
Hortonworks Data Platform

 (September 30, 2015)

Knox Gateway Administration Guide

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform September 30, 2015

ii

Hortonworks Data Platform: Knox Gateway Administration Guide
Copyright © 2012-2014 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/hadoop-support/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform September 30, 2015

iii

Table of Contents
1. Apache Knox Gateway Overview ... 1

1.1. Knox Gateway Deployment Architecture ... 1
1.2. Supported Hadoop Services .. 2
1.3. Knox Gateway Samples ... 2

2. Configuring the Knox Gateway .. 4
2.1. Create and Secure the Gateway Directories ... 4
2.2. Customize the Gateway Port and Path .. 5
2.3. Manage the Master Secret .. 5
2.4. Manually Redeploy Cluster Topologies .. 6
2.5. Manually Start and Stop Apache Knox .. 8

3. Defining Cluster Topologies ... 9
4. Configuring the Knox Topology to Connect to Hadoop Cluster Services 11

4.1. Setting up Hadoop Service URLs .. 11
4.2. Example Service Definitions ... 12
4.3. Validating Service Connectivity .. 13
4.4. Adding a New Service to the Knox Gateway ... 14

4.4.1. Service Directory Structure .. 15
4.4.2. Adding a New Service to the Knox Gateway ... 15

5. Mapping the Internal Nodes to External URLs .. 16
5.1. Setting Up a Hostmap Provider ... 17
5.2. Example of an EC2 Hostmap Provider ... 17
5.3. Example of Sandbox Hostmap Provider ... 18
5.4. Enabling Hostmap Debugging ... 19

6. Configuring Authentication .. 20
6.1. Setting Up LDAP Authentication ... 20
6.2. LDAP Authentication Caching ... 22
6.3. Example Active Directory Configuration .. 24
6.4. Example OpenLDAP Configuration .. 25
6.5. Testing an LDAP Provider .. 25
6.6. Setting Up HTTP Header Authentication for Federation_SSO 25
6.7. Example SiteMinder Configuration .. 27
6.8. Testing HTTP Header Tokens ... 27
6.9. Setting Up 2-Way SSL Authentication .. 27

7. Configuring Identity Assertion .. 29
7.1. Structure of the Identity-Assertion Provider ... 29
7.2. Define Pseudo Identity Assertion ... 30
7.3. Mapping Authenticated User to Cluster .. 30

7.3.1. Principal Mapping Enhancements ... 31
7.4. Example User Mapping ... 32
7.5. Mapping Authenticated Users to Groups ... 32
7.6. Configuring Group Mapping ... 32
7.7. Examples of Group Mapping ... 33

8. Configuring Service Level Authorization ... 34
8.1. Setting Up an Authorization Provider .. 34
8.2. Examples of Authorization .. 35

9. Audit Gateway Activity .. 38
9.1. Audit Log Fields .. 38
9.2. Change Roll Frequency of the Audit Log ... 39

Hortonworks Data Platform September 30, 2015

iv

10. Gateway Security ... 40
10.1. Implementing Web Application Security .. 40
10.2. Configuring Protection Filter Against Cross Site Request Forgery Attacks 40
10.3. Validate CSRF Filtering .. 41
10.4. Configuring Knox With a Secured Hadoop Cluster ... 42
10.5. Configure Wire Encryption .. 43
10.6. Self-Signed Certificate with Specific Hostname for Evaluations 44
10.7. CA-Signed Certificates for Production .. 44
10.8. Setting Up Trust for the Knox Gateway Clients .. 45

11. Setting Up Knox for WebHDFS HA ... 46
11.1. Configure WebHDFS for Knox ... 46
11.2. Configure Knox for WebHDFS HA ... 47

12. About Hortonworks Data Platform .. 49

Hortonworks Data Platform September 30, 2015

v

List of Tables
1.1. Supported Hadoop Services .. 2
2.1. Apache Service Gateway Directores ... 4
3.1. Cluster Topology Provider and Service Roles .. 9
6.1. gateway-site.xml Configuration Elements .. 28

Hortonworks Data Platform September 30, 2015

1

1. Apache Knox Gateway Overview
The Apache Knox Gateway (“Knox”) is a system to extend the reach of Apache™Hadoop®
services to users outside of a Hadoop cluster without reducing Hadoop Security. Knox also
simplifies Hadoop security for users who access the cluster data and execute jobs.

Knox integrates with Identity Management and SSO systems used in enterprises and allows
identity from these systems be used for access to Hadoop clusters.

Knox Gateways provides security for multiple Hadoop clusters, with these advantages:

• Simplifies access: Extends Hadoop’s REST/HTTP services by encapsulating Kerberos to
within the Cluster.

• Enhances security: Exposes Hadoop’s REST/HTTP services without revealing network
details, providing SSL out of the box.

• Centralized control: Enforces REST API security centrally, routing requests to multiple
Hadoop clusters.

• Enterprise integration: Supports LDAP, Active Directory, SSO, SAML and other
authentication systems.

Typical Security Flow: Firewall, Routed Through Knox Gateway

Knox can be used with both unsecured Hadoop clusters, and Kerberos secured clusters. In
an enterprise solution that employs Kerberos secured clusters, the Apache Knox Gateway
provides an enterprise security solution that:

• Integrates well with enterprise identity management solutions

• Protects the details of the Hadoop cluster deployment (hosts and ports are hidden from
end users)

• Simplifies the number of services with which a client needs to interact

1.1. Knox Gateway Deployment Architecture
Users who access Hadoop externally do so either through Knox, via the Apache REST API,
or through the Hadoop CLI tools.

Hortonworks Data Platform September 30, 2015

2

The following diagram shows how Apache Knox fits into a Hadoop deployment.

NN=NameNode, RM=Resource Manager, DN=DataNote, NM=NodeManager

1.2. Supported Hadoop Services
Apache Knox Gateway supports the following Hadoop services versions in both Kerberized
and Non-Kerberized clusters:

Table 1.1. Supported Hadoop Services

Service Version

YARN 2.6.0

WebHDFS 2.6.0

WebHCat/Templeton 0.13.0

Oozie 4.1.0

HBase/Stargate 0.98.4

Hive (via WebHCat) 0.14.0

Hive (via JDBC) 0.14.0

Note

UIs in the Apache Knox project that are not listed above are considered
Community Features.

Community Features are developed and tested by the Apache Knox community
but are not officially supported by Hortonworks. These features are excluded
for a variety of reasons, including insufficient reliability or incomplete test
case coverage, declaration of non-production readiness by the community at
large, and feature deviation from Hortonworks best practices. Do not use these
features in your production environments.

1.3. Knox Gateway Samples
There are a number of different methods you can use to deploy the Knox Gateway
in your cluster. Each of these methods consists of different ways you can use to install
and configure the Knox Gateway. For more information on these methods, refer to the
following Apache documentation:

Hortonworks Data Platform September 30, 2015

3

• http://knox.apache.org/books/knox-0-5-0/knox-0-5-0.html#Gateway+Samples

http://knox.apache.org/books/knox-0-5-0/knox-0-5-0.html#Gateway+Samples

Hortonworks Data Platform September 30, 2015

4

2. Configuring the Knox Gateway
This section describes how to configure the Knox Gateway. This section describes how you
can:

• Create and Secure the Gateway Directories [4]

• Customize the Gateway Port and Path [5]

• Manage the Master Secret [5]

• Manually Redeploy Cluster Topologies [6]

• Manually Start and Stop Apache Knox [8]

2.1. Create and Secure the Gateway Directories
Installing Knox Gateway with the platform-specific installers creates the following
directories:

• HADOOP_NODE_INSTALL_ROOT

• knox-X.X.X.X.X.X.X-XXXX -- the $gateway directory.

For example, D:/hdp/knox-0.4.0.2.1.2.0-1557 The directory contains the following files:

Table 2.1. Apache Service Gateway Directores

Directory/Filename Description

conf/topologies Contains global gateway configuration files.

bin Contains the executable shell scripts, batch files, and
JARs for clients and servers.

deployments Contains cluster topology descriptor files that define
Hadoop clusers.

lib Contains the JARs for all the components that make up
the gateway.

dep Contains the JARs for all of the component upon which
the gateway depends.

ext A directory where user-supplied extensions JARs can be
placed to extends the gateway functionality.

samples Contains a number of samples that can be used to
explore the functionality of the gateway.

templates Contains default configuration files that can be copied
and customized.

README Provides basic informaiton about the Apache Knox
Gateway.

ISSUES Describes significant known issues.

CHANGES Enumerates the changes between releases.

LICENSE Documents the license under which this software is
provided.

NOTICE Documents required attribution notices for included
dependencies.

Hortonworks Data Platform September 30, 2015

5

Directory/Filename Description

DISCLAIMER Documents that this release is from a project undergoing
incubaiton at Apache.

• SystemDrive/hadoop/logs knox

This contains the output files from the Knox Gateway.

2.2. Customize the Gateway Port and Path
The Knox Gateway properties effect the URL used by the external clients to access the
internal cluster. By default the port is set to 8443 and the context path is gateway.

To change the context path or port:

1. Edit gateway-site.xml and modify the following properties:

• propertyname

• gateway.port namevalue

• gateway.portvalue

where:

• $gateway_port is the HTTP port for the gateway (default port=8443)

• $gateway is the context path in the external URL (preconfigured value=gateway). For
example, https://knox.hortonworks.com:8443/hadoop/,where hadoop is the context
path.

2. Restart the gateway:

cd $gateway.bin/gateway.sh stop bin/gateway.sh start

The gateway loads the new configuration on startup.

2.3. Manage the Master Secret
The master secret is required to start the gateway. The secret protects artifacts used by the
gateway instance, such as the keystore, trust stores and credential stores.

You configure the gateway to persist the master secret, which is saved in the $gateway /
data/security/master file. Ensure that this directory has the appropriate permissions
set for your environment. To set the master secret, enter:

cd $gateway bin/knoxcli.cmd create-master

A warning displays indicating that persisting the secret is less secure than providing it at
startup. Knox protects the password by encrypting it with AES 128 bit encryption; where
possible, the file permissions are set to be accessible only by the knox user.

Hortonworks Data Platform September 30, 2015

6

Warning

Ensure that the security directory, $gateway/data/security, and its
contents are readable and writable only by the knox user. This is the most
important layer of defense for master secret. Do not assume that the
encryption is sufficient protection.

Changing the Master Secret

The Master Secret can be changed under dire situations where the Administrator has to
redo all the configurations for every dateway instance in a deployment, and no longer
knows the Master Secret. Recreating the Master Secret requires not only recreating the
master, but also removing all existing keystores and reprovisioning the certificates and
credentials.

1. To change the Master Secret:

cd $gateway bin/knoxcli.cmd create-master--force

2. If there is an existing keystore, update the keystore.

2.4. Manually Redeploy Cluster Topologies
You are not required to manually redeploy clusters after updating cluster properties. The
gateway monitors the topology descriptor files in the $gateway/conf/topologies
directory and automatically redepolys the cluster if any descriptor changes or a new one is
added. (The corresponding deployment is in $gateway/data/deployments.)

However, you must redeploy the clusters after changing any of the following gateway
properties or gateway-wide settings:

• Time settings on the gateway host

• Implementing or updating Kerberos

• Implementing or updating SSL certificates

• Changing a cluster alias

Redeploying all clusters at the same time

When making gateway-wide changes (such as implementing Kerberos or SSL), or if you
change the system clock, you must redeploy all the Cluster Topologies. Do the following:

1. To verify the timestamp on the currently deployed clusters enter: cd $gatewaydir
data/deployments. The system displays something similar to:

Directory of C:/hdp/knox-0.4.0.2.1.2.0-1557/data/deployments

04/17/2014 05:30 PM <DIR> .
04/17/2014 05:30 PM <DIR> ..
04/17/2014 05:30 PM <DIR> cluster.war.145514f4dc8
04/17/2014 05:30 PM <DIR> myCluster.war.145514f4dc8
04/11/2014 08:35 AM <DIR> sandbox.war.145514f4dc8

Hortonworks Data Platform September 30, 2015

7

 0 File(s) 0 bytes
 5 Dir(s) 9,730,977,792 bytes free

2. To redeploy all clusters, enter /bin/knoxcli.cmd redeploy.

3. To verify that a new cluster WAR was created, enter cd $gatewaydir data/
deployments.The system displays something similar to:

Directory of C:/hdp/knox-0.4.0.2.1.2.0-1557/data/deployments

04/17/2014 05:34 PM <DIR> .
04/17/2014 05:34 PM <DIR> ..
04/17/2014 05:30 PM <DIR> cluster.war.145514f4dc8
04/17/2014 05:34 PM <DIR> cluster.war.1457241b5dc
04/17/2014 05:30 PM <DIR> myCluster.war.145514f4dc8
04/17/2014 05:34 PM <DIR> myCluster.war.1457241b5dc
04/11/2014 08:35 AM <DIR> sandbox.war.145514f4dc8
04/17/2014 05:34 PM <DIR> sandbox.war.1457241b5dc
 0 File(s) 0 bytes
 8 Dir(s) 9,730,850,816 bytes free

A new file is created for each cluster, with the current timestamp.

Redeploy only specific clusters

When making changes that impact a single cluster, such as changing an alias or restoring
from an earlier cluster topology descriptor file, you only redeploy the effected cluster. Do
the following:

1. To verify the timestamp on the currently deployed Cluster Topology WAR files, enter: cd
$gatewaydir data/deployments.The system displays something similar to:

Directory of C:/hdp/knox-0.4.0.2.1.2.0-1557/data/deployments

04/17/2014 05:30 PM <DIR> .
04/17/2014 05:30 PM <DIR> ..
04/17/2014 05:30 PM <DIR> cluster.war.145514f4dc8
04/17/2014 05:30 PM <DIR> myCluster.war.145514f4dc8
04/11/2014 08:35 AM <DIR> sandbox.war.145514f4dc8
 0 File(s) 0 bytes
 5 Dir(s) 9,730,977,792 bytes free

2. To redeploy a specific cluster, enter:

cd $gateway bin/knoxcli.cmd redeploy --cluster $cluster_name

where $cluster_name is the name of the cluster topology descriptor (without the
.xml extension). For example, myCluster.

3. To verify that the cluster was deployed, enter: cd $gatewaydir data/
deployments. The system displays something similar to:

Directory of C:/hdp/knox-0.4.0.2.1.2.0-1557/data/deployments

04/17/2014 05:30 PM <DIR> .
04/17/2014 05:30 PM <DIR> ..
04/17/2014 05:30 PM <DIR> cluster.war.145514f4dc8
04/17/2014 05:30 PM <DIR> myCluster.war.145514f4dc8

Hortonworks Data Platform September 30, 2015

8

04/17/2014 05:34 PM <DIR> myCluster.war.1457241b5dc
04/11/2014 08:35 AM <DIR> sandbox.war.145514f4dc8
 0 File(s) 0 bytes
 5 Dir(s) 9,730,977,792 bytes free

You should see that existing cluster war files are unchanged, but the war file for
myCluster was updated (has a current timestamp).

2.5. Manually Start and Stop Apache Knox
Except for changes to ../ ../conf/topology/*.xml, changes to the Knox Gateway global
settings in $gateway /conf/gateway-site.xml cannot be loaded before the
Gateway is restarted.

To manually stop Knox:

cd $gateway/bin/gateway.sh stop

This is known as a clean shutdown, as the gateway script cleans out all .outand .err files
in the logs directory.

To manually start Knox for the first time, or re-start Knox after a clean shutdown:

cd $gateway /bin/gateway.sh start

To manually re-start Knox after an unclean shutdown:

cd $gateway/bin/gateway.sh clean /bin/gateway.sh start

This command eliminates old .outand .err files in the logs directory.

Hortonworks Data Platform September 30, 2015

9

3. Defining Cluster Topologies
The Knox Gateway supports one or more Hadoop clusters. Each Hadoop cluster
configuration is defined in a topology deployment descriptor file in the $gateway/conf/
topologies directory and is deployed to a corresponding WAR file in the $gateway/
data/deployments directory. These files define how the gateway communicates with
each Hadoop cluster.

The descriptor is an XML file contains the following sections:

• gateway/provider -- configuration settings enforced by the Knox Gateway while
providing access to the Hadoop cluster.

• service -- defines the Hadoop service URLs used by the gateway to proxy
communications from external clients.

The gateway automatically redeploys the cluster whenever it detects a new topology
descriptor file, or detects a change in an existing topology descriptor file.

The following table provides an overview of the providers and services:

Table 3.1. Cluster Topology Provider and Service Roles

Type Role Description

gateway/provider hostmap Maps external to internal node
hostnames, replacing the internal
hostname with the mapped external
name when the hostname is
embedded in a repsonse from the
cluster.

 authentication Integrates an LDAP store to
authenticate external requests
accessing the cluster via the Knox
Gateway. Refer to Set Up LDAP
Authentication for more information.

 federation Defines HTTP header authentication
fields for an SSO or federation solution
provider. Refer to Set up HTTP Header
Authentication for Federation/SSO

 identity-assertion Responsible for the way that the
authenticated user's identity is asserted
to the service that the request is
intended for. Also maps external
authenticated users to an internal
cluster that the gateway asserts as the
current session user or group. Refer to
Configure Identity Assertion for more
information.

 authorization Service level authorization that restricts
cluster access to specified users,
groups, and/or IP addresses. Refer to
Configure Service Level Authorization
for more information.

 webappspec Configures a web application security
plugin that provides protection
filtering against Cross Site Request
Forgery Attacks. Refer to Configure

Hortonworks Data Platform September 30, 2015

10

Type Role Description

Web Application Security for more
information.

HA provider high availability Syncs all Knox instances to use the
same topologies credentials keystores.

service $service_name Binds a Hadoop service with an internal
URL that the gateway uses to proxy
requests from external clients to the
internal cluster services. Refer to
Configure Hadoop Service URLs for
more information.

Cluster topology descriptors have the following XML format:

<topology>
 <gateway>
 <provider>
 <role></role>
 <name></name>
 <enabled></enabled>
 <param>
 <name></name>
 <value></value>
 </param>
 </provider>
 </gateway>
 <service></service>
</topology>

Hortonworks Data Platform September 30, 2015

11

4. Configuring the Knox Topology to
Connect to Hadoop Cluster Services

The Apache Knox Gateway redirects external requests to an internal Hadoop service using
service name and URL of the service definition.

This chapter describes:

• Setting up Hadoop Service URLs [11]

• Example Service Definitions [12]

• Validating Service Connectivity [13]

• Adding a New Service to the Knox Gateway [14]

4.1. Setting up Hadoop Service URLs
To configure access to an internal Hadoop service through the Knox Gateway:

1. Edit $gateway/conf/topologies$cluster-name.xml to add an entry similar to
the following, for each Hadoop service:

<topology>
 <gateway>
 ...
 </gateway>
 <service>
 <role> $service_name </role>
 <url> $schema://$hostname:$port</url>
 </service>
</topology>

where:

• $service_name is either WEBHDFS, WEBHCAT, WEBHBASE, OOZIE, HIVE,
NAMENODE, or JOBTRACKER.

• <url> is the complete internal cluster URL required to access the service, including:

• $schema -- the service protocol

• $hostname -- the resolvable internal host name

• $port -- the service listening port

2. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

Hortonworks Data Platform September 30, 2015

12

Note

It is not necessary to restart the Knox server after making changes to the
topology/Hadoop Cluster services.

4.2. Example Service Definitions
Configure each service that you want to expose externally, being careful to define the
internal hostname and service ports of your cluster.

The following example uses the defaults ports and supported service names.

<service
 <role>NAMENODE</role>
 <url>hdfs:// namenode-host :8020</url>
</service>

<service>
 <role>JOBTRACKER</role>
 <url>rpc:// jobtracker-host :8050</url>
</service>

<service>
 <role>RESOURCEMANAGER</role>
 <url>http://red3:8088/ws</url>
</service>

<service>
 <role>WEBHDFS</role>
 <url>http://localhost:50070/webhdfs</url>
</service>

<service>
 <role>WEBHCAT</role>
 <url>http://webcat-host :50111/templeton</url>
</service>

<service>
 <role>OOZIE</role>
 <url>http://oozie-host :11000/oozie</url>
</service>

<service>
 <role>WEBHBASE</role>
 <url>http://webhbase-host :60080</url>
</service>

<service>
 <role>HIVE</role>
 <url>http://hive-host :10001/cliservice</url>
</service>

Hortonworks Data Platform September 30, 2015

13

4.3. Validating Service Connectivity
Use the commands in this section to test connectivity between the gateway host and the
Hadoop service, and then test connectivity between an external client to the Hadoop
service through the gateway.

Tip

If the communication between the gateway host and an internal Hadoop
service fails, telnet to the service port to verify that the gateway is able to
access the cluster node. Use the hostname and ports you specified in the service
definition.

Testing WebHDFS by getting the home directory

• At the gateway host, enter the following command:

curl http:// $webhdfs-host :50070/webhdfs/v1?op=GETHOMEDIRECTORY

The host displays:

{"Path":"/user/gopher"}

• At an external client, enter the following command:

curl https:// $gateway-host : $gateway_port / $gateway / $cluster_name /
 $webhdfs_service_name /v1?op=GETHOMEDIRECTORY

The external client displays:

{"Path":"/user/gopher"}

Testing WebHCat/Templeton by getting the version

• At the gateway host, enter the following command:

curl http:// $webhdfs-host :50070/templeton/v1/version

The host displays:

{"supportedVersions":["v1"],"version":"v1"}

• At an external client, enter the following command:

curl https:// $gateway-host : $gateway_port / $gateway / $cluster_name /
 $webhcat_service_name /v1/version

The external client displays:

{"supportedVersions":["v1"],"version":"v1"}

Testing Oozie by getting the version

• At the gateway host, enter the following command:

curl http://$oozie-host :11000/oozie/v1/admin/build-version

The host displays:

Hortonworks Data Platform September 30, 2015

14

{"buildVersion":"4.0.0.2.1.2.0-302"}

• At an external client, enter the following command:

curl https://$gateway-host : $gateway_port/$gateway /$cluster_name/
$oozie_service_name /v1/admin/build-version

The external client displays:

{"buildVersion":"4.0.0.2.1.2.0-302"}

Testing HBase/Stargate by getting the version

• At the gateway host, enter the following command:

curl http:// $hbase-host :17000/version

The host displays:

rest 0.0.2 JVM: Oracle Corporation 1.7.0_51-24.45-b08 OS: Linux 3.8.0-29-
generic amd64 Server:jetty/6.1.26 Jersey:1.8:

• At an external client, enter the following command:

curl http:// $hbase-host :17000/version

The external client displays:

rest 0.0.2 JVM: Oracle Corporation 1.7.0_51-24.45-b08 OS: Linux 3.8.0-29-
generic amd64 Server:jetty/6.1.26 Jersey:1.8

Testing HiveServer2

Both of the following URLs return an authentication error, which users can safely ignore.

1. At the gateway host, enter:

curl http://$hive-host:10001/cliservice

2. At an external client, enter:

curl https://$gateway-host:$gateway_port/$gateway/$cluster_name/
$hive_service_name/cliservice

4.4. Adding a New Service to the Knox Gateway
Services and service additions in the Knox Gateway are defined as extensions to existing
Knox Gateway functionality that enable you to extend the gateway’s capabilities. You use
these services to convert information contained in the topology file to runtime descriptors.

The Knox Gateway supports a declarative way for you to “plug in” a new service into the
gateway simply and easily by using the following two files:

• service.xml- file that contains the routes (paths) that the service will provide and the
rewrite rules to bind these paths.

• rewrite.xml – file that contains the rewrite rules for the service.

Hortonworks Data Platform September 30, 2015

15

Note

The service.xml file is required, whereas the rewrite.xml file is optional.

4.4.1. Service Directory Structure

The Knox Gateway consists of a directory structure that you should become familiar with
before attempting to add a new service to the gateway.

If you navigate to the data directory in your Knox home directory ({GATEWAY_HOME}/
data}, you will see the following directory structure:

Services
 Service name
 Version
 service.xml
 rewrite.xml

For example, if you were to navigate to the WebHDFS Service directory, you would see the
following directory structure:

Services
 WebHDFS
 2.4.0
 service.xml
 rewrite.xml

4.4.2. Adding a New Service to the Knox Gateway

Adding a new service to the Knox gateway is a very easy and straightforward process, only
requiring you to perform a few simple steps, which are listed below.

1. Navigate to the services directory in your Knox gateway HOME directory
({GATEWAY_HOME}/data/services)

2. Add the service.xml and rewrite.xml files to the directory.

Note

If you want to add the service to the Knox build, then add the
service.xml and rewrite files to the gateway-services-definitions
module.

Hortonworks Data Platform September 30, 2015

16

5. Mapping the Internal Nodes to
External URLs

Hostmapping is an advanced configuration topic. Generally, it is only required in
deployments in virtualized environments, such as those used in cloud and some
development and testing environments.

The isolation of the Hadoop cluster is accomplished through virtualization that will
hide the internal networking details (such as IP addresses and/or hostnames) from the
outside world, while exposing other IP addresses and/or hostnames for use by clients
accessing the cluster from outside of the virtualized environment. The exposed IP addresses
and hostnames are available for use in the topology descriptor service definitions.
This configuration works great for requests that are initiated from the external clients
themselves which only ever use the Knox Gateway exposed endpoints.

Difficulties from these virtualized environments arise when the Hadoop cluster redirects
client requests to other nodes within the cluster and indicates the internal hostname
locations, rather than those designated to be exposed externally. Since the Hadoop services
don't know or care whether a request is coming from an external or internal client, it uses
its only view of the cluster, which is the internal details of the virtualized environment.

The Knox Gateway needs to know how to route a request that has been redirected by the
Hadoop service to an address that is not actually accessible by the gateway. Hostmapping
acts as an adapter that intercepts the redirects from the Hadoop service and converts the
indicated internal address to a known external address that Knox will be able to route
to once the client resends the request through the client facing gateway endpoint. The
gateway uses the hostmap to replace the internal hostname within the routing policy for
the particular request with the externally exposed hostname. This enables the dispatching
from the Knox Gateway to successfully connect to the Hadoop service within the virtualized
environment. Otherwise, attempting to route to an internal-only address will result in
connection failures.

A number of the REST API operations require multi-step interactions that facilitate the
client's interaction with multiple nodes within a distributed system such as Hadoop.
External clients performing multi-step operations use the URL provided by the gateway in
the responses to form the next request. Since the routing policy is hidden by the gateway
from the external clients, the fact that the subsequent requests in the multi-stepped
interaction are mapped to the appropriate externally exposed endpoints is not exposed to
the client.

For example, when uploading a file with WebHDFS service:

1. The external client sends a request to the gateway WebHDFS service.

2. The gateway proxies the request to WebHDFS using the service URL.

3. WebHDFS determines which DataNodes to create the file on and returns the path for
the upload as a Location header in a HTTP redirect, which contains the datanode host
information.

4. The gateway augments the routing policy based on the datanode hostname in the
redirect by mapping it to the externally resolvable hostname.

Hortonworks Data Platform September 30, 2015

17

5. The external client continues to upload the file through the gateway.

6. The gateway proxies the request to the datanode by using the augmented routing
policy.

7. The datanode returns the status of the upload and the gateway again translates the
information without exposing any internal cluster details.

5.1. Setting Up a Hostmap Provider
Add the hostmap provider to the cluster topology descriptor and a parameter for each
DataNode in the cluster, as follows:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add the Hostmap provider to topology/gateway using the following format:

<provider>
 <role>hostmap</role>
 <name>static</name>
 <enabled>true</enabled>
 <param>
 <name>$external-name</name>
 <value>$internal-dn-host</value>
 </param>
</provider>

where:

• $cluster-name.xml is the name of the topology descriptor file, located in
$gateway /conf/topologies.

• $external-name is the value that the gateway uses to replace $internal_host host
names in responses.

• $internal-dn-host is a comma-separated list of host names that the gateway will
replace when rewriting responses.

3. To the hostmap provider, add a param for each additional DataNode in your cluster:

<param> <name> $external-name2 </name> <value> $internal-dn2-host </
value> </param>

4. Save the file.

Saving the results automatically deploys the topology with the change. The result is the
creation of a new WAR file with modified timestamp in $gateway/data/deployments.

5.2. Example of an EC2 Hostmap Provider
In this EC2 example two VMs have been allocated. Each VM has an external hostname by
which it can be accessed via the internet. However the EC2 VM is unaware of this external
host name, and instead is configured with the internal hostname.

Hortonworks Data Platform September 30, 2015

18

• External hostnames - ec2-23-22-31-165.compute-1.amazonaws.com,
ec2-23-23-25-10.compute-1.amazonaws.com

• Internal hostnames - ip-10-118-99-172.ec2.internal, ip-10-39-107-209.ec2.internal

The following shows the Hostmap definition required to allow access external to the
Hadoop cluster via the Apache Knox Gateway.

<topology>
 <gateway>
 ...
 <provider>
 <role>hostmap</role>
 <name>static</name>
 <enabled>true</enabled>
 <!-- For each host enter a set of parameters -->
 <param>
 <name>ec2-23-22-31-165.compute-1.amazonaws.com</name>
 <value>ip-10-118-99-172.ec2.internal</value>
 </param>
 <param>
 <name>ec2-23-23-25-10.compute-1.amazonaws.com</name>
 <value>ip-10-39-107-209.ec2.internal</value>
 </param>
 </provider>
 ...
 </gateway>
 <service>
 ...
 </service>
 ...
</topology>

5.3. Example of Sandbox Hostmap Provider
Hortonwork’s Sandbox 2.x poses a different challenge for hostname mapping. This
Sandbox version uses port mapping to make Sandbox appear as though it is accessible via
localhost. However, Sandbox is internally configured to consider sandbox.hortonworks.com
as the hostname. So from the perspective of a client accessing Sandbox the external host
name is localhost.

The following shows the hostmap definition required to allow access to Sandbox from the
local machine:

<topology>
 <gateway>
 ...
 <provider>
 <role>hostmap</role>
 <name>static</name>
 <enabled>true</enabled>
 <param>
 <name>localhost</name>
 <value>sandbox,sandbox.hortonworks.com</value>
 </param>
 </provider>
 ...

Hortonworks Data Platform September 30, 2015

19

 <gateway>
 ...
</topology>

5.4. Enabling Hostmap Debugging
Warning

Changing the rootLogger value from ERROR to DEBUG generates a large
amount of debug logging.

Enable additional logging by editing the gateway-log4j.properties file in the
directory.

1. Edit the $gateway /conf/gateway-log4j.propertiesgateway-
log4j.properties file to enable additional logging.

2. Change ERROR to DEBUG on the following line:

log4j.rootLogger=ERROR, drfa

Warning

Changing the rootLogger value from ERROR to DEBUG generates a large
amount of debug logging.

3. Stop and then restart the gateway:

cd $gateway bin/gateway.sh stop bin/gateway.sh start

Hortonworks Data Platform September 30, 2015

20

6. Configuring Authentication
Apache Knox Gateway supports authentication using either an LDAP or federation
provider for each configured cluster. This section explains how to configure authentication:

• Setting Up LDAP Authentication [20]

• LDAP Authentication Caching [22]

• Example Active Directory Configuration [24]

• Example OpenLDAP Configuration [25]

• Testing an LDAP Provider [25]

• Setting Up HTTP Header Authentication for Federation_SSO [25]

• Example SiteMinder Configuration [27]

• Testing HTTP Header Tokens [27]

• Setting Up 2-Way SSL Authentication [27]

Note

For information on how to configure an identity assertion provider, see
Configuring Identity Assertion.

6.1. Setting Up LDAP Authentication
LDAP authentication is configured by adding a "ShiroProvider" authentication provider
to the cluster's topology file. When enabled, the Knox Gateway uses Apache Shiro
(org.apache.shiro.realm.ldap.JndiLdapRealm) to authenticate users against the configured
LDAP store.

Note

Knox Gateway provides HTTP BASIC authentication against an LDAP user
directory. It currently supports only a single Organizational Unit (OU) and does
not support nested OUs.

To enable LDAP authentication:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add the ShiroProvider authentication provider to /topology/gateway as
follows:

<provider>
 <role>authentication</role>

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_Knox_Gateway_Admin_Guide/content/ch07.html

Hortonworks Data Platform September 30, 2015

21

 <name>ShiroProvider</name>
 <enabled>true</enabled>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.shiro.realm.ldap.JndiLdapRealm</value>
 <param>
 <param>
 <name>main.ldapRealm.userDnTemplate</name>
 <value>$USER_DN</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.url</name>
 <value>$protocol://$ldaphost:$port</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.authenticationMechanism</name>
 <value>simple</value>
 </param>
 <param>
 <name>urls./**</name>
 <value>$auth_type</value>
 </param>
 <param>
 <name>sessionTimeout</name>
 <value>$minutes</value>
 </param>
</provider>

where:

• $USER_DN

is a comma-separated list of attribute and value pairs that define the User
Distinguished Name (DN). The first pair must be set to " $attribute_name ={0}"
indicating that the $attribute_name is equal to the user token parsed from the
request. For example, the first attribute in an OpenLdap definition is UID={0}. The
main.ldapRealm.userDnTemplate parameter is only required when authenticating
against an LDAP store that requires a full User DN.

• $protocol :// $ldaphost : $port

is the URL of the LDAP service, Knox Gateway supports LDAP or LDAPS protocols.

• $auth_type

is either authcBasic, which provides basic authentication for both secured and non-
secured requests, or ssl authcBasic, which rejects non-secured requests and provides
basic authentication of secured requests.

• $minutes

is the session idle time in minutes, the default timeout is 30 minutes.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

Hortonworks Data Platform September 30, 2015

22

Note

If the Active Directory and Kerberos names differ in case (e.g. the Active
Directory name is in upper case and the Kerberos name is lower case), the Knox
Gateway enables you to resolve this conflict using the auth_to_local flag.

You can also configure LDAP authentication over SSL by following the steps below.

1. Change the LDAP protocol from ladp :// to ldaps://.

2. If LDAP is using a self-signed certificate, then import the LDAP's certificate into the
CACerts file of the Java Virtual Machine (JVM) being used to run the Apache Knox
Gateway. To import the LDAP certificate, enter the following commands:

%JAVA_HOME%\bin\keytool
-import -trustcerts -alias ldap_ssl -file C:\temp\FileFromLDAP.cert -
keystore %JAVA_HOME%/jre/lib/security/cacerts -storepass "changeit"

6.2. LDAP Authentication Caching
You can also configure the Apache Knox Gateway to cache LDAP authentication
information by leveraging built-in caching mechanisms that the Shiro EhCache Manager
provides. The ability to cache LDAP authentication information is useful in eliminating tthe
need to authenticate against the LDAP server each time you use.

Note

When the authentication information is cached, the Knox gateway will not
authenticate the user again until the cache expires.

To enable LDAP authentication caching using the Shiro Provider, follow the steps listed
below.

1. Use the org.apache.hadoop.gateway.ShiroRealm.knoxLdapRealm in the Shiro
configuration.

2. Set the main.ldaprealm.authenticationcachingEnabled property similar to
the example shown below.

<provider>
 <role>authentication</role>
 <enabled>true</enabled>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.hadoop.gateway.shirorealm.KnoxLdapRealm</value>
 </param>
 <param>
 <name>main.ldapGroupContextFactory</name>
 <value>org.apache.hadoop.gateway.shirorealm.KnoxLdapContextFactory</
value>
 </param>
 <param>
 <name>main.ldapRealm.ContextFactory</name>
 <value>$ldapGroupContextFactory</value>
 </param>
 <param>

Hortonworks Data Platform September 30, 2015

23

 <name>main.ldapRealm.ContextFactory.url</name>
 <value>$ldap://localhost:33389</value>
 </param>
 <param>
 <name>main.ldapRealm.authorizationEnabled</name>
 <value>true</value>
 </param>
 <param>
 <name>main.ldapRealm.searchBase</name>
 <value>ou-groups,dc=hadoop,dc=apache,dc=org</value>
 </param>
 <param>
 <name>main.cacheManager</name>
 <value>org.apache.shiro.cache.ehcache.EhCacheManager</value>
 </param>
 <param>
 <name>main.securityManager.cacheManager</name>
 <value>$cacheManager</value>
 </param>
 <param>
 <name>main.ldapRealm.authenticationCachingEnabled</name>
 <value>true</value>
 </param>
 <param>
 <name>main.ldapRealm.memberAttributeValueTemplate</name>
 <value>uid={0}ou=people,dc=hadoop,dc=apache,dc=org</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.systemUsername</name>
 <value>uid=guest,ou=people,dc=hadoop,dc=apache,dc=org</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.systemPassword</name>
 <value>guest=password</value>
 </param>
 <param>
 <name>urls./**</name>
 <value>authBasic</value>
 </param>
</provider>

In this example, you need to configure these properties to set the Knox Gateway for
LDAP authentication caching. The Knox Gateway also includes several template topology
files that you can use to test the caching function. You can locate these template files in
the templates directory. To test the caching function, perform the steps listed below.

a. Navigate to the Knox gateway HOME directory.

cd {GATEWAY_HOME}

b. Copy the templates files to your sandbox.

cp templates/sandbox.knoxrealm.ehcache.xml
conf.topologies/sandbox.xml

c. Start the LDAP authentication provider.

bin/ldap.sh start

Hortonworks Data Platform September 30, 2015

24

d. Start the Knox gateway.

bin/gateway.sh start

e. Once the gateway is started, make the following WebHDFS API call:

curl -ivk -u tom:tom-password -X GET
https://localhost:8443/gateway/sandbox/webhdfs/v1?op=GETHOMEDIRECTORY

f. To see LDAP authentication caching working, shut down the LDAP authentication
provider.

bin/ldap.sh stop

g. Run the WebHDFS API call again.

curl -ivk -u tom:tom=password -X GET
https://localhost:8443/gateway/sandbox/webhdfs/v1?op=GETHOMEDIRECTORY

6.3. Example Active Directory Configuration
Typically the AD main.ldapRealm.userDnTemplate value looks slightly different than
OpenLDAP. The value for main.ldapRealm.userDnTemplate is only required if AD
authentication requires the full User DN.

Note

If Active Directory allows authentication based on the Common
Name (CN) and password only, then no value will be required for
main.ldapRealm.userDnTemplate.

<provider>
 <role>authentication</role>
 <name>ShiroProvider</name>
 <enabled>true</enabled>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.shiro.realm.ldap.JndiLdapRealm</value>
 </param>
 <param>
 <name>main.ldapRealm.userDnTemplate</name>
 <value>cn={0},ou=people,dc-apache,dc=org</value>
 </param>
 <param>
 <name>main.ldapRealmcontextFactory.url</name>
 <value>ldap://localhost:389</value>
 </param>
 <param>
 <name>main.ldapRealm.contextFactory.authenticationMechanis</name>
 <value>simple</value>
 </param>
 <param>
 <name>urls./**</name>
 <value>authBasic</value>
 </param>
</provider>

Hortonworks Data Platform September 30, 2015

25

6.4. Example OpenLDAP Configuration
<provider>
 <role>authentication</role>
 <name>ShiroProvider</name>
 <enabled>true</enabled>
 <param>
 <name>main.ldapRealm</name>
 <value>org.apache.hadoop.gateway.shiorealm.KnoxLdapRealm</value>
 </param>
 <param>
 <name>main.ldapContextFactory</name>
 <value>org.apache.hadoop.gateway.shirorealm.KnoxLdapContectFactory</
value>
 </param>
 <param>
 <name>mainLdapRealm.contextFactory</name>
 <value>$ldapContextFactory</value>
 </param>
</provider>

6.5. Testing an LDAP Provider
Using cURL, you can test your LDAP configuration as follows:

1. Open the command line on an external client.

Note

cURL is not a built-in command line utility in Windows.

2. Enter the following command to list the contents of the directory tmp/test:

curl -i -k -u ldap_user : password -X GET / 'https:// gateway_host :8443/
 gateway_path / cluster_name /webhdfs/api/v1/tmp/test?op=LISTSTATUS

If the directory exists, a content list displays; if the user cannot be authenticated, the
request is rejected with an HTTP status of 401 unauthorized.

6.6. Setting Up HTTP Header Authentication for
Federation_SSO

The Knox Gateway supports federation solution providers by accepting HTTP header
tokens. This section explains how to configure HTTP header fields for SSO or Federation
solutions that have simple HTTP header-type tokens. For further information, see the
Authentication chapter of the Apache Knox 0.6.0 User's Guide.

The gateway extracts the user identifier from the HTTP header field. The gateway can also
extract the group information and propagate it to the Identity-Assertion provider.

https://knox.apache.org/books/knox-0-6-0/user-guide.html#Authentication

Hortonworks Data Platform September 30, 2015

26

Important

The Knox Gateway federation plug-in, HeaderPreAuth, trusts that the
content provided in the authenticated header is valid. Using this provider
requires proper network security.

Only use the HeaderPreAuth federation provider in environments where the identity
system does not allow direct access to the Knox Gateway. Allowing direct access
exposes the gateway to identity spoofing. Hortonworks recommends defining the
preauth.ip.addresses parameter to ensure requests come from a specific IP addresses
only.

To configure the HTTP header tokens:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add a HeaderPreAuth federation provider to topology/gateway as follows:

<provider>
 <role>federation</role>
 <name>HeaderPreAuth</name>
 <enabled>true</enabled>
 <param>
 <name>preauth.validation.method</name>
 <value>$validation_type</value>
 </param>
 <param>
 <name>preauth.ip.addresses</name>
 <value>$trusted_ip</value>
 </param>
 <param>
 <name>preauth.custom.header</name>
 <value>$user_field</value>
 </param>
 <param>
 <name>preauth.custom.group.header</name>
 <value>$group_field</value>
 </param>
</provider>

where the values of the parameters are specific to your environment:

• $validation_type (Optional, recommended)

Indicates the type of trust, use either preauth.ip.validation indicating to trust only
connections from the address defined in preauth.ip.addresses OR null (omitted)
indicating to trust all IP addresses.

• $trusted_ip (Required when the pre-authentication method is set to
preauth.ip.validation)

A comma-separated list of IP addresses, addresses may contain a wild card to indicate
a subnet, such as 10.0.0.*.

• $user_field

Hortonworks Data Platform September 30, 2015

27

The name of the field in the header that contains the user name that the gateway
extracts. Any incoming request that is missing the field is refused with HTTP status
401, unauthorized. If not otherwise specified, the default value is SM_USER.

• $group_field (Optional)

The name of the field in the header that contains the group name that the gateway
extracts. Any incoming request that is missing the field results in no group name being
extracted and the connection is allowed.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

6.7. Example SiteMinder Configuration
The following example is the bare minimum configuration for SiteMinder (with no IP
address validation):

<provider>
 <role>federation</role>
 <name>HeaderPreAuth</name>
 <enabled>true</enabled>
 <param>
 <name>preauth.custom.header</name>
 <value>SM_USER</value>
 </param>
 <param>
 <name>preauth.ip.addresses</name>
 <value>10.10.0.*</value>
 </param>
</provider>

6.8. Testing HTTP Header Tokens
Use following cURL command to request a directory listing from HDFS while passing in the
expected header SM_USER, note that the example is specific to sandbox:

curl -k -i --header "SM_USER: guest" -v 'https://localhost:8443/gateway/
sandbox/webhdfs/v1/tmp?op=LISTSTATUS

Omitting the SM_USER: guest–header: guest” above results in a HTTP status 401
unauthorized

6.9. Setting Up 2-Way SSL Authentication
Mutual authentication with SSL provides the Knox gateway with the means to establish
a strong trust relationship with another party. This is especially useful when applications
that act on behalf of end-users send requests to Knox. While this feature does establish an
authenticated trust relationship with the client application, it does not determine the end-
user identity through this authentication. It will continue to look for credentials or tokens

Hortonworks Data Platform September 30, 2015

28

that represent the end-user within the request and authenticate or federate the identity
accordingly.

To configure your Knox Gateway for 2-way SSL authentication, you must first configure
the trust related elements within gateway-site.xml file. The table below lists the different
elements that you can configure related to 2-way mutual authentication.Use following
cURL command to request a directory listing from HDFS while passing in the expected
header SM_USER, note that the example is specific to sandbox:

Table 6.1. gateway-site.xml Configuration Elements

Name Description Possible Values Default Value

gateway.client.auth.needed Flag used to specify whether
authentication is required
for client communications to
the server.

TRUE/FALSE FALSE

gateway.truststore.path The fully-qualified path to
the truststore that will be
used.

 gateway.jks

gateway.truststore.type The type of keystore used
for the truststore.

 JKS

gateway.trust.allcerts Flag used to specify
whether certificates passed
by the client should be
automatically trusted.

TRUE/FALSE FALSE

Once you have configured the gateway-site.xml file, all topologies deployed within the
Knox gateway with mutual authentication enabled will require all incoming connections to
present trusted client certificates during the SSL handshake process; otherwise, the server
will be refuse the connection request.

Hortonworks Data Platform September 30, 2015

29

7. Configuring Identity Assertion
The Knox Gatewayidentity-assertion provider maps an authenticated user to an
internal cluster user and/or group. This allows the Knox Gateway accept requests from
external users without requiring internal cluster user names to be exposed.

The gateway evaluates the authenticated user against the identity-assertion
provider to determine the following:

1. Does the user match any user mapping rules:

• True:The first matching $cluster_user is asserted, that is it becomes the
authenticated user.

• False:The authenticated user is asserted.

2. Does the authenticated user match any group mapping rules:

• True:The authenticated user is a member of all matching groups (for the purpose of
authorization).

• False:The authenticated user is not a member of any mapped groups.

Note

When authenticated by an SSO provider, the authenticated user is a
member of all groups defined in the request as well as any that match the
group.principal.mapping.

7.1. Structure of the Identity-Assertion Provider
All cluster topology descriptors must contain anidentity-assertion provider in
thetopology/gateway definition.

The following is the complete structure of theidentity-assertion provider. The
parameters are optional.

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value> $user_ids = $cluster_user [; $user_ids = $cluster_user1 ;...]</value>
 </param>
 <param>
 <name>group.principal.mapping</name>
 <value> $cluster_users = $group1 ; $cluster_users = $group2 </value>
 </param>
 </provider>

where:

Hortonworks Data Platform September 30, 2015

30

• $user_idsis a comma-separated list of external users or the wildcard (*) indicates all
users.

• $cluster_user the Hadoop cluster user name the gateway asserts, that is the
authenticated user name.

Note

Note that identity-assertion rules are not required; however, whenever an
authentication provider is configured an identity-assertion provider is
also required.

7.2. Define Pseudo Identity Assertion
When you define the Pseudo identity-assertion provider without parameters,
the authenticated user is asserted as the authenticated user. For example, using simple
assertion if a user authenticates as "guest", the user's identity for grouping, authorization,
and running the request is "guest".

To define a basic identify-assertion provider:

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add a Pseudoidentity-assertion provider totopology/gateway as follows:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
</provider>

<provider> <role>identity-assertion</role> <name>Pseudo</name>
<enabled>true</enabled> </provider>

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

7.3. Mapping Authenticated User to Cluster
The principal.mapping parameter of an identity-assertion provider determines
the user name that the gateway asserts (uses as the authenticated user) for grouping,
authorization, and to run the request on the cluster.

Note

If a user does not match a principal mapping definition, the authenticated user
becomes the effective user.

To add user mapping rule to an identity-assertion provider:

Hortonworks Data Platform September 30, 2015

31

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add a Pseudo identity-assertion provider to topology/gateway with the
principal.mapping parameter as follows:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value>$user_ids=$cluster_user;$user_ids=$cluster_user1;...</value>
 </param>
</provider>

where the value contains a semi-colon-separated list of external to internal user
mappings, and the following variables match the names in your environment:

• $user_ids

is a comma-separated list of external users or the wildcard (*) indicates all users.

• $cluster_user

is the Hadoop cluster user name the gateway asserts, that is the authenticated user
name.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

7.3.1. Principal Mapping Enhancements

Concat Identity Assertion is a new provider for the Knox Gateway that enables you to map
principals by concatenating strings to either the front or the back of a specified username.
The Identity Assertion Provider provides the critical function of determining the Identity
Principal that you will want to use in your Hadoop cluster to represent the identity that
has been authenticated at the gateway. For more information on the Identity Assertion
Provider and how it is used in the Knox Gateway, refer to the Identity Assertion chapter
in the Apache Knox 0.6.x User Guide. If you would like to convert the user principal into a
value that represents an identity from a particular user domain, use a configuration similar
to the below example.

<provider>
 <role>identity-assertion</role>
 <name>Concat</name>
 <enabled>true</enabled>
 <param>
 <name>concat.suffix</name>
 <value>domain1</value>
 </param>
<provider>

Notice in this example that the identity-assertion role has been named Concat and
has been enabled (true) for the Identity Assertion Provider, with the conact.suffix

Hortonworks Data Platform September 30, 2015

32

parameter given a value of domain1 and concatenation will occur at the end of the
username (concat.suffix). You may also use a parameter called concat.prefix to
indicate a value to concatenate to the front of the username.

7.4. Example User Mapping
The gateway evaluates the list in order, from left to right; therefore a user matching
multiple entries, resolves to the first matching instance.

In the following example, when a user authenticates as, the gateway asserts the user and
all other users as:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value>guest=sam</value>
 </param>
</provider>

The following example shows how to map multiple users to different cluster accounts:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value>guest,joe,brenda,administrator=same;janet,adam,sue-dwayne</
value>
 </param>
</provider>

7.5. Mapping Authenticated Users to Groups
The Knox Gateway uses group membership for Service Level Authorization only. The
gateway does not propagate the user's group when communicating with the Hadoop
cluster.

The group.principal.mapping parameter of the identity-assertion provider
determines the user's group membership. The gateway evaluates this parameter
after the principal.mapping parameter using the authenticated user. Unlike
principal.mapping, the group mapping applies all the matching values. A user is a
member of all matching groups.

Note

Although user and group mappings are often used together, the instructions in
this section only explain how to add group mappings.

7.6. Configuring Group Mapping
To map authenticated users to groups:

Hortonworks Data Platform September 30, 2015

33

1. Open the cluster topology descriptor file, $cluster-name.xml, in a text editor.

2. Add a Pseudo identity-assertion provider to topology/gateway with the
group.principal.mapping parameter as follows:

<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>group.principal.mapping</name>
 <value>$group1;$user1,$user2=group2;$user3=group2,group3</value>
 </param>
</provider>

where:

• the value is a semi-colon-separated list of user & group mappings and the variables are
specific to your environment.

• $user1,$user2,$user3 are a comma-separated list of authenticated users or the
wildcard (*) indicating all users. A username can be specified only once.

• $group1,$group2,$group3 are the names of the group that the user is in for
Service Level Authorization.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

7.7. Examples of Group Mapping
<provider>
 <role>identity-assertion</role>
 <name>Pseudo</name>
 <enabled>true</enabled>
 <param>
 <name>principal.mapping</name>
 <value>guest,alice=hdfs;mary=hive</value>
 </param>
 <param>
 <name>group.principal.mapping</name>
 <value>*=users; same,dwayne,brenda-admins;joe=analysts</value>
 </param>
</provider>

Hortonworks Data Platform September 30, 2015

34

8. Configuring Service Level
Authorization

Note

Group membership is determined by the identity-assertion
parametergroup.principal.mapping.

Group membership is determined by the identity-assertion
parametergroup.principal.mapping.

8.1. Setting Up an Authorization Provider
The ACLAuthz provider determines who is able to access a service through the Knox
Gateway by comparing the authenticated user, group, and originating IP address of the
request to the rules defined in the authorization provider.

Configure the AclsAuthz provider as follows:

1. Open the cluster topology descriptor file, $cluster-name .xml, in a text editor.

2. Add a AclsAuthz authorization provider to topology/gateway with a parameter
for each service as follows:

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>$service_name.acl.mode</name>
 <value>$mode</value>
 </param>
 <param>
 <name>$service_Name.acl</name>
 <value>$cluster_users;$groups_field;IP_field</value>
 </param>
 ...
</provider>

where:

• $service_name matches the name of a service element. For example,webhdfs.

• $mode determines how the identity context (the effective user, their associated
groups, and the original IP address) is evaluated against the fields as follows:

• AND specifies that the request must match an entry in all three fields of the
corresponding $service_name .acl parameter.

• OR specifies that the request only needs to match an entry in any field,
$users_field OR $groups_field, OR $IP_field.

Hortonworks Data Platform September 30, 2015

35

Note

The $service_name .acl.mode parameter is optional. When it is not
defined, the default mode is AND ; therefore requests to that service must
match all three fields.

• $cluster_users is a comma-separated list of authenticated users. Use a wildcard
(*) to match all users.

• $groups_field is a comma-separated list of groups. Use a wildcard (*) to match all
groups.

• $IP_field is a comma-separated list of IPv4 or IPv6 addresses. An IP address in the
list can contain wildcard at the end to indicate a subnet (for example: 192.168.*). Use
a wildcard (*) to match all addresses.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway/data/
deployments.

8.2. Examples of Authorization
The following examples illustrate how to define authorization rule types to restrict access
to requests matching:

• Only users in a specific group and from specific IP addresses

The following rule is restrictive. It only allows the guest user in the admin group to access
WebHDFS from a system with the IP address of either 127.0.0.2 or 127.0.0.3:

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl</name>
 <value>guest;admin;127.0.0.2,127.0.0.3</value>
 </param>
</provider>

When the parameter acl.mode is not defined the default behavior is ALL, therefore
following rule is the same as the one above:

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl.mode</name>
 <value>AND</value>
 </param>
 <param>
 <name>webhdfs.acl</name>

Hortonworks Data Platform September 30, 2015

36

 <value>guest;admin;127.0.0.2,127.0.0.3</value>
 </param>
</provider>

Note

If Guest is not in the admin group, the request is denied.

• Two of the three conditions

The following rule demonstrates how to require two conditions, user and group but not
IP address, using the Wildcard. The rule allows the guest user that belongs to the admin
group to send requests from anywhere because the IP field contains an asterisk which
matches all IP addresses:

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl</name>
 <value>guest;admin;*</value>
 </param>
</provider>

• One of the three conditions

When the $service .acl.mode parameter is set to OR, the request only needs
to match one entry in any of the fields. The request fails with HTTP Status 403
unauthorized, if no conditions are met.

The following example allows:

• guest to send requests to WebHDFS from anywhere.

• Any user in the admin group to send requests to WebHDFS from anywhere.

• Any user, in any group, to send a request to WebHDFS from 127.0.0.2 or 127.0.0.3.

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl.mode</name>
 <value>OR</value>
 </param>
 <param>
 <name>webhdfs.acl</name>
 <value>guest;admin;127.0.0.2,127.0.03</value>
 </param>
</provider>

• Allow all requests

The following rule grants all users, in any group, and from any IP addresses to access
WebHDFS:

Hortonworks Data Platform September 30, 2015

37

Note

When a wildcard is used in a field it matches any value. Therefore the Allow
all requests example is the same as not defining an ACL.

<provider>
 <role>authorization</role>
 <name>AclsAuthz</name>
 <enabled>true</enabled>
 <param>
 <name>webhdfs.acl</name>
 <value>*,*,*</value>
 </param>
</provider>

Hortonworks Data Platform September 30, 2015

38

9. Audit Gateway Activity
The Knox Gateway Audit Facility tracks actions that are executed by Knox Gateway per
user request or that are produced by Knox Gateway internal events, such as topology
deployments.

Tip

The Knox Audit module is based on the Apache log4j. You can customize
the logger by changing the log4j.appender.auditfile.Layout property in
$gateway /conf/gateway-log4j.properties to another class that
extends Log4j. For detailed information see Apache's log4j.

9.1. Audit Log Fields
Auditing events on the gateway are informational, the default auditing level is
informational (INFO) and it cannot be changed.

The Audit logs located at C:/hadoop/logs/knox/gateway-audit.log have the
following structure:

EVENT_PUBLISHING_TIMEROOT_REQUEST_ID | PARENT_REQUEST_ID | REQUEST_ID
| LOGGER_NAME | TARGET_SERVICE_NAME | USER_NAME | PROXY_USER_NAME |
SYSTEM_USER_NAME | ACTION | RESOURCE_TYPE | RESOURCE_NAME | OUTCOME |
LOGGING_MESSAGE

where:

• EVENT_PUBLISHING_TIME : contains the timestamp when record was written.

• ROOT_REQUEST_ID : Reserved, the field is empty.

• PARENT_REQUEST_ID : Reserved, the field is empty.

• REQUEST_ID : contains a unique value representing the request.

• LOGGER_NAME : contains the logger name. For example audit.

• TARGET_SERVICE_NAME : contains the name of Hadoop service. Empty indicates that
the audit record is not linked to a Hadoop service. For example, an audit record for
topology deployment.

• USER_NAME : contains the ID of the user who initiated session with Knox Gateway.

• PROXY_USER_NAME : contains the authenticated user name.

• SYSTEM_USER_NAME : Reserved, field is empty.

• ACTION : contains the executed action type. The value is either authentication,
authorization, redeploy, deploy, undeploy, identity-mapping, dispatch, or access.

• RESOURCE_TYPE contains the resource type of the action. The value is either uri,
topology, or principal.

http://logging.apache.org/log4j/1.2/

Hortonworks Data Platform September 30, 2015

39

• RESOURCE_NAME : contains the process name of the resource. For example, topology
shows the inbound or dispatch request path and principal shows the name of
mapped user.

• OUTCOME contains the action results, success, failure, or unavailable.

• LOGGING_MESSAGE contains additional tracking information, such as the HTTP status
code.

9.2. Change Roll Frequency of the Audit Log
Audit records are written to the log file /var/log/knox/gateway-audit.log and by default roll
monthly. When the log rolls, the date that it rolled is appended to the end of the current
log file and a new one is created.

To change the frequency:

1. Open the $gateway /conf/gateway-log4j.properties file in a text editor.

2. Change the log4j.appender.auditfile.DatePattern as follows:

log4j.appender.auditfile.DatePattern = $interval

where $interval is one of the following:

Setting Description

yyyy-MM Rollover at the beginning of each month

yyyy-ww Rollover at the first day of each week. The first day of
the week depends on the locale.

yyyy-MM-dd Rollover at midnight each day.

yyyy-MM-dd-a Rollover at midnight and midday of each day.

yyyy-MM-dd-HH Rollover at the top of every hour.

yyyy-MM-dd-HH-mm Rollover at the beginning of every minute.

Tip

For more examples, see Apache log4j: Class DailyRollingFileAppender.

3. Save the file.

4. Restart the gateway:

cd $gateway bin/gateway.sh stop bin/gateway.sh start

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html

Hortonworks Data Platform September 30, 2015

40

10. Gateway Security
The Knox Gateway offers the following security features:

• Implementing Web Application Security [40]

• Configuring Knox With a Secured Hadoop Cluster [42]

• Configure Wire Encryption [43]

10.1. Implementing Web Application Security
The Knox Gateway is a Web API (REST) Gateway for Hadoop clusters. REST interactions are
HTTP based, and therefore the interactions are vulnerable to a number of web application
security vulnerabilities. The web application security provider allows you to configure
protection filter plugins.

Note

The initial vulnerability protection filter is for Cross Site Request Forgery (CSRF).
Others will be added in future releases.

10.2. Configuring Protection Filter Against Cross
Site Request Forgery Attacks

A Cross Site Request Forgery (CSRF) attack attempts to force a user to execute functionality
without their knowledge. Typically the attack is initiated by presenting the user with a link
or image that when clicked invokes a request to another site with which the user already
has an established an active session. CSRF is typically a browser based attack.

The only way to create a HTTP request from a browser is with a custom HTTP header
is to use Javascript XMLHttpRequest or Flash, etc. Browsers have built-in security that
prevent web sites from sending requests to each other unless specifically allowed by
policy. This means that a website www.bad.com cannot send a request to http://
bank.example.com with the custom header X-XSRF-Header unless they use a technology
such as a XMLHttpRequest. That technology would prevent such a request from being
made unless the bank.example.com domain specifically allowed it. This then results in a
REST endpoint that can only be called via XMLHttpRequest (or similar technology).

Note

After enabling CSRF protection within the gateway, a custom header is
required for all clients that interact with it, not just browsers.

To add a CSRF protection filter:

1. Open the cluster topology descriptor file, $cluster-name .xml, in a text editor.

Hortonworks Data Platform September 30, 2015

41

2. Add a WebAppSec webappsec provider to topology/gateway with a parameter for
each service as follows:

<provider>
 <role>webappsec</role>
 <name>WebAppSec</name>
 <enabled>true</enabled>
 <param>
 <name>csrf.enabled</name>
 <value>$csrf_enabled</value>
 </param>
 <param><!-- Optional -->
 <name>csrf.customHeader</name>
 <value>$header_name</value>
 </param>
 <param><!-- Optional -->
 <name>csrf.methodsToIgnore</name>
 <value>$HTTP_methods</value>
 </param>
</provider>

where:

• $csrf_enabled is either true or false.

• $header_name when the optional parameter csrf.customHeader is present the value
contains the name of the header that determines if the request is from a trusted
source. The default, X-XSRF-Header, is described by the NSA in its guidelines for
dealing with CSRF in REST.

$http_methods when the optional parameter csrf.methodsToIgnore is present
the value enumerates the HTTP methods to allow without the custom HTTP header.
The possible values are GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT,
or PATCH. For example, specifying GET allows GET requests from the address bar
of a browser. Only specify methods that adhere to REST principals in terms of being
idempotent.

3. Save the file.

The gateway creates a new WAR file with modified timestamp in $gateway /data/
deployments.

Note

Make sure you have properly set your $JAVA_HOME variable in your user
environment; otherwise, Java will be used.

10.3. Validate CSRF Filtering
The following curl command can be used to request a directory listing from HDFS while
passing in the expected header X-XSRF-Header.

curl -k -i --header "X-XSRF-Header: valid" -v -u guest:guest-password https://
localhost:8443/gateway/sandbox/webhdfs/v1/tmp?op=LISTSTATUS

Hortonworks Data Platform September 30, 2015

42

Note

The above LISTSTATUS request only works if you remove the GET method from
the csrf.methodsToIgnore list.

Omitting the –header “X-XSRF-Header: valid” above results in an HTTP 400 bad_request.
Disabling the provider, by setting csrf.enabled to false allows a request that is missing the
header.

10.4. Configuring Knox With a Secured Hadoop
Cluster

Once you have a Hadoop cluster that uses Kerberos for authentication, you must configure
Knox to work with that cluster.

To enable the Knox Gateway to interact with a Kerberos-protected Hadoop cluster, add a
knox user and Knox Gateway properties to the cluster.

Do the following:

1. Find the fully-qualified domain name of the host running the gateway:

hostname -f

If the Knox host does not have a static IP address, you can define the knox host as * for
local developer testing.

2. At every Hadoop Master:

• Create a UNIX account for Knox:

useradd -g hadoop knox

• Edit core-site.xml to include the following lines (near the end of the file):

<property>
 <name>hadoop.proxyuser.knox.groups</name>
 <value>users</value>
</property>

<property>
 <name>hadoop.proxyuser.knox.hosts</name>
 <value>$knox-host</value>
</property>

where $knox-host is the fully-qualified domain name of the host running the
gateway.

• Edit webhcat-site.xml to include the following lines (near the end of the file):

<property>
 <name>hadoop.proxyuser.knox.groups</name>
 <value>users</value>
</property>

<property>

Hortonworks Data Platform September 30, 2015

43

 <name>hadoop.proxyuser.knox.hosts</name>
 <value>$knox-host</value>
</property>

where $knox_host is the fully-qualified domain name of the host running the
gateway.

3. At the Oozie host, edit oozie-site.xml to include the following lines (near the end of
the file):

<property>
 <name>oozie.service.ProxyUserService.proxyuser.knox.groups</name>
 <value>users</value>
</property>

<property>
 <name>oozie.service.ProxyUserService.proxyuser.knox.hosts</name>
 <value>$knox-host</value>
</property>

where $knox-host is the fully-qualified domain name of the host running the gateway.

4. At each node running HiveServer2, edit hive-site.xml to include the following
properties and values:

<property>
 <name>hive.server2.enable.doAs</name>
 <value>true</value>
</property>

<property>
 <name>hive.server2.allow.user.substitution</name>
 <value>true</value>
</property>

<property>
 <name>hive.server2.transport.mode</name>
 <value>http</value>
 <description>Server transport mode. "binary" or "http".</description>
</property>

<property>
 <name>hive.server2.thrift.http.port</name>
 <value>10001</value>
 <description>Port number when in HTTP mode.</description>
</property>

<property>
 <name>hive.server2.thrift.http.path</name>
 <value>cliservice</value>
 <description>Path component of URL endpoint when in HTTP mode.</
description>
</property>

10.5. Configure Wire Encryption
For the simplest of evaluation deployments, the initial startup of the Knox Gateway will
generate a self-signed cert for use on the same machine as the gateway instance. These

Hortonworks Data Platform September 30, 2015

44

certificates are issued for "localhost" and will require specifically disabling hostname
verification on client machines other than where the gateway is running.

10.6. Self-Signed Certificate with Specific
Hostname for Evaluations

In order to continue to use self-signed certificates for larger evaluation deployments, a
certificate can be generated for a specific hostname. This will allow clients to properly verify
the hostname presented in the certificate as the host that they requested in the request
URL.

To create a self-signed certificate:

1. Create a certificate: where $gateway-hostname is the FQDN of the Knox Gateway.

cd $gateway bin/knoxcli.cmd create-cert --hostname $gateway-hostname

2. Export the certificate in PEM format:

keytool -export -alias gateway-identity -rfc -file $certificate_path -
keystore $gateway /data/security/keystores/gateway.jks

Note

cURL option accepts certificates in PEM format only.

3. Restart the gateway:

cd $gateway bin/gateway.sh stop bin/gateway.sh start

4. After copying the certificate to a client, use the following command to verify:

curl --cacert $certificate_path -u $username : $password https://
 $gateway-hostname : $gateway_port /gateway/ $cluster_name /webhdfs/v1?op=
GETHOMEDIRECTORY

10.7. CA-Signed Certificates for Production
For production deployments or any deployment in which a certificate authority issued
certificate is needed, the following steps are required.

1. Import the desired certificate/key pair into a java keystore using keytool and ensure the
following:

• The certificate alias is gateway-identity.

• The store password matches the master secret created earlier.

• Note the key password used - as we need to create an alias for this password.

2. Add a password alias for the key password:

cd $gateway bin/knoxcli.cmd create-cert create-alias gateway-identity-
passphrase --value $actualpassphrase

Hortonworks Data Platform September 30, 2015

45

Note

The password alias must be gateway-identity-passphrase.

10.8. Setting Up Trust for the Knox Gateway
Clients

In order for clients to trust the certificates presented to them by the gateway, they will
need to be present in the client's truststore as follows:

1. Export the gateway-identity cert from the $gateway /data/security/keystores/
gateway.jks using java keytool or another key management tool.

2. Add the exported certificate to the cacerts or other client specific truststore or the
gateway.jks file can be copied to the clients to be used as the truststore.

Note

If taking this approach be sure to change the password of the copy so that it
no longer matches the master secret used to protect server side artifacts.

Hortonworks Data Platform September 30, 2015

46

11. Setting Up Knox for WebHDFS HA
This chapter describes how to set up the Knox Gateway for WebHDFS HA (high availability).

To set up Knox for WebHDFS HA:

1. Configure WebHDFS for Knox [46]

2. Configure Knox for WebHDFS HA [47]

11.1. Configure WebHDFS for Knox
REST API access to HDFS in a Hadoop cluster is provided by WebHDFS. The WebHDFS REST
API documentation is available online. The following properties for Knox WebHDFS must
be enabled in the /etc/hadoop/conf/hdfs-site.xml configuration file. The example
values shown in these properties are from an installed instance of the Hortonworks
Sandbox.

<property>
 <name>dfs.webhdfs.enabled</name>
 <value>true</value>
</property>
<property>
 <name>dfs.namenode.rpc-address</name>
 <value>sandbox.hortonworks.com:8020</value>
</property>
<property>
 <name>dfs.namenode.http-address</name>
 <value>sandbox.hortonworks.com:50070</value>
</property>
<property>
 <name>dfs.https.namenode.https-address</name>
 <value>sandbox.hortonworks.com:50470</value>
</property>

The values above must be reflected in each topology descriptor file deployed to the
gateway. The gateway by default includes a sample topology descriptor file located at
{GATEWAY_HOME}/deployments/sandbox.xml. The values in the following sample
are also configured to work with an installed Hortonworks Sandbox VM.

<service>
 <role>NAMENODE</role>
 <url>hdfs://localhost:8020</url>
</service>
<service>
 <role>WEBHDFS</role>
 <url>http://localhost:50070/webhdfs</url>
</service>

The URL provided for the NAMENODE role does not result in an endpoint being exposed
by the gateway. This information is only required so that other URLs can be rewritten that
reference the Name Node’s RPC address. This prevents clients from needing to be aware of
the internal cluster details.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_hdfs_admin_tools/content/ch11.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/WebHDFS.html

Hortonworks Data Platform September 30, 2015

47

11.2. Configure Knox for WebHDFS HA
Important

Before you can configure the Knox Gateway for WebHDFS HA (high
availability), you must first configure WebHDFS for Knox.

Knox provides basic failover and retry functionality for REST API calls made to WebHDFS
when HDFS HA has been configured and enabled.

To enable HA functionality for WebHDFS in Knox the following configuration must be
added to the topology file.

<provider>
 <role>ha</role>
 <name>HaProvider</name>
 <enabled>true</enabled>
 <param>
 <name>WEBHDFS</name>
 <value>maxFailoverAttempts=3;failoverSleep=1000;maxRetryAttempts=
300;retrySleep=1000;enabled=true</value>
 </param>
</provider>

The <role> and <name> of the provider must be as shown above. The <name> in the
<param> section must match that of the service role name that is being configured for HA,
and the <value> in the <param> section is the configuration for that particular service in HA
mode. In this case the <name> is WEBHDFS.

The various configuration parameters are described below:

• maxFailoverAttempts -- The maximum number of times a failover will be attempted.
The current failover strategy is very simplistic in that the next URL in the list of URLs
provided for the service is used, and the one that failed is put at the bottom of the list.
If the list is exhausted and the maximum number of attempts has not been reached,
the first URL that failed will be tried again (the list will start again from the original top
entry).

• failoverSleep -- The amount of time in milliseconds that the process will wait or sleep
before attempting to failover.

• maxRetryAttempts -- The maximum number of times that a retry request will be
attempted. Unlike failover, the retry is done on the same URL that failed. This is a special
case in HDFS when the node is in safe mode. The expectation is that the node will come
out of safe mode, so a retry is desirable here as opposed to a failover.

• retrySleep -- The amount of time in milliseconds that the process will wait or sleep
before a retry is issued.

• enabled - Flag to turn the particular service on or off for HA.

For the service configuration itself, the additional URLs for standby nodes should be added
to the list. The active URL (at the time of configuration) should ideally be added at the top
of the list. For example:

Hortonworks Data Platform September 30, 2015

48

<service>
 <role>WEBHDFS</role>
 <url>http://{host1}:50070/webhdfs</url>
 <url>http://{host2}:50070/webhdfs</url>
</service>

Hortonworks Data Platform September 30, 2015

49

12. About Hortonworks Data Platform
Copyright

© Copyright © 2012 - 2015 Hortonworks, Inc. Some rights reserved.

This work by Hortonworks, Inc. is licensed under a Creative Commons Attribution-
ShareAlike 3.0 Unported License.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and
100% open source platform for storing, processing and analyzing large volumes of data. It
is designed to deal with data from many sources and formats in a very quick, easy and cost-
effective manner. The Hortonworks Data Platform consists of the essential set of Apache
Hadoop projects including MapReduce, Hadoop Distributed File System (HDFS), HCatalog,
Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the major contributor of code
and patches to many of these projects. These projects have been integrated and tested as
part of the Hortonworks Data Platform release process and installation and configuration
tools have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes
100% of our code back to the Apache Software Foundation. The Hortonworks Data
Platform is Apache-licensed and completely open source. We sell only expert technical
support, training and partner enablement services. All of our technology is, and will
remain, free and open source.

For more information on Hortonworks technology, Please visit the Hortonworks Data
Platform page. For more information on Hortonworks services, please visit either the
Support or Training page. Feel free to Contact Us directly to discuss your specific needs.

https://hortonworks.com
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/products/hdp/
https://hortonworks.com/hadoop-support/
https://hortonworks.com/training
https://hortonworks.com/about-us/contact-us/

	Hortonworks Data Platform
	Table of Contents
	1. Apache Knox Gateway Overview
	1.1. Knox Gateway Deployment Architecture
	1.2. Supported Hadoop Services
	1.3. Knox Gateway Samples

	2. Configuring the Knox Gateway
	2.1. Create and Secure the Gateway Directories
	2.2. Customize the Gateway Port and Path
	2.3. Manage the Master Secret
	2.4. Manually Redeploy Cluster Topologies
	2.5. Manually Start and Stop Apache Knox

	3. Defining Cluster Topologies
	4. Configuring the Knox Topology to Connect to Hadoop Cluster Services
	4.1. Setting up Hadoop Service URLs
	4.2. Example Service Definitions
	4.3. Validating Service Connectivity
	4.4. Adding a New Service to the Knox Gateway
	4.4.1. Service Directory Structure
	4.4.2. Adding a New Service to the Knox Gateway

	5. Mapping the Internal Nodes to External URLs
	5.1. Setting Up a Hostmap Provider
	5.2. Example of an EC2 Hostmap Provider
	5.3. Example of Sandbox Hostmap Provider
	5.4. Enabling Hostmap Debugging

	6. Configuring Authentication
	6.1. Setting Up LDAP Authentication
	6.2. LDAP Authentication Caching
	6.3. Example Active Directory Configuration
	6.4. Example OpenLDAP Configuration
	6.5. Testing an LDAP Provider
	6.6. Setting Up HTTP Header Authentication for Federation_SSO
	6.7. Example SiteMinder Configuration
	6.8. Testing HTTP Header Tokens
	6.9. Setting Up 2-Way SSL Authentication

	7. Configuring Identity Assertion
	7.1. Structure of the Identity-Assertion Provider
	7.2. Define Pseudo Identity Assertion
	7.3. Mapping Authenticated User to Cluster
	7.3.1. Principal Mapping Enhancements

	7.4. Example User Mapping
	7.5. Mapping Authenticated Users to Groups
	7.6. Configuring Group Mapping
	7.7. Examples of Group Mapping

	8. Configuring Service Level Authorization
	8.1. Setting Up an Authorization Provider
	8.2. Examples of Authorization

	9. Audit Gateway Activity
	9.1. Audit Log Fields
	9.2. Change Roll Frequency of the Audit Log

	10. Gateway Security
	10.1. Implementing Web Application Security
	10.2. Configuring Protection Filter Against Cross Site Request Forgery Attacks
	10.3. Validate CSRF Filtering
	10.4. Configuring Knox With a Secured Hadoop Cluster
	10.5. Configure Wire Encryption
	10.6. Self-Signed Certificate with Specific Hostname for Evaluations
	10.7. CA-Signed Certificates for Production
	10.8. Setting Up Trust for the Knox Gateway Clients

	11. Setting Up Knox for WebHDFS HA
	11.1. Configure WebHDFS for Knox
	11.2. Configure Knox for WebHDFS HA

	12. About Hortonworks Data Platform

