
locations are defined, as described above) for some period of
time (defined by the nifi.provenance.repository.rollover.time and
nifi.provenance.repository.rollover.size properties). Data is always
aged off one file at a time, so it is not advisable to write to a single
"event file" for a tremendous amount of time, as it will prevent old data
from aging off as smoothly.

nifi.provenance.repository.rollover.time The amount of time to wait before rolling over the "event file" that the
repository is writing to.

nifi.provenance.repository.rollover.size The amount of data to write to a single "event file." The default value
is 100 MB. For production environments where a very large amount of
Data Provenance is generated, a value of 1 GB is also very reasonable.

nifi.provenance.repository.query.threads The number of threads to use for Provenance Repository queries. The
default value is 2.

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance events so that
they are searchable. The default value is 2. For flows that operate on
a very high number of FlowFiles, the indexing of Provenance events
could become a bottleneck. If this happens, increasing the value of this
property may increase the rate at which the Provenance Repository is
able to process these records, resulting in better overall throughput. It
is advisable to use at least 1 thread per storage location (i.e., if there
are 3 storage locations, at least 3 threads should be used). For high
throughput environments, where more CPU and disk I/O is available,
it may make sense to increase this value significantly. Typically going
beyond 2-4 threads per storage location is not valuable. However, this
can be tuned depending on the CPU resources available compared to
the I/O resources.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance information when an
"event file" is rolled over. The default value is true.

nifi.provenance.repository.always.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. This is very expensive and can significantly reduce NiFi
performance. However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the operating system
crashes. The default value is false.

nifi.provenance.repository.indexed.fields This is a comma-separated list of the fields that should be indexed and
made searchable. Fields that are not indexed will not be searchable.
Valid fields are: EventType, FlowFileUUID, Filename, TransitURI,
ProcessorID, AlternateIdentifierURI, Relationship, Details. The default
value is: EventType, FlowFileUUID, Filename, ProcessorID.

nifi.provenance.repository.indexed.attributes This is a comma-separated list of FlowFile Attributes that should
be indexed and made searchable. It is blank by default. But some
good examples to consider are filename and mime.type as well as any
custom attributes you might use which are valuable for your use case.

10

Apache NiFi System Properties

nifi.provenance.repository.index.shard.size The repository uses Apache Lucene to performing indexing and
searching capabilities. This value indicates how large a Lucene Index
should become before the Repository starts writing to a new Index.
Large values for the shard size will result in more Java heap usage
when searching the Provenance Repository but should provide better
performance. The default value is 500 MB. However, this is due to the
fact that defaults are tuned for very small environments where most
users begin to use NiFi. For production environments, it is advisable
to change this value to 4 to 8 GB. Once all Provenance Events in the
index have been aged off from the "event files," the index will be
destroyed as well. Note: this value should be smaller than (no more
than half of) the nifi.provenance.repository.max.storage.size property.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute can be when
retrieving a Provenance Event from the repository. If the length of
any attribute exceeds this value, it will be truncated when the event is
retrieved. The default value is 65536.

nifi.provenance.repository.concurrent.merge.threads Apache Lucene creates several "segments" in an Index. These
segments are periodically merged together in order to provide faster
querying. This property specifies the maximum number of threads that
are allowed to be used for each of the storage directories. The default
value is 2. For high throughput environments, it is advisable to set the
number of index threads larger than the number of merge threads *
the number of storage locations. For example, if there are 2 storage
locations and the number of index threads is set to 8, then the number
of merge threads should likely be less than 4. While it is not critical
that this be done, setting the number of merge threads larger than
this can result in all index threads being used to merge, which would
cause the NiFi flow to periodically pause while indexing is happening,
resulting in some data being processed with much higher latency than
other data.

nifi.provenance.repository.warm.cache.frequency Each time that a Provenance query is run, the query must first search
the Apache Lucene indices (at least, in most cases - there are some
queries that are run often and the results are cached to avoid searching
the Lucene indices). When a Lucene index is opened for the first time,
it can be very expensive and take several seconds. This is compounded
by having many different indices, and can result in a Provenance query
taking much longer. After the index has been opened, the Operating
System's disk cache will typically hold onto enough data to make re-
opening the index much faster - at least for a period of time, until the
disk cache evicts this data. If this value is set, NiFi will periodically
open each Lucene index and then close it, in order to "warm" the cache.
This will result in far faster queries when the Provenance Repository is
large. As with all great things, though, it comes with a cost. Warming
the cache does take some CPU resources, but more importantly it will
evict other data from the Operating System disk cache and will result
in reading (potentially a great deal of) data from the disk. This can
result in lower NiFi performance. However, if NiFi is running in an
environment where CPU and disk are not fully utilized, this feature
can result in far faster Provenance queries. The default value for this
property is blank (i.e. disabled).

Encrypted Write Ahead Provenance Repository Properties

All of the properties defined above still apply. Only encryption-specific properties are listed here.

Property Description

nifi.provenance.repository.debug.frequency Controls the number of events processed between DEBUG statements
documenting the performance metrics of the repository. This value
is only used when DEBUG level statements are enabled in the log
configuration.

11

Apache NiFi System Properties

nifi.provenance.repository.encryption.key.provider.implementation This is the fully-qualified class name of the key provider. A key
provider is the datastore interface for accessing the encryption
key to protect the provenance events. There are currently two
implementations - StaticKeyProvider which reads a key directly from
nifi.properties, and FileBasedKeyProvider which reads n many keys
from an encrypted file. The interface is extensible, and HSM-backed or
other providers are expected in the future.

nifi.provenance.repository.encryption.key.provider.location The path to the key definition resource (empty for StaticKeyProvider,
./keys.nkp or similar path for FileBasedKeyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.provenance.repository.encryption.key.id The active key ID to use for encryption (e.g. Key1).

nifi.provenance.repository.encryption.key The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210)
but can also be encrypted using the ./encrypt-config.sh tool in NiFi
Toolkit.

nifi.provenance.repository.encryption.key.id.* Allows for additional keys to be specified for
the StaticKeyProvider. For example, the line
nifi.provenance.repository.encryption.key.id.Key2=012…210 would
provide an available key Key2.

The simplest configuration is below:

nifi.provenance.repository.implementation=org.apache.nifi.provenance.EncryptedWriteAheadProvenanceRepository
nifi.provenance.repository.debug.frequency=100
nifi.provenance.repository.encryption.key.provider.implementation=org.apache.nifi.security.kms.StaticKeyProvider
nifi.provenance.repository.encryption.key.provider.location=
nifi.provenance.repository.encryption.key.id=Key1
nifi.provenance.repository.encryption.key=0123456789ABCDEFFEDCBA98765432100123456789ABCDEFFEDCBA9876543210

Persistent Provenance Repository Properties

Property Description

nifi.provenance.repository.directory.default* The location of the Provenance Repository. The default value is ./
provenance_repository.NOTE: Multiple provenance repositories
can be specified by using the nifi.provenance.repository.directory.
prefix with unique suffixes and separate paths as values. For example,
to provide two additional locations to act as part of the provenance
repository, a user could also specify additional properties with
keys of:nifi.provenance.repository.directory.provenance1=/repos/
provenance1 nifi.provenance.repository.directory.provenance2=/
repos/provenance2 Providing three total locations, including
nifi.provenance.repository.directory.default.

nifi.provenance.repository.max.storage.time The maximum amount of time to keep data provenance information.
The default value is 24 hours.

nifi.provenance.repository.max.storage.size The maximum amount of data provenance information to store at a
time. The default value is 1 GB.

nifi.provenance.repository.rollover.time The amount of time to wait before rolling over the latest data
provenance information so that it is available in the User Interface. The
default value is 30 secs.

nifi.provenance.repository.rollover.size The amount of information to roll over at a time. The default value is
100 MB.

nifi.provenance.repository.query.threads The number of threads to use for Provenance Repository queries. The
default value is 2.

12

Apache NiFi System Properties

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance events so that
they are searchable. The default value is 2. For flows that operate on
a very high number of FlowFiles, the indexing of Provenance events
could become a bottleneck. If this is the case, a bulletin will appear,
indicating that "The rate of the dataflow is exceeding the provenance
recording rate. Slowing down flow to accommodate." If this happens,
increasing the value of this property may increase the rate at which the
Provenance Repository is able to process these records, resulting in
better overall throughput.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance information when
rolling it over. The default value is true.

nifi.provenance.repository.always.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. This is very expensive and can significantly reduce NiFi
performance. However, if it is false, there could be the potential for
data loss if either there is a sudden power loss or the operating system
crashes. The default value is false.

nifi.provenance.repository.journal.count The number of journal files that should be used to serialize
Provenance Event data. Increasing this value will allow more tasks to
simultaneously update the repository but will result in more expensive
merging of the journal files later. This value should ideally be equal
to the number of threads that are expected to update the repository
simultaneously, but 16 tends to work well in must environments. The
default value is 16.

nifi.provenance.repository.indexed.fields This is a comma-separated list of the fields that should be indexed and
made searchable. Fields that are not indexed will not be searchable.
Valid fields are: EventType, FlowFileUUID, Filename, TransitURI,
ProcessorID, AlternateIdentifierURI, Relationship, Details. The default
value is: EventType, FlowFileUUID, Filename, ProcessorID.

nifi.provenance.repository.indexed.attributes This is a comma-separated list of FlowFile Attributes that should be
indexed and made searchable. It is blank by default. But some good
examples to consider are filename, uuid, and mime.type as well as any
custom attritubes you might use which are valuable for your use case.

nifi.provenance.repository.index.shard.size Large values for the shard size will result in more Java heap usage
when searching the Provenance Repository but should provide better
performance. The default value is 500 MB.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute can be when
retrieving a Provenance Event from the repository. If the length of
any attribute exceeds this value, it will be truncated when the event is
retrieved. The default value is 65536.

Volatile Provenance Repository Properties

Property Description

nifi.provenance.repository.buffer.size The Provenance Repository buffer size. The default value is 100000
provenance events.

Component Status Repository

The Component Status Repository contains the information for the Component Status History tool in the User
Interface. These properties govern how that tool works.

The buffer.size and snapshot.frequency work together to determine the amount of historical data to retain. As an
example to configure two days worth of historical data with a data point snapshot occurring every 5 minutes you

13

Apache NiFi System Properties

would configure snapshot.frequency to be "5 mins" and the buffer.size to be "576". To further explain this example
for every 60 minutes there are 12 (60 / 5) snapshot windows for that time period. To keep that data for 48 hours (12 *
48) you end up with a buffer size of 576.

Property Description

nifi.components.status.repository.implementation The Component Status Repository
implementation. The default value is
org.apache.nifi.controller.status.history.VolatileComponentStatusRepository
and should not be changed.

nifi.components.status.repository.buffer.size Specifies the buffer size for the Component Status Repository. The
default value is 1440.

nifi.components.status.snapshot.frequency This value indicates how often to present a snapshot of the components'
status history. The default value is 1 min.

Site to Site Properties

These properties govern how this instance of NiFi communicates with remote instances of NiFi when Remote
Process Groups are configured in the dataflow. Remote Process Groups can choose transport protocol from RAW
and HTTP. Properties named with nifi.remote.input.socket.* are RAW transport protocol specific. Similarly,
nifi.remote.input.http.* are HTTP transport protocol specific properties.

Property Description

nifi.remote.input.host The host name that will be given out to clients to connect to this NiFi
instance for Site-to-Site communication. By default, it is the value from
InetAddress.getLocalHost().getHostName(). On UNIX-like operating
systems, this is typically the output from the hostname command.

nifi.remote.input.secure This indicates whether communication between this instance of NiFi
and remote NiFi instances should be secure. By default, it is set to
false. In order for secure site-to-site to work, set the property to true.

nifi.remote.input.socket.port The remote input socket port for Site-to-Site communication. By
default, it is blank, but it must have a value in order to use RAW socket
as transport protocol for Site-to-Site.

nifi.remote.input.http.enabled Specifies whether HTTP Site-to-Site should be enabled on this host.
By default, it is set to true. Whether a Site-to-Site client uses HTTP or
HTTPS is determined by nifi.remote.input.secure. If it is set to true,
then requests are sent as HTTPS to nifi.web.https.port. If set to false,
HTTP requests are sent to nifi.web.http.port.

nifi.remote.input.http.transaction.ttl Specifies how long a transaction can stay alive on the server. By
default, it is set to 30 secs. If a Site-to-Site client hasn't proceeded to
the next action after this period of time, the transaction is discarded
from the remote NiFi instance. For example, when a client creates a
transaction but doesn't send or receive flow files, or when a client sends
or receives flow files but doesn't confirm that transaction.

nifi.remote.contents.cache.expiration Specifies how long NiFi should cache information about a remote NiFi
instance when communicating via Site-to-Site. By default, NiFi will
cache the responses from the remote system for 30 secs. This allows
NiFi to avoid constantly making HTTP requests to the remote system,
which is particularly important when this instance of NiFi has many
instances of Remote Process Groups.

Site to Site Routing Properties for Reverse Proxies

14

Apache NiFi System Properties

Site-to-Site requires peer-to-peer communication between a client and a remote NiFi node. E.g. if a remote NiFi
cluster has 3 nodes (nifi0, nifi1 and nifi2) then client requests have to be reachable to each of those remote nodes.

If a NiFi cluster is planned to receive/transfer data from/to Site-to-Site clients over the internet or a company firewall,
a reverse proxy server can be deployed in front of the NiFi cluster nodes as a gateway to route client requests to
upstream NiFi nodes, to reduce number of servers and ports those have to be exposed.

In such environment, the same NiFi cluster would also be expected to be accessed by Site-to-Site clients within the
same network. Sending FlowFiles to itself for load distribution among NiFi cluster nodes can be a typical example. In
this case, client requests should be routed directly to a node without going through the reverse proxy.

In order to support such deployments, remote NiFi clusters need to expose its Site-to-Site endpoints dynamically
based on client request contexts. Following properties configure how peers should be exposed to clients. A routing
definition consists of 4 properties, when, hostname, port, and secure, grouped by protocol and name. Multiple routing
definitions can be configured. protocol represents Site-to-Site transport protocol, i.e. RAW or HTTP.

Property Description

nifi.remote.route.{protocol}.{name}.when Boolean value, true or false. Controls whether the routing definition for
this name should be used.

nifi.remote.route.{protocol}.{name}.hostname Specify hostname that will be introduced to Site-to-Site clients for
further communications.

nifi.remote.route.{protocol}.{name}.port Specify port number that will be introduced to Site-to-Site clients for
further communications.

nifi.remote.route.{protocol}.{name}.secure Boolean value, true or false. Specify whether the remote peer should be
accessed via secure protocol. Defaults to false.

All of above routing properties can use NiFi Expression Language to compute target peer description from request
context. Available variables are:

Variable name Description

s2s.{source|target}.hostname Hostname of the source where the request came from, and the original
target.

s2s.{source|target}.port Same as above, for ports. Source port may not be useful as it is just a
client side TCP port.

s2s.{source|target}.secure Same as above, for secure or not.

s2s.protocol The name of Site-to-Site protocol being used, RAW or HTTP.

s2s.request The name of current request type, SiteToSiteDetail or Peers. See Site-
to-Site protocol sequence below for detail.

HTTP request headers HTTP request header values can be referred by its name.

Site to Site protocol sequence

Configuring these properties correctly would require some understandings on Site-to-Site protocol sequence.

1. A client initiates Site-to-Site protocol by sending a HTTP(S) request to the specified remote URL to get remote
cluster Site-to-Site information. Specifically, to '/nifi-api/site-to-site'. This request is called SiteToSiteDetail.

2. A remote NiFi node responds with its input and output ports, and TCP port numbers for RAW and TCP transport
protocols.

3. The client sends another request to get remote peers using the TCP port number returned at #2. From this request,
raw socket communication is used for RAW transport protocol, while HTTP keeps using HTTP(S). This request is
called Peers.

15

Apache NiFi System Properties

4. A remote NiFi node responds with list of available remote peers containing hostname, port, secure and workload
such as the number of queued FlowFiles. From this point, further communication is done between the client and
the remote NiFi node.

5. The client decides which peer to transfer data from/to, based on workload information.
6. The client sends a request to create a transaction to a remote NiFi node.
7. The remote NiFi node accepts the transaction.
8. Data is sent to the target peer. Multiple Data packets can be sent in batch manner.
9. When there is no more data to send, or reached to batch limit, the transaction is confirmed on both end by

calculating CRC32 hash of sent data.
10. The transaction is committed on both end.

Reverse Proxy Configurations

Most reverse proxy software implement HTTP and TCP proxy mode. For NiFi RAW Site-to-Site protocol, both
HTTP and TCP proxy configurations are required, and at least 2 ports needed to be opened. NiFi HTTP Site-to-Site
protocol can minimize the required number of open ports at the reverse proxy to 1.

Setting correct HTTP headers at reverse proxies are crucial for NiFi to work correctly, not only routing requests but
also authorize client requests.

There are two types of requests-to-NiFi-node mapping techniques those can be applied at reverse proxy servers. One
is 'Server name to Node' and the other is 'Port number to Node'.

With 'Server name to Node', the same port can be used to route requests to different upstream NiFi nodes based on the
requested server name (e.g. nifi0.example.com, nifi1.example.com). Host name resolution should be configured to
map different host names to the same reverse proxy address, that can be done by adding /etc/hosts file or DNS server
entries. Also, if clients to reverse proxy uses HTTPS, reverse proxy server certificate should have wildcard common
name or SAN to be accessed by different host names.

Some reverse proxy technologies do not support server name routing rules, in such case, use 'Port number to Node'
technique. 'Port number to Node' mapping requires N open port at a reverse proxy for a NiFi cluster consists of N
nodes.

Refer to the following examples for actual configurations.

Site to Site and Reverse Proxy Examples

Here are some example reverse proxy and NiFi setups to illustrate what configuration files look like.

Client1 in the following diagrams represents a client that does not have direct access to NiFi nodes, and it accesses
through the reverse proxy, while Client2 has direct access.

In this example, Nginx is used as a reverse proxy.

Example 1: RAW - Server name to Node mapping

1. Client1 initiates Site-to-Site protocol, the request is routed to one of upstream NiFi nodes. The NiFi node
computes Site-to-Site port for RAW. By the routing rule example1 in nifi.properties shown below, port 10443 is
returned.

16

Apache NiFi System Properties

2. Client1 asks peers to nifi.example.com:10443, the request is routed to nifi0:8081. The NiFi node computes
available peers, by example1 routing rule, nifi0:8081 is converted to nifi0.example.com:10443, so are nifi1 and
nifi2. As a result, nifi0.example.com:10443, nifi1.example.com:10443 and nifi2.example.com:10443 are returned.

3. Client1 decides to use nifi2.example.com:10443 for further communication.
4. On the other hand, Client2 has two URIs for Site-to-Site bootstrap URIs, and initiates the protocol using one of

them. The example1 routing does not match this for this request, and port 8081 is returned.
5. Client2 asks peers from nifi1:8081. The example1 does not match, so the original nifi0:8081, nifi1:8081 and

nifi2:8081 are returned as they are.
6. Client2 decides to use nifi2:8081 for further communication.

Routing rule example1 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for RAW, using server name to node
nifi.remote.route.raw.example1.when=\
${X-ProxyHost:equals('nifi.example.com'):or(\
${s2s.source.hostname:equals('nifi.example.com'):or(\
${s2s.source.hostname:equals('192.168.99.100')})})}
nifi.remote.route.raw.example1.hostname=${s2s.target.hostname}.example.com
nifi.remote.route.raw.example1.port=10443
nifi.remote.route.raw.example1.secure=true

nginx.conf :

http {

 upstream nifi {
 server nifi0:8443;
 server nifi1:8443;
 server nifi2:8443;
 }

 # Use dnsmasq so that hostnames such as 'nifi0' can be resolved by /etc/
hosts
 resolver 127.0.0.1;

 server {
 listen 443 ssl;
 server_name nifi.example.com;
 ssl_certificate /etc/nginx/nginx.crt;
 ssl_certificate_key /etc/nginx/nginx.key;

 proxy_ssl_certificate /etc/nginx/nginx.crt;
 proxy_ssl_certificate_key /etc/nginx/nginx.key;
 proxy_ssl_trusted_certificate /etc/nginx/nifi-cert.pem;

 location / {
 proxy_pass https://nifi;
 proxy_set_header X-ProxyScheme https;
 proxy_set_header X-ProxyHost nginx.example.com;
 proxy_set_header X-ProxyPort 17590;
 proxy_set_header X-ProxyContextPath /;
 proxy_set_header X-ProxiedEntitiesChain $ssl_client_s_dn;
 }
 }
}

stream {

 map $ssl_preread_server_name $nifi {
 nifi0.example.com nifi0;
 nifi1.example.com nifi1;
 nifi2.example.com nifi2;

17

Apache NiFi System Properties

 default nifi0;
 }

 resolver 127.0.0.1;

 server {
 listen 10443;
 proxy_pass $nifi:8081;
 }
}

Example 2: RAW - Port number to Node mapping

The example2 routing maps original host names (nifi0, nifi1 and nifi2) to different proxy ports (10443, 10444 and
10445) using equals and ifElse expressions.

Routing rule example2 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for RAW, using port number to node
nifi.remote.route.raw.example2.when=\
${X-ProxyHost:equals('nifi.example.com'):or(\
${s2s.source.hostname:equals('nifi.example.com'):or(\
${s2s.source.hostname:equals('192.168.99.100')})})}
nifi.remote.route.raw.example2.hostname=nifi.example.com
nifi.remote.route.raw.example2.port=\
${s2s.target.hostname:equals('nifi0'):ifElse('10443',\
${s2s.target.hostname:equals('nifi1'):ifElse('10444',\
${s2s.target.hostname:equals('nifi2'):ifElse('10445',\
'undefined')})})}
nifi.remote.route.raw.example2.secure=true

nginx.conf :

http {
 # Same as example 1.
}

stream {

 map $ssl_preread_server_name $nifi {
 nifi0.example.com nifi0;
 nifi1.example.com nifi1;
 nifi2.example.com nifi2;
 default nifi0;
 }

 resolver 127.0.0.1;

 server {
 listen 10443;
 proxy_pass nifi0:8081;
 }

18

Apache NiFi System Properties

 server {
 listen 10444;
 proxy_pass nifi1:8081;
 }
 server {
 listen 10445;
 proxy_pass nifi2:8081;
 }
}

Example 3: HTTP - Server name to Node mapping

Routing rule example3 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for HTTP
nifi.remote.route.http.example3.when=${X-ProxyHost:contains('.example.com')}
nifi.remote.route.http.example3.hostname=${s2s.target.hostname}.example.com
nifi.remote.route.http.example3.port=443
nifi.remote.route.http.example3.secure=true

nginx.conf :

http {
 upstream nifi_cluster {
 server nifi0:8443;
 server nifi1:8443;
 server nifi2:8443;
 }

 # If target node is not specified, use one from cluster.
 map $http_host $nifi {
 nifi0.example.com:443 "nifi0:8443";
 nifi1.example.com:443 "nifi1:8443";
 nifi2.example.com:443 "nifi2:8443";
 default "nifi_cluster";
 }

 resolver 127.0.0.1;

 server {
 listen 443 ssl;
 server_name ~^(.+\.example\.com)$;
 ssl_certificate /etc/nginx/nginx.crt;
 ssl_certificate_key /etc/nginx/nginx.key;

 proxy_ssl_certificate /etc/nginx/nginx.crt;
 proxy_ssl_certificate_key /etc/nginx/nginx.key;
 proxy_ssl_trusted_certificate /etc/nginx/nifi-cert.pem;

 location / {
 proxy_pass https://$nifi;
 proxy_set_header X-ProxyScheme https;

19

Apache NiFi System Properties

 proxy_set_header X-ProxyHost $1;
 proxy_set_header X-ProxyPort 443;
 proxy_set_header X-ProxyContextPath /;
 proxy_set_header X-ProxiedEntitiesChain $ssl_client_s_dn;
 }
 }
}

Web Properties

These properties pertain to the web-based User Interface.

Property Description

nifi.web.war.directory This is the location of the web war directory. The default value is ./lib.

nifi.web.http.host The HTTP host. It is blank by default.

nifi.web.http.port The HTTP port. The default value is 8080.

nifi.web.http.port.forwarding The port which forwards incoming HTTP requests to
nifi.web.http.host. This property is designed to be used with 'port
forwarding', when NiFi has to be started by a non-root user for better
security, yet it needs to be accessed via low port to go through a
firewall. For example, to expose NiFi via HTTP protocol on port 80,
but actually listening on port 8080, you need to configure OS level port
forwarding such as iptables (Linux/Unix) or pfctl (OS X) that redirects
requests from 80 to 8080. Then set nifi.web.http.port as 8080, and
nifi.web.http.port.forwarding as 80. It is blank by default.

nifi.web.http.network.interface* The name of the network interface to which NiFi should bind for
HTTP requests. It is blank by default.NOTE: Multiple network
interfaces can be specified by using the nifi.web.http.network.interface.
prefix with unique suffixes and separate network interface
names as values. For example, to provide two additional
network interfaces, a user could also specify additional
properties with keys of:nifi.web.http.network.interface.eth0=eth0
nifi.web.http.network.interface.eth1=eth1 Providing three total network
interfaces, including nifi.web.http.network.interface.default.

nifi.web.https.host The HTTPS host. It is blank by default.

nifi.web.https.port The HTTPS port. It is blank by default. When configuring NiFi to run
securely, this port should be configured.

nifi.web.https.port.forwarding Same as nifi.web.http.port.forwarding, but with HTTPS for secure
communication. It is blank by default.

nifi.web.https.network.interface* The name of the network interface to which NiFi should
bind for HTTPS requests. It is blank by default.NOTE:
Multiple network interfaces can be specified by using the
nifi.web.https.network.interface. prefix with unique suffixes and
separate network interface names as values. For example, to provide
two additional network interfaces, a user could also specify additional
properties with keys of:nifi.web.https.network.interface.eth0=eth0
nifi.web.https.network.interface.eth1=eth1 Providing three total
network interfaces, including nifi.web.https.network.interface.default.

nifi.web.jetty.working.directory The location of the Jetty working directory. The default value is ./work/
jetty.

nifi.web.jetty.threads The number of Jetty threads. The default value is 200.

20

Apache NiFi System Properties

nifi.web.max.header.size The maximum size allowed for request and response headers. The
default value is 16 KB.

nifi.web.proxy.host A comma separated list of allowed HTTP Host header values to
consider when NiFi is running securely and will be receiving requests
to a different host[:port] than it is bound to. For example, when
running in a Docker container or behind a proxy (e.g. localhost:18443,
proxyhost:443). By default, this value is blank meaning NiFi should
only allow requests sent to the host[:port] that NiFi is bound to.

nifi.web.proxy.context.path A comma separated list of allowed HTTP X-ProxyContextPath, X-
Forwarded-Context, or X-Forwarded-Prefix header values to consider.
By default, this value is blank meaning all requests containing a proxy
context path are rejected. Configuring this property would allow
requests where the proxy path is contained in this listing.

Security Properties

These properties pertain to various security features in NiFi.

Property Description

nifi.sensitive.props.key This is the password used to encrypt any sensitive property values that
are configured in processors. By default, it is blank, but the system
administrator should provide a value for it. It can be a string of any
length, although the recommended minimum length is 10 characters.
Be aware that once this password is set and one or more sensitive
processor properties have been configured, this password should not be
changed.

nifi.sensitive.props.algorithm The algorithm used to encrypt sensitive properties. The default value is
PBEWITHMD5AND256BITAES-CBC-OPENSSL.

nifi.sensitive.props.provider The sensitive property provider. The default value is BC.

nifi.sensitive.props.additional.keys The comma separated list of properties in nifi.properties to encrypt in
addition to the default sensitive properties.

nifi.security.keystore* The full path and name of the keystore. It is blank by default.

nifi.security.keystoreType The keystore type. It is blank by default.

nifi.security.keystorePasswd The keystore password. It is blank by default.

nifi.security.keyPasswd The key password. It is blank by default.

nifi.security.truststore* The full path and name of the truststore. It is blank by default.

nifi.security.truststoreType The truststore type. It is blank by default.

nifi.security.truststorePasswd The truststore password. It is blank by default.

nifi.security.user.authorizer Specifies which of the configured Authorizers in the authorizers.xml
file to use. By default, it is set to file-provider.

nifi.security.user.login.identity.provider This indicates what type of login identity provider to use. The
default value is blank, can be set to the identifier from a provider in
the file specified in nifi.login.identity.provider.configuration.file.
Setting this property will trigger NiFi to support username/password
authentication.

nifi.security.ocsp.responder.url This is the URL for the Online Certificate Status Protocol (OCSP)
responder if one is being used. It is blank by default.

21

Apache NiFi System Properties

nifi.security.ocsp.responder.certificate This is the location of the OCSP responder certificate if one is being
used. It is blank by default.

Identity Mapping Properties

These properties can be utilized to normalize user identities. When implemented, identities authenticated by different
identity providers (certificates, LDAP, Kerberos) are treated the same internally in NiFi. As a result, duplicate users
are avoided and user-specific configurations such as authorizations only need to be setup once per user.

The following examples demonstrate normalizing DNs from certificates and principals from Kerberos:

nifi.security.identity.mapping.pattern.dn=^CN=(.*?), OU=(.*?), O=(.*?),
 L=(.*?), ST=(.*?), C=(.*?)$
nifi.security.identity.mapping.value.dn=$1@$2
nifi.security.identity.mapping.transform.dn=NONE
nifi.security.identity.mapping.pattern.kerb=^(.*?)/instance@(.*?)$
nifi.security.identity.mapping.value.kerb=$1@$2
nifi.security.identity.mapping.transform.kerb=NONE

The last segment of each property is an identifier used to associate the pattern with the replacement value. When a
user makes a request to NiFi, their identity is checked to see if it matches each of those patterns in lexicographical
order. For the first one that matches, the replacement specified in the nifi.security.identity.mapping.value.xxxx
property is used. So a login with CN=localhost, OU=Apache NiFi, O=Apache, L=Santa Monica, ST=CA, C=US
matches the DN mapping pattern above and the DN mapping value $1@$2 is applied. The user is normalized to
localhost@Apache NiFi.

In addition to mapping, a transform may be applied. The supported versions are NONE (no transform applied),
LOWER (identity lowercased), and UPPER (identity uppercased). If not specified, the default value is NONE.

Note: These mappings are also applied to the "Initial Admin Identity", "Cluster Node Identity", and any
legacy users in the authorizers.xml file as well as users imported from LDAP (See Authorizers.xml Setup).

Group names can also be mapped. The following example will accept the existing group name but will lowercase it.
This may be helpful when used in conjunction with an external authorizer.

nifi.security.group.mapping.pattern.anygroup=^(.*)$
nifi.security.group.mapping.value.anygroup=$1
nifi.security.group.mapping.transform.anygroup=LOWER

Note: These mappings are applied to any legacy groups referenced in the authorizers.xml as well as groups
imported from LDAP.

Cluster Common Properties

When setting up a NiFi cluster, these properties should be configured the same way on all nodes.

Property Description

nifi.cluster.protocol.heartbeat.interval The interval at which nodes should emit heartbeats to the Cluster
Coordinator. The default value is 5 sec.

nifi.cluster.protocol.is.secure This indicates whether cluster communications are secure. The default
value is false.

22

Apache NiFi System Properties

Cluster Node Properties

Configure these properties for cluster nodes.

Property Description

nifi.cluster.is.node Set this to true if the instance is a node in a cluster. The default value is
false.

nifi.cluster.node.address The fully qualified address of the node. It is blank by default.

nifi.cluster.node.protocol.port The node's protocol port. It is blank by default.

nifi.cluster.node.protocol.threads The number of threads that should be used to communicate with other
nodes in the cluster. This property defaults to 10, but for large clusters,
this value may need to be larger.

nifi.cluster.node.protocol.max.threads The maximum number of threads that should be used to communicate
with other nodes in the cluster. This property defaults to 50.

nifi.cluster.node.event.history.size When the state of a node in the cluster is changed, an event is
generated and can be viewed in the Cluster page. This value indicates
how many events to keep in memory for each node. The default value
is 25.

nifi.cluster.node.connection.timeout When connecting to another node in the cluster, specifies how long
this node should wait before considering the connection a failure. The
default value is 5 secs.

nifi.cluster.node.read.timeout When communicating with another node in the cluster, specifies how
long this node should wait to receive information from the remote node
before considering the communication with the node a failure. The
default value is 5 secs.

nifi.cluster.node.max.concurrent.requests The maximum number of outstanding web requests that can be
replicated to nodes in the cluster. If this number of requests is
exceeded, the embedded Jetty server will return a "409: Conflict"
response. This property defaults to 100.

nifi.cluster.firewall.file The location of the node firewall file. This is a file that may be used to
list all the nodes that are allowed to connect to the cluster. It provides
an additional layer of security. This value is blank by default, meaning
that no firewall file is to be used.

nifi.cluster.flow.election.max.wait.time Specifies the amount of time to wait before electing a Flow as the
"correct" Flow. If the number of Nodes that have voted is equal to
the number specified by the nifi.cluster.flow.election.max.candidates
property, the cluster will not wait this long. The default value is 5 mins.
Note that the time starts as soon as the first vote is cast.

nifi.cluster.flow.election.max.candidates Specifies the number of Nodes required in the cluster to cause early
election of Flows. This allows the Nodes in the cluster to avoid having
to wait a long time before starting processing if we reach at least this
number of nodes in the cluster.

nifi.cluster.flow.election.max.wait.time Specifies the amount of time to wait before electing a Flow as the
"correct" Flow. If the number of Nodes that have voted is equal to
the number specified by the nifi.cluster.flow.election.max.candidates
property, the cluster will not wait this long. The default value is 5 mins.
Note that the time starts as soon as the first vote is cast.

nifi.cluster.flow.election.max.candidates Specifies the number of Nodes required in the cluster to cause early
election of Flows. This allows the Nodes in the cluster to avoid having
to wait a long time before starting processing if we reach at least this
number of nodes in the cluster.

23

Apache NiFi System Properties

nifi.cluster.load.balance.port Specifies the port to listen on for incoming connections for load
balancing data across the cluster. The default value is 6342.

nifi.cluster.load.balance.host Specifies the hostname to listen on for incoming connections for load
balancing data across the cluster. If not specified, will default to the
value used by the nifi.cluster.node.address property.

nifi.cluster.load.balance.connections.per.node The maximum number of connections to create between this node
and each other node in the cluster. For example, if there are 5 nodes
in the cluster and this value is set to 4, there will be up to 20 socket
connections established for load-balancing purposes (5 x 4 = 20). The
default value is 4.

nifi.cluster.load.balance.max.thread.count The maximum number of threads to use for transferring data from this
node to other nodes in the cluster. If this value is set to 8, for example,
there will be up to 8 threads responsible for transferring data to other
nodes, regardless of how many nodes are in the cluster. While a given
thread can only write to a single socket at a time, a single thread is
capable of servicing multiple connections simultaneously because a
given connection may not be available for reading/writing at any given
time. The default value is 8.

nifi.cluster.load.balance.comms.timeout When communicating with another node, if this amount of time elapses
without making any progress when reading from or writing to a socket,
then a TimeoutException will be thrown. This will then result in
the data either being retried or sent to another node in the cluster,
depending on the configured Load Balancing Strategy. The default
value is 30 sec.

Claim Management

Whenever a request is made to change the dataflow, it is important that all nodes in the NiFi cluster are kept in-sync.
In order to allow for this, NiFi employs a two-phase commit. The request is first replicated to all nodes in the cluster,
simply asking whether or not the request is allowed. Each node then determines whether or not it will allow the
request and if so issues a "Claim" on the component(s) being modified. This claim can be thought of as a mutually-
exclusive lock that is owned by the requestor. Once all nodes have voted on whether or not the request is allowed, the
node from which the request originated must decide whether or not to complete the request. If any node voted 'NO'
then the request is canceled and the Claim is canceled with an error message sent back to the user. However, if the
nodes all vote 'YES' then the request is completed. In this sort of distributed environment, it is possible that the node
that made the original request will fail after the voting has occurred and before the request was completed. This would
leave the component locked indefinitely so that no more changes can be made to the component. In order to avoid
this, the Claim will time out after some period of time. These properties determines how these locks are managed.

Property Description

nifi.cluster.request.replication.claim.timeout Specifies how long to wait before considering a lock 'expired' and
automatically unlocking.

ZooKeeper Properties

NiFi depends on Apache ZooKeeper for determining which node in the cluster should play the role of Primary Node
and which node should play the role of Cluster Coordinator. These properties must be configured in order for NiFi to
join a cluster.

Property Description

24

Apache NiFi System Properties

nifi.zookeeper.connect.string The Connect String that is needed to connect to Apache ZooKeeper.
This is a comma-separated list of hostname:port pairs. For example,
localhost:2181,localhost:2182,localhost:2183. This should contain a list
of all ZooKeeper instances in the ZooKeeper quorum. This property
must be specified to join a cluster and has no default value.

nifi.zookeeper.connect.timeout How long to wait when connecting to ZooKeeper before considering
the connection a failure. The default value is 3 secs.

nifi.zookeeper.session.timeout How long to wait after losing a connection to ZooKeeper before the
session is expired. The default value is 3 secs.

nifi.zookeeper.root.node The root ZNode that should be used in ZooKeeper. ZooKeeper
provides a directory-like structure for storing data. Each 'directory' in
this structure is referred to as a ZNode. This denotes the root ZNode,
or 'directory', that should be used for storing data. The default value
is /root. This is important to set correctly, as which cluster the NiFi
instance attempts to join is determined by which ZooKeeper instance it
connects to and the ZooKeeper Root Node that is specified.

Kerberos Properties

Property Description

nifi.kerberos.krb5.file* The location of the krb5 file, if used. It is blank by default. At this time,
only a single krb5 file is allowed to be specified per NiFi instance,
so this property is configured here to support SPNEGO and service
principals rather than in individual Processors. If necessary the krb5
file can support multiple realms. Example: /etc/krb5.conf

nifi.kerberos.service.principal* The name of the NiFi Kerberos service principal, if used. It is
blank by default. Note that this property is for NiFi to authenticate
as a client other systems. Example: nifi/nifi.example.com or nifi/
nifi.example.com@EXAMPLE.COM

nifi.kerberos.service.keytab.location* The file path of the NiFi Kerberos keytab, if used. It is blank by
default. Note that this property is for NiFi to authenticate as a client
other systems. Example: /etc/nifi.keytab

nifi.kerberos.spnego.principal* The name of the NiFi Kerberos service principal, if used. It is
blank by default. Note that this property is used to authenticate
NiFi users. Example: HTTP/nifi.example.com or HTTP/
nifi.example.com@EXAMPLE.COM

nifi.kerberos.spnego.keytab.location* The file path of the NiFi Kerberos keytab, if used. It is blank by
default. Note that this property is used to authenticate NiFi users.
Example: /etc/http-nifi.keytab

nifi.kerberos.spengo.authentication.expiration* The expiration duration of a successful Kerberos user authentication, if
used. The default value is 12 hours.

Custom Properties

To configure custom properties for use with NiFi's Expression Language:

• Create the custom property. Ensure that:

• Each custom property contains a distinct property value, so that it is not overridden by existing environment
properties, system properties, or FlowFile attributes.

• Each node in a clustered environment is configured with the same custom properties.
• Update nifi.variable.registry.properties with the location of the custom property file(s):

25

Apache NiFi System Properties

Property Description

nifi.variable.registry.properties This is a comma-separated list of file location paths for one or more
custom property files.

• Restart your NiFi instance(s) for the updates to be picked up.

Custom properties can also be configured in the NiFi UI.

Take care when configuring the properties above that are marked with an asterisk (*). To make the upgrade process
easier, it is advisable to change the default configurations to locations outside the main root installation directory. In
this way, these items can remain in their configured location through an upgrade, and NiFi can find all the repositories
and configuration files and pick up where it left off as soon as the old version is stopped and the new version is
started. Furthermore, the administrator may reuse this nifi.properties file and any other configuration files without
having to re-configure them each time an upgrade takes place. As previously noted, it is important to check for
any changes in the nifi.properties file of the new version when upgrading and make sure they are reflected in the
nifi.properties file you use.

26

	Contents
	System Properties
	Core Properties
	State Management
	H2 Settings
	FlowFile Repository
	Swap Management
	Content Repository
	File System Content Repository Properties
	Volatile Content Repository Properties
	Provenance Repository
	Write Ahead Provenance Repository Properties
	Encrypted Write Ahead Provenance Repository Properties
	Persistent Provenance Repository Properties
	Volatile Provenance Repository Properties
	Component Status Repository
	Site to Site Properties
	Site to Site Routing Properties for Reverse Proxies
	Site to Site protocol sequence
	Reverse Proxy Configurations
	Site to Site and Reverse Proxy Examples
	Example 1: RAW - Server name to Node mapping
	Example 2: RAW - Port number to Node mapping
	Example 3: HTTP - Server name to Node mapping

	Web Properties
	Security Properties
	Identity Mapping Properties
	Cluster Common Properties
	Cluster Node Properties
	Claim Management
	ZooKeeper Properties
	Kerberos Properties
	Custom Properties

