
Apache NiFi 3

Apache NiFi Configuration Best Practices
Date of Publish: 2020-04-28

https://docs.cloudera.com/

https://docs.cloudera.com/

Contents

Configuration Best Practices... 3

Port Configuration..4
NiFi Default Ports...4
Embedded Zookeeper... 4

Recommended Antivirus Exclusions.. 4

Clustering Configuration... 5
Zero-Master Clustering...5
Why Cluster?.. 5
Terminology.. 6
Communication within the Cluster.. 7
Managing Nodes... 7

Disconnect Nodes... 7
Offload Nodes...8
Delete Nodes...9
Decommission Nodes... 9
NiFi CLI Node Commands.. 9

Flow Election..9
Basic Cluster Setup...10
Troubleshooting...11

Bootstrap Properties...11

Notification Services... 12
Email Notification Service... 13
HTTP Notification Service...14

Proxy Configuration... 15

Analytics Framework... 16

Apache NiFi Configuration Best Practices

Configuration Best Practices

If you are running on Linux, consider these best practices. Typical Linux defaults are not necessarily well-tuned
for the needs of an IO intensive application like NiFi. For all of these areas, your distribution's requirements may
vary. Use these sections as advice, but consult your distribution-specific documentation for how best to achieve these
recommendations.

Maximum File Handles NiFi will at any one time potentially have a very large
number of file handles open. Increase the limits by
editing /etc/security/limits.conf to add something like

* hard nofile 50000
* soft nofile 50000

Maximum Forked Processes NiFi may be configured to generate a significant number
of threads. To increase the allowable number, edit /etc/
security/limits.conf

* hard nproc 10000
* soft nproc 10000

And your distribution may require an edit to /etc/security/limits.d/90-nproc.conf by adding

* soft nproc 10000

Increase the number of TCP socket ports available This is particularly important if your flow will be setting
up and tearing down a large number of sockets in a small
period of time.

sudo sysctl -w net.ipv4.ip_local_port_range="10000 65000"

Set how long sockets stay in a TIMED_WAIT state
when closed

You don't want your sockets to sit and linger too long
given that you want to be able to quickly setup and
teardown new sockets. It is a good idea to read more
about it and adjust to something like

sudo sysctl -w net.ipv4.netfilter.ip_conntrack_tcp_timeout_time_wait="1"

Tell Linux you never want NiFi to swap Swapping is fantastic for some applications. It isn't good
for something like NiFi that always wants to be running.
To tell Linux you'd like swapping off, you can edit /etc/
sysctl.conf to add the following line

vm.swappiness = 0

For the partitions handling the various NiFi repos, turn off things like atime. Doing so can cause a surprising bump in
throughput. Edit the /etc/fstab file and for the partition(s) of interest, add the noatime option.

3

Apache NiFi Port Configuration

Port Configuration

NiFi Default Ports

The following table lists the default ports used by NiFi and the corresponding property in the nifi.properties file. You
can change these values as required.

Note:

• The default values are set by Ambari.
• By default, Ambari sets the port for the TLS Toolkit Certificate Authority Port property to 10443.
• If you install NiFi-only binaries not managed by Ambari, the defaults will be different and can be found in

the nifi.properties file.

Function Property Default Value set by Ambari

Web HTTP Forwarding Port nifi.web.http.port.forwarding none

HTTP Port nifi.web.http.port 9090

HTTPS Port nifi.web.https.port 9091

Remote Input Socket Port nifi.remote.input.socket.port none

Cluster Node Protocol Port nifi.cluster.node.protocol.port 9088

Cluster Node Load Balancing Port nifi.cluster.node.load.balance.port 6342

Embedded Zookeeper

The following table lists the default ports used by an Embedded ZooKeeper Server and the corresponding property in
the zookeeper.properties file.

Function Property Default Value

Zookeeper Server Quorum and Leader
Election Ports

server.1 none

Zookeeper Client Port (Deprecated: client port
is no longer specified on a separate line as of
NiFi 1.10.x)

clientPort 2181

Note: Commented examples for the Zookeeper server ports are included in the zookeeper.properties file in
the form server.N=nifi-nodeN-hostname:2888:3888;2181.

Recommended Antivirus Exclusions

Antivirus software can take a long time to scan large directories and the numerous files within them. Additionally,
if the antivirus software locks files or directories during a scan, those resources are unavailable to NiFi processes,
causing latency or unavailability of these resources in a NiFi instance/cluster. To prevent these performance and
reliability issues from occurring, it is highly recommended to configure your antivirus software to skip scans on the
following NiFi directories:

4

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#embedded_zookeeper

Apache NiFi Clustering Configuration

• content_repository
• flowfile_repository
• logs
• provenance_repository
• state

Clustering Configuration

This section provides a quick overview of NiFi Clustering and instructions on how to set up a basic cluster. In the
future, we hope to provide supplemental documentation that covers the NiFi Cluster Architecture in depth.

Zero-Master Clustering

NiFi employs a Zero-Master Clustering paradigm. Each node in the cluster performs the same tasks on the data,
but each operates on a different set of data. One of the nodes is automatically elected (via Apache ZooKeeper)
as the Cluster Coordinator. All nodes in the cluster will then send heartbeat/status information to this node, and
this node is responsible for disconnecting nodes that do not report any heartbeat status for some amount of time.
Additionally, when a new node elects to join the cluster, the new node must first connect to the currently-elected
Cluster Coordinator in order to obtain the most up-to-date flow. If the Cluster Coordinator determines that the node is
allowed to join (based on its configured Firewall file), the current flow is provided to that node, and that node is able
to join the cluster, assuming that the node's copy of the flow matches the copy provided by the Cluster Coordinator.
If the node's version of the flow configuration differs from that of the Cluster Coordinator's, the node will not join the
cluster.

Why Cluster?

5

Apache NiFi Clustering Configuration

NiFi Administrators or DataFlow Managers (DFMs) may find that using one instance of NiFi on a single server is not
enough to process the amount of data they have. So, one solution is to run the same dataflow on multiple NiFi servers.
However, this creates a management problem, because each time DFMs want to change or update the dataflow, they
must make those changes on each server and then monitor each server individually. By clustering the NiFi servers,
it's possible to have that increased processing capability along with a single interface through which to make dataflow
changes and monitor the dataflow. Clustering allows the DFM to make each change only once, and that change is
then replicated to all the nodes of the cluster. Through the single interface, the DFM may also monitor the health and
status of all the nodes.

Terminology

NiFi Clustering is unique and has its own terminology. It's important to understand the following terms before setting
up a cluster:

NiFi Cluster Coordinator: A NiFi Cluster Coordinator is the node in a NiFi cluster that is responsible for carrying
out tasks to manage which nodes are allowed in the cluster and providing the most up-to-date flow to newly joining
nodes. When a DataFlow Manager manages a dataflow in a cluster, they are able to do so through the User Interface
of any node in the cluster. Any change made is then replicated to all nodes in the cluster.

Nodes: Each cluster is made up of one or more nodes. The nodes do the actual data processing.

Primary Node: Every cluster has one Primary Node. On this node, it is possible to run "Isolated Processors" (see
below). ZooKeeper is used to automatically elect a Primary Node. If that node disconnects from the cluster for any
reason, a new Primary Node will automatically be elected. Users can determine which node is currently elected as the
Primary Node by looking at the Cluster Management page of the User Interface.

Isolated Processors: In a NiFi cluster, the same dataflow runs on all the nodes. As a result, every component in the
flow runs on every node. However, there may be cases when the DFM would not want every processor to run on
every node. The most common case is when using a processor that communicates with an external service using a
protocol that does not scale well. For example, the GetSFTP processor pulls from a remote directory. If the GetSFTP
Processor runs on every node in the cluster and tries simultaneously to pull from the same remote directory, there
could be race conditions. Therefore, the DFM could configure the GetSFTP on the Primary Node to run in isolation,
meaning that it only runs on that node. With the proper dataflow configuration, it could pull in data and load-balance
it across the rest of the nodes in the cluster. Note that while this feature exists, it is also very common to simply use a
standalone NiFi instance to pull data and feed it to the cluster. It just depends on the resources available and how the
Administrator decides to configure the cluster.

Heartbeats: The nodes communicate their health and status to the currently elected Cluster Coordinator via
"heartbeats", which let the Coordinator know they are still connected to the cluster and working properly. By default,
the nodes emit heartbeats every 5 seconds, and if the Cluster Coordinator does not receive a heartbeat from a node
within 40 seconds, it disconnects the node due to "lack of heartbeat". The 5-second setting is configurable in the

6

Apache NiFi Clustering Configuration

nifi.properties file (see the Cluster Common Properties section for more information). The reason that the Cluster
Coordinator disconnects the node is because the Coordinator needs to ensure that every node in the cluster is in sync,
and if a node is not heard from regularly, the Coordinator cannot be sure it is still in sync with the rest of the cluster.
If, after 40 seconds, the node does send a new heartbeat, the Coordinator will automatically request that the node re-
join the cluster, to include the re-validation of the node's flow. Both the disconnection due to lack of heartbeat and the
reconnection once a heartbeat is received are reported to the DFM in the User Interface.

Communication within the Cluster

As noted, the nodes communicate with the Cluster Coordinator via heartbeats. When a Cluster Coordinator is elected,
it updates a well-known ZNode in Apache ZooKeeper with its connection information so that nodes understand where
to send heartbeats. If one of the nodes goes down, the other nodes in the cluster will not automatically pick up the
load of the missing node. It is possible for the DFM to configure the dataflow for failover contingencies; however,
this is dependent on the dataflow design and does not happen automatically.

When the DFM makes changes to the dataflow, the node that receives the request to change the flow communicates
those changes to all nodes and waits for each node to respond, indicating that it has made the change on its local flow.

Managing Nodes

Disconnect Nodes

A DFM may manually disconnect a node from the cluster. A node may also become disconnected for other reasons,
such as due to a lack of heartbeat. The Cluster Coordinator will show a bulletin on the User Interface when a node is
disconnected. The DFM will not be able to make any changes to the dataflow until the issue of the disconnected node
is resolved. The DFM or the Administrator will need to troubleshoot the issue with the node and resolve it before
any new changes can be made to the dataflow. However, it is worth noting that just because a node is disconnected
does not mean that it is not working. This may happen for a few reasons, for example when the node is unable to
communicate with the Cluster Coordinator due to network problems.

To manually disconnect a node, select the "Disconnect" icon

()
from the node's row.

7

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#cluster_common_properties

Apache NiFi Clustering Configuration

A disconnected node can be connected

(),
offloaded

()
or deleted

().

Note: Not all nodes in a "Disconnected" state can be offloaded. If the node is disconnected and unreachable,
the offload request can not be received by the node to start the offloading. Additionally, offloading may be
interrupted or prevented due to firewall rules.

Offload Nodes

Flowfiles that remain on a disconnected node can be rebalanced to other active nodes in
the cluster via offloading. In the Cluster Management dialog, select the "Offload" icon

()
for a Disconnected node. This will stop all processors, terminate all processors, stop transmitting on all remote
process groups and rebalance flowfiles to the other connected nodes in the cluster.

Nodes that remain in "Offloading" state due to errors encountered (out of memory, no network connection, etc.) can
be reconnected to the cluster by restarting NiFi on the node. Offloaded nodes can be either reconnected to the cluster
(by selecting Connect or restarting NiFi on the node) or deleted from the cluster.

8

Apache NiFi Clustering Configuration

Delete Nodes

There are cases where a DFM may wish to continue making changes to the flow, even
though a node is not connected to the cluster. In this case, the DFM may elect to delete the
node from the cluster entirely. In the Cluster Management dialog, select the "Delete" icon

()
for a Disconnected or Offloaded node. Once deleted, the node cannot be rejoined to the cluster until it has been
restarted.

Decommission Nodes

The steps to decommission a node and remove it from a cluster are as follows:

1. Disconnect the node.
2. Once disconnect completes, offload the node.
3. Once offload completes, delete the node.
4. Once the delete request has finished, stop/remove the NiFi service on the host.

NiFi CLI Node Commands

As an alternative to the UI, the following NiFi CLI commands can be used for retrieving a single node, retrieving a
list of nodes, and connecting/disconnecting/offloading/deleting nodes:

• nifi get-node
• nifi get-nodes
• nifi connect-node
• nifi disconnect-node
• nifi offload-node
• nifi delete-node

For more information, see the NiFi CLI section in the NiFi Toolkit Guide.

Flow Election

When a cluster first starts up, NiFi must determine which of the nodes have the "correct" version of the flow. This
is done by voting on the flows that each of the nodes has. When a node attempts to connect to a cluster, it provides a
copy of its local flow to the Cluster Coordinator. If no flow has yet been elected the "correct" flow, the node's flow is

9

https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#nifi_CLI
https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html

Apache NiFi Clustering Configuration

compared to each of the other Nodes' flows. If another Node's flow matches this one, a vote is cast for this flow. If no
other Node has reported the same flow yet, this flow will be added to the pool of possibly elected flows with one vote.
After some amount of time has elapsed (configured by setting the nifi.cluster.flow.election.max.wait.time property) or
some number of Nodes have cast votes (configured by setting the nifi.cluster.flow.election.max.candidates property),
a flow is elected to be the "correct" copy of the flow. All nodes that have incompatible flows are then disconnected
from the cluster while those with compatible flows inherit the cluster's flow. Election is performed according to the
"popular vote" with the caveat that the winner will never be an "empty flow" unless all flows are empty. This allows
an administrator to remove a node's flow.xml.gz file and restart the node, knowing that the node's flow will not be
voted to be the "correct" flow unless no other flow is found.

Basic Cluster Setup

This section describes the setup for a simple three-node, non-secure cluster comprised of three instances of NiFi.

For each instance, certain properties in the nifi.properties file will need to be updated. In particular, the Web and
Clustering properties should be evaluated for your situation and adjusted accordingly. All the properties are described
in the System Properties section of this guide; however, in this section, we will focus on the minimum properties that
must be set for a simple cluster.

For all three instances, the Cluster Common Properties can be left with the default settings. Note, however, that if you
change these settings, they must be set the same on every instance in the cluster.

For each Node, the minimum properties to configure are as follows:

• Under the Web Properties section, set either the HTTP or HTTPS port that you want the Node to run on. Also,
consider whether you need to set the HTTP or HTTPS host property. All nodes in the cluster should use the same
protocol setting.

• Under the State Management section, set the nifi.state.management.provider.cluster property to the identifier
of the Cluster State Provider. Ensure that the Cluster State Provider has been configured in the state-
management.xml file. See Configuring State Providers for more information.

• Under Cluster Node Properties, set the following:

• nifi.cluster.is.node - Set this to true.
• nifi.cluster.node.address - Set this to the fully qualified hostname of the node. If left blank, it defaults to

localhost.
• nifi.cluster.node.protocol.port - Set this to an open port that is higher than 1024 (anything lower requires root).
• nifi.cluster.node.protocol.threads - The number of threads that should be used to communicate with other

nodes in the cluster. This property defaults to 10. A thread pool is used for replicating requests to all nodes,
and the thread pool will never have fewer than this number of threads. It will grow as needed up to the
maximum value set by the nifi.cluster.node.protocol.max.threads property.

• nifi.cluster.node.protocol.max.threads - The maximum number of threads that should be used to communicate
with other nodes in the cluster. This property defaults to 50. A thread pool is used for replication requests to all
nodes, and the thread pool will have a "core" size that is configured by the nifi.cluster.node.protocol.threads
property. However, if necessary, the thread pool will increase the number of active threads to the limit set by
this property.

• nifi.zookeeper.connect.string - The Connect String that is needed to connect to Apache ZooKeeper. This is a
comma-separated list of hostname:port pairs. For example, localhost:2181,localhost:2182,localhost:2183. This
should contain a list of all ZooKeeper instances in the ZooKeeper quorum.

• nifi.zookeeper.root.node - The root ZNode that should be used in ZooKeeper. ZooKeeper provides a directory-
like structure for storing data. Each 'directory' in this structure is referred to as a ZNode. This denotes the root
ZNode, or 'directory', that should be used for storing data. The default value is /root. This is important to set
correctly, as which cluster the NiFi instance attempts to join is determined by which ZooKeeper instance it
connects to and the ZooKeeper Root Node that is specified.

• nifi.cluster.flow.election.max.wait.time - Specifies the amount of time to wait before electing a Flow
as the "correct" Flow. If the number of Nodes that have voted is equal to the number specified by the

10

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#system_properties
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#cluster_common_properties
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#state_providers

Apache NiFi Bootstrap Properties

nifi.cluster.flow.election.max.candidates property, the cluster will not wait this long. The default value is 5
mins. Note that the time starts as soon as the first vote is cast.

• nifi.cluster.flow.election.max.candidates - Specifies the number of Nodes required in the cluster to cause early
election of Flows. This allows the Nodes in the cluster to avoid having to wait a long time before starting
processing if we reach at least this number of nodes in the cluster.

Now, it is possible to start up the cluster. It does not matter which order the instances start up. Navigate to the URL
for one of the nodes, and the User Interface should look similar to the following:

Troubleshooting

If you encounter issues and your cluster does not work as described, investigate the nifi-app.log and nifi-user.log
files on the nodes. If needed, you can change the logging level to DEBUG by editing the conf/logback.xml file.
Specifically, set the level="DEBUG" in the following line (instead of "INFO"):

 <logger name="org.apache.nifi.web.api.config" level="INFO"
 additivity="false">
 <appender-ref ref="USER_FILE"/>
 </logger>

Bootstrap Properties

The bootstrap.conf file in the conf directory allows users to configure settings for how NiFi should be started. This
includes parameters, such as the size of the Java Heap, what Java command to run, and Java System Properties.

Here, we will address the different properties that are made available in the file. Any changes to this file will take
effect only after NiFi has been stopped and restarted.

Property Description

java Specifies the fully qualified java command to run. By default, it is
simply java but could be changed to an absolute path or a reference an
environment variable, such as $JAVA_HOME/bin/java

run.as The username to run NiFi as. For instance, if NiFi should be run as the
nifi user, setting this value to nifi will cause the NiFi Process to be run
as the nifi user. This property is ignored on Windows. For Linux, the
specified user may require sudo permissions.

lib.dir The lib directory to use for NiFi. By default, this is set to ./lib

conf.dir The conf directory to use for NiFi. By default, this is set to ./conf

11

Apache NiFi Notification Services

graceful.shutdown.seconds When NiFi is instructed to shutdown, the Bootstrap will wait this
number of seconds for the process to shutdown cleanly. At this amount
of time, if the service is still running, the Bootstrap will kill the
process, or terminate it abruptly.

java.arg.N Any number of JVM arguments can be passed to the NiFi JVM
when the process is started. These arguments are defined by adding
properties to bootstrap.conf that begin with java.arg.. The rest of the
property name is not relevant, other than to differentiate property
names, and will be ignored. The default includes properties for
minimum and maximum Java Heap size, the garbage collector to use,
etc.

nifi.bootstrap.sensitive.key The master key in hexadecimal format for encrypted sensitive
configuration values. When NiFi is started, the master key is used to
decrypt sensitive values from the nifi.properties file into memory for
later use.

The Encrypt-Config Tool can be used to specify the master key,
encrypt sensitive values in nifi.properties and update bootstrap.conf.
See the NiFi Toolkit Guide for an example.

notification.services.file When NiFi is started, or stopped, or when the Bootstrap detects that
NiFi has died, the Bootstrap is able to send notifications of these events
to interested parties. This is configured by specifying an XML file that
defines which notification services can be used. More about this file
can be found in the Notification Services section.

notification.max.attempts If a notification service is configured but is unable to perform its
function, it will try again up to a maximum number of attempts. This
property configures what that maximum number of attempts is. The
default value is 5.

nifi.start.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the
notification.services.file property. The services with the specified
identifiers will be used to notify their configured recipients whenever
NiFi is started.

nifi.stop.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the
notification.services.file property. The services with the specified
identifiers will be used to notify their configured recipients whenever
NiFi is stopped.

nifi.died.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the
notification.services.file property. The services with the specified
identifiers will be used to notify their configured recipients if the
bootstrap determines that NiFi has unexpectedly died.

Notification Services

When the NiFi bootstrap starts or stops NiFi, or detects that it has died unexpectedly, it is able to notify configured
recipients. Currently, the only mechanisms supplied are to send an e-mail or HTTP POST notification. The
notification services configuration file is an XML file where the notification capabilities are configured.

The default location of the XML file is conf/bootstrap-notification-services.xml, but this value can be changed in the
conf/bootstrap.conf file.

The syntax of the XML file is as follows:

<services>
 <!-- any number of service elements can be defined. -->

12

https://nifi.apache.org/docs/nifi-docs/html/toolkit-guide.html#encrypt_config_tool
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#notification_services

Apache NiFi Notification Services

 <service>
 <id>some-identifier</id>
 <!-- The fully-qualified class name of the Notification Service. -->

 <class>org.apache.nifi.bootstrap.notification.email.EmailNotificationService</
class>

 <!-- Any number of properties can be set using this syntax.
 The properties available depend on the Notification Service. --
>
 <property name="Property Name 1">Property Value</property>
 <property name="Another Property Name">Property Value 2</property>
 </service>
</services>

Once the desired services have been configured, they can then be referenced in the bootstrap.conf file.

Email Notification Service

The first Notifier is to send emails and the implementation is
org.apache.nifi.bootstrap.notification.email.EmailNotificationService. It has the following properties available:

Property Required Description

SMTP Hostname true The hostname of the SMTP Server that is used
to send Email Notifications

SMTP Port true The Port used for SMTP communications

SMTP Username true Username for the SMTP account

SMTP Password Password for the SMTP account

SMTP Auth Flag indicating whether authentication should
be used

SMTP TLS Flag indicating whether TLS should be
enabled

SMTP Socket Factory javax.net.ssl.SSLSocketFactory

SMTP X-Mailer Header X-Mailer used in the header of the outgoing
email

Content Type Mime Type used to interpret the contents of
the email, such as text/plain or text/html

From true Specifies the Email address to use as the
sender. Otherwise, a "friendly name" can be
used as the From address, but the value must
be enclosed in double-quotes.

To The recipients to include in the To-Line of the
email

CC The recipients to include in the CC-Line of the
email

BCC The recipients to include in the BCC-Line of
the email

In addition to the properties above that are marked as required, at least one of the To, CC, or BCC properties must be
set.

13

Apache NiFi Notification Services

A complete example of configuring the Email service would look like the following:

 <service>
 <id>email-notification</id>

 <class>org.apache.nifi.bootstrap.notification.email.EmailNotificationService</
class>
 <property name="SMTP Hostname">smtp.gmail.com</property>
 <property name="SMTP Port">587</property>
 <property name="SMTP Username">username@gmail.com</property>
 <property name="SMTP Password">super-secret-password</property>
 <property name="SMTP TLS">true</property>
 <property name="From">"NiFi Service Notifier"</property>
 <property name="To">username@gmail.com</property>
 </service>

HTTP Notification Service

The second Notifier is to send HTTP POST requests and the implementation is
org.apache.nifi.bootstrap.notification.http.HttpNotificationService. It has the following properties available:

Property Required Description

URL true The URL to send the notification to.
Expression language is supported.

Connection timeout Max wait time for connection to remote
service. Expression language is supported.
This defaults to 10s.

Write timeout Max wait time for remote service to read
the request sent. Expression language is
supported. This defaults to 10s.

Truststore Filename The fully-qualified filename of the Truststore

Truststore Type The Type of the Truststore. Either JKS or
PKCS12

Truststore Password The password for the Truststore

Keystore Filename The fully-qualified filename of the Keystore

Keystore Type The Type of the Keystore. Either JKS or
PKCS12

Keystore Password The password for the Keystore

Key Password The password for the key. If this is not
specified, but the Keystore Filename,
Password, and Type are specified, then the
Key Password will be assumed to be the same
as the Keystore Password.

SSL Protocol The algorithm to use for this SSL context.
This can either be SSL or TLS.

In addition to the properties above, dynamic properties can be added. They will be added as headers to the HTTP
request. Expression language is supported.

The notification message is in the body of the POST request. The type of notification is in the header
"notification.type" and the subject uses the header "notification.subject".

14

Apache NiFi Proxy Configuration

A complete example of configuring the HTTP service could look like the following:

 <service>
 <id>http-notification</id>

 <class>org.apache.nifi.bootstrap.notification.http.HttpNotificationService</
class>
 <property name="URL">https://testServer.com:8080/</property>
 <property name="Truststore Filename">localhost-ts.jks</property>
 <property name="Truststore Type">JKS</property>
 <property name="Truststore Password">localtest<property>
 <property name="Keystore Filename">localhost-ts.jks</property>
 <property name="Keystore Type">JKS</property>
 <property name="Keystore Password">localtest</property>
 <property name="notification.timestamp">${now()}</property>
 </service>

Proxy Configuration

When running Apache NiFi behind a proxy there are a couple of key items to be aware of during deployment.

• NiFi is comprised of a number of web applications (web UI, web API, documentation, custom UIs, data viewers,
etc), so the mapping needs to be configured for the root path. That way all context paths are passed through
accordingly. For instance, if only the /nifi context path was mapped, the custom UI for UpdateAttribute will not
work, since it is available at /update-attribute-ui-<version>.

• NiFi's REST API will generate URIs for each component on the graph. Since requests are coming through a
proxy, certain elements of the URIs being generated need to be overridden. Without overriding, the users will
be able to view the dataflow on the canvas but will be unable to modify existing components. Requests will be
attempting to call back directly to NiFi, not through the proxy. The elements of the URI can be overridden by
adding the following HTTP headers when the proxy generates the HTTP request to the NiFi instance:

X-ProxyScheme - the scheme to use to connect to the proxy
X-ProxyHost - the host of the proxy
X-ProxyPort - the port the proxy is listening on
X-ProxyContextPath - the path configured to map to the NiFi instance

• If NiFi is running securely, any proxy needs to be authorized to proxy user requests. These can be configured
in the NiFi UI through the Global Menu. Once these permissions are in place, proxies can begin proxying user
requests. The end user identity must be relayed in a HTTP header. For example, if the end user sent a request
to the proxy, the proxy must authenticate the user. Following this the proxy can send the request to NiFi. In this
request an HTTP header should be added as follows.

X-ProxiedEntitiesChain: <end-user-identity>

If the proxy is configured to send to another proxy, the request to NiFi from the second proxy should contain a header
as follows.

X-ProxiedEntitiesChain: <end-user-identity><proxy-1-identity>

An example Apache proxy configuration that sets the required properties may look like the following. Complete
proxy configuration is outside of the scope of this document. Please refer the documentation of the proxy for guidance
for your deployment environment and use case.

...
<Location "/my-nifi">
 ...

15

Apache NiFi Analytics Framework

 SSLEngine On
 SSLCertificateFile /path/to/proxy/certificate.crt
 SSLCertificateKeyFile /path/to/proxy/key.key
 SSLCACertificateFile /path/to/ca/certificate.crt
 SSLVerifyClient require
 RequestHeader add X-ProxyScheme "https"
 RequestHeader add X-ProxyHost "proxy-host"
 RequestHeader add X-ProxyPort "443"
 RequestHeader add X-ProxyContextPath "/my-nifi"
 RequestHeader add X-ProxiedEntitiesChain "<%{SSL_CLIENT_S_DN}>"
 ProxyPass https://nifi-host:8443
 ProxyPassReverse https://nifi-host:8443
 ...
</Location>
...

• Additional NiFi proxy configuration must be updated to allow expected Host and context paths HTTP headers.

• By default, if NiFi is running securely it will only accept HTTP requests with a Host header matching the
host[:port] that it is bound to. If NiFi is to accept requests directed to a different host[:port] the expected values
need to be configured. This may be required when running behind a proxy or in a containerized environment.
This is configured in a comma separated list in nifi.properties using the nifi.web.proxy.host property (e.g.
localhost:18443, proxyhost:443). IPv6 addresses are accepted. Please refer to RFC 5952 Sections https://
tools.ietf.org/html/rfc5952#section-4 and https://tools.ietf.org/html/rfc5952#section-6 for additional details.

• NiFi will only accept HTTP requests with a X-ProxyContextPath, X-Forwarded-Context, or X-Forwarded-
Prefix header if the value is whitelisted in the nifi.web.proxy.context.path property in nifi.properties. This
property accepts a comma separated list of expected values. In the event an incoming request has an X-
ProxyContextPath, X-Forwarded-Context, or X-Forwarded-Prefix header value that is not present in the
whitelist, the "An unexpected error has occurred" page will be shown and an error will be written to the nifi-
app.log.

• Additional configurations at both proxy server and NiFi cluster are required to make NiFi Site-to-Site work behind
reverse proxies. See Site to Site Routing Properties for Reverse Proxies for details.

• In order to transfer data via Site-to-Site protocol through reverse proxies, both proxy and Site-to-Site client
NiFi users need to have following policies, 'retrieve site-to-site details', 'receive data via site-to-site' for input
ports, and 'send data via site-to-site' for output ports.

Analytics Framework

NiFi has an internal analytics framework which can be enabled to predict back pressure occurrence, given the
configured settings for threshold on a queue. The model used by default for prediction is an ordinary least squares
(OLS) linear regression. It uses recent observations from a queue (either number of objects or content size over time)
and calculates a regression line for that data. The line's equation is then used to determine the next value that will be
reached within a given time interval (e.g. number of objects in queue in the next 5 minutes). Below is an example
graph of the linear regression model for Queue/Object Count over time which is used for predictions:

16

https://tools.ietf.org/html/rfc5952#section-4
https://tools.ietf.org/html/rfc5952#section-4
https://tools.ietf.org/html/rfc5952#section-6
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#site_to_site_reverse_proxy_properties

Apache NiFi Analytics Framework

In order to generate predictions, local status snapshot history is queried to obtain enough data to generate a model. By
default, component status snapshots are captured every minute. Internal models need at least 2 or more observations
to generate a prediction, therefore it may take up to 2 or more minutes for predictions to be available by default. If
predictions are needed sooner than what is provided by default, the timing of snapshots can be adjusted using the
nifi.components.status.snapshot.frequency value in nifi.properties.

NiFi evaluates the model's effectiveness before sending prediction information by using the model's R-Squared score
by default. One important note: R-Square is a measure of how close the regression line fits the observation data vs.
how accurate the prediction will be; therefore there may be some measure of error. If the R-Squared score for the
calculated model meets the configured threshold (as defined by nifi.analytics.connection.model.score.threshold) then
the model will be used for prediction. Otherwise the model will not be used and predictions will not be available until
a model is generated with a score that exceeds the threshold. Default R-Squared threshold value is .90 however this
can be tuned based on prediction requirements.

The prediction interval nifi.analytics.predict.interval can be configured to project out further when back pressure will
occur. The prediction query interval nifi.analytics.query.interval can also be configured to determine how far back in
time past observations should be queried in order to generate the model. Adjustments to these settings may require
tuning of the model's scoring threshold value to select a score that can offer reasonable predictions.

See Analytics Properties for complete information on configuring analytic properties.

17

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#analytics_properties

	Contents
	Configuration Best Practices
	Port Configuration
	NiFi Default Ports
	Embedded Zookeeper

	Recommended Antivirus Exclusions
	Clustering Configuration
	Zero-Master Clustering
	Why Cluster?
	Terminology
	Communication within the Cluster
	Managing Nodes
	Disconnect Nodes
	Offload Nodes
	Delete Nodes
	Decommission Nodes
	NiFi CLI Node Commands

	Flow Election
	Basic Cluster Setup
	Troubleshooting

	Bootstrap Properties
	Notification Services
	Email Notification Service
	HTTP Notification Service

	Proxy Configuration
	Analytics Framework

