
docs.hortonworks.com

http://docs.hortonworks.com


Hortonworks Data Platform Jul 2, 2014

ii

Hortonworks Data Platform: Using Apache Hadoop
Copyright © 2012, 2013 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, Zookeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/legalcode

//hortonworks.com/training/
//hortonworks.com/products/hdp/
//hortonworks.com/services/
//hortonworks.com/training/
//hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode


Hortonworks Data Platform Jul 2, 2014

iii

Table of Contents
1. Using Apache Hadoop ................................................................................................  1

1.1. Hadoop Common .............................................................................................  1
1.2. Using Hadoop HDFS .........................................................................................  1
1.3. Using Hadoop MapReduce on YARN ................................................................  2

1.3.1. Running MapReduce on Hadoop YARN .................................................  2
1.3.2. MapReduce Version 2 Troubleshooting Guide ......................................  18
1.3.3. YARN Components ..............................................................................  45
1.3.4. Using Hadoop YARN ............................................................................ 52



Hortonworks Data Platform Jul 2, 2014

1

1. Using Apache Hadoop
The Apache Hadoop software library is a framework that allows for the distributed
processing of large data sets across clusters of computers using simple programming
models. It is designed to scale up from single servers to thousands of machines, each
offering local computation and storage. Rather than rely on hardware to deliver high-
availability, the library itself is designed to detect and handle failures at the application
layer, so delivering a highly-available service on top of a cluster of computers, each of which
may be prone to failures.

The project includes these modules:

• Hadoop Common: The set of common utilities that support other Hadoop modules

• Hadoop Distributed File System (HDFS): A distributed file system that provides high-
throughput access to application data

• Hadoop YARN: Framework for job scheduling and cluster resource management

• Hadoop MapReduce: A YARN-based system for parallel processing of large data sets

To learn more about Apache Hadoop, see Apache Hadoop.

In this section:

• Hadoop Common

• Using Hadoop HDFS

• Using Hadoop MapReduce on YARN

• Using Hadoop YARN

1.1. Hadoop Common
Hadoop Common is the set of common utilities that support other Hadoop modules.

In this section:

• Setting up a Single Node Cluster

• Cluster Setup

• CLI MiniCluster

• Using File System (FS) Shell

• Hadoop Commands Reference

1.2. Using Hadoop HDFS
HDFS is a distributed file system that provides high-throughput access to data. It provides
a limited interface for managing the file system to allow it to scale and provide high
throughput. HDFS creates multiple replicas of each data block and distributes them on
computers throughout a cluster to enable reliable and rapid access.

http://hadoop.apache.org/docs/current/
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CLIMiniCluster.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html


Hortonworks Data Platform Jul 2, 2014

2

Use the following resources to learn more about Hadoop HDFS:

• HDFS High Availability Using the Quorum Journal Manager

• HDFS High Availability with NFS

• WebHDFS REST API

1.3. Using Hadoop MapReduce on YARN
In Hadoop version 1, MapReduce was responsible for both processing and cluster resource
management. In Apache Hadoop version 2, cluster resource management has been moved
from MapReduce into YARN, thus enabling other application engines to utilize YARN and
Hadoop, while also improving the performance of MapReduce.

Use the following resources to learn more about using Hadoop MapReduce on YARN:

• Running MapReduce on Hadoop YARN

• MapReduce Version 2 Troubleshooting Guide

• YARN Components

• YARN Capacity Scheduler

• Encrypted Shuffle

• Pluggable Shuffle and Pluggable Sort

1.3.1. Running MapReduce on Hadoop YARN
The introduction of a Hadoop Version 2 has changed the way MapReduce applications
run on a cluster. Unlike the monolithic MapReduce-Schedule in Hadoop Version 1, Hadoop
YARN has generalized the cluster resources available to users. To ensure compatibility with
Hadoop Version 1, the YARN team has written a MapReduce framework that works on
top of YARN. The framework is highly compatible with Hadoop Version 1, with only a small
number of issues to consider. As with Hadoop Version 1, Hadoop YARN includes virtually
the same MapReduce examples and benchmarks that help demonstrate how Hadoop
YARN functions.

Use the following resources to learn more about Running MapReduce on YARN:

• Running MapReduce Examples on Hadoop YARN

• MapReduce Compatibility

• The MapReduce Application Master

• Calculating the Capacity of a Node

• Changes to the Shuffle Service

• Running Existing Hadoop Version 1 Applications on YARN

• Running Existing Version 1 Code on YARN

• Uber Jobs (Technical Preview)

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailabilityWithQJM.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/HDFSHighAvailabilityWithNFS.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/bk_system-admin-guide/content/ch_capacity-scheduler.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/EncryptedShuffle.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/PluggableShuffleAndPluggableSort.html


Hortonworks Data Platform Jul 2, 2014

3

1.3.1.1. Running MapReduce Examples on Hadoop YARN

The MapReduce examples are located in hadoop-[VERSION]/share/hadoop/
mapreduce. Depending on where you installed Hadoop, this path may vary. For the
purposes of this example let’s define:

export YARN_EXAMPLES=$YARN_HOME/share/hadoop/mapreduce

$YARN_HOME should be defined as part of your installation. Also, the following examples
have a version tag, in this case “2.1.0-beta.” Your installation may have a different version
tag.

The following sections provide some examples of Hadoop YARN programs and
benchmarks.

Listing Available Examples

Using our $YARN_HOME environment variable, we can get a list of the available examples
by running:

yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.1.0-beta.jar

This command returns a list of the available examples:

An example program must be given as the first argument.
Valid program names are:
  aggregatewordcount: An Aggregate-based map/reduce program that counts 
  the words in the input files.
  aggregatewordhist: An Aggregate-based map/reduce program that computes 
  the histogram of the words in the input files.
  bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute 
  exact digits of Pi.
  dbcount: An example job that counts the pageview counts from a database.
  distbbp: A map/reduce program that uses a BBP-type formula to compute 
  exact bits of Pi.
  grep: A map/reduce program that counts the matches of a regex in the 
  input.
  join: A job that effects a join over sorted, equally partitioned 
  datasets.
  multifilewc: A job that counts words from several files.
  pentomino: A map/reduce tile-laying program that finds solutions to 
  pentomino problems.
  pi: A map/reduce program that estimates Pi using a quasi-Monte Carlo 
  method.
  randomtextwriter: A map/reduce program that writes 10GB of random 
  textual data per node.
  randomwriter: A map/reduce program that writes 10GB of random data per
  node.
  secondarysort: An example defining a secondary sort to the reduce.
  sort: A map/reduce program that sorts the data written by the random 
  writer.
  sudoku: A sudoku solver.
  teragen: Generate data for the terasort.
  terasort: Run the terasort.
  teravalidate: Check the results of the terasort.
  wordcount: A map/reduce program that counts the words in the input 
  files.
  wordmean: A map/reduce program that counts the average length of the



Hortonworks Data Platform Jul 2, 2014

4

  words in the input files.
  wordmedian: A map/reduce program that counts the median length of the 
  words in the input files.
  wordstandarddeviation: A map/reduce program that counts the standard 
  deviation of the length of the words in the input files.

To illustrate several features of Hadoop YARN, we will show you how to run the pi and
terasort examples, as well as the TestDFSIO benchmark.

Running the pi Example

To run the pi example with 16 maps and 100000 samples, run the following command:

yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.1.0-beta.jar pi 16 100000

This command should return the following result (after the Hadoop messages):

13/10/14 20:10:01 INFO mapreduce.Job:  map 0% reduce 0%
13/10/14 20:10:08 INFO mapreduce.Job:  map 25% reduce 0%
13/10/14 20:10:16 INFO mapreduce.Job:  map 56% reduce 0%
13/10/14 20:10:17 INFO mapreduce.Job:  map 100% reduce 0%
13/10/14 20:10:17 INFO mapreduce.Job:  map 100% reduce 100%
13/10/14 20:10:17 INFO mapreduce.Job: Job job_1381790835497_0003 completed
 successfully
13/10/14 20:10:17 INFO mapreduce.Job: Counters: 44
        File System Counters
                FILE: Number of bytes read=358
                FILE: Number of bytes written=1365080
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=4214
                HDFS: Number of bytes written=215
                HDFS: Number of read operations=67
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=3
        Job Counters
                Launched map tasks=16
                Launched reduce tasks=1
                Data-local map tasks=14
                Rack-local map tasks=2
                Total time spent by all maps in occupied slots (ms)=174725
                Total time spent by all reduces in occupied slots 
                (ms)=7294
        Map-Reduce Framework
                Map input records=16
                Map output records=32
                Map output bytes=288
                Map output materialized bytes=448
                Input split bytes=2326
                Combine input records=0
                Combine output records=0
                Reduce input groups=2
                Reduce shuffle bytes=448
                Reduce input records=32
                Reduce output records=0
                Spilled Records=64
                Shuffled Maps =16
                Failed Shuffles=0
                Merged Map outputs=16



Hortonworks Data Platform Jul 2, 2014

5

                GC time elapsed (ms)=195
                CPU time spent (ms)=7740
                Physical memory (bytes) snapshot=6143696896
                Virtual memory (bytes) snapshot=23140454400
                Total committed heap usage (bytes)=4240769024
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters
                Bytes Read=1888
        File Output Format Counters
                Bytes Written=97
Job Finished in 20.854 seconds
Estimated value of Pi is 3.14127500000000000000
                        

Note that the MapReduce progress is shown -- as is the case with MapReduce V1 -- but
the application statistics are different. Most of the statistics are self-explanatory. The one
important item to note is that the YARN “Map-Reduce Framework” is used to run the
program. The use of this framework, which is designed to be compatible with Hadoop V1,
will be discussed further in subsequent sections.

Using the Web GUI to Monitor Examples

The Hadoop YARN web Graphical User Interface (GUI) has been updated for Hadoop
Version 2. This section shows you how to use the web GUI to monitor and find information
about YARN jobs. In the following examples, we use the pi application, which can run
quickly and be finished before you have explored the GUI. A longer running application --
such as terasort -- may be helpful when exploring all the various links in the GUI.

The following figure shows the main YARN web interface (http://hostname:8088).



Hortonworks Data Platform Jul 2, 2014

6

If you look at the Cluster Metrics table, you will see some new information. First, you will
notice that rather than Hadoop Version 1 “Map/Reduce  Task Capacity,” there is now
information on the number of running Containers. If YARN is running a MapReduce job,
these Containers will be used for both map and reduce tasks. Unlike Hadoop Version 1, in
Hadoop Version 2 the number of mappers and reducers is not fixed. There are also memory
metrics and a link to node status. To display a summary of the node activity, click Nodes.
The following image shows the node activity while the pi application is running. Note again
the number of Containers, which are used by the MapReduce framework as either mappers
or reducers.

If you navigate back to the main Running Applications window and click the
application_138… link, the Application status page appears. This page provides
information similar to that on the Running Applications page, but only for the selected job.



Hortonworks Data Platform Jul 2, 2014

7

Clicking the ApplicationMaster link on the Application status page opens the
MapReduce Application page shown in the following figure. Note that the link to the
ApplicationMaster is also on the main Running Applications screen in the last column.

Details about the MapReduce process can be observed on the MapReduce Application
page. Instead of Containers, the MapReduce application now refers to Maps and Reduces.
Clicking the job_138… link opens the MapReduce Job page:



Hortonworks Data Platform Jul 2, 2014

8

The MapReduce Job page provides more detail about the status of the job. When the job is
finished, the page is updated as shown in the following figure:

If you click the Node used to run the ApplicationMaster (n0:8042 above), a NodeManager
summary page appears, as shown in the following figure. Again, the NodeManager
only tracks Containers. The actual tasks that the Containers run is determined by the
ApplicationMaster.



Hortonworks Data Platform Jul 2, 2014

9

If you navigate back to the MapReduce Job page, you can access log files for the
ApplicationMaster by clicking the logs link:

If you navigate back to the main Cluster page and select Applications > Finished, and then
select the completed job, a summary page is displayed:



Hortonworks Data Platform Jul 2, 2014

10

There are a few things to take note of based on our movement through the preceding GUI.
First, because YARN manages applications, all input from YARN refers to an “application.”
YARN has no data about the actual application. Data from the MapReduce job is provided
by the MapReduce Framework. Thus there are two clearly different data streams that are
combined in the web GUI: YARN applications and Framework jobs. If the Framework does
not provide job information, certain parts of the web GUI will have nothing to display.

Another interesting aspect to note is the dynamic nature of the mapper and reducer tasks.
These are executed as YARN Containers, and their numbers will change as the application
runs. This feature provides much better cluster utilization, because mappers and reducers
are dynamic rather than fixed resources.

Finally, there are other links in the preceding GUI that can be explored. With the
MapReduce framework, it is possible to drill down to the individual map and reduce tasks.
If log aggregation is enabled, the individual logs for each map and reduce task can be
viewed.

Running the Terasort Test

To run the terasort benchmark, three separate steps are required. In general the rows are
100 bytes long, thus the total amount of data written is 100 times the number of rows (i.e.
to write 100 GB of data, use 1000000000 rows). You will also need to specify input and
output directories in HDFS.

1. Run teragen to generate rows of random data to sort.

yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.1.0-beta.jar teragen
 <number of 100-byte rows> <output dir>

2. Run terasort to sort the database.

yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.1.0-beta.jar terasort
 <input dir> <output dir>



Hortonworks Data Platform Jul 2, 2014

11

3. Run teravalidate to validate the sorted Teragen.

yarn jar $YARN_EXAMPLES/hadoop-mapreduce-examples-2.1.0-beta.jar
 teravalidate <terasort output dir> <teravalidate output dir>

Run the TestDFSIO Benchmark

YARN also includes a HDFS benchmark application named TestDFSIO. As with terasort,
it requires several steps. Here we will write and read ten 1 GB files.

1. Run TestDFSIO in write mode and create data.

yarn jar $YARN_EXAMPLES/hadoop-mapreduce-client-jobclient-2.1.0-beta-tests.
jar TestDFSIO -write  -nrFiles 10 -fileSize 1000

Example results are as follows (date and time removed):

fs.TestDFSIO: ----- TestDFSIO ----- : write
fs.TestDFSIO:            Date & time: Wed Oct 16 10:58:20 EDT 2013
fs.TestDFSIO:        Number of files: 10
fs.TestDFSIO: Total MBytes processed: 10000.0
fs.TestDFSIO:      Throughput mb/sec: 10.124306231915458
fs.TestDFSIO: Average IO rate mb/sec: 10.125661849975586
fs.TestDFSIO:  IO rate std deviation: 0.11729341192174683
fs.TestDFSIO:     Test exec time sec: 120.45
fs.TestDFSIO:

2. Run TestDFSIO in read mode.

yarn jar  $YARN_EXAMPLES/hadoop-mapreduce-client-jobclient-2.1.0-beta-tests.
jar TestDFSIO -read  -nrFiles 10 -fileSize 1000

Example results are as follows (date and time removed):

fs.TestDFSIO: ----- TestDFSIO ----- : read
fs.TestDFSIO:            Date & time: Wed Oct 16 11:09:00 EDT 2013
fs.TestDFSIO:        Number of files: 10
fs.TestDFSIO: Total MBytes processed: 10000.0
fs.TestDFSIO:      Throughput mb/sec: 40.946519750553804
fs.TestDFSIO: Average IO rate mb/sec: 45.240928649902344
fs.TestDFSIO:  IO rate std deviation: 18.27387874605978
fs.TestDFSIO:     Test exec time sec: 47.937
fs.TestDFSIO:

3. Clean up the TestDFSIO data.

yarn jar  $YARN_EXAMPLES/hadoop-mapreduce-client-jobclient-2.1.0-beta-tests.
jar TestDFSIO -clean 

1.3.1.2. MapReduce Compatibility

MapReduce was the original use case on which Hadoop was founded. In order to graph the
World Wide Web and how it changes over time, MapReduce was developed to process this
graph with billions of nodes and trillions of edges. Moving this technology to YARN made
it a complex application to build due to requirements for data-locality, fault tolerance, and
application priorities.



Hortonworks Data Platform Jul 2, 2014

12

In order to provide data locality, the MapReduce Application Master is required to locate
blocks for processing, and then request Containers on these blocks. To implement fault-
tolerance, the ability to handle failed map or reduce tasks and request them again on other
nodes was needed. Fault-tolerance moved hand-in-hand with the complex intra-application
priorities.

The logic to handle complex intra-application priorities for map and reduce tasks had
to be built as part of the Application Master. There was no need to start idle reducers
before mappers finished processing enough data. Reducers were now under control of
the Application Master and were not fixed as in Hadoop Version 1. One rather unique
failure mode occurs when a node fails after all the maps have finished. When this happens,
the map task must be repeated because the results are unavailable. In many cases all
available Containers are being used by the reducer tasks, preventing the spawning of
another mapper task to process the missing data. Logically this would create a deadlock
with reducers waiting for missing mapper data. The MapReduce Application Master has
been designed to detect this situation and, while not ideal, will kill enough reducers to free
enough resources for mappers to finish processing the missing data. The killed reducers will
start again, allowing the job to complete. 

1.3.1.3. The MapReduce Application Master

The MapReduce Application Master is implemented as a composition of loosely coupled
services. The services interact with each other via events. Each component acts on the
received events and sends out any required events to other components. This design
keeps it highly concurrent, with minimal or no synchronization required. The events are
dispatched by a central Dispatch mechanism. All components register with the Dispatcher.
The information is shared across different components using AppContext.

In Hadoop 1 the death of the Job Tracker would result in the loss of all jobs -- both
running and queued. With a YARN MapReduce job, the equivalent to the Job Tracker
is the Application Master. Because the Application Master will now run on compute
nodes, this can lead to an increase in failure scenarios. To combat MapReduce Application
Master failures, YARN has the capability to restart a specified number of times, as well
as the capability to recover completed tasks. Additionally, much like the Job Tracker,
the Application Master keeps  metrics for jobs that are currently running. Typically
the Application Master tracking URL makes these available, and these metrics can be
found in the YARN web UI (See the previous pi example). The following settings can
enable MapReduce recovery in YARN.

Enabling Application Master Restarts

To enable Application Master restarts:

1. You can adjust the yarn.resourcemanager.am.max-retries property in the
yarn-site.xml file. The default setting is 2.

2. You can more directly tune how many times a MapReduce Application Master should
restart by adjusting the mapreduce.am.max-attempts property in the mapred-
site.xml file. The default setting is 2.

Enabling Recovery of Completed Tasks

You can use the yarn.app.mapreduce.am.job.recovery.enable property in the
yarn-site.xml file to enable recovery of completed tasks. The default setting is "true".



Hortonworks Data Platform Jul 2, 2014

13

The Job History Server

With the Application Master now taking the place of the Job Tracker, a centralized location
to store the history of all MapReduce jobs was required. The Job History Server helps fill the
void left by the transitory Application Master by hosting these completed job metrics and
logs. This new history daemon is unrelated to the services provided by YARN, and is directly
related to the MapReduce application framework.

1.3.1.4. Calculating the Capacity of a Node

Because YARN has now removed the hard partitioned mapper and reducer slots of Hadoop
Version 1, new capacity calculations are required. There are eight important parameters
for calculating a node’s capacity that are specified in mapred-site.xml and yarn-
site.xml:

In mapred-site.xml:

• mapreduce.map.memory.mb 
mapreduce.reduce.memory.mb

These are the hard limits enforced by Hadoop on each mapper or reducer task.

• mapreduce.map.java.opts
mapreduce.reduce.java.opts

The heapsize of the jvm –Xmx for the mapper or reducer task. Remember to leave room
for the JVM Perm Gen and Native Libs used. This value should always be lower than
mapreduce.[map|reduce].memory.mb.

In yarn-site.xml:

• yarn.scheduler.minimum-allocation-mb     

The smallest container that YARN will allow.

• yarn.scheduler.maximum-allocation-mb     

The largest container that YARN will allow.

• yarn.nodemanager.resource.memory-mb    

The amount of physical memory (RAM) for Containers on the compute node. It is
important that this is not equal to the total amount of RAM on the node, as other
Hadoop services also require RAM.

• yarn.nodemanager.vmem-pmem-ratio        

The amount of virtual memory that each Container is allowed. This can be calculated
with:

containerMemoryRequest*vmem-pmem-ratio

As an example, consider a configuration with the settings in the following table.

Example YARN MapReduce Settings



Hortonworks Data Platform Jul 2, 2014

14

Property Value

mapreduce.map.memory.mb 1536

mapreduce.reduce.memory.mb 2560

mapreduce.map.java.opts -Xmx1024m

mapreduce.reduce.java.opts -Xmx2048m

yarn.scheduler.minimum-allocation-mb 512

yarn.scheduler.maximum-allocation-mb 4096

yarn.nodemanager.resource.memory-mb 36864

yarn.nodemanager.vmem-pmem-ratio 2.1

With these settings, each map and reduce task has a generous 512MB of overhead
for the Container, as evidenced by the difference between the mapreduce.[map|
reduce].memory.mb and the mapreduce.[map|reduce].java.opts. 

Next, YARN has been configured to allow a Container no smaller than 512MB and no
larger than 4GB. The compute nodes have 36GB of RAM available for Containers. With
a virtual memory ratio of 2.1 (the default value), each map can have up to 3225.6MB of
RAM, or a reducer can have 5376MB of virtual RAM.

This means that the compute node configured for 36GB of Container space can support
up to 24 maps or 14 reducers, or any combination of mappers and reducers allowed by the
available resources on the node.

For more information about calculating memory settings, see Determine YARN and
MapReduce Memory Configuration Settings.

1.3.1.5. Changes to the Shuffle Service

As in Hadoop Version 1, the shuffle is required for parallel MapReduce job operation.
Reducers fetch the outputs from all of the maps by “shuffling” map-output data from the
corresponding nodes where map-tasks have run. The MapReduce Shuffle functionality is
implemented as an Auxiliary Service in the Node Manager. This service starts up a Netty
Web Server in the Node Manager address space, and knows how to handle MapReduce-
specific shuffle requests from Reduce tasks. The MapReduce Application Master specifies
the service ID for the shuffle service, along with security tokens that may be required
when it starts any Container. In the returning response, the Node Manager  provides the
Application Master with the port on which the shuffle service is running, which is then
passed on to the reduce tasks.

Hadoop Version 2 also provides the option for Encrypted Shuffle. With Encrypted Shuffle,
the ability to use HTTPS with optional client authentication is provided. This feature is
implemented with a toggle for HTTP or HTTPS, keystore/truststore properties, and the
distribution of these stores to new or existing nodes. For details about the multi-step
configuration of Encrypted Shuffle, review the Encrypted Shuffle documentation on the
Apache Hadoop website.

1.3.1.6. Running Existing Hadoop Version 1 Applications on YARN

To ease the transition from Hadoop Version 1 to YARN, a major goal of YARN and the
MapReduce framework implementation on top of YARN was to ensure that existing

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/bk_installing_manually_book/content/rpm-chap1-11.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/bk_installing_manually_book/content/rpm-chap1-11.html


Hortonworks Data Platform Jul 2, 2014

15

MapReduce applications that were programmed and compiled against previous
MapReduce APIs (we’ll call these MRv1 applications) can continue to run with little or no
modification on YARN (we’ll refer to these as MRv2 applications).

Binary Compatibility of org.apache.hadoop.mapred APIs

For the vast majority of users who use the org.apache.hadoop.mapred APIs,
MapReduce on YARN ensures full binary compatibility. These existing applications can
run on YARN directly without recompilation. You can use .jar files from your existing
application that code against mapred APIs, and use bin/hadoop to submit them directly to
YARN.

Source Compatibility of org.apache.hadoop.mapreduce APIs

Unfortunately, it was difficult to ensure full binary compatibility to the existing applications
that compiled against MRv1 org.apache.hadoop.mapreduce APIs. These APIs
have gone through many changes. For example, several classes stopped being abstract
classes and changed to interfaces. Therefore, the YARN community compromised by only
supporting source compatibility for org.apache.hadoop.mapreduce APIs. Existing
applications that use MapReduce APIs are source-compatible and can run on YARN either
with no changes, with simple recompilation against MRv2 .jar files that are shipped with
Hadoop 2, or with minor updates.

Compatibility of Command-line Scripts

Most of the command line scripts from Hadoop 1.x should simply just work. The only
exception is MRAdmin, which was removed from MRv2 because JobTracker and
TaskTracker no longer exist. The MRAdmin functionality is now replaced with RMAdmin.
The suggested method to invoke MRAdmin (also RMAdmin) is through the command
line, even though one can directly invoke the APIs. In YARN, when MRAdmin commands
are executed, warning messages will appear reminding users to use YARN commands
(i.e., RMAdmin commands). On the other hand, if applications programmatically invoke
MRAdmin, they will break when running on YARN. There is no support for either binary or
source compatibility.

Compatibility Trade-off Between MRv1 and Early MRv2 (0.23.x) Applications

Unfortunately, there are some APIs that are compatible with either MRv1 applications,
or with early MRv2 applications (in particular, the applications compiled against Hadoop
0.23), but not both. Some of the APIs were exactly the same in both MRv1 and MRv2
except for the return type change in method signatures. Therefore, it was necessary to
make compatibility trade-offs the between the two.

• The mapred APIs are compatible with MRv1 applications, which have a larger user base.

• If mapreduce APIs didn’t significantly break Hadoop 0.23 applications, they were made
to be compatible with 0.23, but only source compatible with 1.x.

The following table lists the APIs that are incompatible with Hadoop 0.23. If early Hadoop
2 adopters using 0.23.x used the following methods in their custom routines, they will need
to modify the code accordingly. For some problematic methods, an alternative method is
provided with the same functionality and a method signature similar to MRv2  applications.



Hortonworks Data Platform Jul 2, 2014

16

MRv2 Incompatible APIs

Problematic Method – org.apache.hadoop Incompatible Return Type Change Alternative Method

util.ProgramDriver#drive void -> int run

mapred.jobcontrol.Job#getMapredJobID String -> JobID getMapredJobId

mapred.TaskReport#getTaskId String -> TaskID getTaskID

mapred.ClusterStatus #UNINITIALIZED_MEMORY_VALUE long -> int N/A

mapreduce.filecache.DistributedCache #getArchiveTimestamps long[] -> String[] N/A

mapreduce.filecache.DistributedCache #getFileTimestamps long[] -> String[] N/A

mapreduce.Job#failTask void -> boolean killTask(TaskAttemptID, boolean)

mapreduce.Job#killTask void -> boolean killTask(TaskAttemptID, boolean)

mapreduce.Job#getTaskCompletionEvents mapred.TaskCompletionEvent[] -> mapreduce.TaskCompletionEvent[] N/A

1.3.1.7. Running Existing MapReduce Version 1 Code on YARN

Running the Examples

Most of the MRv1 examples continue to work on YARN, but they are now in a new
version of the .jar file. One exception worth mentioning is that the sleep example
that used to be in hadoop-examples-1.x.x.jar is not in hadoop-mapreduce-
examples-2.x.x.jar, but was moved into the test file hadoop-mapreduce-client-
jobclient-2.x.x-tests.jar.

That exception aside, users may want to try running hadoop-examples-1.x.x.jar
directly on YARN. Running hadoop-jar hadoop-examples-1.x.x.jar will still pick
the classes in hadoop-mapreduce-examples-2.x.x.jar. This behavior is due to
Java first searching for the desired class in the system .jar files. If the class is not found,
it will go on to search in the user .jar files in the classpath.hadoop-mapreduce-
examples-2.x.x.jar, which is installed with other MRv2 .jar files in the Hadoop
classpath. Thus the desired class (e.g., WordCount) will instead be picked from this 2.x.x .jar
file. However, it is possible to let Java pick the classes from the .jar file which is specified
after the -jar option. There are two options:

• Add HADOOP\_USER\_CLASSPATH\_FIRST=true and HADOOP
\_CLASSPATH=...:hadoop-examples-1.x.x.jar as environment variables, and
add mapreduce.job.user.classpath.first = true in mapred-site.xml.

• Remove the 2.x.x .jar file from the classpath. If it is a multiple-node cluster, the .jar file
needs to be removed from the classpath on all the nodes.

Running Apache Pig Scripts on YARN

Apache Pig is one of the two major data processing applications in the Hadoop ecosystem,
the other being Hive. Due to significant efforts from the Pig community, existing Pig scripts
do not require any modifications. Pig on YARN in Hadoop 0.23 has been supported since
Pig version 0.10.0, and Pig working with Hadoop 2.x has been supported starting with Pig
version 0.10.1.

Existing Pig scripts that work with Pig version 0.10.1 and beyond will work just fine on
YARN, however, versions earlier than Pig 0.10.x may not run directly on YARN due to some
incompatible MapReduce APIs and configuration.



Hortonworks Data Platform Jul 2, 2014

17

Running Apache Hive Queries on YARN

Existing Hive queries do not need any changes to work on YARN starting with Hive-0.10.0,
thanks to the work done by Hive community. Support for Hive on YARN in Hadoop 0.23
and 2.x releases has been in place since Hive-0.10.0. Queries that work on Hive-0.10.0 and
beyond will work without changes on YARN. However, as with Pig, earlier versions of Hive
may not run directly on YARN, as those Hive releases do not support 0.23 and 2.x.

Running Apache Oozie Workflows on YARN

As with Pig and Hive, the Apache Oozie community worked to make sure existing Oozie
workflows run in a completely backwardly-compatible manner. Support for Hadoop 0.23
and 2.x is available starting Oozie release 3.2.0. Existing Oozie workflows can start taking
advantage of YARN in 0.23 and 2.x with Oozie 3.2.0 and above.

1.3.1.8. Uber Jobs (Technical Preview)

Note

This feature is a technical preview and considered under development. Do not
use this feature in your production systems. If you have questions regarding this
feature, contact Support by logging a case on our Hortonworks Support Portal
at https://support.hortonworks.com.

An Uber Job is when multiple mappers and reducers are combined to use a single
Container. There are four core settings around the configuration of Uber Jobs found in the
mapred-site.xml options presented in the following table.

Configuration options for Uber Jobs

Property Description

mapreduce.job.ubertask.enable Whether to enable the small-jobs "ubertask" optimization,
which runs "sufficiently small" jobs sequentially within a
single JVM. "Small" is defined by the following maxmaps,
maxreduces, and maxbytes settings. Users can override this
value.

Default = false

mapreduce.job.ubertask.maxmaps The threshold for the number of maps beyond which a job
is considered too large for the ubertasking optimization.
Users can override this value, but only downward.

Default = 9

mapreduce.job.ubertask.maxreduces The threshold for the number of reduces beyond
which a job is considered too large for the ubertasking
optimization. CURRENTLY THE CODE CANNOT SUPPORT
MORE THAN ONE REDUCE and will ignore larger values
(zero is a valid maximum value, however). Users can
override this value, but only downward.

Default = 1

mapreduce.job.ubertask.maxbytes The threshold for the number of input bytes beyond
which a job is considered too large for the ubertasking
optimization. If no value is specified, dfs.block.size is
used as the default. Be sure to specify a default value in
mapred-site.xml if the underlying file system is not
HDFS. Users can override this value, but only downward.

https://support.hortonworks.com


Hortonworks Data Platform Jul 2, 2014

18

Default = HDFS Block Size

1.3.2. MapReduce Version 2 Troubleshooting Guide

This section presents basic information to assist with troubleshooting MapReduce Version 2
(MRv2) issues on the Hortonworks Data Platform (HDP).  This document is not meant to be
a comprehensive guide for all MRv2 issues. It provides basic techniques that can be used to
isolate issues and help lead to a solution.

Use the following resources to learn more about Troubleshooting MapReduce Version 2:

• MRv2 Overview

• MRv2 Terminology

• Configuration Files

• Process ID Files

• Log Files

• Ports

• Gathering General Information

• Common MRv2 Commands

• MRv2 Troubleshooting Actions Checklist

• Common Server-Side Issues

• Common Client-Side Issues

1.3.2.1. MRv2 Overview

In Hadoop version 1, MapReduce was responsible for both processing and cluster resource
management. In Apache Hadoop version 2, cluster resource management has been moved
from MapReduce into YARN, thus enabling other application engines to utilize YARN and
Hadoop, while also improving the performance of MapReduce.

The fundamental idea of YARN is to split up the two major responsibilities of scheduling
jobs and tasks that were handled by the version 1 MapReduce Job Tracker and Task Tracker
into separate entities:

• Resource Manager -- replaces the Job Tracker.

• Application Master -- a new YARN component

• Node Manager -- replaces the Task Tracker 

• Container running on a Node Manager -- replaces the MapReduce slots



Hortonworks Data Platform Jul 2, 2014

19

  

Resource Manager

In YARN, the Resource Manager is primarily a pure scheduler. In essence, it is strictly limited
to arbitrating available resources in the system among the competing applications. It
optimizes for cluster utilization (keeps all resources in use all the time) against various
constraints such as capacity guarantees, fairness, and SLAs. To allow for different policy
constraints the Resource Manager has a pluggable scheduler that allows for different
algorithms, such as capacity, to be used as necessary. The daemon runs as the “yarn” user.

Node Manager

The Node Manager is YARN’s per-node agent, and takes care of the individual compute
nodes in a Hadoop cluster. This includes keeping up-to-date with the Resource Manager,
life-cycle management of application Containers, monitoring resource usage (memory,
CPU) of individual Containers, monitoring node health, and managing logs and other
auxiliary services that can be utilized by YARN applications. The Node Manager will launch
Containers ranging from simple shell scripts to C, Java, or Python processes on Unix or
Windows, or even full-fledged virtual machines (e.g. KVMs). The daemon runs as the “yarn”
user.

Application Master  

The Application Master is, in effect, an instance of a framework-specific library and is
responsible for negotiating resources from the Resource Manager and working with the
Node Manager(s) to execute and monitor the Containers and their resource consumption.
It has the responsibility of negotiating appropriate resource Containers from the Resource
Manager and monitoring their status. The Application Master runs as a single Container
that is monitored by the Resource Manager.

Container  



Hortonworks Data Platform Jul 2, 2014

20

A Container is a resource allocation, which is the successful result of the Resource Manager
granting a specific Resource Request. A Container grants rights to an application to use
a specific amount of resources (memory, CPU, etc.) on a specific host.  In order to utilize
Container resources, the Application Master must take the Container and present it to the
Node Manager managing the host on which the Container was allocated. The Container
allocation is verified in secure mode to ensure that Application Master(s) cannot fake
allocations in the cluster.

Job History Service

This is a daemon that serves historical information about completed jobs. We recommend
running it as a separate daemon. Running this daemon consumes considerable HDFS space
as it saves job history information. This daemon runs as the “mapred” user.

1.3.2.2. MRv2 Terminology

Resource Model

YARN supports a very general resource model for applications. An application (via the
Application Master) can request resources with highly specific requirements such as:

• Resource name (more complex network topologies that would include host name and
rack name are currently under development)

• Memory (in MB)

• CPU (cores, for now)

Container Specification During Launch:

While a Container is merely a right to use a specified amount of resources on a specific
machine (Node Manager) in the cluster, the Application Master has to provide considerably
more information to the Node Manager to actually launch the Container. This information
can include .jar files, memory requested, input data, and number of CPUs. 

Resource Request

YARN is designed to allow individual applications (via the Application Master) to utilize
cluster resources in a shared, secure, and multi-tenant manner. YARN also remains aware of
cluster topology in order to efficiently schedule and optimize data access (i.e. reduce data
motion) for applications to the greatest possible extent.

In order to meet those goals, the central Scheduler (in the Resource Manager) has
extensive information about an application’s resource needs, which allows it to make
better scheduling decisions across all applications in the cluster. This leads to the Resource
Request and the resulting Container.

Resource-requirement

These are the resources required to start a Container, such as memory, CPU, etc.

Number-of-containers



Hortonworks Data Platform Jul 2, 2014

21

This is essentially the unit of MRv2 for each job. Keep in mind that the Application Master
runs as a Container. Up to 10% of the capacity can be allocated to the Application Master
Container.

Map Phase

The first phase of a MRv2 job which runs locally with respect to the data. It takes the input
data, processes it into key-value pairs, and outputs it to the reduce phase. The data is
passed into the Mapper as a <key, value> pair generated by an  InputFormat instance.
InputFormat determines where the input data needs to be split between the Mappers, and
then generates an InputSplit instance for each split. The Partitioner creates the partition for
the record. This determines which reducer will process the record.

After processing this data, the map method of the Mapper class outputs a <key, value> pair
that is stored in an unsorted buffer in memory. When the buffer fills up, or when the map
task is complete, the <key, value>  pairs in the buffer are sorted, then spilled to the disk. If
more than one spill file was created, these files are merged into a single file of sorted <key,
value> pairs. The sorted records in the spill file wait to be retrieved by a Reducer.

Mapper

The individual task of the map phase as run by the Containers. MRv2 spawns a map task for
each InputSplit generated by the InputFormat.

Reduce Phase

The final phase of a MRv2 job, the Reduce phase gathers and combines the output of all of
the mappers. The Reducer fetches the records from the Mapper. The Reduce phase can be
broken down into three phases:

• Shuffle: This occurs when MapReduce retrieves the output of the Mappers (via HTTP)
and sends the data to the Reducers. All  records with the same key are combined and
sent to the same Reducer.

• Sort: This phase happens simultaneously with the shuffle phase. As the records are
fetched and merged, they are sorted by key.

• Reduce: The reduce method is invoked for each key.

Reducer

The individual task of the Reduce phase run by the Containers after the map phase has
completed for at least one of the mappers.

Task

The partition of a job that will be run on a Container, which keeps track of the status of the
MRv2 tasks that have been assigned to it.

Container Executor

Controls initialization, finalization, clean up, launching, and killing of the task’s JVM. This is
the equivalent of the Task Tracker controller in MRv1.

The Container Executor is set up in two files:



Hortonworks Data Platform Jul 2, 2014

22

container-executor.cfg -- a file which has the following configuration by default:

• Conf name yarn.nodemanager.linux-container-executor.group has a value
of  “hadoop”

• Conf name banned.users has a value of “hdfs,yarn,mapred,bin”

• Conf name min.user.id has a value of “1000”

yarn-site.xml -- a file with the following configuration:

• Conf name yarn.nodemanager.container-executor.class has a value of
“org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor”

• Conf name yarn.nodemanager.linux-container-executor.group has a value
of “hadoop”

Capacity Scheduler

The Capacity Scheduler is designed to run Hadoop MRV2 as a shared, multi-tenant cluster in
an operator-friendly manner, while also maximizing the throughput and utilization of the
cluster when running MRv2 applications.  

Users submit jobs to Queues. Queues, as a collection of jobs, allow the system to provide
specific functionality. HDP comes configured with a single mandatory queue named
"default".

For more information about the Scheduler, see the Capacity Scheduler guide.

ACL

The Access Control List (ACL) can be enabled on the cluster for job-level and queue-level
authorization. When enabled, access control checks are performed by:

• The Resource Manager before allowing users to submit jobs to queues and administering
these jobs.

• The Resource Manager and the Node Manager before allowing users to view job details
or to modify a job using MRv2 APIs, CLI, or Web user interfaces.

There is no need for the mapred-queue-acl.xml since it is all configured in the
capacity-scheduler.xml file.

Data Compression

MapReduceV2 provides facilities for the application writer to specify compression for both
intermediate map-outputs and the job-outputs (i.e., the output of the reducers). It can be
set up with CompressionCodec implementation for the zlib compression algorithm. The
gzip file format is also supported.

Concatenation

MapReduceV2 can concatenate multiple small files into one block size that is more efficient
in storage and data movement.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/bk_system-admin-guide/content/ch_capacity-scheduler.html


Hortonworks Data Platform Jul 2, 2014

23

Distributed Cache

DistributedCache efficiently distributes large application-specific, read-only files. The
framework will copy the necessary files to the slave node before any tasks for the job are
executed on that node.  It is also very common to use the DistributedCache by using the
GenericOptionsParser. For example:

$ bin/hadoop jar -libjars testlib.jar -files file.txt args

The above command will copy the file.txt file to the cluster.

Hadoop Pipes

Hadoop Pipes is the name of the C++ interface to Hadoop MRv2. Hadoop Pipes use sockets
as the channel over which the Node Manager communicates with the process running the
C++ map or reduce function. JNI is not used.

Hadoop Streaming

This is a Hadoop API to MRv2 that allows the user to write map and reduce functions in
languages other than Java (Perl, Python, etc.). Hadoop Streaming uses Windows streams
as the interface between Hadoop and the program, so the user can use any language that
can read standard input and write to standard output to write the MapReduce program.
Streaming is naturally suited for text processing.

Security

MRv2 supports Kerberos security and can run on Kerberos-secured clusters. Extra
configuration may be required to achieve functioning of MRv2 on a secured cluster.

Job .jar Files

MRv2 sets a value for the replication level for submitted job .jar files. As a best practice, set
this value to approximately the square root of the number of nodes. The default value is
10.

Note: The path for hadoop .jar files is different:

/usr/lib/hadoop-mapreduce/

1.3.2.3. Configuration Files

These files are used to configure MapReduce jobs.

Note

Default paths of the files are provided as they are from an HDP install. Users
may choose to change these locations as per need.

• /etc/hadoop/conf/yarn-site.xml

This file contains configuration settings for YARN. It is used by the Client, the Node
Manager, and the Resource Manager. The following table lists some important yarn-
site.xml properties.



Hortonworks Data Platform Jul 2, 2014

24

Property Value Description

yarn.resourcemanager.webapp.address <RM_HOST>:8088 Resource Manager host and port address.

yarn.log.server.url <H_S>:19888/jobhistory/logs History server address.

yarn.resourcemanager.hostname <RM_HOST> Resource Manager host name.

yarn.nodemanager.linux-container-executor.group hadoop Equivalent of the v1 Task Tracker controller group which can run
Ams.

yarn.nodemanager.log.retain-second 604800 The unit is in seconds.

yarn.log-aggregation-enable true Aggregate all of the logs in one location.

yarn.nodemanager.container-monitor.interval-ms 3000 Specifies that Containers must send a heartbeat to the Node
Manager every 3 seconds.

yarn.nodemanager.log-aggregation.compression-type gz Specifies that log files will be compressed in Gz format.

• /etc/hadoop/conf/core-site.xml

This file contains configuration settings for Hadoop Core, such as I/O settings that are
common to HDFS2 and MRv2. It is used by all Hadoop daemons and clients, because all
daemons need to know the location of the Name Node. Hence this file should have a
copy in each node running a Hadoop daemon or client. 

• /etc/hadoop/conf/mapred-site.xml

This file contains configuration settings for MRv2 properties such as io.sort and
memory settings for the Containers. The following table lists some important mapred-
site.xml properties.

Property Value Description

mapreduce.map.memory.mb 1024 #1 Over all heap for the Mappers task

mapreduce.reduce.memory.mb          1024 #2 Over all heap for the Reducers task

mapreduce.map.java.opts -Xmx756m The heapsize of the jvm –Xmx for the mapper task .8  of  #1

mapreduce.reduce.java.opts -Xmx756m The heapsize of the jvm –Xmx for the reducer task .8  of  #2

mapreduce.reduce.log.level INFO log4j log level variables supported

mapreduce.jobhistory.done-dir /mr-history/done The location is in Hdfs

mapreduce.shuffle.port 13562 Ensure that it is open by firewall

yarn.app.mapreduce.am.staging-dir /user The location is in Hdfs

mapreduce.reduce.shuffle.parallelcopies 30 Scale this for a huge cluster

mapreduce.framework.name yarn Basic configuration

• /etc/hadoop/conf/capacity-scheduler.xml

This is the configuration file for the Capacity Scheduler component in the Hadoop
Resource Manager. You can use this file to configure various scheduling parameters
related to queues.

• /etc/hadoop/conf/hadoop-env.sh

Java is required by Hadoop, so this file is used by the HDFS daemons to locate
JAVA_HOME. This file also specifies memory settings for all of the HDFS daemons.  This
is the file to use if you need to tweak memory settings for the HDFS daemons.  This file
might also be investigated when dealing with memory errors with the HDFS daemons. 
This file is useful for memory issues and garbage collector issues.



Hortonworks Data Platform Jul 2, 2014

25

• /etc/hadoop/conf/yarn-env.sh

Java is required by Hadoop, so this file is used by the YARN daemons to locate
JAVA_HOME. This file also specifies memory settings for all of the YARN daemons.  This
is the file to use if you need to tweak memory settings for the YARN daemons.  This file
might also be investigated when dealing with memory errors with the YARN daemons. 
This file is also useful for memory issues and garbage collector issues.

• /etc/hadoop/conf/log4j.properties

This file is used to modify the log purging intervals of the MapReduce log files. It
defines the logging for all of the Hadoop daemons, and includes information related to
appenders used for logging and layout. 

Configuration File Permissions

Listed below are the proper HDFS-related permissions and user/groups for folders and files
for a working HDP cluster.

drwxr-xr-x   3 root   root     4096 /etc/hadoop
lrwxrwxrwx 1 hadoop_deploy hadoop   29 conf -> /etc/alternatives/hadoop-conf
-rw-r--r-- 1 hdfs   hadoop 2316 core-site.xml
-rw-r--r-- 1 mapred hadoop 7632 mapred-site.xml
-rw-r--r-- 1 mapred hadoop 7632 yarn-site.xml
-rw-r--r-- 1 mapred hadoop 2033 mapred-queue-acls.xml
-rw-r--r-- 1 hdfs   hadoop  928 taskcontroller.cfg
-rw-r--r-- 1 root   root   9406 capacity-scheduler.xml
-rw-r--r-- 1 root   root    327 fair-scheduler.xml
-rw-r--r-- 1 hdfs   hadoop 4867 hadoop-env.sh
-rw-r--r-- 1 hdfs   hadoop 4867 yarn-env.sh

1.3.2.4. Process ID Files

These are the proces ID (.pid) files that are generated when the daemons are created:

/var/run/hadoop-yarn/yarn/yarn-yarn-resourcemanager.pid
/var/run/hadoop-yarn/yarn/yarn-yarn-nodemanager.pid
/var/run/hadoop-mapreduce/mapred/mapred-mapred-historyserver.pid

Without the proper permissions, the MapReduce daemons may not start or stop. The
proper permissions are listed below.

drwxr-xr-x 2 yarn hadoop 4096 Oct 31 11:54 .
drwxrwxr-x 3 yarn hadoop 4096 Oct 20 15:15 ..
-rw-r--r-- 1 yarn hadoop    5 Oct 31 11:54 yarn-yarn-nodemanager.pid
-rw-r--r-- 1 yarn hadoop    5 Oct 31 11:54 yarn-yarn-resourcemanager.pid
-rw-r--r-- 1 mapred hadoop 5 Oct 31 11:54 /var/run/hadoop-mapreduce/mapred/
mapred-mapred-historyserver.pid

1.3.2.5. Log Files

These files are used to configure MapReduce jobs.

The following environment files define the log location for YARN and MRv2 for the
daemons.

• yarn-env.sh:export YARN_LOG_DIR=/var/log/hadoop-yarn/$USER



Hortonworks Data Platform Jul 2, 2014

26

• hadoop-env.sh:export HADOOP_LOG_DIR=/var/log/hadoop-mapred/$USER

Note

• The Job History Server runs as the “mapred” user, and it will use the
hadoop-env.sh file.

• The Resource Manager and the Node Manager run as the “yarn” user, and
they will use the yarn-env.sh file.

• The Application Master and Container log files are removed from the local
directories once the Job finishes, and are moved to the HDFS2 directory.

• The Job History Server will display the Application Master and Containers log
files, which are stored in HDFS2 for 30 days.

Daemon .out Files

The log files with the .out extension for MRv2 and YARN daemons are located in /var/
log/hadoop-mapred/mapred and in /var/log/hadoop-yarn/yarn. These files have
the following naming convention:

• hadoop-mapred-historyserver-<HistoryServer_Host>.out

• yarn-yarn-nodemanager-<nodemanager_host>.out

• yarn-yarn-resourcemanager-<resourcemanager_host>.out

These .out files are created and written to during start-up of the MRv2 and YARN
daemons. It is very rare that these files get populated, but they can be helpful when trying
to determine why Resource Manager, Node Manager, or the Job History Server daemons
are not starting up.

Daemon .log Files

The log files with the .log extension for MRv2 and YARN daemons are located in /var/
log/hadoop/mapred  and in /var/log/hadoop-yarn/yarn. These files have the
following naming convention:

• hadoop-mapred-historyserver-<HistoryServer_Host>.log

• yarn-yarn-nodemanager-<nodemanager_host>.log

• yarn-yarn-resourcemanager-<resourcemanager_host>.log

These files show the log messages for the running daemons. If there are any errors
encountered while the daemon is running, the stack trace of the error is logged in these
files.  

Note

Log files are rotated daily by default, but can be adjusted by modifying the /
etc/hadoop/conf/log4j.properties file.



Hortonworks Data Platform Jul 2, 2014

27

Daemon .log.<date> Files

The .log.<date>files have the following format:

• hadoop-mapred-historyserver-<HistoryServer_Host>.log.<date>

• yarn-yarn-nodemanager-<nodemanager_host>.log.<date>

• yarn-yarn-resourcemanager-<resourcemanager_host>.log.<date>

When .log files are rotated, the file name is appended with a date. An example of the file
name would be:

mapred-mapred-historyserver-sandbox.log.2013-10-26

This indicates that the file was rotated on Oct 26, 2013. These files are useful when an issue
has occurred multiple times, and comparing these older log files with the most recent log
file can help uncover patterns of occurrence.

MapReduce V2 Container Log Files

The log files for specific applications and their Containers are located in HDFS. You can
access Container log files using either the command line or the Resource Manager UI.

To access the Container log files using the command line, you first need to obtain the
application ID by running the following command:

yarn application -list

This command returns a list of the applications, along with their application IDs:

yarn application -list
13/11/04 23:39:09 INFO client.RMProxy: Connecting to Resource Manager at
 sandbox/10.11.2.159:8050
Total number of applications (application-types: [] and states: [SUBMITTED,
 ACCEPTED, RUNNING]):1
                Application-Id     Application-Name     Application-Type      
 User      Queue              State        Final-State        Progress        
                Tracking-URL
application_1383601692319_0008      QuasiMonteCarlo            MAPREDUCE      
 hdfs    default           ACCEPTED          UNDEFINED              0%        
                         N/A

You can then use the application ID in the following command to access the Container log
files:

yarn logs -applicationId application_1383601692319_0008

Note

The log files are stored in HDFS under the following path:

/app-logs/hdfs/logs/<application_id>/<hostnames*>_4545

Information about using the Resource Manager UI to access the Container log files is
available on this page under "Using the Web GUI to Monitor Examples."

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/bk_using-apache-hadoop/content/running_mapreduce_examples_on_yarn.html


Hortonworks Data Platform Jul 2, 2014

28

1.3.2.6. Ports

This section provides information about the ports used by the MapReduce services. Because
this is a distributed file system, this port information can help isolate issues due to
communication between nodes.

HTTP Ports

The Resource Manager, Job History Server, and Node Manager services each have a web
interface, and therefore listen on an Hypertext Transfer Protocol (HTTP) port.  This makes
it possible for any client with network access to the nodes to access the web page and view
specific information on the MRv2 jobs submitted.  Each of the MapReduce services can
be configured to listen on a specific port. These ports are configured within the yarn-
site.xml file.  The following table lists the HTTP ports for the MRv2 and YARN services.

MapReduce Service Configuration Property Name from yarn-site.xml Default Value

Resource Manager yarn.resourcemanager.webapp.address             8088

Job History Server yarn.log.server.url 19888

IPC Ports

Interprocess Communication (IPC) is used by the Resource Manager  to submit jobs. The
following table lists the ports that the Resource Manager uses to for job submission.

MapReduce service Configuration Property Name from yarn-site.xml Default value

Resource Manager yarn.resourcemanager.address 8050

RM APIs webapp yarn.resourcemanager.webapp.address 8025

RM scheduler yarn.resourcemanager.scheduler.address 8030

Node Manager yarn.nodemanager.address 45454

RM Admin yarn.resourcemanager.admin.address 8141

For more information on IPC, see http://wiki.apache.org/hadoop/ipc.

1.3.2.7. Gathering General Information

Operating System Information

The following commands will provide the Linux Kernel version and type.  With this
information, you can determine if HDP is running on a supported platform.

Command:

uname -a

Example:

$ uname -a
Linux test63.localdomain 2.6.32-279.el6.x86_64 #1 SMP Fri Jun 22 
12:19:21 UTC 2012 x86_64 x86_64 x86_64 GNU/Linux

Command:

http://wiki.apache.org/hadoop/ipc


Hortonworks Data Platform Jul 2, 2014

29

cat /proc/version

Example:

$ cat /proc/version
Linux version 2.6.32-279.el6.x86_64 
(mockbuild@c6b9.bsys.dev.centos.org) (gcc version 4.4.6 20120305 (Red 
Hat 4.4.6-4) (GCC) ) #1 SMP Fri Jun 22 12:19:21 UTC 2012

Command:

cat /etc/*-release

Example:

$ cat /etc/*-release
CentOS release 6.3 (Final)
CentOS release 6.3 (Final)
CentOS release 6.3 (Final)

Determine Installed Software

This information is helpful when troubleshooting performance-related issues, or when
there is unexpected behavior occurring on one specific machine.  One example would be
a MapReduce job that suddenly starts running for 20 minutes rather than the expected 1
minute. The following command does not list any tarball-type installations, so you should
keep in mind the possibility that some programs may have been installed outside of the
system package manager. 

Command:

rpm -qa

Example:

# rpm -qa | egrep "hadoop|yarn"
hadoop-hdfs-2.2.0.2.0.6.0-76.el6.x86_64
hadoop-mapreduce-2.2.0.2.0.6.0-76.el6.x86_64
hadoop-lzo-native-0.5.0-1.x86_64
hadoop-mapreduce-historyserver-2.2.0.2.0.6.0-76.el6.x86_64
hadoop-2.2.0.2.0.6.0-76.el6.x86_64
hadoop-lzo-0.5.0-1.x86_64
hadoop-yarn-2.2.0.2.0.6.0-76.el6.x86_64
hadoop-libhdfs-2.2.0.2.0.6.0-76.el6.x86_64
hadoop-yarn-resourcemanager-2.2.0.2.0.6.0-76.el6.x86_64
hadoop-client-2.2.0.2.0.6.0-76.el6.x86_64
hadoop-yarn-nodemanager-2.2.0.2.0.6.0-76.el6.x86_64

Detect Running Processes

This information is helpful when troubleshooting performance-related issues, or when
there is unexpected behavior occurring on one specific machine. 

Command:

ps -aux



Hortonworks Data Platform Jul 2, 2014

30

Example:

$ ps -aux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.0  0.0  19348   620 ?        Ss   Sep25   0:06 /sbin/init
postgres  6705  0.0  0.0 214952  2936 ?        Ss   09:18   0:00 postgres:
 mapred ambarirca 10.10.3.27(60031) idle 
root         3  0.0  0.0      0     0 ?        S    Sep25   0:00 [migration/0]
root         4  0.0  0.0      0     0 ?        S    Sep25   0:07 [ksoftirqd/0]

Detect Java Running Processes

The command below lists the Java processes that are running on the machine.  Since most
Hadoop code is based on Java, using this command can also help verify that the Hadoop
processes are running on a specific machine.

Note

The jps command may not be within the PATH variable for the user that is
logged in. If not, you must first set the PATH variable, or you can simply provide
the full path, for example:

/usr/jdk64/jdk1.6.0_31/bin/jps

Command:

jps

Example output:

10528 Resource Manager
25185 Jps
9202 RunJar
10141 Bootstrap
8001 QuorumPeerMain
7357 NameNode
8358 HMaster
12474 HRegionServer
9605 RunJar
1921 Node Manager
8857 JobHistoryServer
5612 DataNode
17667 RunJar
2943 AmbariServer
11103 SecondaryNameNode

Show Open Files Linked to a Process ID

This information is helpful in determining which process has a lock on a specific file, such as
issues where errors state that a file is locked, and hence a process cannot start because it
cannot write to a file.

Command:

lsof -p <pid> | grep <file string name>

Example:



Hortonworks Data Platform Jul 2, 2014

31

$ lsof -p 8857 | grep var
java    8857 mapred    1w   REG              253,0     2031 542470 /var/log/
hadoop-mapreduce/mapred/mapred-mapred-historyserver-sandbox.out
java    8857 mapred    2w   REG              253,0     2031 542470 /var/log/
hadoop-mapreduce/mapred/mapred-mapred-historyserver-sandbox.out
java    8857 mapred  159w   REG              253,0    95452 542286 /var/log/
hadoop-mapreduce/mapred/mapred-mapred-historyserver-sandbox.log

Verifying Well-formed XML

The following command can help determine if a configuration file in XML format is well-
formed. If the XML file is well-formed, it will simply be opened. If there are problems with
the file, a list of errors will be displayed. This command can help uncover any syntax errors
that might occur as a result of manually editing configuration files in Hadoop. The example
below shows the list of errors returned when an XML file is not well-formed.

Command:

xmllint <xml file>

Example:

$ xmllint ./hdfs-site.xml
./hdfs-site.xml:187: parser error : Opening and ending tag mismatch: property
 line 6 and configuration
 </configuration>
                 ^
./hdfs-site.xml:188: parser error : Premature end of data in tag property line
 3

^
./hdfs-site.xml:188: parser error : Premature end of data in tag configuration
 line 2

^

Detect Auto-start Processes

Ideally the cluster administrator should have this information. Information about auto-
start processes can help in determining why a certain behavior is specific to a machine. 
For instance, it is possible that a process that auto-starts on boot-up is preventing one of
the HDP components to launch due to a port conflict after rebooting a node. Below is the
command that returns a list of cron jobs.

Command:

for user in $(cut -f1 -d: /etc/passwd); do crontab -u $user -l; done

Example:

$ for user in $(cut -f1 -d: /etc/passwd); do crontab -u $user -l; done
no crontab for root
no crontab for bin
no crontab for daemon
no crontab for adm
no crontab for lp
no crontab for sync



Hortonworks Data Platform Jul 2, 2014

32

no crontab for shutdown
no crontab for halt
no crontab for mail

Get a List of All Mounts on a Machine

Gathering this information will help in determining what drives are actually mounted or
available for use on the node. The following commands are helpful in determining if the
system is hitting any storage limitations. Unexpected behavior can occur when disks are full.

Command:

df

Example:

$ df
Filesystem           1K-blocks      Used Available Use% Mounted on
/dev/mapper/VolGroup-lv_root
                     11272464   4729432   5970412  45% /
tmpfs                   961928       272    961656   1% /dev/shm
/dev/sda1               495844     37433    432811   8% /boot

Command:

cat /etc/fstab

Example:

root@a2nn:~> cat /etc/fstab

#
# /etc/fstab
# Created by anaconda on Wed Mar 20 15:03:22 2013
#
# Accessible filesystems, by reference, are maintained under '/dev/disk'
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#
/dev/mapper/vg_a2nn-lv_root /                       ext4    defaults        1
 1
UUID=8bbdbae7-9cb8-4b66-af1c-4f904f047501 /boot                   ext4   
 defaults        1 2
/dev/mapper/vg_a2nn-lv_swap swap                    swap    defaults        0
 0
tmpfs                   /dev/shm                tmpfs   defaults        0 0
devpts                  /dev/pts                devpts  gid=5,mode=620  0 0
sysfs                   /sys                    sysfs   defaults        0 0
proc                    /proc                   proc    defaults        0 0
root@a2nn:~> 

Operating System Log Files

These files can help in determining if a machine was rebooted or shut down at a particular
time. The log files can help determine why some HDP services were not working or not
operational at a specific time.

• /var/log/messages



Hortonworks Data Platform Jul 2, 2014

33

Contains global system messages, including messages that are logged during system
start-up.

• /var/log/audit/audit.log

This file is only available if the /etc/init.d/auditd daemon has been started. To
check status, execute /etc/init.d/auditd status.  This file can be used to check
which user executed a command at a particular time.

Hardware Information

The following commands provide information about the hardware components installed
on the machine. This will help in isolating issues related to hardware.

The following command lists information about the PCI buses and devices in the system:

lspci

Example:

$ lspci
00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox
 Graphics Adapter
00:03.0 Ethernet controller: Advanced Micro Devices [AMD] 79c970 [PCnet32
 LANCE] (rev 10)
00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest
 Service
00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97 Audio
 Controller (rev 01)
00:06.0 USB controller: Apple Computer Inc. KeyLargo/Intrepid USB
00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:08.0 Ethernet controller: Advanced Micro Devices [AMD] 79c970 [PCnet32
 LANCE] (rev 10)
00:0d.0 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA
 Controller [AHCI mode] (rev 02)

The following command returns CPU information for the machine:

cat /proc/cpuinfo

Example:

$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model  : 58
model name : Intel(R) Core(TM) i7-3615QM CPU @ 2.30GHz
stepping : 9
cpu MHz : 2283.256
cache size : 6144 KB

Network Information



Hortonworks Data Platform Jul 2, 2014

34

This set of commands can be helpful when troubleshooting network issues. 

The following command provides the IP address and validates that the network interfaces
are up, and that there is an IP address tied to the interfaces. When dealing with issues
involving communication between nodes, this is a good place to start.

ifconfig

Example:

$ ifconfig
eth0      Link encap:Ethernet  HWaddr 08:00:27:76:CD:33  
          inet addr:10.10.3.27  Bcast:10.10.3.255  Mask:255.255.254.0
          inet6 addr: fe80::a00:27ff:fe76:cd33/64 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:1217765 errors:0 dropped:0 overruns:0 frame:0
          TX packets:336245 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000 
          RX bytes:308949876 (294.6 MiB)  TX bytes:128725650 (122.7 MiB)

lo        Link encap:Local Loopback  
          inet addr:127.0.0.1  Mask:255.0.0.0
          inet6 addr: ::1/128 Scope:Host
          UP LOOPBACK RUNNING  MTU:16436  Metric:1
          RX packets:1609854 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1609854 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:619945138 (591.2 MiB)  TX bytes:619945138 (591.2 MiB)

virbr0    Link encap:Ethernet  HWaddr 52:54:00:EB:5E:B7  
          inet addr:192.168.122.1  Bcast:192.168.122.255  Mask:255.255.255.0
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:175 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:0 (0.0 b)  TX bytes:10172 (9.9 KiB)

The following command returns a list of the ports used within the system. This is helpful in
determining if a specific port is already in use, and therefore another application cannot
bind and listen on the port. This command can be useful when trying to isolate why certain
HDP Master processes are not able to start up.

netstat -an

Example:

$ netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address               Foreign Address            
 State      
tcp        0      0 10.10.10.157:51111          0.0.0.0:*                  
 LISTEN      
tcp        0      0 127.0.0.1:199               0.0.0.0:*                  
 LISTEN      
tcp        0      0 10.10.10.157:50090          0.0.0.0:*                  
 LISTEN      
tcp        0      0 0.0.0.0:8010                0.0.0.0:*                  
 LISTEN      



Hortonworks Data Platform Jul 2, 2014

35

tcp        0      0 0.0.0.0:3306                0.0.0.0:*                  
 LISTEN      
tcp        0      0 0.0.0.0:8651                0.0.0.0:*                  
 LISTEN

You can use the following command to start, stop, and check the status of the firewall
service on a CentOS or RHEL operating system. The firewall service status represents
another possible reason why communication cannot be established between nodes. 

service iptables [stop | status | start]

Example:

$service iptables status
iptables: Firewall is not running.

1.3.2.8. Common MRv2 Commands

This section provides some helpful MapReduce Version 2 commands. The full list of
commands is available on the apache.org website at http://hadoop.apache.org/docs/
r2.2.0/hadoop-project-dist/hadoop-common/CommandsManual.html.

Getting the Hadoop Version

Command:

hadoop version

Example:

[hdfs@sandbox run]$ hadoop version
Hadoop 2.2.0.2.0.6.0-76
Subversion git@github.com:hortonworks/hadoop.git -r
 8656b1cfad13b03b29e98cad042626205e7a1c86
Compiled by jenkins on 2013-10-18T00:19Z
Compiled with protoc 2.5.0
From source with checksum d23ee1d271c6ac5bd27de664146be2
This command was run using /usr/lib/hadoop/hadoop-common-2.2.0.2.0.6.0-76.jar

Running the Pi Job

Command:

hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples-*.jar pi 10 10

Getting the Running Job List

Command:

yarn application -list

Example:

[yarn  application -list

http://hadoop.apache.org/docs/r0.18.1/commands_manual.html
http://hadoop.apache.org/docs/r0.18.1/commands_manual.html


Hortonworks Data Platform Jul 2, 2014

36

13/11/04 12:08:40 INFO client.RMProxy: Connecting to Resource Manager at
 sandbox/10.11.2.159:8050
Total number of applications (application-types: [] and states: [SUBMITTED,
 ACCEPTED, RUNNING]):1
                Application-Id     Application-Name     Application-Type      
 User      Queue              State        Final-State        Progress        
                Tracking-URL
application_1383594295029_0005      QuasiMonteCarlo            MAPREDUCE      
 hdfs    default           ACCEPTED          UNDEFINED              0%        
                         N/A

Getting the Queue List

Command:

hadoop queue -list

Example:

[hdfs@sandbox run]$ hadoop queue -list
DEPRECATED: Use of this script to execute mapred command is deprecated.
Instead use the mapred command for it.

13/10/31 14:07:55 INFO client.RMProxy: Connecting to Resource Manager at
 sandbox.hortonworks.com/10.0.2.15:8050
======================
Queue Name : default 
Queue State : running 
Scheduling Info : Capacity: 100.0, MaximumCapacity: 100.0, CurrentCapacity: 0.
0

Getting the Access Control List for the Current User

Command:

hadoop queue -showacls

Example:

root@a2nn:~> hadoop queue -showacls
Queue acls for user :  root

Queue  Operations
=====================
default  submit-job,administer-jobs
data-analysis  submit-job,administer-jobs

Kill an Application

Command:

yarn application  -kill  <application_id>

Kill a Task

Command:

hadoop job -kill-task <task-id>



Hortonworks Data Platform Jul 2, 2014

37

Fail a Task

Command:

hadoop job -fail-task <task-id>

List Attempts

Command:

hadoop job -list-attempt-ids <job-id> <task-type> <task-state>

1.3.2.9. MRv2 Troubleshooting Actions Checklist

1. Understand the issue. Check to see if the issue exists with all MRv2 jobs. Determine when
a particular job or script last worked successfully. Understand the actual and expected
behavior and formulate a problem statement.

2. Verify that all components related to MRv2 are running.  You can use the ps and jps
commands to check to see if the processes for dependent components are running.
Ensure that all ports are listening, are bound to a process, and accept connection (i.e.,
firewall issues).

3. Look at the job details in the Resource Manager  UI.

a. Use the UI to navigate to the job attempt.

b. Look at the log file for the failed attempt.

4. Look at the Resource Manager and the Node Manager log files in the Resource
Manager UI, or on the specific nodes.

5. Use the yarn logs command to collect all of the logs of the Containers.

6. Check the Job Configuration in the Resource Manager UI to make sure that all of the
desired parameters were actually passed on to the job.

7. Run the MRv2 pi job provided with the HDP examples to see if that job succeeds:

• If it succeeds, check to see if there is a problem with the client or the data.

• If it fails there is probably some basic problem with the process or the configuration.

8. If the job is run through streaming or pipes, run a similar job to troubleshoot.

9. If the job is started by one of the other HDP components, look at the component-specific
guide.

10.Look for the operating system information and verify that it is supported.

11.Search the Hortonworks Knowledge Base for a possible solution.

12.If the issue is still not resolved, log a case in the Hortonworks Support Portal:



Hortonworks Data Platform Jul 2, 2014

38

a. Provide all of the information gathered in the preceding steps, along with the
information in the “Checklist of Items to Collect” list in the following section.

b. Tar the configuration files and the log files and attach them to the case.

c. Inform Hortonworks if it is a Production, Development, or POC environment.

Checklist of Items to Collect

1. Collect the most recent log files for all of the MRv2 daemons.

2. Get copies of the following configuration files:

3. Provide the number of Data Nodes in the cluster, as well as the total number of nodes.

4. Use the yarn logs command to collect the log files of the Containers for all of the
tasks.

5. How was HDP installed -- with Ambari, or manually with RPM?

6. Provide hardware specifications: CPU, memory, disk drives, number of network
interfaces.

1.3.2.10. Common Server-Side Issues

Resource Manager or Node Manager: Fails to Start or Crashes

Symptoms may include:

• Process appears to start, but then disappears from the process list.

• Node Manager cannot bind to interface.

• Kernel Panic, Halt.

Potential Root Cause:  Existing
Process Bound to Port

Troubleshooting Steps:

• Examine bound ports to ensure no other process has
already bound.

Resolution Steps:

• Resolve the port conflict before attempting to restart
the Resource Manager/Node Manager.

Information to Collect:

• List of bound interfaces/ports and the process.

• Resource Manager log.

Potential Root Cause:  Incorrect
File Permissions

Troubleshooting Steps:



Hortonworks Data Platform Jul 2, 2014

39

• Verify that all Hadoop file system permissions are set
properly.

• Verify the Hadoop configurations.

Resolution Steps:

• Follow the procedures for handling failure due to file
permissions (see Hortonworks KB Solutions/Articles).

• Fix any incorrect configuration.

Information to Collect:

• Dump of file system permissions, ownership,
and flags -- by looking in the configuration
value in the yarn-site.xml file for the
yarn.nodemanager.local-dirs property. In this
case, it has a value of “/hadoop/yarn/local”. From the
command line, run:

ls -lR /hadoop/yarn/local

• Resource Manager log.

• Node Manager log.

Potential Root Cause:  Incorrect
Name-to-IP Resolution

Troubleshooting Steps:

• Verify that the name/IP resolution is correct for all
nodes in the cluster.

Resolution Steps:

• Fix any incorrect configuration.

Information to Collect:

• Local hosts file for all hosts on the system (/etc/
hosts).

• Resolver configuration (/etc/resolv.conf).

• Network configuration (/etc/sysconfig/
network-scripts/ifcfg-ethX where X =
number of interface card).

Potential Root Cause:  Java
Heap Space Too Low

Troubleshooting Steps:

• Examine the heap space property in yarn-env.sh

• Examine the settings in Ambari cluster management.

Resolution Steps:



Hortonworks Data Platform Jul 2, 2014

40

• Adjust the heap space property until the Resource
Manager resumes running.

Information to Collect:

• yarn-env.sh from cluster.

• Screen-shot of Ambari cluster management mapred
settings screen.

• Resource Manager log.

• Node Manager log.

Potential Root Cause: 
Permissions Not Set Correctly
on Local File System

Troubleshooting Steps:

• Examine the permissions on the various directories on
the local file system.

• Verify proper ownership (yarn/mapred for
MapReduce directories and hdfs for HDFS
directories).

Resolution Steps:

• Use the chmod command to change the permissions
of the directories to 755.

• Use the chown command to assign the directories to
the correct owner (hdfs or yarn/mapred).

• Relaunch the Hadoop daemons using the correct
user.

Information to Collect:

• core-site.xml, hdfs-site.xml, mapred-
site.xml, yarn-site.xml

• Permissions listing for the directories listed in the
above configuration files.

Potential Root Cause: 
Insufficient Disk Space

Troubleshooting Steps:

• Verify that there is sufficient space on all system, log,
and HDFS partitions.

• Run the df -k command on the Name/DataNodes
to verify that there is sufficient capacity on the disk
volumes used for storing NameNode or HDFS data.

Resolution Steps:

• Free up disk space on all nodes in the cluster.



Hortonworks Data Platform Jul 2, 2014

41

-OR-

• Add additional capacity.

Information to Collect:

• Core dumps.

• Linux command: last (history).

• Dump of file system information.

• Output of df -k command.

Potential Root Cause:  Reserved
Disk Space is Set Higher than
Free Space

Troubleshooting Steps:

• In hdfs-site.xml, check that the value of the
dfs.datanode.du.reserved property is less than
the available free space on the drive.

Resolution Steps:

• Configure an appropriate value, or increase free
space.

Information to Collect:

• HDFS configuration files.

Node Java Process Exited Abnormally

Potential Root Cause:  Improper
Shutdown

Troubleshooting Steps:

• Investigate the OS history and the Hadoop audit logs.

• Verify that no edit log or fsimage corruption
occurred.

Resolution Steps:

• Investigate the cause, and take measures to prevent
future occurrence.

Information to Collect:

• Hadoop audit logs.

• Linux command: last (history).

• Linux user command history.

Potential Root Cause:  Incorrect
Memory Configuration

Troubleshooting Steps:

• Verify values in configuration files.



Hortonworks Data Platform Jul 2, 2014

42

• Check logs for stack traces -- out of heap space, or
similar.

Resolution Steps:

• Fix configuration values and restart job/Resource
Manager/Node Manager.

Information to Collect:

• Resource Manager.

• Node Manager.

• MapReduce v2 configuration files.

Node Manager Denied Communication with Resource Manager

Potential Root Cause: 
Hostname in Exclude File or
Doesn't Exists in Include File

Troubleshooting Steps:

• Verify the contents of the files referenced in the
yarn.resourcemanager.nodes.exclude-
path property or the
yarn.resourcemanager.nodes.include-path
property.

• Verify that the host for this Node Manager is not
being decommissioned.

Resolution Steps:

• If hostname for the Node Manager is in the file, and it
is not meant for decommissioning, remove it.

Information to Collect:

• Files that are pointed to by the
yarn.resourcemanager.nodes.exclude-path
or  yarn.resourcemanager.nodes.include-
path properties.

Potential Root Cause:  Node
was Decommissioned and/or
Reinserted into the Cluster

Troubleshooting Steps:

• This is a problem with HDFS. Refer to the HDFS
Troubleshooting Guide.

Potential Root Cause:  Resource
Manager is Refusing the
Connection

Troubleshooting Steps:

• Follow the steps (described previously) to ensure that
the NameNode has started and is accepting requests.

Resolution Steps:

• Ensure that the DataNode is not in the "exclude" list.



Hortonworks Data Platform Jul 2, 2014

43

• Ensure that the DataNode host is in the "include" list.

Information to Collect:

• NameNode slaves file.

• NameNode hosts.deny file (or the file specified as
the blacklist in HDFS configuration).

• NameNode hosts.allow file (or the file specified as
the whitelist in HDFS configuration).

• HDFS Configuration.

Potential Root Cause: 
NameNode is Refusing the
Connection

Troubleshooting Steps:

• Follow the steps (described previously) to ensure that
the NameNode has started and is accepting requests.

Resolution Steps:

• Ensure that the DataNode is not in the "exclude" list.

Information to Collect:

• NameNode slaves file.

• NameNode hosts.deny file (or the file specified as
the blacklist in HDFS configuration).

• NameNode hosts.allow file (or the file specified as
the whitelist in HDFS configuration).

• HDFS Configuration.

Error: Could Only be Replicated to x Nodes, Instead of n

Potential Root Cause:  At Least
One DataNode is Nonfunctional

Troubleshooting Steps:

• This is a problem with HDFS. Refer to the HDFS
Troubleshooting Guide.

Potential Root Cause:  One
or More DataNodes Are Out
of Space on Their Currently
Available Disk Drives

Troubleshooting Steps:

• This is a problem with HDFS. Refer to the HDFS
Troubleshooting Guide.

1.3.2.11. Common Client-Side Issues

Job Fails to Start

Symptom: Exception When
Job Submitted, Potential Root

Troubleshooting Steps:



Hortonworks Data Platform Jul 2, 2014

44

Cause:  Mistake in the Job's
User Code

• Examine Node Manager/Resource Manager logs and
task-logs to find the exact exception.

Resolution Steps:

• Examine the stack-trace for the thrown exception.

• Examine the user code to see if you can spot the
error.

Information to Collect:

• Resource Manager log.

• Node Manager log.

• The exception trace that the user has mentioned, and
the task logs.

• If possible, get at least a snippet of Java code from
the area where the exception was thrown.

Symptom: "No Class Def Found"
or Similar Exception When
Trying to Start Job, Potential
Root Cause - 1:  Job's .jar File
-- or Other .jar File -- Not on
Classpath

Troubleshooting Steps:

• Verify that the exception is ClassNotFound,
NoSuchMethodError, or a similar exception.

Resolution Steps:

• Find the .jar file that contains the missing class and
add it to the classpath.

Information to Collect:

• The entire command used to submit the job.

• The stack-trace from the Node Manager logs.

Potential Root Cause - 2:  Main
Class or Method of the Job
Code is not "Public Static"

Troubleshooting Steps:

• Examine the code for the main MRv2 class.

Resolution Steps:

• Set access modifiers to "public static"

• Recompile and re-test.

Information to Collect:

• The exact exception thrown by Hadoop.

• The job source code.

Job Seems to Hang in Setup



Hortonworks Data Platform Jul 2, 2014

45

Symptom: Job Seems to Hang
and Node Manager Becomes
"Blacklisted", Potential Root
Cause:  Too Many Allowed
Slots Configured for the System
Memory on the Node

Troubleshooting Steps:

• Verify the amount of system memory.

• Calculate the required memory for each configured
Container.

• Take into account any other processes running on the
node.

Resolution Steps:

• Add all of the above. If the total is greater than the
total available on the node, you will need to reduce
the amount configured in the Container properties.

Symptom: Job Seems to
Hang Without "Blacklisting",
Potential Root Cause:  No Node
Managers Currently Available

Troubleshooting Steps:

• Verify the number of available MRv2 tasks available
by looking at:

<Resource Manager host>:8088/cluster/nodes

Resolution Steps:

• Wait until more Node Managers become available,
then see if the job runs.

Information to Collect:

• None until the job actually fails to run, then
troubleshoot based on the failure symptom.

1.3.3. YARN Components

In Hadoop version 1, MapReduce was responsible for both processing and cluster resource
management.

In Apache Hadoop version 2, cluster resource management has been moved from
MapReduce into YARN, thus enabling other application engines to utilize YARN and
Hadoop, while also improving MapReduce performance.

Use the following resources to learn more about YARN Components:

• YARN Overview

• Resource Manager

• Node Manager

• Application Master

• Containers



Hortonworks Data Platform Jul 2, 2014

46

• Job History Service

• YARN Walk-through

1.3.3.1. YARN Overview

The MapReduce Distributed Processing Model

The MapReduce distributed processing model consists of a highly parallel map phase where
input data is split into discreet chunks for processing. It is followed by the second and final
reduce phase where the output of the map phase is aggregated to produce the desired
result. The simple -- and fairly restricted -- nature of this programming model lends itself
to very efficient implementations on an extremely large scale across thousands of cheap,
commodity nodes.

Apache Hadoop MapReduce is the most popular open-source implementation of the
MapReduce model. In particular, when MapReduce is paired with a distributed file system
such as Apache Hadoop HDFS, which can provide very high aggregate I/O bandwidth
across a large cluster, the economics of the system are extremely compelling –- a key factor
in the popularity of Hadoop.

One of the key features in MapReduce is the lack of data motion, i.e., move the
computation to the data, rather than moving data to the compute node via the network.
Specifically, the MapReduce tasks can be scheduled on the same physical nodes on which
data resides in HDFS, which exposes the underlying storage layout across the cluster. This
significantly reduces the network I/O patterns and keeps most of the I/O on the local disk
or within the same rack, which is a key advantage.

MapReduce on Hadoop Version 1

Apache Hadoop MapReduce is an open-source Apache Software Foundation project, and
is an implementation of the MapReduce programming model described above. Version 1
of the Apache Hadoop MapReduce project can be broken down into the following major
components:

• The end-user MapReduce API for programming the desired MapReduce application.

• The MapReduce framework, which is the run-time implementation of various phases such
as the map phase, the sort/shuffle/merge aggregation, and the reduce phase.

• The MapReduce system, which is the back-end infrastructure required to run the
MapReduce application, manage cluster resources, schedule thousands of concurrent
jobs, etc.

This separation of elements offered significant benefits, particularly for end-users – they
could completely focus on the application via the API, and allow the combination of the
MapReduce Framework and the MapReduce System to deal with details such as resource
management, fault-tolerance, scheduling, etc.

The version 1 Apache Hadoop MapReduce System was composed of the Job Tracker, which
was the master, and the per-node slaves referred to as Task Trackers.



Hortonworks Data Platform Jul 2, 2014

47

In Hadoop version 1, the Job Tracker is responsible for resource management (managing
the worker nodes via the Task Trackers), tracking resource consumption and availability,
and also job life-cycle management (scheduling individual tasks of a job, tracking progress,
providing fault-tolerance for tasks, etc.).

The Task Tracker has simple responsibilities: executing launch and tear-down tasks on
orders from the Job Tracker, and periodically providing task status information to the Job
Tracker.

MapReduce works well for many applications, but not all. Other programming models are
better suited for applications such as graph processing (Google Pregel, Apache Giraph) and
iterative modeling using MPI (Message Parsing Interface). It also became clear that there
was room for improvement in scalability, utilization, and user agility.

MapReduce on Hadoop YARN

In Apache Hadoop version 2, cluster resource management has been moved from
MapReduce into YARN, thus enabling other application engines to utilize YARN and
Hadoop. This also streamlines MapReduce to do what it does best: process data. With
YARN, you can now run multiple applications in Hadoop, all sharing a common resource
management. 



Hortonworks Data Platform Jul 2, 2014

48

The fundamental idea of YARN is to split up the two major responsibilities of the Job
Tracker -- resource management and job scheduling/monitoring -- into separate daemons: a
global Resource Manager and a per-application Application Master. The Resource Manager
and its per-node slave, the Node Manager, form the new operating system for managing
applications in a distributed manner.



Hortonworks Data Platform Jul 2, 2014

49

The Resource Manager is the ultimate authority that arbitrates resources among all the
applications in the system. The per-application Application Master is a framework-specific
entity, and is tasked with negotiating resources from the Resource Manager and working
with the Node Managers to execute and monitor the component tasks.

The Resource Manager has a pluggable Scheduler component, which is responsible for
allocating resources to the various running applications subject to familiar constraints of
capacities, queues etc. The Scheduler is a pure scheduler in the sense that it performs no
monitoring or tracking of status for the application, offering no guarantees on restarting
failed tasks either due to application or hardware failures. The scheduler performs its
scheduling function based on the resource requirements of an application by using the
abstract notion of a resource Container, which incorporates resource dimensions such as
memory, CPU, disk, network, etc.

The Node Manager is the per-machine slave, and is responsible for launching the
applications’ Containers, monitoring their resource usage (CPU, memory, disk, network),
and reporting this information to the Resource Manager.

The per-application Application Master has the responsibility of negotiating appropriate
resource Containers from the Scheduler, tracking their status, and monitoring their
progress. From the system perspective, the Application Master runs as a normal Container.

One of the crucial implementation details for MapReduce within the new YARN system is
the reuse of the existing MapReduce framework without any major changes. This step was
very important to ensure compatibility with existing MapReduce applications.

1.3.3.2. Resource Manager

The YARN Resource Manager is the master that arbitrates the available cluster resources,
and thus helps manage the distributed applications running on the YARN system. It works
together with the per-node Node Managers and the per-application Application Masters.

In YARN, the Resource Manager is primarily limited to scheduling, i.e., only arbitrating
available resources in the system among the competing applications, and not concerning
itself with per-application state management. The scheduler only handles an overall
resource profile for each application, ignoring local optimizations and internal application
flow. In fact, YARN completely departs from the static assignment of map and reduce
slots because it treats the cluster as a resource pool. Because of this clear separation
of responsibilities, the Resource Manager is able to address the important design
requirements of scalability and support for alternate programming models.

The Resource Manager has a pluggable Scheduler component, which is responsible for
allocating resources to the various running applications subject to familiar constraints of
capacities, queues, etc. The Scheduler is a pure scheduler in the sense that it performs no
monitoring or tracking of status for the application, offering no guarantees on restarting
failed tasks either due to application or hardware failures. The scheduler performs its
scheduling function based on the resource requirements of an application by using the
abstract notion of a resource Container, which incorporates resource dimensions such
as memory, CPU, disk, network, etc. For more information about the Scheduler, see the
Capacity Scheduler guide.

In contrast to many other workflow schedulers, the Resource Manager also has the ability
to symmetrically request resources back from a running application. This situation typically

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.3/bk_system-admin-guide/content/ch_capacity-scheduler.html


Hortonworks Data Platform Jul 2, 2014

50

happens when cluster resources become scarce and the scheduler decides to revoke some
(but not all) of the resources that were given to an application.

In YARN, Resource Requests can be strict or negotiable. This features provides Application
Masters with a great deal of flexibility on how to fulfill the requests, e.g., by picking
Containers to yield back that are less crucial for the computation, by check-pointing the
state of a task, or by migrating the computation to other running Containers. Overall, this
allows applications to preserve work, in contrast to platforms that kill Containers to satisfy
resource constraints. If the application is non-collaborative, the Resource Manager can,
after waiting a certain amount of time, obtain the needed resources by instructing the
Node Managers to forcibly terminate Containers.

Resource Manager failures remain significant events affecting cluster availability. As of
this writing, the Resource Manager will restart running Application Masters as it recovers
its state. If the framework supports restart—and most will for routine fault tolerance—the
platform will automatically restore users’ pipelines.

In contrast to the Hadoop 1.0 Job Tracker, it is important to mention the tasks for
which the Resource Manager is not responsible. While the Resource Manager will track
application execution flow and task fault-tolerance, it will not provide access to the
application status servlet, which is now part of the Application Master, nor will it track
previously executed jobs, as that is now delegated to the Job History Service (a daemon
running on a separate node). This is consistent with the view that the Resource Manager
should only handle live resource scheduling, and helps YARN core components scale better
than the Hadoop 1.0 Job Tracker.

1.3.3.3. Node Manager

The Node Manager manages the individual compute nodes in a Hadoop cluster. This
includes keeping up-to-date with the Resource Manager, managing the life-cycle of
application Containers, monitoring resource usage (memory, CPU) of individual Containers,
monitoring node health, and managing logs and other auxiliary services that can be utilized
by YARN applications.

On start-up, the Node Manager registers with the Resource Manager, and then sends
heartbeats with its status and waits for instructions. Its primary goal is to manage
application Containers assigned to it by the Resource Manager.

YARN Containers are described by a Container Launch Context (CLC). This record includes
a map of environment variables, dependencies stored in remotely accessible storage,
security tokens, payloads for Node Manager services, and the command necessary to
create the process. After validating the authenticity of the Container lease, the Node
Manager configures the environment for the Container, including initializing its monitoring
subsystem with the resource constraints specified by the application. The Node Manager
will also kill Containers as directed by the Resource Manager.

1.3.3.4. Application Master

The Application Master is the process that coordinates the execution of an application
in the cluster. Each application has its own unique Application Master that is tasked with
negotiating resources (Containers) from the Resource Manager and working with the Node
Managers to execute and monitor the tasks. In the YARN design, MapReduce is just one



Hortonworks Data Platform Jul 2, 2014

51

application framework; the design permits building and deploying distributed applications
using other frameworks. For example, YARN ships with a Distributed Shell application that
permits running a shell script on multiple nodes in a YARN cluster.

Once the Application Master is started (as a Container), it will periodically send heartbeats
to the Resource Manager to affirm its health, and to update the record of its resource
demands. After building a model of its requirements, the Application Master encodes its
preferences and constraints in a heartbeat message to the Resource Manager. In response
to subsequent heartbeats, the Application Master will receive a lease on Containers
bound to an allocation of resources at a particular node in the cluster. Depending on the
Containers it receives from the Resource Manager, the Application Master may update its
execution plan to accommodate the excess or lack of resources. Container allocation/de-
allocation can take place in a dynamic fashion as the application progresses.

1.3.3.5. Containers

A Container is a collection of physical resources on a single node, such as memory (RAM),
CPU cores, and disks. There can be multiple Containers on a single Node (or a single large
one). Every node in the system is considered to be composed of multiple Containers of
minimum memory size (512MB or 1 GB, for example). The Application Master can request
any Container as a multiple of the minimum memory size.

A Container thus represents a resource (memory, CPU) on a single node in a given cluster. A
Container is supervised by the Node Manager and scheduled by the Resource Manager.

Each application starts out as an Application Master, which is itself a Container (often
referred to as container -0). Once started, the Application Master must negotiate with the
Resource Manager for more Containers. Container requests (and releases) can take place
in a dynamic manner at run-time. For instance, a MapReduce job may request a certain
amount of mapper Containers, and as they finish, release them and request that more
reducer containers be started.

1.3.3.6. Job History Service

In Hadoop version 1, the Job Tracker was the master scheduler and tracker of all
MapReduce jobs on the cluster. The new Resource Manager in Hadoop version 2, acting
a scheduler, does not track job status. This task is now delegated to the JobHistoryService
daemon, which is usually run on a separate node.

1.3.3.7. YARN Walk-through

YARN application execution consists of the following steps:

• Application submission.

• Bootstrapping the Application Master instance for the application.

• Application execution managed by the Application Master instance.

Let’s walk through an application execution sequence (steps are illustrated in the diagram):

1. A client program submits the application, including the necessary specifications to launch
the application-specific Application Master.



Hortonworks Data Platform Jul 2, 2014

52

2. The Resource Manager assumes responsibility for negotiating a specified Container in
which to start the Application Master, and then launches the Application Master.

3. On boot-up, the Application Master registers with the Resource Manager. The
registration allows the client program to query the Resource Manager for details, which
allows it to  directly communicate with its own Application Master.

4. During normal operation, the Application Master negotiates appropriate resource
Containers via the resource-request protocol.

5. Upon successful Container allocations, the Application Master launches the Container
by providing the Container launch specification to the Node Manager. The launch
specification typically includes the necessary information to allow the Container to
communicate with the Application Master.

6. The application code executing within the Container then provides necessary
information (progress, status etc.) to its Application Master via an application-specific
protocol.

7. During the application execution, the client that submitted the program communicates
directly with the Application Master to get status, progress updates, etc. via an
application-specific protocol.

8. Once the application is complete, the Application Master de-registers with the Resource
Manager and shuts down, allowing its own Container to be repurposed.

1.3.4. Using Hadoop YARN

The fundamental idea of YARN is to split up the two major responsibilities of the
JobTracker i.e. resource management and job scheduling/monitoring, into separate
daemons: a global ResourceManager and per-application ApplicationMaster (AM).

The ResourceManager and per-node slave, the NodeManager (NM), form the new, and
generic, system for managing applications in a distributed manner. The ResourceManager is
the ultimate authority that arbitrates resources among all the applications in the system.



Hortonworks Data Platform Jul 2, 2014

53

The per-application ApplicationMaster is, in effect, a framework specific entity and is
tasked with negotiating resources from the ResourceManager and working with the
NodeManager(s) to execute and monitor the component tasks.

The ResourceManager has a pluggable Scheduler, which is responsible for allocating
resources to the various running applications subject to familiar constraints of capacities,
queues etc. The Scheduler is a pure scheduler in the sense that it performs no monitoring
or tracking of status for the application, offering no guarantees on restarting failed tasks
either due to application failure or hardware failures. The Scheduler performs its scheduling
function based on the resource requirements of the applications; it does so based on the
abstract notion of a Resource Container which incorporates resource elements such as
memory, CPU, disk, network etc. The NodeManager is the per-machine slave, which is
responsible for launching the applications’ containers, monitoring their resource usage
(cpu, memory, disk, network) and reporting the same to the ResourceManager. The per-
application ApplicationMaster has the responsibility of negotiating appropriate resource
containers from the Scheduler, tracking their status and monitoring for progress. From the
system perspective, the ApplicationMaster itself runs as a normal container.

Use the following resources to learn more about YARN:

• YARN architecture

• Writing YARN applications

• Capacity Scheduler

• Web Application Proxy

• Using YARN REST APIs

• Hadoop Auth

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WebApplicationProxy.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/WebServicesIntro.html
http://hadoop.apache.org/docs/current/hadoop-auth/index.html

	Hortonworks Data Platform
	Table of Contents
	1. Using Apache Hadoop
	1.1. Hadoop Common
	1.2. Using Hadoop HDFS
	1.3. Using Hadoop MapReduce on YARN
	1.3.1. Running MapReduce on Hadoop YARN
	1.3.1.1. Running MapReduce Examples on Hadoop YARN
	1.3.1.2. MapReduce Compatibility
	1.3.1.3. The MapReduce Application Master
	1.3.1.4. Calculating the Capacity of a Node
	1.3.1.5. Changes to the Shuffle Service
	1.3.1.6. Running Existing Hadoop Version 1 Applications on YARN
	1.3.1.7. Running Existing MapReduce Version 1 Code on YARN
	1.3.1.8. Uber Jobs (Technical Preview)

	1.3.2. MapReduce Version 2 Troubleshooting Guide
	1.3.2.1. MRv2 Overview
	1.3.2.2. MRv2 Terminology
	1.3.2.3. Configuration Files
	1.3.2.4. Process ID Files
	1.3.2.5. Log Files
	1.3.2.6. Ports
	1.3.2.7. Gathering General Information
	1.3.2.8. Common MRv2 Commands
	1.3.2.9. MRv2 Troubleshooting Actions Checklist
	1.3.2.10. Common Server-Side Issues
	1.3.2.11. Common Client-Side Issues

	1.3.3. YARN Components
	1.3.3.1. YARN Overview
	1.3.3.2. Resource Manager
	1.3.3.3. Node Manager
	1.3.3.4. Application Master
	1.3.3.5. Containers
	1.3.3.6. Job History Service
	1.3.3.7. YARN Walk-through

	1.3.4. Using Hadoop YARN



