
docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform Jul 2, 2014

ii

Hortonworks Data Platform : User Guides
Copyright © 2012, 2014 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, Zookeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/legalcode

//hortonworks.com/training/
//hortonworks.com/products/hdp/
//hortonworks.com/services/
//hortonworks.com/training/
//hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hortonworks Data Platform Jul 2, 2014

iii

Table of Contents
1. HBase Import Tools ... 1

1.1. Using Pig to Bulk Load Data Into HBase ... 1
2. Using Apache Storm .. 3

2.1. Basic Storm Concepts ... 3
2.2. Ingesting Data with the Apache Kafka Spout .. 10
2.3. Writing Data with Storm .. 11

2.3.1. Writing Data with the Storm-Hdfs Connector 11
2.3.2. Writing Data with the Storm-HBase Connector 16
2.3.3. Configuring the Storm-HDFS and Storm-HBase Connectors for a
Secure Cluster ... 17

2.4. Packaging Storm Topologies ... 17
2.5. Deploying and Managing Apache Storm Topologies .. 19
2.6. Example: RollingTopWords Topology .. 22

3. HBase Snapshots ... 24
3.1. Configuration ... 24
3.2. Take a Snapshot ... 24
3.3. Listing Snapshots .. 24
3.4. Deleting Snapshots ... 25
3.5. Clone a table from snapshot ... 25
3.6. Restore a snapshot ... 25
3.7. Snapshots operations and ACLs .. 25
3.8. Export to another cluster .. 26

4. User Guide - HDFS NFS Gateway .. 27
4.1. Prerequisites ... 27
4.2. Instructions ... 27

5. User Guide - HDFS Snapshots .. 33
5.1. Snapshottable Directories ... 33
5.2. Snapshot Paths ... 33
5.3. Snapshot Operations .. 34

5.3.1. Administrator Operations ... 34
5.3.2. User Operations ... 35

6. Add HDP Maven Repository to Existing Project .. 37
7. Apache Flume User Guide ... 39

Hortonworks Data Platform Jul 2, 2014

iv

List of Tables
2.1. Storm Concepts .. 3
2.2. Stream Groupings ... 7
2.3. Processing Guarantee ... 9
2.4. HdfsBolt Methods .. 12
2.5. SimpleHBaseMapper Methods .. 16
2.6. Topology Packing Errors ... 18
2.7. Topology Administrative Actions ... 20
5.1. Administrator Operations - Allow Snapshots ... 34
5.2. Administrator Operations - Disallow Snapshots ... 34
5.3. User Operations - Create Snapshots .. 35
5.4. User Operations - Delete Snapshots .. 35
5.5. User Operations - Rename Snapshots .. 36
5.6. User Operations - Get Snapshottable Directory Listing ... 36
5.7. User Operations - Get Snapshots Difference Report ... 36

Hortonworks Data Platform Jul 2, 2014

1

1. HBase Import Tools
HBase includes several methods of loading data into tables. Various methods exist for
loading data from relational format into non-relational format.

The most straightforward method is to either use the TableOutputFormat class from
a MapReduce job, or use the normal client APIs; however, these are not always the most
efficient methods because these APIs cannot handle bulk loading.

Bulk Importing bypasses the HBase API and writes contents, which are properly formatted
as HBase data files – HFiles, directly to the file system. Analyzing HBase data with
MapReduce requires custom coding.

Using bulk load will use less CPU and network resources than simply using the HBase API.
ImportTsv is a custom MapReduce application that will load data in Tab Separated Value
TSV format into HBase.

The following discusses typical use cases for bulk loading data into HBase:

• HBase can act as ETL data sink

• HBase can be used as data source

Bulk load workflows generate HFiles offline and have two distinct stages:

• Use either ImportTsv or import utilities or write a custom application to generate
HFiles from Hive/Pig.

• Use completebulkload to load the HFiles to HDFS

Note

By default, the bulk loader class ImportTsv in HBase imports a tab separated
files.

1.1. Using Pig to Bulk Load Data Into HBase
Use the following instructions to bulk load data into HBase using Pig:

1. Prepare the input file.

For example, consider the sample data.tsv file as shown below:

row1 c1 c2
row2 c1 c2
row3 c1 c2
row4 c1 c2
row5 c1 c2
row6 c1 c2
row7 c1 c2
row8 c1 c2
row9 c1 c2
row10 c1 c2

Hortonworks Data Platform Jul 2, 2014

2

2. Make the data available on the cluster. Execute the following command on your HBase
Server machine:

hadoop fs -put $filename /tmp/

Using the previous example:

hadoop fs -put data.tsv /tmp/

3. Create or register the HBase table in HCatalog. Execute the following command on your
HBase Server machine:

hcat -f $HBase_Table_Name

For example, for a sample simple.ddl table as shown below:

CREATE TABLE
simple_hcat_load_table (id STRING, c1 STRING, c2 STRING)
STORED BY 'org.apache.hcatalog.hbase.HBaseHCatStorageHandler'
TBLPROPERTIES (
 'hbase.table.name' = 'simple_hcat_load_table',
 'hbase.columns.mapping' = 'd:c1,d:c2',
 'hcat.hbase.output.bulkMode' = 'true'
);

Execute the following command:

hcat -f simple.ddl

4. Create the import file. For example, create a file named simple.bulkload.pig with
the following contents:

Note

This import file uses the data.tsv file and simple.ddl table created
previously. Ensure that you modify the contents of this file according to your
environment.

A = LOAD 'hdfs:///tmp/data.tsv' USING PigStorage('\t') AS (id:chararray,
 c1:chararray, c2:chararray);
-- DUMP A;
STORE A INTO 'simple_hcat_load_table' USING org.apache.hive.hcatalog.pig.
HCatStorer();

5. Use Pig to populate the HBase table via HCatalog bulkload.

Continuing with the previous example, execute the following command on your HBase
Server machine:

pig -useHCatalog simple.bulkload.pig

Hortonworks Data Platform Jul 2, 2014

3

2. Using Apache Storm
The exponential increase in realtime data from sources such as machine sensors creates
a need for data processing systems that can ingest this data, process it, and respond in
real time. A typical use case involves an automated system that might respond to machine
sensor data by sending email to support staff or placing an advertisement on a consumer's
smart phone. Apache Storm enables such data-driven and automated activity by providing
a realtime, scalable, and distributed solution for streaming data. Apache Storm can be used
with any programming language and guarantees that data streams are processed without
data loss. Storm is datatype-agnostic; it processes data streams of any data type.

A complete introduction to the Storm API is beyond the scope of this documentation.
However, the next section, Basic Storm Concepts, provides a brief overview of the most
essential concepts and a link to the javadoc API. Experienced Storm developers may want
to skip to the following sections, Ingesting Data with the KafkaSpout Storm Connector
and Writing Data to HDFS and HBase with Storm Connectors, to learn about the group
of connectors provided by Hortonworks that facilitate ingesting and writing streaming
data directly to HDFS and HBase. Managing Storm Topologies introduces readers to using
the Storm GUI to manage topologies for a cluster. Finally, Running the RollingTopWords
Topology shows the source code for a sample application included with the storm-
starter.jar.

Tip

See the Storm documentation at the Storm incubator site for a more thorough
discussion of Apache Storm concepts.

2.1. Basic Storm Concepts
Writing Storm applications requires an understanding of the following basic concepts:

Table 2.1. Storm Concepts

Storm
Concept

Description

TupleA named list
of values of
any data type.
The native data
structure used
by Storm.

StreamAn unbounded
sequence of
tuples.

SpoutGenerates a
stream from a
realtime data
source.

BoltContains data
processing,
persistence,
and messaging
alert logic.
Can also emit

http://storm.incubator.apache.org/documentation/Documentation.html

Hortonworks Data Platform Jul 2, 2014

4

Storm
Concept

Description

tuples for
downstream
bolts.

Stream
Grouping

Controls the
routing of
tuples to bolts
for processing.

TopologyA group of
spouts and
bolts wired
together into
a workflow.
A Storm
application.

Processing
Reliability

Storm
guarantee
about the
delivery of
tuples in a
topology.

WorkersA Storm
process.
A worker
may run
one or more
executors.

ExecutorsA Storm thread
launched by a
Storm worker.
An executor
may run one or
more tasks.

TasksA Storm job
from a spout or
bolt.

Process
Controller

Monitors
and restarts
failed Storm
processes.
Examples
include
supervisord,
monit, and
daemontools.

Master/
Nimbus
Node

The host in
a multi-node
Storm cluster
that runs
a process
controller,
such as
supervisord,
and the Storm
nimbus, ui, and
other related
daemons.
The process
controller is
responsible
for restarting
failed process

Hortonworks Data Platform Jul 2, 2014

5

Storm
Concept

Description

controller
daemons,
such as
supervisor,
on slave
nodes. The
Storm nimbus
daemon is
responsible for
monitoring the
Storm cluster
and assigning
tasks to slave
nodes for
execution.

Slave
Node

A host in a
multi-node
Storm cluster
that runs
a process
controller
daemon,
such as
supervisor,
as well as
the worker
processes that
run Storm
topologies.
The process
controller
daemon is
responsible
for restarting
failed worker
processes.

Spout

All spouts must implement the backtype.storm.topology.IRichSpout interface
from the storm core API. BaseRichSpout is the most basic implementation, but there are
several others, including ClojureSpout, DRPCSpout, and FeederSpout. In addition,
Hortonworks provides a Kafka Spout to ingest data from a Kafka cluster.

The following example, RandomSentenceSpout, is included with the storm-starter
connector installed with Storm at /usr/lib/storm/contrib/storm-starter.

package storm.starter.spout;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;

import java.util.Map;
import java.util.Random;

Hortonworks Data Platform Jul 2, 2014

6

public class RandomSentenceSpout extends BaseRichSpout {
 SpoutOutputCollector _collector;
 Random _rand;

 @Override
 public void open(Map conf, TopologyContext context, SpoutOutputCollector
 collector) {
 _collector = collector;
 _rand = new Random();
 }

 @Override
 public void nextTuple() {
 Utils.sleep(100);
 String[] sentences = new String[]{ "the cow jumped over the moon", "an
 apple a day keeps the doctor away",
 "four score and seven years ago", "snow white and the seven dwarfs",
 "i am at two with nature" };
 String sentence = sentences[_rand.nextInt(sentences.length)];
 _collector.emit(new Values(sentence));
 }

 @Override
 public void ack(Object id) {
 }

 @Override
 public void fail(Object id) {
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }

}

Bolt

All bolts must implement the IRichBolt interface. BaseRichBolt is the most
basic implementation , but there are several others, including BatchBoltExecutor,
ClojureBolt, and JoinResult.

The following example, TotalRankingsBolt.java, is included with storm-starter
and installed with Storm at /usr/lib/storm/contrib/storm-starter.

package storm.starter.bolt;

import backtype.storm.tuple.Tuple;
import org.apache.log4j.Logger;
import storm.starter.tools.Rankings;

/**
 * This bolt merges incoming {@link Rankings}.
 * <p/>
 * It can be used to merge intermediate rankings generated by {@link
 IntermediateRankingsBolt} into a final,
 * consolidated ranking. To do so, configure this bolt with a globalGrouping
 on {@link IntermediateRankingsBolt}.

Hortonworks Data Platform Jul 2, 2014

7

 */
public final class TotalRankingsBolt extends AbstractRankerBolt {

 private static final long serialVersionUID = -8447525895532302198L;
 private static final Logger LOG = Logger.getLogger(TotalRankingsBolt.class);

 public TotalRankingsBolt() {
 super();
 }

 public TotalRankingsBolt(int topN) {
 super(topN);
 }

 public TotalRankingsBolt(int topN, int emitFrequencyInSeconds) {
 super(topN, emitFrequencyInSeconds);
 }

 @Override
 void updateRankingsWithTuple(Tuple tuple) {
 Rankings rankingsToBeMerged = (Rankings) tuple.getValue(0);
 super.getRankings().updateWith(rankingsToBeMerged);
 super.getRankings().pruneZeroCounts();
 }

 @Override
 Logger getLogger() {
 return LOG;
 }

}

Stream Grouping

Stream grouping allows Storm developers to control how tuples are routed to bolts in a
workflow. The following table describes the stream groupings available.

Table 2.2. Stream Groupings

Stream
Grouping

Description

ShuffleSends tuples
to bolts in
random, round
robin sequence.
Use for atomic
operations,
such as math.

FieldsSends tuples
to a bolt based
on one or more
fields in the
tuple. Use
to segment
an incoming
stream and to
count tuples
of a specified
type.

All Sends a single
copy of each

Hortonworks Data Platform Jul 2, 2014

8

Stream
Grouping

Description

tuple to all
instances of a
receiving bolt.
Use to send a
signal, such as
clear cache or
refresh state,
to all bolts.

CustomCustomized
processing
sequence.
Use to get
maximum
flexibility of
topology
processing
based on
factors such
as data types,
load, and
seasonality.

DirectSource decides
which bolt
receives a
tuple.

GlobalSends tuples
generated by
all instances
of a source
to a single
target instance.
Use for global
counting
operations.

Storm developers specify the field grouping for each bolt using methods on the
TopologyBuilder.BoltGetter inner class, as shown in the following excerpt from the
the WordCountTopology.java example included with storm-starter.

TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout("spout", new RandomSentenceSpout(), 5);

 builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
 builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new
 Fields("word"));

The first bolt uses shuffle grouping to split random sentences generated with the
RandomSentenceSpout. The second bolt uses fields grouping to segment and perform a
count of individual words in the sentences.

Topology

The following image depicts a Storm topology with a simple workflow.

Hortonworks Data Platform Jul 2, 2014

9

The TopologyBuilder class is the starting point for quickly writing Storm topologies
with the storm-core API. The class contains getter and setter methods for the spouts and
bolts that comprise the streaming data workflow, as shown in the following sample code.

...
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout1", new BaseRichSpout());
builder.setSpout("spout2", new BaseRichSpout());
builder.setBolt("bolt1", new BaseBasicBolt());
builder.setBolt("bolt2", new BaseBasicBolt());
builder.setBolt("bolt3", new BaseBasicBolt());
...

Processing Guarantees

Storm provides two types of guarantee about the processing of tuples for a Storm
topology.

Table 2.3. Processing Guarantee

GuaranteeDescription

At
least
once

Reliable; Tuples
are processed
at least once,
but may be
processed
more than
once. Use when
subsecond
latency is
required and
for unordered
idempotent
operations.

Exactly
once

Reliable; Tuples
are processed
only once.
Requires the
use of a Trident
spout and the
Trident API.

Workers, Executors, and Tasks

Apache Storm processes, called workers, run on predefined ports on the machine hosting
Storm. Each worker process may run one or more executors, or threads, where each

Hortonworks Data Platform Jul 2, 2014

10

executor is a thread spawned by the worker process. Each executor runs one or more tasks
from the same component, where a component is a spout or bolt from a topology.

See the Storm javadocs at http://storm.incubator.apache.org/apidocs/ for more
information.

2.2. Ingesting Data with the Apache Kafka Spout
Apache Kafka is a high-throughput distributed messaging system. Hortonworks provides a
Kafka spout to facilitate ingesting data from Kafka 0.8x brokers. Storm developers should
include downstream bolts in their topologies to process data ingested with the Kafka
spout. The storm-kafka components include a standard storm spout, as well as fully
transactional Trident spout implementations.

The storm-kafka spout provides the following key features:

• Supports 'exactly once' tuple processing

• Supports the Trident API

• Supports dynamic discovery of Kafka brokers

SpoutConfig spoutConfig = new SpoutConfig(ImmutableList.of("kafkahost1",
"kafkahost2"), //List of Kafka brokers
 8, // Number of partitions per Kafka host
 "clicks", // Kafka topic to read from
 "/kafkastorm", // Root path in Zookeeper for the spout to store consumer
 offsets
 "discovery"); // ID for storing consumer offsets in Zookeeper
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);

http://storm.incubator.apache.org/apidocs/

Hortonworks Data Platform Jul 2, 2014

11

The Kafka spout stores its offsets in the same instance of Zookeeper used by Apache Storm.
The Kafka spout use these offsets to replay tuples in the event of a downstream failure or
timeout.

...
spoutConfig.forceStartOffsetTime($TIMESTAMP);
...

Kafka chooses the latest offset written around the specified timestamp. A value of -1
forces the Kafka spout to restart from the latest offset. A value of -2 forces the spout to
restart from the earliest offset.

Limitations

The current version of the Kafka spout contains the following limitations:

• Does not support Kafka 0.7x brokers.

• Cannot dynamically discover Kafka partitions, topics, and hosts

• Storm developers must include ${STORM_HOME}/lib/* in the CLASSPATH
environment variable from the command line when running kafka-
topology in local mode. Otherwise, developers will likely receive a
java.lang.NoClassDefFoundError exception.

java -cp "/usr/lib/storm/contrib/storm-kafka-example-0.9.1.2.1.1.0-320-
jar-with-dependencies.jar: /usr/lib/storm/lib/*" org.apache.storm.kafka.
TestKafkaTopology <zookeeper_host>

• Secure Hadoop clusters must comment out the following statement from
${STORM_HOME}/bin/kafka-server-start.sh:

EXTRA_ARGS="-name kafkaServer -loggc"

Kafka Configuration

The storm-kafka connector requires some configuration of the Apache Kafka
installation. Kafka administrators must add a zookeeper.connect property
with the hostnames and port numbers of the HDP Zookeeper nodes to Kafka's
server.properties file.

zookeeper.connect=host1:2181,host2:2181,host3:2181

2.3. Writing Data with Storm
Hortonworks provides the storm-hdfs and storm-hbase connectors to enable Storm
developers to quickly write streaming data to a Hadoop cluster. These connectors are
located at /usr/lib/storm/contrib, and each contains a .jar file containing the
connector's packaged classes and dependencies and another .jar file with javadoc reference
documentation. Both storm-hdfs and storm-hbase support writing to HDFS clusters
using Kerberos. In addition, the storm-hdfs connector supports HA-enabled clusters.

2.3.1. Writing Data with the Storm-Hdfs Connector
The storm-hdfs connector provides the following key features:

Hortonworks Data Platform Jul 2, 2014

12

• Supports HDFS 2.x

• Supports HA-enabled clusters

• Supports both text and sequence files

• Configurable directory and file names

• Customizable synchronization, rotation policies, and rotation actions

• Tuple fails if HDFS update fails

• Supports the Trident API

• Supports writing to kerberized Hadoop cluster

The primary classes of the storm-hdfs connector are HdfsBolt and
SequenceFileBolt, both located in the org.apache.storm.hdfs.bolt package.
Use the HDFSBolt class to write text data to HDFS and the SequenceFileBolt class to
write binary data. Storm developers specify the following information when instantiating
the bolt:

Table 2.4. HdfsBolt Methods

HdfsBolt
Method

Description

withFsUrlSpecifies the
target HDFS
URL and port
number for
clusters running
without HA.
For clusters
with HA
enabled, this
parameter
specifies the
nameservice ID
in the following
format:
hdfs://
nameserviceID
. No port
number is
specified when
passing a
nameservice
ID for an
HA-enabled
cluster. You
can find the
nameservice
ID as the value
asigned to the
dfs.nameservices
parameter in
the core-
site.xml
configuration
file.

withRecordFormatSpecifies the
delimiter that
indicates a

Hortonworks Data Platform Jul 2, 2014

13

HdfsBolt
Method

Description

boundary
between data
records. Storm
developers
can customize
by writing
their own
implementation
of the
org.apache.storm.hdfs.format.RecordFormat
interface. Use
the provided
org.apache.storm.hdfs.format.DelimitedRecordFormat
class as a
convenience
class for writing
delimited text
data with
delimiters
such as tabs,
comma-
separated
values, and
pipes. The
storm-hdfs
bolt uses the
RecordFormat
implementation
to convert
tuples to byte
arrays, so this
method can be
used with both
text and binary
data.

withRotationPolicySpecifies when
to stop writing
to a data file
and begin
writing to
another. Storm
developers
can customize
by writing
their own
implementation
of the
org.apache.storm.hdfs.rotation.FileSizeRotationSizePolicy
interface.

withSyncPolicySpecifies how
frequently
to flush
buffered data
to the HDFS
filesystem.
This action
enables other
Hive clients
to read the
synchronized
data, even
as the Storm
client continues
to write

Hortonworks Data Platform Jul 2, 2014

14

HdfsBolt
Method

Description

data. Storm
developers
can customize
by writing
their own
implementation
of the
org.apache.storm.hdfs.sync.SyncPolicy
interface.

withFileNameFormatSpecifies the
name of the
data file. Storm
developers
can customize
by writing
their own
interface of the
org.apache.storm.hdfs.format.FileNameFormat
interface.
The provided
org.apache.storm.hdfs.format.DefaultFileNameFormat
creates file
names with
the following
naming format:
{prefix}-
{componentId}-
{taskId}-
{rotationNum}-
{timestamp}-
{extension}.
For example,
MyBolt-5-7-1390579837830.txt.

Example: Cluster Without HA

The following example specifies an HDFS path of hdfs://localhost:54310/foo, pipe-
delimited records ('|'), filesystem sychronization every 1,000 tuples, and data file rotation
when files reach five MB. The HdfsBolt is instantiated with an HDFS URL and port number.

...
// Use pipe as record boundary
RecordFormat format = new DelimitedRecordFormat().withFieldDelimiter("|");

//Synchronize data buffer with the filesystem every 1000 tuples
SyncPolicy syncPolicy = new CountSyncPolicy(1000);

// Rotate data files when they reach five MB
FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(5.0f, Units.
MB);

// Use default, Storm-generated file names
FileNameFormat fileNameFormat = new DefaultFileNameFormat().withPath("/foo");

// Instantiate the HdfsBolt
HdfsBolt bolt = new HdfsBolt()
 .withFsURL("hdfs://localhost:54310")
 .withFileNameFormat(fileNameFormat)
 .withRecordFormat(format)
 .withRotationPolicy(rotationPolicy)

Hortonworks Data Platform Jul 2, 2014

15

 .withSyncPolicy(syncPolicy);
...

Example: HA-Enabled Cluster

The following example demonstrates how to modify the previous example to run on an
HA-enabled cluster. The HdfsBolt is instantiated with with a nameservice ID rather than an
HDFS URL and port number.

...
HdfsBolt bolt = new HdfsBolt()
 .withFsURL("hdfs://myNameserviceID")
 .withFileNameFormat(fileNameformat)
 .withRecordFormat(format)
 .withRotationPolicy(rotationPolicy)
 .withSynPolicy(syncPolicy);
...

Trident API

The storm-hdfs connector supports the Trident API. Trident. Hortonworks recommends
that Storm developers use the trident API unless your application requires sub-second
latency.

The Trident API implements a StateFactory class with an API that resembles the
methods from the storm-code API as shown in the following code sample:

Fields hdfsFields = new Fields("field1", "field2");

 FileNameFormat fileNameFormat = new DefaultFileNameFormat()
 .withPrefix("trident")
 .withExtension(".txt")
 .withPath("/trident");

 RecordFormat recordFormat = new DelimitedRecordFormat()
 .withFields(hdfsFields);

 FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(5.0f,
 FileSizeRotationPolicy.Units.MB);

 HdfsState.Options options = new HdfsState.HdfsFileOptions()
 .withFileNameFormat(fileNameFormat)
 .withRecordFormat(recordFormat)
 .withRotationPolicy(rotationPolicy)
 .withFsUrl("hdfs://localhost:54310");

 StateFactory factory = new HdfsStateFactory().withOptions(options);

 TridentState state = stream
 .partitionPersist(factory, hdfsFields, new HdfsUpdater(), new
 Fields());

See the javadoc for the Trident API, included with the storm-hdfs connector, for more
information.

Limitations

Directory and file names changes are limited to a prepackaged file name format based on a
timestamp.

Hortonworks Data Platform Jul 2, 2014

16

2.3.2. Writing Data with the Storm-HBase Connector

The storm-hbase connector provides the following key features:

• Supports Apache HBase 0.96 and above

• Supports incrementing counter columns

• Tuples are failed if an update to an HBase table fails

• Ability to group puts in a single batch

• Supports writing to Kerberized HBase clusters

The storm-hbase connector enables Storm developers to collect several
PUTS in a single operation and write to multiple HBase column families
and counter columns. A PUT is an HBase operation that inserts data into a
single HBase cell. Use the HBase client's write buffer to automatically batch:
hbase.client.write.buffer. The primary interface in the storm-hbase connector
is the org.apache.storm.hbase.bolt.mapper.HBaseMapper interface. However,
the default implementation,SimpleHBaseMapper, writes a single column family.
Storm developers can implement the HBaseMapper interface themselves or extend
SimpleHBaseMapper if they want to change or override this behavior.

Table 2.5. SimpleHBaseMapper Methods

SimpleHBaseMapper
Method

Description

withRowKeyFieldSpecifies the
row key for the
target HBase
row. A row
key uniquely
identifies a row
in HBase.

withColumnFieldsSpecifies the
target HBase
column.

withCounterFieldsSpecifies the
target HBase
counter.

withColumnFamilySpecifies the
target HBase
column family.

Example

The following example specifies the 'word' tuple as the row key, adds an HBase column for
the tuple 'word' field, adds an HBase counter column for the tuple 'count' field, and writes
data to the 'cf' column family.

SimpleHBaseMapper mapper = new SimpleHBaseMapper()
 .withRowKeyField("word")
 .withColumnFields(new Fields("word"))
 .withCounterFields(new Fields("count"))
 .withColumnFamily("cf");

Hortonworks Data Platform Jul 2, 2014

17

The storm-hbase connector supports the following versions of HBase:

• 0.96

• 0.98

Limitations

The current version of the storm-hbase connector has the following limitations:

• HBase table must be predefined

• Cannot dynamically add new HBase columns; can write to only one column family at a
time

• Assumes that hbase-site.xml is in the $CLASSPATH environment variable

• Tuple field names must match HBase column names

• Does not support the Trident API

• Supports writes but not lookups

2.3.3. Configuring the Storm-HDFS and Storm-HBase
Connectors for a Secure Cluster

Storm developers must provide their own Kerberos keytab and principal name for storm-
hdfs and storm-hbase connectors in topologies that run on secure clusters. The Config
object must contain the storm keytab file and the principal name, as shown in the following
example:

Config config = new Config();
...
config.put("storm.keytab.file","$keytab");
config.put("storm.kerberos.principal","$principal");
StormSubmitter.submitTopology("$topologyName",config,builder.
createTopology());

2.4. Packaging Storm Topologies
Storm developers should verify that the following conditions are met when packaging their
topology into a .jar file:

• Use the maven-shade-plugin, rather than the maven-assembly-plugin to
package your Apache Storm topologies. The maven-shade-plugin provides the ability
to merge JAR manifest entries, which are used by the Hadoop client to resolve URL
schemes.

• Include a dependency for the Hadoop version used in the Hadoop cluster.

• Include both the hdfs-site.xml and core-site.xml configuration files in the .jar
file. This is the easiest way to meet the requirement that these two files are in the
CLASSPATH of your topology.

Hortonworks Data Platform Jul 2, 2014

18

Maven Shade Plugin

Use the following Maven configuration file to package your topology:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.4</version>
 <configuration>
 <createDependencyReducedPom>true</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
 implementation="org.apache.maven.plugins.shade.
resource.ServicesResourceTransformer"/>
 <transformer
 implementation="org.apache.maven.plugins.shade.
resource.ManifestResourceTransformer">
 <mainClass></mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
</plugin>

Hadoop Dependency

The following example demonstrates how to include a dependency for the Hadoop version:

<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>2.2.0</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Troubleshooting

The following table describes common packaging errors.

Table 2.6. Topology Packing Errors

Error Description

com.google.protobuf.InvalidProtocolBufferException:
Protocol

Hadoop
client

Hortonworks Data Platform Jul 2, 2014

19

Error Description

message
contained
an invalid
tag (zero)

version
incompatibility

java.lang.RuntimeException:
Error
preparing
HdfsBolt:
No
FileSystem
for scheme:
hdfs

The .jar
manifest
files
are
not
properly
merged
in
the
topology .jar

2.5. Deploying and Managing Apache Storm
Topologies

Use the command-line interface to deploy a Storm topology after packaging it in a jar. For
example, use the following command to deploy WordCountTopology from the storm-
starter jar:

storm jar storm-starter-0.0.1-storm-0.9.0.1.jar storm.starter.
WordCountTopology WordCount -c nimbus.host=sandbox.hortonworks.com

Point a browser to the following URL to access the Storm UI and to manage deployed
topologies.

http://<storm-ui-server>:8080

Note

You may need to configure Apache Storm to use a different port if Ambari is
also running on the same host with Apache Storm. Both applications use port
8080 by default.

Hortonworks Data Platform Jul 2, 2014

20

In the image above, no workers, executors, or tasks are running. However, the status of
the topology remains active and the uptime continues to increase. Storm topologies, unlike
traditional applications, remain active until an administrator deactivates or kills them.
Storm administrators use the Storm user interface to perform the following administrative
actions:

Table 2.7. Topology Administrative Actions

Topology
Administrative
Action

Description

ActivateReturns a
topology
to active
status after
it has been
deactivated.

DeactivateSets the status
of a topology
to inactive.
Topology
uptime is not
affected by
deactivation.

Hortonworks Data Platform Jul 2, 2014

21

Topology
Administrative
Action

Description

RebalanceDynamically
increase or
decrease
the number
of worker
processes
and/or
executors. The
administrator
does not need
to restart the
cluster or the
topology.

Kill Stops the
topology and
removes it
from Apache
Storm. The
topology no
longer appears
in the Storm
UI, and the
administrator
must deploy
the application
again to
activate it.

Click any topology in the Topology Summary section to launch the Topology Summary
page. Administrators perform any of the topology actions in the table above by clicking the
corresponding button, shown in the following image.

Hortonworks Data Platform Jul 2, 2014

22

The Executors field in the Spouts and Bolts sections show all running Storm threads,
including the host and port. If a bolt is experiencing latency issues, Storm developers should
look here to determine which executor has reached capacity. Click the port number to
display the log file for the corresponding executor.

2.6. Example: RollingTopWords Topology
The RollingTopWords.java is included with storm-starter.

package storm.starter;

import backtype.storm.Config;
import backtype.storm.testing.TestWordSpout;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import storm.starter.bolt.IntermediateRankingsBolt;
import storm.starter.bolt.RollingCountBolt;

Hortonworks Data Platform Jul 2, 2014

23

import storm.starter.bolt.TotalRankingsBolt;
import storm.starter.util.StormRunner;

/**
* This topology does a continuous computation of the top N words that the
 topology has seen in terms of cardinality.
* The top N computation is done in a completely scalable way, and a similar
 approach could be used to compute things
* like trending topics or trending images on Twitter.
*/
public class RollingTopWords {

 private static final int DEFAULT_RUNTIME_IN_SECONDS = 60;
 private static final int TOP_N = 5;

 private final TopologyBuilder builder;
 private final String topologyName;
 private final Config topologyConfig;
 private final int runtimeInSeconds;

 public RollingTopWords() throws InterruptedException {
 builder = new TopologyBuilder();
 topologyName = "slidingWindowCounts";
 topologyConfig = createTopologyConfiguration();
 runtimeInSeconds = DEFAULT_RUNTIME_IN_SECONDS;

 wireTopology();
 }

 private static Config createTopologyConfiguration() {
 Config conf = new Config();
 conf.setDebug(true);
 return conf;
 }

 private void wireTopology() throws InterruptedException {
 String spoutId = "wordGenerator";
 String counterId = "counter";
 String intermediateRankerId = "intermediateRanker";
 String totalRankerId = "finalRanker";
 builder.setSpout(spoutId, new TestWordSpout(), 5);
 builder.setBolt(counterId, new RollingCountBolt(9, 3), 4).
fieldsGrouping(spoutId, new Fields("word"));
 builder.setBolt(intermediateRankerId, new IntermediateRankingsBolt(TOP_N),
 4).fieldsGrouping(counterId, new Fields(
 "obj"));
 builder.setBolt(totalRankerId, new TotalRankingsBolt(TOP_N)).
globalGrouping(intermediateRankerId);
 }

 public void run() throws InterruptedException {
 StormRunner.runTopologyLocally(builder.createTopology(), topologyName,
 topologyConfig, runtimeInSeconds);
 }

 public static void main(String[] args) throws Exception {
 new RollingTopWords().run();
 }
}

Hortonworks Data Platform Jul 2, 2014

24

3. HBase Snapshots
HBase Snapshots allow you to take a snapshot of a table without too much impact on
Region Servers. Snapshot, Clone and restore operations don't involve data copying. Also,
Exporting the snapshot to another cluster doesn't have impact on the Region Servers.

Prior to version 0.94.6, the only way to backup or to clone a table is to use CopyTable/
ExportTable, or to copy all the hfiles in HDFS after disabling the table. The disadvantages
of these methods are that you can degrade region server performance (Copy/Export
Table) or you need to disable the table, that means no reads or writes; and this is usually
unacceptable. In this section:

• Configuration

• Take a Snapshot

• Listing Snapshots

• Deleting Snapshots

• Clone a table from snapshot

• Restore a snapshot

• Snapshots operations and ACLs

• Export to another cluster

3.1. Configuration
To turn on the snapshot support just set the hbase.snapshot.enabled property to
true. (Snapshots are enabled by default in 0.95+ and off by default in 0.94.6+)

 <property>
 <name>hbase.snapshot.enabled</name>
 <value>true</value>
 </property>

3.2. Take a Snapshot
You can take a snapshot of a table regardless of whether it is enabled or disabled. The
snapshot operation doesn't involve any data copying.

 $ hbase shell
 hbase> snapshot 'myTable', 'myTableSnapshot-122112'

3.3. Listing Snapshots
List all snapshots taken (by printing the names and relative information).

Hortonworks Data Platform Jul 2, 2014

25

 $ hbase shell
 hbase> list_snapshots

3.4. Deleting Snapshots
You can remove a snapshot, and the files retained for that snapshot will be removed if no
longer needed.

 $ hbase shell
 hbase> delete_snapshot 'myTableSnapshot-122112'

3.5. Clone a table from snapshot
From a snapshot you can create a new table (clone operation) with the same data that you
had when the snapshot was taken. The clone operation, doesn't involve data copies, and a
change to the cloned table doesn't impact the snapshot or the original table.

 $ hbase shell
 hbase> clone_snapshot 'myTableSnapshot-122112', 'myNewTestTable'

3.6. Restore a snapshot
The restore operation requires the table to be disabled, and the table will be restored to
the state at the time when the snapshot was taken, changing both data and schema if
required.

 $ hbase shell
 hbase> disable 'myTable'
 hbase> restore_snapshot 'myTableSnapshot-122112'

Note

Since Replication works at log level and snapshots at file-system level, after a
restore, the replicas will be in a different state from the master. If you want to
use restore, you need to stop replication and redo the bootstrap.

In case of partial data-loss due to misbehaving client, instead of a full restore that requires
the table to be disabled, you can clone the table from the snapshot and use a Map-Reduce
job to copy the data that you need, from the clone to the main one.

3.7. Snapshots operations and ACLs
If you are using security with the AccessController Coprocessor, only a global administrator
can take, clone, or restore a snapshot, and these actions do not capture the ACL rights. This

Hortonworks Data Platform Jul 2, 2014

26

means that restoring a table preserves the ACL rights of the existing table, while cloning a
table creates a new table that has no ACL rights until the administrator adds them.

3.8. Export to another cluster
The ExportSnapshot tool copies all the data related to a snapshot (hfiles, logs, snapshot
metadata) to another cluster. The tool executes a Map-Reduce job, similar to distcp, to
copy files between the two clusters, and since it works at file-system level the hbase cluster
does not have to be online. The HBase Snapshot Export tool must be run as hbase user. The
HBase Snapshot Export tool must have temp directory, specified by "hbase.tmp.dir" (ie /
grid/0/var/log/hbase), created on HDFS with hbase user as the owner.

To copy a snapshot called MySnapshot to an HBase cluster srv2 (hdfs://srv2:8020/hbase)
using 16 mappers:

$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot MySnapshot -
copy-to hdfs://yourserver:8020/hbase_root_dir -mappers 16

Hortonworks Data Platform Jul 2, 2014

27

4. User Guide - HDFS NFS Gateway
The NFS Gateway for HDFS supports NFSv3 and lets you mount HDFS as part of the client's
local file system.

This release of NFS Gateway supports and enables the following usage patterns:

• Browse the HDFS file system through their local file system on NFSv3 client compatible
operating systems.

• Download files from the the HDFS file system on to their local file system.

• Upload files from their local file system directly to the HDFS file system.

• Stream data directly to HDFS through the mount point. (File append is supported but
random write is not supported.)

4.1. Prerequisites
In this section:

• The NFS gateway machine must have everything to run an HDFS client such as a Hadoop
core JAR file and a HADOOP_CONF directory.

• The NFS gateway can be either on any DataNode, NameNode, or any HDP client
machine. Start the NFS server on that machine.

4.2. Instructions
To configure and use the HDFS NFS gateway, complete the following steps:

1. The user running the NFS gateway must be able to proxy all of the users using the NFS
mounts. For instance, if user "nfsserver" is running the gateway, and users belonging
to the groups "nfs-users1" and "nfs-users2" use the NFS mounts, then in the core-
site.xml file on the NameNode, the following must be set.

Note

Replace "nfsserver" with the user name starting the gateway in your cluster.

<property>
 <name>hadoop.proxyuser.nfsserver.groups</name>
 <value>nfs-users1,nfs-users2</value>
 <description>
 The 'nfsserver' user is allowed to proxy all members of the 'nfs-
users1' and
 'nfs-users2' groups. Set this to '*' to allow nfsserver user to
 proxy any group.
 </description>
</property>

Hortonworks Data Platform Jul 2, 2014

28

<property>
 <name>hadoop.proxyuser.nfsserver.hosts</name>
 <value>nfs-client-host1.com</value>
 <description>
 This is the host where the nfs gateway is running. Set this to '*'
 to allow
 requests from any hosts to be proxied.
 </description>
</property>

The preceding properties are the only required configuration for the NFS gateway in
non-secure mode. For Kerberized Hadoop clusters, the following configurations need to
be added to hdfs-site.xml:

<property>
 <name>dfs.nfsgateway.keytab.file</name>
 <value>/etc/hadoop/conf/nfsserver.keytab</value> <!-- path to the nfs
 gateway keytab -->
</property>

<property>
 <name>dfs.nfsgateway.kerberos.principal</name>
 <value>nfsserver/_HOST@YOUR-REALM.COM</value>
</property>

2. Configure settings for HDFS NFS gateway:

NFS gateway uses the same configurations as used by the NameNode and DataNode.
Configure the following properties based on your application's requirements:

a. Edit the hdfs-default.xml file on your NFS gateway machine and modify the
following property:

<property>
 <name>dfs.namenode.accesstime.precision</name>
 <value>3600000</value>
 <description>The access time for HDFS file is precise up to this value.

 The default value is 1 hour. Setting a value of 0 disables
 access times for HDFS.
 </description>
</property>

Note

If the export is mounted with access time update allowed, make sure this
property is not disabled in the configuration file. Only NameNode needs
to restart after this property is changed. If you have disabled access time
update by mounting with "noatime" you do NOT have to change this
property nor restart your NameNode.

b. Add the following property to hdfs-site.xml:

<property>
 <name>dfs.nfs3.dump.dir</name>
 <value>/tmp/.hdfs-nfs</value>
</property>

Hortonworks Data Platform Jul 2, 2014

29

Note

NFS client often reorders writes. Sequential writes can arrive at the NFS
gateway at random order. This directory is used to temporarily save out-
of-order writes before writing to HDFS. One needs to make sure the
directory has enough space. For example, if the application uploads 10
files with each having 100MB, it is recommended for this directory to have
1GB space in case if a worst-case write reorder happens to every file.

c. Update the following property to hdfs-site.xml:

<property>
 <name>dfs.nfs.exports.allowed.hosts</name>
 <value>* rw</value>
</property>

Note

By default, the export can be mounted by any client. You must update
this property to control access. The value string contains the machine
name and access privilege, separated by whitespace characters. The
machine name can be in single host, wildcard, or IPv4 network format.
The access privilege uses rw or ro to specify readwrite or readonly
access to exports. If you do not specifiy an access privilege, the default
machine access to exports is readonly. Separate machine dentries by
;. For example, 192.168.0.0/22 rw ; host*.example.com ;
host1.test.org ro;.

Restart the NFS gateway after this property is updated.

d. Optional - Customize log settings.

Edit the log4j.property file to add the following:

To change trace level, add the following:

log4j.logger.org.apache.hadoop.hdfs.nfs=DEBUG

To get more details of ONCRPC requests, add the following:

log4j.logger.org.apache.hadoop.oncrpc=DEBUG

3. Start the NFS gateway service.

Three daemons are required to provide NFS service: rpcbind (or portmap), mountd
and nfsd. The NFS gateway process has both nfsd and mountd. It shares the HDFS
root "/" as the only export. We recommend using the portmap included in NFS gateway
package as shown below:

a. Stop nfs/rpcbind/portmap services provided by the platform:

service nfs stop
service rpcbind stop

Hortonworks Data Platform Jul 2, 2014

30

b. Start the included portmap package (needs root privileges):

hadoop portmap

OR

hadoop-daemon.sh start portmap

c. Start mountd and nfsd.

No root privileges are required for this command. However, verify that the user
starting the Hadoop cluster and the user starting the NFS gateway are same.

hadoop nfs3

OR

hadoop-daemon.sh start nfs3

Note

If the hadoop-daemon.sh script starts the NFS gateway, its log file can
be found in the hadoop log folder (/var/log/hadoop).

For example, if you launched the NFS gateway services as the root user,
the log file would be found in a path similar to the following:

/var/log/hadoop/root/hadoop-root-nfs3-63ambarihdp21.log

d. Stop NFS gateway services.

hadoop-daemon.sh stop nfs3
hadoop-daemon.sh stop portmap

4. Verify validity of NFS-related services.

a. Execute the following command to verify that all the services are up and running:

rpcinfo -p $nfs_server_ip

You should see output similar to the following:

 program vers proto port

 100005 1 tcp 4242 mountd

 100005 2 udp 4242 mountd

 100005 2 tcp 4242 mountd

 100000 2 tcp 111 portmapper

 100000 2 udp 111 portmapper

 100005 3 udp 4242 mountd

 100005 1 udp 4242 mountd

Hortonworks Data Platform Jul 2, 2014

31

 100003 3 tcp 2049 nfs

 100005 3 tcp 4242 mountd

b. Verify that the HDFS namespace is exported and can be mounted.

showmount -e $nfs_server_ip

You should see output similar to the following:

Exports list on $nfs_server_ip :
/ (everyone)

5. Mount the export “/”.

Currently NFS v3 is supported and uses TCP as the transportation protocol is TCP. The
users can mount the HDFS namespace as shown below:

mount -t nfs -o vers=3,proto=tcp,nolock $server:/ $mount_point

Then the users can access HDFS as part of the local file system except that hard/symbolic
link and random write are not supported in this release.

Note

Because NLM is not supported, the mount option nolock is needed.

User authentication and mapping:

NFS gateway in this release uses AUTH_UNIX style authentication which means that the
the login user on the client is the same user that NFS passes to the HDFS. For example, if
the NFS client has current user as admin, when the user accesses the mounted directory,
NFS gateway will access HDFS as user admin. To access HDFS as hdfs user, you must
first switch the current user to hdfs on the client system before accessing the mounted
directory.

6. Set up client machine users to interact with HDFS through NFS.

NFS gateway converts the UID to user name and HDFS uses username for checking
permissions.

The system administrator must ensure that the user on NFS client machine has the same
name and UID as that on the NFS gateway machine. This is usually not a problem if you
use the same user management system such as LDAP/NIS to create and deploy users to
HDP nodes and to client node.

If the user is created manually, you might need to modify the UID on either the client or
NFS gateway host in order to make them the same:

usermod -u 123 $myusername

The following illustrates how the UID and name are communicated between the NFS
client, NFS gateway, and NameNode.

Hortonworks Data Platform Jul 2, 2014

32

Hortonworks Data Platform Jul 2, 2014

33

5. User Guide - HDFS Snapshots
HDFS Snapshots are read-only point-in-time copies of the file system. Snapshots can be
taken on a subtree of the file system or the entire file system. Some common use cases of
snapshots are data backup, protection against user errors and disaster recovery.

The implementation of HDFS Snapshots is efficient:

1. Snapshot creation is instantaneous: the cost is O(1) excluding the inode lookup time.

2. Additional memory is used only when modifications are made relative to a snapshot:
memory usage is O(M) where M is the number of modified files/directories.

3. Blocks in datanodes are not copied: the snapshot files record the block list and the file
size. There is no data copying.

4. Snapshots do not adversely affect regular HDFS operations: modifications are recorded
in reverse chronological order so that the current data can be accessed directly. The
snapshot data is computed by subtracting the modifications from the current data.

In this document:

• Snapshottable Directories

• Snapshot Paths

• Snapshot Operations

5.1. Snapshottable Directories
Snapshots can be taken on any directory once the directory has been set as snapshottable.
A snapshottable directory is able to accommodate 65,536 simultaneous snapshots. There is
no limit on the number of snapshottable directories. Administrators may set any directory
to be snapshottable. If there are snapshots in a snapshottable directory, the directory can
be neither deleted nor renamed before all the snapshots are deleted.

5.2. Snapshot Paths
For a snapshottable directory, the path component ".snapshot" is used for accessing its
snapshots. Suppose /foo is a snapshottable directory, /foo/bar is a file/directory in /
foo, and /foo has a snapshot s0. Then, the path /foo/.snapshot/s0/bar refers to
the snapshot copy of /foo/bar. The usual API and CLI can work with the ".snapshot"
paths. The following are some examples:

• Listing all the snapshots under a snapshottable directory: hadoop dfs -ls /
foo/.snapshot

• Listing the files in snapshot s0: hadoop dfs -ls /foo/.snapshot/s0

• Copying a file from snapshot s0: hadoop dfs -cp /foo/.snapshot/s0/bar /
tmp

Hortonworks Data Platform Jul 2, 2014

34

The name ".snapshot" is now a reserved file name in HDFS so that users cannot create a file/
directory with ".snapshot" as the name. If ".snapshot" is used in a previous version of HDFS,
it must be renamed before upgrade; otherwise, upgrade will fail.

5.3. Snapshot Operations
Snapshot operations are grouped into the following two categories:

• Administrator Operations

• User Operations

5.3.1. Administrator Operations

The operations described in this section require superuser privileges.

• Allow Snapshots: Allowing snapshots of a directory to be created. If the operation
completes successfully, the directory becomes snapshottable.

• Command:

hadoop dfsadmin -allowSnapshot $path

• Arguments:

Table 5.1. Administrator Operations - Allow Snapshots

Parameter
name

Description

path The path of the snapshottable directory.

See also the corresponding Java API void allowSnapshot(Path path) in
HdfsAdmin.

• Disallow Snapshots: Disallowing snapshots of a directory to be created. All snapshots of
the directory must be deleted before disallowing snapshots.

• Command:

hadoop dfsadmin -disallowSnapshot $path

• Arguments:

Table 5.2. Administrator Operations - Disallow Snapshots

Parameter
name

Description

path The path of the snapshottable directory.

See also the corresponding Java API void disallowSnapshot(Path path) in
HdfsAdmin.

Hortonworks Data Platform Jul 2, 2014

35

5.3.2. User Operations

The section describes user operations. Note that HDFS superuser can perform all the
operations without satisfying the permission requirement in the individual operations.

• Create Snapshots: Create a snapshot of a snapshottable directory. This operation
requires owner privilege to the snapshottable directory.

• Command:

hadoop dfs -createSnapshot $path $snapshotName

• Arguments:

Table 5.3. User Operations - Create Snapshots

Parameter
name

Description

path The path of the snapshottable directory.

snapshotNameThe snapshot name, which is an optional argument. When it is omitted, a default name is generated
using a timestamp with the format "'s'yyyyMMdd-HHmmss.SSS", e.g. "s20130412-151029.033".

See also the corresponding Java API Path createSnapshot(Path path)
and Path createSnapshot(Path path, String snapshotName) in
FileSystem. The snapshot path is returned in these methods.

• Delete Snapshots: Delete a snapshot of from a snapshottable directory. This operation
requires owner privilege of the snapshottable directory.

• Command:

hadoop dfs -deleteSnapshot $path $snapshotName

• Arguments:

Table 5.4. User Operations - Delete Snapshots

Parameter
name

Description

path The path of the snapshottable directory.

snapshotNameThe snapshot name.

See also the corresponding Java API void deleteSnapshot(Path path,
String snapshotName) in FileSystem.

• Rename Snapshots: Rename a snapshot. This operation requires owner privilege of the
snapshottable directory..

• Command:

hadoop dfs -renameSnapshot $path $oldName $newName

• Arguments:

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html

Hortonworks Data Platform Jul 2, 2014

36

Table 5.5. User Operations - Rename Snapshots

Parameter
name

Description

path The path of the snapshottable directory.

oldName The old snapshot name.

newName The new snapshot name.

See also the corresponding Java API void renameSnapshot(Path path,
String oldName, String newName) in FileSystem.

• Get Snapshottable Directory Listing: Get all the snapshottable directories where the
current user has permission to take snapshots.

• Command:

hadoop lsSnapshottableDir

• Arguments:

Table 5.6. User Operations - Get Snapshottable Directory Listing

Parameter
name

Description

path The path of the snapshottable directory.

snapshotNameThe snapshot name.

See also the corresponding Java API SnapshottableDirectoryStatus[]
getSnapshottableDirectoryListing() in DistributedFileSystem.

• Get Snapshots Difference Report: Get the differences between two snapshots. This
operation requires read access privilege for all files/directories in both snapshots.

• Command:

hadoop snapshotDiff $path $fromSnapshot $toSnapshot

• Arguments:

Table 5.7. User Operations - Get Snapshots Difference Report

Parameter
name

Description

path The path of the snapshottable directory.

fromSnapshotThe name of the starting snapshot.

toSnapshotThe name of the ending snapshot.

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html

Hortonworks Data Platform Jul 2, 2014

37

6. Add HDP Maven Repository to Existing
Project

Apache Maven is a software project management and comprehension tool. Based on the
concept of a project object model (POM), Maven can manage a project's build, reporting
and documentation from a central piece of information. Maven projects are defined by
their Project Object Model or pom. This file is located in the base directory of a maven
project and is called pom.xml.

Use one of the following options to add HDP Maven repository as a default repository in
your existing project:

• Option I: Add HDP Maven repository to existing Maven project

A repository in Maven is used to hold build artifacts and dependencies of varying types.
There are strictly only two types of repositories: local and remote.

The local repository refers to a copy on your own installation that is a cache of the
remote downloads, and also contains the temporary build artifacts that you have not
yet released. Remote repositories refer to any other type of repository, accessed by a
variety of protocols such as file:// and http:// These repositories might be a truly
remote repository set up by a third party to provide their artifacts for downloading (for
example, repo.maven.apache.org hosts Maven's central repository). Other "remote"
repositories may be internal repositories set up on a file or HTTP server within your
company, used to share private artifacts between development teams and for releases.

To add HDP Maven repository, add the following lines to your Maven project's pom.xml
file:

<repositories>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>always</updatePolicy>
 <checksumPolicy>warn</checksumPolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
 </snapshots>
 <id>HDPReleases</id>
 <name>HDP Releases</name>
 <url>http://repo.hortonworks.com/content/repositories/releases/</url>
 <layout>default</layout>
 </repository>
 </repositories>

• Option II: Add HDP Maven repository to existing Ant/Ivy project

Apache Ivy repositories are configured inside the <resolvers> element of an
ivysettings.xml file. Usually, the resolvers (where to get those required artifacts) are
provided through a separate file,ivysettings.xml file.

Hortonworks Data Platform Jul 2, 2014

38

The ivysettings.xml file holds a chain of Ivy resolvers used for both resolution and
publishing (deployment). Resolvers exist for both regular artifacts and Ivy module files.
Apache Ivy uses chain to define the preference order for the repositories. Inside the
<chain> element, you will find a <url> element. The <url> element is a remote site
that contains bundle dependencies.

To add HDP Maven repository to existing Ant/Ivy project, add a new resolver to the
existing Ivy chain so that HDP versioned artifacts can be resolved.

• Option III: Setup Maven proxy

It is often the case that users wish to set up a Maven proxy repository inside their
corporate firewall and have developer instances resolve artifacts through such a proxy.
Proxy repositories provide a single point of remote download for an organization. In
addition to control and security concerns, Proxy repositories are primarily important for
increased speed across a team. These scenarios can be realized by using internal Maven
repositories and a Maven proxy.

To setup maven proxy pointing to HDP Maven or Nexus repository, use the following
URL (http://repo.hortonworks.com/content/repositories/releases/) for caching the HDP
artifacts to your local or internal Maven, Nexus, or Archiva repositories respectively.

http://repo.hortonworks.com/content/repositories/releases/

Hortonworks Data Platform Jul 2, 2014

39

7. Apache Flume User Guide
The Apache Flume User Guide contains the following sections:

• Introduction

• Overview

• System Requirements

• Architecture

• Setup

• Setting up an Agent

• Data Ingestion

• Setting Multi-Agent Flow

• Consolidation

• Multiplexing the Flow

• Configuration

• Flume Sources

• Flume Sinks

• Flume Channels

• Flume Channel Selectors

• Flume Sink Processors

• Flume Event Serializers

• Flume Interceptors

• Log4j Appender

• Load Balancing Log4J Appender

• Security

• Monitoring

• Topology Design Considerations

• Troubleshooting

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#introduction
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#overview
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#system-requirements
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#architecture
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#setup
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#setting-up-an-agent
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#data-ingestion
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#setting-multi-agent-flow
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#consolidation
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#multiplexing-the-flow
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#configuration
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#flume-sources
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#flume-sinks
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#flume-channels
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#flume-channel-selectors
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#flume-sink-processors
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#event-serializers
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#flume-interceptors
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#log4j-appender
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#load-balancing-log4j-appender
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#security
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#monitoring
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#topology-design-considerations
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/ds_Flume/FlumeUserGuide.html#troubleshooting

	Hortonworks Data Platform
	Table of Contents
	1. HBase Import Tools
	1.1. Using Pig to Bulk Load Data Into HBase

	2. Using Apache Storm
	2.1. Basic Storm Concepts
	2.2. Ingesting Data with the Apache Kafka Spout
	2.3. Writing Data with Storm
	2.3.1. Writing Data with the Storm-Hdfs Connector
	2.3.2. Writing Data with the Storm-HBase Connector
	2.3.3. Configuring the Storm-HDFS and Storm-HBase Connectors for a Secure Cluster

	2.4. Packaging Storm Topologies
	2.5. Deploying and Managing Apache Storm Topologies
	2.6. Example: RollingTopWords Topology

	3. HBase Snapshots
	3.1. Configuration
	3.2. Take a Snapshot
	3.3. Listing Snapshots
	3.4. Deleting Snapshots
	3.5. Clone a table from snapshot
	3.6. Restore a snapshot
	3.7. Snapshots operations and ACLs
	3.8. Export to another cluster

	4. User Guide - HDFS NFS Gateway
	4.1. Prerequisites
	4.2. Instructions

	5. User Guide - HDFS Snapshots
	5.1. Snapshottable Directories
	5.2. Snapshot Paths
	5.3. Snapshot Operations
	5.3.1. Administrator Operations
	5.3.2. User Operations

	6. Add HDP Maven Repository to Existing Project
	7. Apache Flume User Guide

