
Hortonworks Data Platform

 (September 30, 2015)

Using Apache Storm

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform September 30, 2015

ii

Hortonworks Data Platform: Using Apache Storm
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform September 30, 2015

iii

Table of Contents
1. Using Apache Storm .. 1

1.1. Basic Storm Concepts .. 1
1.1.1. Spouts .. 2
1.1.2. Bolts ... 3
1.1.3. Stream Groupings .. 4
1.1.4. Topologies .. 4
1.1.5. Processing Reliability ... 5
1.1.6. Workers, Executors, and Tasks .. 6
1.1.7. Parallelism .. 6

2. Installing and Configuring Storm .. 12
3. Topology Development Guidelines ... 13

3.1. Debugging Topologies .. 13
3.2. Determining Topology Parallelism Units ... 15

4. Streaming Data to Hive ... 16
5. Ingesting Data with the Apache Kafka Spout Connector .. 19

5.1. KafkaSpout and OpaqueTridentKafkaSpout Examples 19
5.2. Storm-Kafka API Reference ... 20
5.3. KafkaSpout Limitations ... 22
5.4. Configuring Kafka for Use with the Storm-Kafka Connector 23
5.5. Configuring KafkaSpout to Connect to a Secure Kafka Cluster 23

6. Ingesting Data from HDFS ... 24
6.1. Configuring HDFS Spout .. 25
6.2. HDFS Spout Example ... 25

7. Writing Data with Storm .. 27
7.1. Writing Data to HDFS ... 27

7.1.1. Storm-HDFS: Core Storm APIs ... 27
7.1.2. Storm-HDFS: Trident APIs ... 29

7.2. Writing Data to HBase .. 29
7.3. Writing Data to Kafka ... 31
7.4. Configuring Connectors for a Secure Cluster .. 33

8. Packaging Storm Topologies .. 38
9. Deploying and Managing Apache Storm Topologies .. 40
10. Example: RollingTopWords Topology ... 42

Hortonworks Data Platform September 30, 2015

iv

List of Tables
1.1. Storm Concepts ... 1
1.2. Stream Groupings ... 4
1.3. Processing Guarantees .. 5
3.1. Storm Topology Guidelines .. 13
4.1. HiveMapper Arguments .. 16
4.2. HiveOptions Class Configuration Properties ... 17
5.1. KafkaConfig Parameters .. 20
5.2. SpoutConfig Parameters .. 21
5.3. TridentKafkaConfig Parameters ... 21
5.4. KafkaConfig Fields .. 21
5.5. SpoutConfig Parameters .. 22
5.6. TridentKafkaConfig Parameters ... 23
7.1. SimpleHBaseMapper Methods ... 30
8.1. Topology Packing Errors .. 39
9.1. Topology Administrative Actions ... 40

Hortonworks Data Platform September 30, 2015

1

1. Using Apache Storm
The exponential increase in data from real-time sources such as machine sensors creates
a need for data processing systems that can ingest this data, process it, and respond in
real time. A typical use case involves an automated system that responds to sensor data by
sending email to support staff or placing an advertisement on a consumer's smart phone.
Apache Storm enables such data-driven and automated activity by providing a realtime,
scalable, and distributed solution for streaming data.

Apache Storm can be used with any programming language, and guarantees that data
streams are processed without data loss.

Storm is datatype-agnostic; it processes data streams of any data type.

A complete introduction to the Storm API is beyond the scope of this documentation.
However, the next section, Basic Storm Concepts, provides a brief overview of the most
essential concepts and a link to the javadoc API. For a more thorough discussion of Apache
Storm concepts, see the Apache Storm documentation for your version of Storm.

Experienced Storm developers may want to skip to later sections for information about
streaming data to Hive; ingesting data with the Apache Kafka spout; writing data to HDFS,
HBase, and Kafka; and deploying Storm topologies.

The last section, RollingTopWords Topology, lists the source code for a sample application
included with the storm-starter.jar.

1.1. Basic Storm Concepts
Writing Storm applications requires an understanding of the following basic concepts.

Table 1.1. Storm Concepts

Storm Concept Description

Tuple A named list of values of any data type. The native data
structure used by Storm.

Stream An unbounded sequence of tuples.

Spout Generates a stream from a realtime data source.

Bolt Contains data processing, persistence, and messaging alert
logic. Can also emit tuples for downstream bolts.

Stream Grouping Controls the routing of tuples to bolts for processing.

Topology A group of spouts and bolts wired together into a
workflow. A Storm application.

Processing Reliability Storm guarantee about the delivery of tuples in a
topology.

Parallelism Attribute of distributed data processing that determines
how many jobs are processed simultaneously for a
topology. Topology developers adjust parallelism to tune
their applications.

Workers A Storm process. A worker may run one or more
executors.

Executors A Storm thread launched by a Storm worker. An executor
may run one or more tasks.

Tasks A Storm job from a spout or bolt.

http://storm.incubator.apache.org/documentation/Documentation.html

Hortonworks Data Platform September 30, 2015

2

Storm Concept Description

Process Controller Monitors and restarts failed Storm processes. Examples
include supervisord, monit, and daemontools.

Master/Nimbus Node The host in a multi-node Storm cluster that runs a process
controller, such as supervisord, and the Storm nimbus,
ui, and other related daemons. The process controller
is responsible for restarting failed process controller
daemons, such as supervisor, on slave nodes. The Storm
nimbus daemon is responsible for monitoring the Storm
cluster and assigning tasks to slave nodes for execution.

Slave Node A host in a multi-node Storm cluster that runs a process
controller daemon, such as supervisor, as well as the
worker processes that run Storm topologies. The process
controller daemon is responsible for restarting failed
worker processes.

The following subsections describe several of these concepts in more detail.

1.1.1. Spouts

All spouts must implement the backtype.storm.topology.IRichSpout interface
from the core-storm API. BaseRichSpout is the most basic implementation, but there are
several others, including ClojureSpout, DRPCSpout, and FeederSpout. In addition,
Hortonworks provides a Kafka spout to ingest data from a Kafka cluster. The following
example, RandomSentenceSpout, is included with the storm-starter connector
installed with Storm at /usr/lib/storm/contrib/storm-starter.

package storm.starter.spout;

import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils;

import java.util.Map;
import java.util.Random;

public class RandomSentenceSpout extends BaseRichSpout {
 SpoutOutputCollector _collector;
 Random _rand;

 @Override
 public void open(Map conf, TopologyContext context, SpoutOutputCollector
 collector) {
 _collector = collector;
 _rand = new Random();
 }

 @Override
 public void nextTuple() {
 Utils.sleep(100);
 String[] sentences = new String[]{ "the cow jumped over the moon", "an apple
 a day keeps the doctor away", "four score and seven years ago", "snow white
 and the seven dwarfs", "i am at two with nature" };

Hortonworks Data Platform September 30, 2015

3

 String sentence = sentences[_rand.nextInt(sentences.length)];
 _collector.emit(new Values(sentence));
 }

 @Override
 public void ack(Object id) {
 }

 @Override
 public void fail(Object id) {
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }

}

1.1.2. Bolts

All bolts must implement the IRichBolt interface. BaseRichBolt is the most
basic implementation, but there are several others, including BatchBoltExecutor,
ClojureBolt, and JoinResult. The following example, TotalRankingsBolt.java,
is included with storm-starter and installed with Storm at /usr/lib/storm/
contrib/storm-starter.

package storm.starter.bolt;

import backtype.storm.tuple.Tuple;
import org.apache.log4j.Logger;
import storm.starter.tools.Rankings;

/**
 * This bolt merges incoming {@link Rankings}.
 * <p/>
 * It can be used to merge intermediate rankings generated by {@link
 IntermediateRankingsBolt} into a final,
 * consolidated ranking. To do so, configure this bolt with a globalGrouping
 on {@link IntermediateRankingsBolt}.
 */
public final class TotalRankingsBolt extends AbstractRankerBolt {

 private static final long serialVersionUID = -8447525895532302198L;
 private static final Logger LOG = Logger.getLogger(TotalRankingsBolt.class);

 public TotalRankingsBolt() {
 super();
 }

 public TotalRankingsBolt(int topN) {
 super(topN);
 }

 public TotalRankingsBolt(int topN, int emitFrequencyInSeconds) {
 super(topN, emitFrequencyInSeconds);
 }

 @Override

Hortonworks Data Platform September 30, 2015

4

 void updateRankingsWithTuple(Tuple tuple) {
 Rankings rankingsToBeMerged = (Rankings) tuple.getValue(0);
 super.getRankings().updateWith(rankingsToBeMerged);
 super.getRankings().pruneZeroCounts();
 }

 @Override
 Logger getLogger() {
 return LOG;
 }

}

1.1.3. Stream Groupings

Stream grouping allows Storm developers to control how tuples are routed to bolts in a
workflow. The following table describes the stream groupings available.

Table 1.2. Stream Groupings

Stream Grouping Description

Shuffle Sends tuples to bolts in random, round robin sequence.
Use for atomic operations, such as math.

Fields Sends tuples to a bolt based on one or more fields in the
tuple. Use to segment an incoming stream and to count
tuples of a specified type.

All Sends a single copy of each tuple to all instances of a
receiving bolt. Use to send a signal, such as clear cache or
refresh state, to all bolts.

Custom Customized processing sequence. Use to get maximum
flexibility of topology processing based on factors such as
data types, load, and seasonality.

Direct Source decides which bolt receives a tuple.

Global Sends tuples generated by all instances of a source to a
single target instance. Use for global counting operations.

Storm developers specify the field grouping for each bolt using methods on the
TopologyBuilder.BoltGetter inner class, as shown in the following excerpt from the
the WordCountTopology.java example included with storm-starter.

...
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 5);
builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new
 Fields("word"));
...

The first bolt uses shuffle grouping to split random sentences generated with the
RandomSentenceSpout. The second bolt uses fields grouping to segment and perform a
count of individual words in the sentences.

1.1.4. Topologies

The following image depicts a Storm topology with a simple workflow.

Hortonworks Data Platform September 30, 2015

5

The TopologyBuilder class is the starting point for quickly writing Storm topologies
with the storm-core API. The class contains getter and setter methods for the spouts and
bolts that comprise the streaming data workflow, as shown in the following sample code.

...
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout1", new BaseRichSpout());
builder.setSpout("spout2", new BaseRichSpout());
builder.setBolt("bolt1", new BaseBasicBolt());
builder.setBolt("bolt2", new BaseBasicBolt());
builder.setBolt("bolt3", new BaseBasicBolt());
...

1.1.5. Processing Reliability

Storm provides two types of guarantees when processing tuples for a Storm topology.

Table 1.3. Processing Guarantees

Guarantee Description

At least once Reliable; Tuples are processed at least once, but may be
processed more than once. Use when subsecond latency is
required and for unordered idempotent operations.

Exactly once Reliable; Tuples are processed only once. Requires the use
of a Trident spout and the Trident API.

Hortonworks Data Platform September 30, 2015

6

1.1.6. Workers, Executors, and Tasks

Apache Storm processes, called workers, run on predefined ports on the machine that hosts
Storm.

• Each worker process can run one or more executors, or threads, where each executor is a
thread spawned by the worker process.

• Each executor runs one or more tasks from the same component, where a component is
a spout or bolt from a topology.

1.1.7. Parallelism

Distributed applications take advantage of horizontally-scaled clusters by dividing
computation tasks across nodes in a cluster. Storm offers this and additional finer-grained
ways to increase the parallelism of a Storm topology:

• Increase the number of workers

• Increase the number of executors

• Increase the number of tasks

By default, Storm uses a parallelism factor of 1. Assuming a single-node Storm cluster, a
parallelism factor of 1 means that one worker, or JVM, is assigned to execute the topology,
and each component in the topology is assigned to a single executor. The following
diagram illustrates this scenario. The topology defines a data flow with three tasks, a spout
and two bolts.

Note

Hortonworks recommends that Storm developers store parallelism settings in
a configuration file read by the topology at runtime rather than hard-coding
the values passed to the Parallelism API. This topic describes and illustrates
the use of the API, but developers can achieve the same effect by reading the
parallelism values from a configuration file.

Hortonworks Data Platform September 30, 2015

7

Increasing Parallelism with Workers

Storm developers can easily increase the number of workers assigned to execute a topology
with the Config.setNumWorkers() method. This code assigns two workers to execute
the topology, as the following figure illustrates.

...
Config config = new Config();
config.setNumWorkers(2);
...

Hortonworks Data Platform September 30, 2015

8

Adding new workers comes at a cost: additional overhead for a new JVM.

This example adds an additional worker without additional executors or tasks, but to
take full advantage of this feature, Storm developers must add executors and tasks to the
additional JVMs (described in the following examples).

Increasing Parallelism with Executors

The parallelism API enables Storm developers to specify the number of executors for each
worker with a parallelism hint, an optional third parameter to the setBolt() method.
The following code sample sets this parameter for the MyBolt1 topology component.

...
Config config = new Config();
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(MY_SPOUT_ID, mySpout);
builder.setBolt(MY_BOLT1_ID, myBolt1, 2).shuffleGrouping(MY_SPOUT_ID);
builder.setBolt(MY_BOLT2_ID, myBolt2).shuffleGrouping(MY_SPOUT_ID);
...

This code sample assigns two executors to the single, default worker for the specified
topology component, MyBolt1, as the following figure illustrates.

The number of executors is set at the level of individual topology components, so adding
executors affects the code for the specified spouts and bolts. This differs from adding
workers, which affects only the configuration of the topology.

Increasing Parallelism with Tasks

Hortonworks Data Platform September 30, 2015

9

Finally, Storm developers can increase the number of tasks assigned to a single topology
component, such as a spout or bolt. By default, Storm assigns a single task to each
component, but developers can increase this number with the setNumTasks() method
on the BoltDeclarer and SpoutDeclarer objects returned by the setBolt() and
setSpout() methods.

...
Config config = new Config();
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(MY_SPOUT_ID, mySpout);
builder.setBolt(MY_BOLT1_ID, myBolt1).setNumTasks(2).
shuffleGrouping(MY_SPOUT_ID);
builder.setBolt(MY_BOLT1_ID, myBolt2).shuffleGrouping(MY_SPOUT_ID);
...

This code sample assigns two tasks to execute MyBolt1, as the following figure illustrates.
This added parallelism might be appropriate for a bolt containing a large amount of data
processing logic. However, adding tasks is like adding executors because the code for the
corresponding spouts or bolts also changes.

Putting it All Together

Storm developers can fine-tune the parallelism of their topologies by combining new
workers, executors and tasks. The following code sample demonstrates all of the following:

• Split processing of the MySpout component between four tasks in two separate
executors across two workers

• Split processing of the MyBolt1 component between two executors across two workers

Hortonworks Data Platform September 30, 2015

10

• Centralize processing of the MyBolt2 component in a single task in a single executor in a
single worker on a single worker

...
Config config = new Config();
config.setNumWorkers(2);
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(MY_SPOUT_ID, mySpout, 2).setNumTasks(4);
builder.setBolt(MY_BOLT1_ID, myBolt1, 2).setNumTasks(2).
shuffleGrouping(MY_SPOUT_ID);
builder.setBolt(MY_BOLT2_ID, myBolt2).shuffleGrouping(MY_SPOUT_ID);
...

Hortonworks Data Platform September 30, 2015

11

The degree of parallelism depicted might be appropriate for the following topology
requirements:

• High-volume streaming data input

• Moderate data processing logic

• Low-volume topology output

Hortonworks Data Platform September 30, 2015

12

2. Installing and Configuring Storm
To install Storm using Ambari, see Adding a Service to your Hadoop cluster in the Ambari
User's Guide. To configure Storm for Kerberos security on an Ambari-managed cluster, see
Configuring Storm for Kerberos Over Ambari.

To install Storm manually, see Installing and Configuring Apache Storm in the Non-Ambari
Cluster Installation Guide.

If you are deploying a production cluster with Storm, you should configure the Storm
components to operate under supervision. For more information, see Configuring Storm
for Supervision in the Ambari Reference Guide. (The link is for Ambari version 2.2.2.0.)

https://dev.hortonworks.com.s3.amazonaws.com/HDPDocuments/Ambari-2.2.2.0/bk_Ambari_Users_Guide/content/_adding_a_service_to_your_hadoop_cluster.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-overview.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_installing_manually_book/content/ch_installing_storm_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_ambari_reference_guide/content/ch_configuring_storm_for_supervision.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_ambari_reference_guide/content/ch_configuring_storm_for_supervision.html

Hortonworks Data Platform September 30, 2015

13

3. Topology Development Guidelines
Hortonworks recommends the following guidelines for all Storm topologies.

Note

These recommendations focus on guidelines for writing and debugging Storm
topologies, rather than hardware tuning. Typically, most of the computation
burden falls on the Supervisor and Worker nodes in a Storm cluster. The
Nimbus node usually has a lighter load. For this reason, Hortonworks
recommends that organizations save their hardware resources for the relatively
burdened Supervisor and Worker nodes.

Table 3.1. Storm Topology Guidelines

Guideline Description

Read topology configuration parameters from a file. Rather than hard coding configuration information in your
Storm application, read the configuration parameters,
including parallelism hints for specific components,
from a file inside the main() method of the topology.
This speeds up the iterative process of debugging by
eliminating the need to rewrite and recompile code for
simple configuration changes.

Use a cache. Use a cache to improve performance by eliminating
unnecessary operations over the network, such as making
frequent external service or lookup calls for reference data
needed for processing.

Tighten code in the execute() method. Every tuple is processed by the execute() method, so
verify that the code in this method is as tight and efficient
as possible.

Perform benchmark testing to determine latencies. Perform benchmark testing of the critical points in the
network flow of your topology. Knowing the capacity of
your data "pipes" provides a reliable standard for judging
the performance of your topology and its individual
components.

3.1. Debugging Topologies
This topic describes best practices for debugging Storm topologies, including basic
guidelines for configuring parallelism for individual topology components.

Debugging Storm topologies differs from debugging batch-oriented applications. Because
Storm topologies operate on streaming data (rather than data at rest, as in HDFS) they
are sensitive to data sources. When debugging Storm topologies, consider the following
questions:

• What are my data sources?

• At what rate do these data sources deliver messages?

• What size are the messages?

• What is my slowest data sink?

Hortonworks Data Platform September 30, 2015

14

The performance of a Storm topology degrades when it cannot ingest data fast enough to
keep up with the data source. In addition, the velocity of incoming streaming data changes
over time. When the data flow of the source exceeds what the topology can process,
memory buffers fill up and the topology suffers frequent timeouts and must replay tuples
to process them. (In contrast, MapReduce applications operate on data at rest in HDFS,
with a constant data velocity. These applications suffer from poor latencies, but do not
experience the buffer overflows and timeouts associated with streaming applications.)

Hortonworks recommends the following topology debugging technique to identify and
overcome poor topology performance due to mismatched data flow rates between source
and application.

1. Click Show Visualization in the Storm UI to display a visual representation of your
topology and and find the data bottleneck in your Storm application. Thicker lines
between components denote larger data flows. A blue component represents the the
first component in the topology, such as the spout below from the WordCountTopology
included with storm-starter. The color of the other topology components indicates
whether the component is exceeding cluster capacity: red components denote a data
bottleneck and green components indicate components operating within capacity.

Note

In addition to bolts in your topology, Storm uses its own bolts to perform
background work when a topology component acknowledges that it either
succeeded or failed to process a tuple. These names of these acker bolts
are prefixed with an underscore in the visualization, but do not appear
in the default view. You can display the component-specific data about
successful acknowledgements by selecting the _ack_ack check box. Select
the _ack_fail checkbox to display component-specific data about failed
acknowledgements.

Hortonworks Data Platform September 30, 2015

15

2. Verify that you have found the topology bottleneck by rewriting the execute()
method of the target bolt or spout to perform no operations.

If the performance of the topology improves, you have found the bottleneck.
Alternatively, turn off each topology component, one at a time, to find the component
responsible for the processing bottleneck.

3. Increase the timeout value for the topology.

Edit the value of topology.message.timeout.secs in the storm.yaml
configuration file. The default value is 30 seconds. This configuration parameter controls
how long a tuple tree from the core-storm API or a batch from the Trident API has to
complete processing before Storm times out and fails the operation.

4. Override the maximum number of tuples or batches waiting for processing before a
spout temporarily stops emitting tuples to downstream bolts.

Edit the value of topology.max.spout.pending in the storm.yaml configuration
file. The default is no limit. Hortonworks recommends that topologies using the core-
storm API start with a value of 1000 and slowly decrease the value as necessary.
Toplogies using the Trident API should start with a much lower value, between 1 and 5.

5. Increase the parallelism for the target spout or bolt, as described in the next section.

3.2. Determining Topology Parallelism Units
Hortonworks recommends using the following calculation to determine the total number
of parallelism units for a topology. Parallelism units are a useful conceptual tool for
determining how to distribute processing tasks across a distributed application.

(number of worker nodes in cluster * number cores per worker node) - (number
 of acker tasks)

Acker tasks are topology components that acknowledge a successfully processed tuple.
The following example assumes a Storm cluster with ten worker nodes, 16 CPU cores
per worker node, and ten acker tasks in the topology. This Storm topology has 150 total
parallelism units:

(10 * 16) - 10 = 150

Storm developers can mitigate the increased processing load associated with data
persistence operations, such as writing to HDFS and generating reports, by distributing the
most parallelism units to topology components that perform data persistence operations.

Hortonworks Data Platform September 30, 2015

16

4. Streaming Data to Hive
Both the core-storm and Trident APIs support streaming data directly to Apache Hive
using Hive transactions. Data committed in a transaction is immediately available to Hive
queries from other Hive clients. Storm developers stream data to existing table partitions
or configure the streaming Hive bolt to dynamically create desired table partitions. Use the
following steps to perform this procedure:

1. Instantiate an implementation of the HiveMapper Interface.

2. Instantiate a HiveOptions class with the HiveMapper implementation.

3. Instantiate a HiveBolt with the HiveOptions class.

Note

Currently, data may be streamed only into bucketed tables using the ORC file
format.

Core-storm API

DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames));
HiveOptions hiveOptions = new
HiveOptions(metaStoreURI,dbName,tblName,mapper);
HiveBolt hiveBolt = new HiveBolt(hiveOptions);

Trident API

DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames))
 .withTimeAsPartitionField("YYYY/MM/DD");

HiveOptions hiveOptions = new HiveOptions(metaStoreURI,dbName,tblName,mapper)
 .withTxnsPerBatch(10)
 .withBatchSize(1000)
 .withIdleTimeout(10)

StateFactory factory = new HiveStateFactory().withOptions(hiveOptions);
TridentState state = stream.partitionPersist(factory, hiveFields, new
 HiveUpdater(),
new Fields());

The rest of this topic describes these steps in greater detail.

Instantiate an Implementation of HiveMapper Interface

The storm-hive streaming bolt uses the HiveMapper interface to map the names of
tuple fields to the names of Hive table columns. Storm provides two implementations:
DelimitedRecordHiveMapper and JsonRecordHiveMapper. Both implementations
take the same arguments.

Table 4.1. HiveMapper Arguments

Argument Data Type Description

withColumnFields backtype.storm.tuple.Fields The name of the tuple fields that you
want to map to table column names.

Hortonworks Data Platform September 30, 2015

17

Argument Data Type Description

withPartitionFields backtype.storm.tuple.Fields The name of the tuple fields that you
want to map to table partitions.

withTimeAsPartitionField String Requests that table partitions be
created with names set to system
time. Developers can specify any Java-
supported date format, such as "YYYY/
MM/DD".

The following sample code illustrates how to use DelimitedRecordHiveMapper:

...
DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames))
 .withPartitionFields(new Fields(partNames));

DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames))
 .withTimeAsPartitionField("YYYY/MM/DD");
...

Instantiate a HiveOptions Class with the HiveMapper Implementation

Use the HiveOptions class to configure the transactions used by Hive to ingest the
streaming data, as illustrated in the following code sample.

...
HiveOptions hiveOptions = new HiveOptions(metaStoreURI,dbName,tblName,mapper)
 .withTxnsPerBatch(10)
 .withBatchSize(1000)
 .withIdleTimeout(10);
...

The following table describes all configuration properties for the HiveOptions class.

Table 4.2. HiveOptions Class Configuration Properties

HiveOptions Configuration Property Data Type Description

metaStoreURI String Hive Metastore URI. Storm developers
can find this value in hive-site.xml.

dbName String Database name

tblName String Table name

mapper Mapper Two properties that start with

"org.apache.storm.hive.bolt.":

mapper.DelimitedRecordHiveMapper

mapperJsonRecordHiveMapper

withTxnsPerBatch Integer Configures the number of desired
transactions per transaction batch.
Data from all transactions in a single
batch form a single compaction file.
Storm developers use this property in
conjunction with the withBatchSize
property to control the size of
compaction files. The default value is
100.

Hive stores data in base files that
cannot be updated by HDFS. Instead,

Hortonworks Data Platform September 30, 2015

18

HiveOptions Configuration Property Data Type Description

Hive creates a set of delta files for
each transaction that alters a table
or partition and stores them in a
separate delta directory. Occasionally,
Hive compacts, or merges, the base
and delta files. Hive performs all
compactions in the background
without affecting concurrent reads
and writes of other Hive clients. See
Transactions for more information
about Hive compactions.

withMaxOpenConnections Integer Specifies the maximum number of
open connections. Each connection is
to a single Hive table paritition. The
default value is 500. When Hive reaches
this threshold, an idle connection is
terminated for each new connection
request. A connection is considered
idle if no data is written to the table
partition to which the connection is
made.

withBatchSize Integer Specifies the maximum number of
Storm tuples written to Hive in a single
Hive transaction. The default value is
15000 tuples.

withCallTimeout Integer Specifies the interval in seconds
between consecutive heartbeats
sent to Hive. Hive uses heartbeats
to prevent expiration of unused
transactions. Set this value to 0 to
disable heartbeats. The default value is
240.

withAutoCreatePartitions Boolean Indicates whether HiveBolt should
automatically create the necessary Hive
partitions needed to store streaming
data. The default value is true.

withKerberosPrinicipal String Kerberos user principal for accessing a
secured Hive installation.

withKerberosKeytab String Kerberos keytab for accessing a
secured Hive installation.

Instantiate the HiveBolt with the HiveOptions class

The next step is to instantiate the Hive streaming bolt. The core-storm and Trident APIs use
different classes, as demonstrated in the following code samples:

Core-storm API

...
HiveBolt hiveBolt = new HiveBolt(hiveOptions);
...

Trident API

...
StateFactory factory = new HiveStateFactory().withOptions(hiveOptions);
TridentState state = stream.partitionPersist(factory, hiveFields, new
 HiveUpdater(),
new Fields());
...

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_dataintegration/content/hive-013-feature-transactions.html

Hortonworks Data Platform September 30, 2015

19

5. Ingesting Data with the Apache Kafka
Spout Connector

Apache Kafka is a high-throughput, distributed messaging system. Apache Storm provides
a Kafka spout to facilitate ingesting data from Kafka 0.8x brokers. Storm developers should
include downstream bolts in their topologies to process data ingested with the Kafka
spout.

The storm-kafka components include a core-storm spout, as well as a fully transactional
Trident spout. Storm-kafka spouts provide the following key features:

• 'Exactly once' tuple processing with the Trident API

• Dynamic discovery of Kafka brokers and partitions

Hortonworks recommends that Storm developers use the Trident API. However, use the
core-storm API if sub-second latency is critical for your Storm topology.

• The core-storm API represents a Kafka spout with the KafkaSpout class.

• The Trident API provides a OpaqueTridentKafkaSpout class to represent the spout.

To initialize KafkaSpout and OpaqueTridentKafkaSpout, Storm developers need
an instance of a subclass of the KafkaConfig class, which represents configuration
information needed to ingest data from a Kafka cluster.

• The KafkaSpout constructor requires the SpoutConfig subclass.

• The OpaqueTridentKafkaSpout requires the TridentKafkaConfig subclass.

In turn, the constructors for both KafkaSpout and OpaqueTridentKafkaSpout
require an implementation of the BrokerHosts interface, which is used to map Kafka
brokers to topic partitions. The storm-kafka component provides two implementations of
BrokerHosts: ZkHosts and StaticHosts.

• Use the ZkHosts implementation to dynamically track broker-to-partition mapping.

• Use the StaticHosts implementation for static broker-to-partition mapping.

5.1. KafkaSpout and OpaqueTridentKafkaSpout
Examples

The following code samples demonstrate the use of the KafkaSpout and
OpaqueTridentKafkaSpout classes and related interfaces.

Core-storm API

BrokerHosts hosts = new ZkHosts(zkConnString);
SpoutConfig spoutConfig = new SpoutConfig(hosts, topicName, "/" + zkrootDir,
 node);

Hortonworks Data Platform September 30, 2015

20

spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);

Trident API

TridentTopology topology = new TridentTopology();
BrokerHosts zk = new ZkHosts("localhost");
TridentKafkaConfig spoutConf = new TridentKafkaConfig(zk, "test-topic");
spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
OpaqueTridentKafkaSpout spout = new OpaqueTridentKafkaSpout(spoutConf);

5.2. Storm-Kafka API Reference
Javadoc for the storm-kafka component is installed at <$STORM_HOME>/contrib/
storm-kafka/storm-kafka-0.9.3.2.2.6.0-<buildnumber>-javadoc.jar.
This section provides additional reference documentation for the primary classes and
interfaces of the storm-kafka component.

BrokerHosts Interface

The storm-kafka component provides two implementations of the BrokerHosts
interface: ZkHosts and StaticHosts. Use the ZkHosts implementation to dynamically
track broker-to-partition mapping and the StaticHosts implementation when broker-
to-partition mapping is static. The constructor for StaticHosts requires an instance of
GlobalPartitionInformation:

Broker brokerForPartition0 = new Broker("localhost");//localhost:9092
Broker brokerForPartition1 = new Broker("localhost", 9092);//localhost:9092
 but we specified the port explicitly
Broker brokerForPartition2 = new Broker("localhost:9092");//localhost:9092
 specified as one string.
GlobalPartitionInformation partitionInfo = new GlobalPartitionInformation();
partitionInfo.add(0, brokerForPartition0)//mapping form partition 0 to
 brokerForPartition0
partitionInfo.add(1, brokerForPartition1)//mapping form partition 1 to
 brokerForPartition1
partitionInfo.add(2, brokerForPartition2)//mapping form partition 2 to
 brokerForPartition2
StaticHosts hosts = new StaticHosts(partitionInfo);

KafkaConfig Class

Instantiate an instance of KafkaConfig with one of the following constructors, each of
which requires an implementation of the BrokerHosts interface:

public KafkaConfig(BrokerHosts hosts, String topic)
public KafkaConfig(BrokerHosts hosts, String topic, String clientId)

Table 5.1. KafkaConfig Parameters

KafkaConfig Parameter Description

hosts Any implementation of the BrokerHosts interface,
currently either ZkHosts or StaticHosts.

topic Name of the Kafka topic.

clientId Optional parameter used as part of the ZooKeeper path
where the spout's current offset is stored.

Hortonworks Data Platform September 30, 2015

21

Both SpoutConfig from the core-storm API and TridentKafkaConfig from
the Trident API extend KafkaConfig. Instantiate these classes with the following
constructors:

Core-Storm API

Constructor public SpoutConfig(BrokerHosts hosts, String topic,
String zkRoot, String id)

Table 5.2. SpoutConfig Parameters

SpoutConfig Parameter Description

hosts Any implementation of the BrokerHosts interface,
currently either ZkHosts or StaticHosts.

topic Name of the Kafka topic.

zkroot Root directory in ZooKeeper where all topics and partition
information is stored. By default, this is /brokers.

id Unique identifier for this spout.

Trident API

Constructors public TridentKafkaConfig(BrokerHosts hosts, String
topic) public TridentKafkaConfig(BrokerHosts hosts, String topic,
String id)

Table 5.3. TridentKafkaConfig Parameters

TridentKafkaConfig Description

hosts Any implementation of the BrokerHosts interface,
currently either ZkHosts or StaticHosts.

topic Name of the Kafka topic.

clientid Unique identifier for this spout.

KafkaConfig contains several fields used to configure the behavior of a Kafka spout in a
Storm topology:

Table 5.4. KafkaConfig Fields

KafkaConfig Field Description

fetchSizeBytes Specifies the number of bytes to attempt to fetch in one
request to a Kafka server. The default is 1MB.

socketTimeoutMs Specifies the number of milliseconds to wait before a
socket fails an operation with a timeout. The default value
is 10 seconds.

bufferSizeBytes Specifies the buffer size in bytes for network requests. The
default is 1MB.

scheme The interface that specifies how a byte[] from a Kafka
topic is transformed into a Storm tuple. The default,
MultiScheme, returns a tuple with the byte[] and no
additional processing. The API provides the following
implementations: * storm.kafka.StringScheme *
storm.kafka.KeyValueSchemeAsMultiScheme
* storm.kafka.StringKeyValueScheme *
storm.kafka.KeyValueSchemeAsMultiScheme

Hortonworks Data Platform September 30, 2015

22

KafkaConfig Field Description

ignoreZKOffsets To force the spout to ignore any consumer state
information stored in ZooKeeper, set ignoreZkOffsets
to true. If true, the spout always begins reading from
the offset defined by startOffsetTime. For more
information, see "How KafkaSpout stores offsets of a
Kafka topic and recovers in case of failures."

startOffsetTime Controls whether streaming for a topic starts from
the beginning of the topic or whether only new
messages are streamed. The following are valid values:
* kafka.api.OffsetRequest.EarliestTime()
- starts streaming from the beginning of the topic *
kafka.api.OffsetRequest.LatestTime() -
streams only new messages

maxOffsetBehind Specifies how long a spout attempts to retry the
processing of a failed tuple. If a failing tuple's offset is less
then maxOffsetBehind, the spout stops retrying the
tuple. The default is LONG.MAX_VALUE.

useStartOffsetTimeOfOffsetOutOfRange Controls whether a spout streams messages from the
beginning of a topic when the spout throws an exception
for an out-of-range offset. The default value is true.

metricsTimeBucketSizeInSecs Controls the time interval at which Storm reports spout-
related metrics. The default is 60 seconds.

5.3. KafkaSpout Limitations
Limitations

The current version of the Kafka spout contains the following limitations:

• Does not support Kafka 0.7x brokers.

• Storm developers must include ${STORM_HOME}/lib/* in the CLASSPATH
environment variable from the command line when running kafka-
topology in local mode. Otherwise, developers will likely receive a
java.lang.NoClassDefFoundError exception:

java -cp "/usr/lib/storm/contrib/storm-kafka-example-0.9.1.2.1.1.0-320-jar-
with-dependencies.jar:
 /usr/lib/storm/lib/*" org.apache.storm.kafka.TestKafkaTopology
 <zookeeper_host>

• Secure Hadoop clusters must comment out the following statement from
${STORM_HOME}/bin/kafka-server-start.sh:

EXTRA_ARGS="-name kafkaServer -loggc"

• Core-storm API Constructor

public SpoutConfig(BrokerHosts hosts, String topic, String zkRoot, String
 id)

Table 5.5. SpoutConfig Parameters

SpoutConfig Parameter Description

hosts Any implementation of the BrokerHosts interface,
currently either ZkHosts or StaticHosts.

https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures
https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures

Hortonworks Data Platform September 30, 2015

23

SpoutConfig Parameter Description

topic Name of the Kafka topic.

zkroot Root directory in ZooKeeper where all topics and
partition information is stored. By default, this is /
brokers.

id Unique identifier for this spout.

• Trident API Constructors

public TridentKafkaConfig(BrokerHosts hosts, String topic)
public TridentKafkaConfig(BrokerHosts hosts, String topic, String id)

Table 5.6. TridentKafkaConfig Parameters

TridentKafkaConfig Description

hosts Any implementation of the BrokerHosts interface,
currently either ZkHosts or StaticHosts.

topic Name of the Kafka topic.

clientid Unique identifier for this spout.

5.4. Configuring Kafka for Use with the Storm-
Kafka Connector

The storm-kafka connector requires some configuration of the Apache Kafka installation.
Kafka administrators must add a zookeeper.connect property, with the hostnames and
port numbers of the HDP ZooKeeper nodes, to Kafka's server.properties file.

5.5. Configuring KafkaSpout to Connect to a
Secure Kafka Cluster

To connect to a Kerberized Kafka topic:

1. Code: Add spoutConfig.securityProtocol=PLAINTEXTSASL to your Kafka
Spout configuration.

2. Configuration: Add a KafkaClient section (excerpted from /usr/hdp/current/
kafka-broker/config/kafka_jaas.conf) to /usr/hdp/current/storm-
supervisor/conf/storm_jaas.conf:

 KafkaClient
 { com.sun.security.auth.module.Krb5LoginModule required useTicketCache=
true renewTicket=true serviceName="kafka"; }
 ;
 ...

3. Setup: Add a Kafka ACL for the topic:

/usr/hdp/current/kafka-broker/bin/kafka-acls.sh --topic TEST --
add allowhosts * --allowprincipals "User:stormusr" --operations
DESCRIBE,READ --config /usr/hdp/current/kafka-broker/config/
server.properties

Hortonworks Data Platform September 30, 2015

24

6. Ingesting Data from HDFS
The HDFS spout actively monitors a specified HDFS directory and consumes any new files
that appear in the directory, feeding data from HDFS to Storm.

Important

HDFS spout assumes that files visible in the monitored directory are not actively
being updated. Only after a file is completely written should it be made visible
to the spout. Following are two approaches for ensuring this:

• Write the file to another directory. When the write operation is finished,
move the file to the monitored directory.

• Create the file in the monitored directory with an '.ignore' suffix; HDFS spout
ignores files with an '.ignore' suffix. When the write operation is finished,
rename the file to omit the suffix.

When the spout is actively consuming a file, it renames the file with an .inprogress
suffix. After consuming all contents in the file, the file is moved to a configurable done
directory and the .inprogress suffix is dropped.

Concurrency

If multiple spout instances are used in the topology, each instance consumes a different file.
Synchronization among spout instances relies on lock files created in a subdirectory called
.lock (by default) under the monitored directory. A file with the same name as the file
being consumed (without the .inprogress suffix) is created in the lock directory. Once
the file is completely consumed, the corresponding lock file is deleted.

Recovery from failure

Periodically, the spout records information about how much of the file has been consumed
in the lock file. If the spout instance crashes or there is a force kill of topology, another
spout can take over the file and resume from the location recorded in the lock file.

Certain error conditions (such as a spout crash) can leave residual lock files. Such a stale lock
file indicates that the corresponding input file has not been completely processed. When
detected, ownership of such stale lock files will be transferred to another spout.

The hdfsspout.lock.timeout.sec property specifies the duration of inactivity after
which lock files should be considered stale. The default timeout is five minutes. For lock
file ownership transfer to succeed, the HDFS lease on the file (from the previous lock
owner) should have expired. Spouts scan for stale lock files before selecting the next file for
consumption.

Lock on .lock Directory

HDFS spout instances create a DIRLOCK file in the .lock directory to coordinate certain
accesses to the .lock directory itself. A spout will try to create it when it needs access to
the .lock directory, and then delete it when done. In error conditions such as a topology
crash, force kill, or untimely death of a spout, this file may not be deleted. Future instances

Hortonworks Data Platform September 30, 2015

25

of the spout will eventually recover the file once the DIRLOCK file becomes stale due to
inactivity for hdfsspout.lock.timeout.sec seconds.

API Support

HDFS spout supports core Storm, but does not currently support Trident.

6.1. Configuring HDFS Spout
The following member functions are required for HdfsSpout:

.setReaderType() Specifies which file reader to use:

• To read sequence files, set this to 'seq'.

• To read text files, set this to 'text'.

• If you want to use a custom file
reader class that implements interface
org.apache.storm.hdfs.spout.FileReader, set this
to the fully qualified class name.

.withOutputFields() Specifies names of output fields for the spout. The number of
fields depends upon the reader being used.

For convenience, built-in reader types expose a static member
called defaultFields that can be used for setting this.

.setHdfsUri() Specifies the HDFS URI for HDFS NameNode; for example:
hdfs://namenodehost:8020.

.setSourceDir() Specifies the HDFS directory from which to read files; for
example, /data/inputdir.

.setArchiveDir() Specifies the HDFS directory to move a file after the file is
completely processed; for example, /data/done.

If this directory does not exist, it will be created automatically.

.setBadFilesDir() Specifies a directory to move a file if there is an error parsing
the contents of the file; for example, /data/badfiles.

If this directory does not exist it will be created automatically.

For additional configuration settings, see Apache HDFS spout Configuration Settings.

6.2. HDFS Spout Example
The following example creates an HDFS spout that reads text files from HDFS path
hdfs://localhost:54310/source.

// Instantiate spout to read text files
HdfsSpout textReaderSpout = newHdfsSpout().setReaderType("text")

https://github.com/apache/storm/tree/master/external/storm-hdfs#configuration-settings

Hortonworks Data Platform September 30, 2015

26

 .withOutputFields(TextFileReader.
defaultFields)
 .setHdfsUri("hdfs://
localhost:54310") // reqd
 .setSourceDir("/data/in")
 // reqd
 .setArchiveDir("/data/done")
 // reqd
 .setBadFilesDir("/data/badfiles");
 // required

// If using Kerberos
HashMap hdfsSettings = new HashMap();
hdfsSettings.put("hdfs.keytab.file", "/path/to/keytab");
hdfsSettings.put("hdfs.kerberos.principal","user@EXAMPLE.com");

textReaderSpout.setHdfsClientSettings(hdfsSettings);

// Create topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("hdfsspout", textReaderSpout, SPOUT_NUM);

// Set up bolts and wire up topology
 ...

// Submit topology with config
Config conf = new Config();
StormSubmitter.submitTopologyWithProgressBar("topologyName", conf, builder.
createTopology());

A sample topology HdfsSpoutTopology is provided in the storm-starter module.

Hortonworks Data Platform September 30, 2015

27

7. Writing Data with Storm
Hortonworks provides a set of connectors that enable Storm developers to quickly write
streaming data to a Hadoop cluster. These connectors are located at /usr/lib/storm/
contrib. Each contains a .jar file containing the connector's packaged classes and
dependencies, and another .jar file with javadoc reference documentation.

This chapter describes how to use several connectors, and how to configure connectors in a
Kerberos-enabled cluster. For a more thorough discussion of Apache Storm connectors and
APIs, see the Apache Storm documentation for your version of Storm.

7.1. Writing Data to HDFS
The storm-hdfs connector supports core Storm and Trident APIs. You should use the
trident API unless your application requires sub-second latency.

7.1.1. Storm-HDFS: Core Storm APIs
The primary classes of the storm-hdfs connector are HdfsBolt and
SequenceFileBolt, both located in the org.apache.storm.hdfs.bolt package.
Use the HdfsBolt class to write text data to HDFS and the SequenceFileBolt class to
write binary data.

Specify the following information when instantiating the bolt:

HdfsBolt Methods

withFsUrl Specifies the target HDFS URL and port number.

withRecordFormat Specifies the delimiter that indicates a boundary
between data records. Storm developers can
customize by writing their own implementation of the
org.apache.storm.hdfs.format.RecordFormat
interface. Use the provided
org.apache.storm.hdfs.format.
DelimitedRecordFormat class as a convenience class for
writing delimited text data with delimiters such as tabs, comma-
separated values, and pipes. The storm-hdfs bolt uses the
RecordFormat implementation to convert tuples to byte
arrays, so this method can be used with both text and binary
data.

withRotationPolicy Specifies when to stop writing to a data file and
begin writing to another. Storm developers can
customize by writing their own implementation of the
org.apache.storm.hdfs.rotation.FileSizeRotationSizePolicy
interface.

withSyncPolicy Specifies how frequently to flush buffered data to
the HDFS filesystem. This action enables other HDFS
clients to read the synchronized data, even as the Storm

http://storm.incubator.apache.org/documentation/Documentation.html

Hortonworks Data Platform September 30, 2015

28

client continues to write data. Storm developers can
customize by writing their own implementation of the
org.apache.storm.hdfs.sync.SyncPolicy interface.

withFileNameFormat Specifies the name of the data file. Storm developers
can customize by writing their own interface of the
org.apache.storm.hdfs.format.FileNameFormat
interface. The provided
org.apache.storm.hdfs.format.DefaultFileNameFormat
creates file names with the following naming format:
{prefix}-{componentId}-{taskId}-{rotationNum}-
{timestamp}-{extension}.

Example: MyBolt-5-7-1390579837830.txt.

Example: Cluster Without High Availability ("HA")

The following example writes pipe-delimited files to the HDFS path hdfs://
localhost:8020/foo. After every 1,000 tuples it will synchronize with the filesystem,
making the data visible to other HDFS clients. It will rotate the files when they reach 5 MB
in size.

Note that the HdfsBolt is instantiated with an HDFS URL and port number.

```java
// use "|" instead of "," for field delimiter
RecordFormat format = new DelimitedRecordFormat()
        .withFieldDelimiter("|");

// Synchronize the filesystem after every 1000 tuples
SyncPolicy syncPolicy = new CountSyncPolicy(1000);

// Rotate data files when they reach 5 MB
FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(5.0f, Units.
MB);

// Use default, Storm-generated file names
FileNameFormat fileNameFormat = new DefaultFileNameFormat()
        .withPath("/foo/");

// Instantiate the HdfsBolt
HdfsBolt bolt = new HdfsBolt()
        .withFsUrl("hdfs://localhost:8020")
        .withFileNameFormat(fileNameFormat)
        .withRecordFormat(format)
        .withRotationPolicy(rotationPolicy)
        .withSyncPolicy(syncPolicy);
```      

Example: HA-Enabled Cluster

The following example shows how to modify the previous example for an HA-enabled
cluster.

Here the HdfsBolt is instantiated with a nameservice ID, instead of using an HDFS URL and
port number.

Hortonworks Data Platform September 30, 2015

29

...
HdfsBolt bolt = new HdfsBolt()
 .withFsURL("hdfs://myNameserviceID")
 .withFileNameFormat(fileNameformat)
 .withRecordFormat(format)
 .withRotationPolicy(rotationPolicy)
 .withSyncPolicy(syncPolicy);
...

To obtain the nameservice ID, check the dfs.nameservices property in your hdfs-
site.xml file; nnha in the following example:

<property>
 <name>dfs.nameservices</name>
 <value>nnha</value>
</property>

7.1.2. Storm-HDFS: Trident APIs
The Trident API implements a StateFactory class with an API that resembles the
methods from the storm-code API, as shown in the following code sample:

...
Fields hdfsFields = new Fields("field1", "field2");

FileNameFormat fileNameFormat = new DefaultFileNameFormat()
 .withPrefix("trident")
 .withExtension(".txt")
 .withPath("/trident");

RecordFormat recordFormat = new DelimitedRecordFormat()
 .withFields(hdfsFields);

FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(5.0f,
 FileSizeRotationPolicy.Units.MB);

HdfsState.Options options = new HdfsState.HdfsFileOptions()
 .withFileNameFormat(fileNameFormat)
 .withRecordFormat(recordFormat)
 .withRotationPolicy(rotationPolicy)
 .withFsUrl("hdfs://localhost:8020");

StateFactory factory = new HdfsStateFactory().withOptions(options);

TridentState state = stream.partitionPersist(factory, hdfsFields, new
 HdfsUpdater(), new Fields());

See the javadoc for the Trident API, included with the storm-hdfs connector, for more
information.

Limitations

Directory and file names changes are limited to a prepackaged file name format based on a
timestamp.

7.2. Writing Data to HBase
The storm-hbase connector supports the following key features:

Hortonworks Data Platform September 30, 2015

30

• Apache HBase 0.96 and above

• Incrementing counter columns

• Tuples failure if an update to an HBase table fails

• Ability to group puts in a single batch

• Writing to Kerberized HBase clusters (for more information, see Configuring Connectors
for a Secure Cluster)

The storm-hbase connector enables Storm developers to collect several
PUTS in a single operation and write to multiple HBase column families
and counter columns. A PUT is an HBase operation that inserts data into a
single HBase cell. Use the HBase client's write buffer to automatically batch:
hbase.client.write.buffer. The primary interface in the storm-hbase connector
is the org.apache.storm.hbase.bolt.mapper.HBaseMapper interface. However,
the default implementation, SimpleHBaseMapper, writes a single column family.
Storm developers can implement the HBaseMapper interface themselves or extend
SimpleHBaseMapper if they want to change or override this behavior.

Table 7.1. SimpleHBaseMapper Methods

SimpleHBaseMapper Method Description

withRowKeyField Specifies the row key for the target HBase row. A row key
uniquely identifies a row in HBase.

withColumnFields Specifies the target HBase column.

withCounterFields Specifies the target HBase counter.

withColumnFamily Specifies the target HBase column family.

Example

The following example specifies the 'word' tuple as the row key, adds an HBase column for
the tuple 'word' field, adds an HBase counter column for the tuple 'count' field, and writes
data to the 'cf' column family.

SimpleHBaseMapper mapper = new SimpleHBaseMapper()
 .withRowKeyField("word")
 .withColumnFields(new Fields("word"))
 .withCounterFields(new Fields("count"))
 .withColumnFamily("cf");

The storm-hbase connector supports the following versions of HBase:

• 0.96

• 0.98

Limitations

The current version of the storm-hbase connector has the following limitations:

• HBase table must be predefined

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_storm-user-guide/content/storm-connectors-secure.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_storm-user-guide/content/storm-connectors-secure.html

Hortonworks Data Platform September 30, 2015

31

• Cannot dynamically add new HBase columns; can write to only one column family at a
time

• Assumes that hbase-site.xml is in the $CLASSPATH environment variable

• Tuple field names must match HBase column names

• Does not support the Trident API

• Supports writes but not lookups

7.3. Writing Data to Kafka
Storm provides a Kafka Bolt for both the core-storm and Trident APIs that writes data to
a Kafka cluster, also known as publishing to a topic using Kafka's terminology. Use the
following procedure to add a Storm component to your topology that writes data to a
Kafka cluster:

1. Instantiate a Kafka Bolt.

2. Configure the Kafka Bolt with a Tuple-to-Message mapper.

3. Configure the Kafka Bolt with a Kafka Topic Selector.

4. Configure the Kafka Bolt with the Kafka Producer properties.

The following code samples for each API illustrate the construction of a simple Kafka Bolt.
The rest of this topic breaks the samples down to better describe each step.

Core-storm API

 TopologyBuilder builder = new TopologyBuilder();

 Fields fields = new Fields("key", "message");
 FixedBatchSpout spout = new FixedBatchSpout(fields, 4,
 new Values("storm", "1"),
 new Values("trident", "1"),
 new Values("needs", "1"),
 new Values("javadoc", "1")
);

 spout.setCycle(true);
 builder.setSpout("spout", spout, 5);
 KafkaBolt bolt = new KafkaBolt()
 .withKafkaTopicSelector(new DefaultTopicSelector("test"))
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());
 builder.setBolt("forwardToKafka", bolt, 8).shuffleGrouping("spout");

 Config conf = new Config();
 //set producer properties.
 Properties props = new Properties();
 props.put("metadata.broker.list", "localhost:9092");
 props.put("request.required.acks", "1");
 props.put("serializer.class", "kafka.serializer.StringEncoder");
 conf.put(TridentKafkaState.KAFKA_BROKER_PROPERTIES, props);

 StormSubmitter.submitTopology("kafkaboltTest", conf, builder.
createTopology());

Hortonworks Data Platform September 30, 2015

32

Trident API

 Fields fields = new Fields("word", "count");
 FixedBatchSpout spout = new FixedBatchSpout(fields, 4,
 new Values("storm", "1"),
 new Values("trident", "1"),
 new Values("needs", "1"),
 new Values("javadoc", "1")
);

 spout.setCycle(true);

 TridentTopology topology = new TridentTopology();
 Stream stream = topology.newStream("spout1", spout);

 TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()
 .withKafkaTopicSelector(new DefaultTopicSelector("test"))
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("word",
 "count"));
 stream.partitionPersist(stateFactory, fields, new TridentKafkaUpdater(), new
 Fields());

 Config conf = new Config();
 //set producer properties.
 Properties props = new Properties();
 props.put("metadata.broker.list", "localhost:9092");
 props.put("request.required.acks", "1");
 props.put("serializer.class", "kafka.serializer.StringEncoder");
 conf.put(TridentKafkaState.KAFKA_BROKER_PROPERTIES, props);
 StormSubmitter.submitTopology("kafkaTridentTest", conf, topology.build());

Instantiate a KafkaBolt

The core-storm API uses the storm.kafka.bolt.KafkaBolt
class to instantiate a Kafka Bolt. The Trident API uses a combination
of the storm.kafka.trident.TridentStateFactory and
storm.kafka.trident.TridentKafkaStateFactory classes.

Core-storm API

KafkaBolt bolt = new KafkaBolt();

Trident API

TridentTopology topology = new TridentTopology();
 Stream stream = topology.newStream("spout");
 TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory();
 stream.partitionPersist(stateFactory, fields, new TridentKafkaUpdater(), new
 Fields());

Configure the KafkaBolt with a Tuple-to-Message Mapper

The KafkaBolt must map Storm tuples to Kafka messages. By default,
KafkaBolt looks for fields named "key" and "message." Storm provides the
storm.kafka.trident.mapper.FieldNameBasedTupleToKafkaMapper class to
support this default behavior and provide backward compatibility. The class is used by both
the core-storm and Trident APIs.

Core-storm API

Hortonworks Data Platform September 30, 2015

33

KafkaBolt bolt = new KafkaBolt()
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());

Trident API

TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("word",
 "count"));

Storm developers must specify the field names for the Storm tuple key and the Kafka
message for any implementation of the TridentKafkaState in the Trident API. This
interface does not provide a default constructor.

However, some Kafka bolts may require more than two fields. Storm developers
may write their own implementation of the TupleToKafkaMapper and
TridentTupleToKafkaMapper interfaces to customize the mapping of Storm tuples to
Kafka messages. Both interfaces define 2 methods:

K getKeyFromTuple(Tuple/TridentTuple tuple);

V getMessageFromTuple(Tuple/TridentTuple tuple);

Configure the Kafka Bolt with a Kafka Topic Selector

Note

To ignore a message, return NULL from the getTopics() method.

Core-storm API

KafkaBolt bolt = new KafkaBolt().withTupleToKafkaMapper(new
 FieldNameBasedTupleToKafkaMapper())
 .withTopicSelector(new DefaultTopicSelector());

Trident API

TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()
 .withKafkaTopicSelector(new DefaultTopicSelector("test"))
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("word",
 "count"));

Storm developers can write their own implementation of the KafkaTopicSelector
interface if they need to write to multiple Kafka topics:

public interface KafkaTopicSelector {
 String getTopics(Tuple/TridentTuple tuple);
 }

7.4. Configuring Connectors for a Secure Cluster
If your topology uses Storm-HDFS, Storm-HBase, or Storm-Hive connectors, and if the
corresponding components HDFS, HBase, and/or Hive are secured with Kerberos, then you
will need to complete the following additional configuration steps.

Storm-HDFS Connector Configuration

Hortonworks Data Platform September 30, 2015

34

To use the storm-hdfs connector in topologies that run on secure clusters:

1. Provide your own Kerberos keytab and principal name to the connectors. The Config
object that you pass into the topology must contain the storm keytab file and principal
name.

2. Specify an HdfsBolt configKey, using the method
HdfsBolt.withConfigKey("somekey"). The value map of this key should have the
following two properties:

hdfs.keytab.file: "<path-to-keytab>"

hdfs.kerberos.principal: "<principal>@<host>"

where

<path-to-keytab> specifies the path to the keytab file on the supervisor hosts

<principal>@<host> specifies the user and domain; for example, storm-
admin@EXAMPLE.com.

For example:

Config config = new Config();
config.put(HdfsSecurityUtil.STORM_KEYTAB_FILE_KEY, "$keytab");
config.put(HdfsSecurityUtil.STORM_USER_NAME_KEY, "$principal");

StormSubmitter.submitTopology("$topologyName", config, builder.
createTopology());

On worker hosts the bolt/trident-state code will use the keytab file and principal to
authenticate with the NameNode. Make sure that all workers have the keytab file,
stored in the same location.

3. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor
nodes. This is the keytab that is being used to authenticate to HDFS, typically the Storm
service keytab, storm. The user ID that the Storm worker is running under should have
access to it.

On an Ambari-managed cluster this is /etc/security/keytabs/
storm.service.keytab (the "path-to-keytab"), where the worker runs under
storm.

4. If you set supervisor.run.worker.as.user to true (see Running Workers as
Users in Configuring Storm for Kerberos over Ambari), make sure that the user that
the workers are running under (typically the storm keytab) has read access on those
keytabs. This is a manual step; an admin needs to go to each supervisor node and run
chmod to give file system permissions to the users on these keytab files.

Note

You do not need to create separate keytabs or principals; the general
guideline is to create a principal and keytab for each group of users that
requires the same access to these resources, and use that single keytab.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-running-workers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-running-workers.html

Hortonworks Data Platform September 30, 2015

35

All of these connectors accept topology configurations. You can specify the keytab
location on the host and the principal through which the connector will login to that
system.

5. Configure the connector(s). Here is a sample configuration for the Storm-HDFS
connector (see Writing Data to HDFS with the Storm-HDFS Connector for a more
extensive example):

HdfsBolt bolt = new HdfsBolt()
 .withFsUrl("hdfs://localhost:8020")
 .withFileNameFormat(fileNameFormat)
 .withRecordFormat(format)
 .withRotationPolicy(rotationPolicy)
 .withSyncPolicy(syncPolicy);
 .withConfigKey("hdfs.config");

Map<String, Object> map = new HashMap<String,Object>();
map.put("hdfs.keytab.file","/etc/security/keytabs/storm.service.keytab");
map.put("hdfs.kerberos.principal","storm@TEST.HORTONWORKS.COM");

Config config = new Config();
config.put("hdfs.config", map);

StormSubmitter.submitTopology("$topologyName",config,builder.
createTopology());

Important

For the Storm-HDFS connector, you must package hdfs-site.xml and
core-site.xml (from your cluster configuration) in the topology .jar file.

In addition, include any configuration files for HDP components used in your
Storm topology, such as hive-site.xml and hbase-site.xml. This fulfills the
requirement that all related configuration files appear in the CLASSPATH of
your Storm topology at runtime.

Storm-HBase Connector Configuration

To use the storm-hbase connector in topologies that run on secure clusters:

1. Provide your own Kerberos keytab and principal name to the connectors. The Config
object that you pass into the topology must contain the storm keytab file and principal
name.

2. Specify an HBaseBolt configKey, using the method
HBaseBolt.withConfigKey("somekey"). The value map of this key should have
the following two properties:

storm.keytab.file: "<path-to-keytab-file>"

storm.kerberos.principal: "<principal>@<host>"

For example:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_storm-user-guide/content/writing-data-with-storm-hdfs-connector.html

Hortonworks Data Platform September 30, 2015

36

Config config = new Config();
config.put(HBaseSecurityUtil.STORM_KEYTAB_FILE_KEY, "$keytab");
config.put(HBaseSecurityUtil.STORM_USER_NAME_KEY, "$principal");

StormSubmitter.submitTopology("$topologyName", config, builder.
createTopology());

On worker hosts the bolt/trident-state code will use the keytab file and principal to
authenticate with the NameNode. Make sure that all workers have the keytab file,
stored in the same location.

3. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor
nodes. This is the keytab that is being used to authenticate to HBase,typically the Storm
service keytab, storm. The user ID that the Storm worker is running under should have
access to it.

On an Ambari-managed cluster this is /etc/security/keytabs/
storm.service.keytab (the "path-to-keytab"), where the worker runs under
storm.

4. If you set supervisor.run.worker.as.user to true (see Running Workers as
Users in Configuring Storm for Kerberos over Ambari), make sure that the user that
the workers are running under (typically the storm keytab) has read access on those
keytabs. This is a manual step; an admin needs to go to each supervisor node and run
chmod to give file system permissions to the users on these keytab files.

Note

You do not need to create separate keytabs or principals; the general
guideline is to create a principal and keytab for each group of users that
requires the same access to these resources, and use that single keytab.

All of these connectors accept topology configurations. You can specify the keytab
location on the host and the principal through which the connector will login to that
system.

5. Configure the connector(s). Here is a sample configuration for the Storm-HBase
connector:

HBaseBolt hbase = new HBaseBolt("WordCount", mapper).withConfigKey("hbase.
config");

Map<String, Object> mapHbase = new HashMap<String,Object>();
mapHbase.put("storm.keytab.file","/etc/security/keytabs/storm.service.
keytab");
mapHbase.put("storm.kerberos.principal","storm@TEST.HORTONWORKS.COM");

Config config = new Config();
config.put("hbase.config",mapHbase);

StormSubmitter.submitTopology("$topologyName",config,builder.
createTopology());

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-running-workers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-running-workers.html

Hortonworks Data Platform September 30, 2015

37

Important

For the Storm-HBase connector, you must package hdfs-site.xml, core-
site.xml, and hbase-site.xml (from your cluster configuration) in the
topology .jar file.

In addition, include any other configuration files for HDP components used in
your Storm topology, such as hive-site.xml. This fulfills the requirement that all
related configuration files appear in the CLASSPATH of your Storm topology at
runtime.

Storm-Hive Connector Configuration

The Storm-Hive connector accepts configuration settings as part of the HiveOptions class.

There are two required settings for accessing secure Hive:

• withKerberosPrincipal, the Kerberos principal for accessing Hive:

public HiveOptions withKerberosPrincipal(String kerberosPrincipal)

• withKerberosKeytab, the Kerberos keytab for accessing Hive:

public HiveOptions withKerberosKeytab(String kerberosKeytab)

Hortonworks Data Platform September 30, 2015

38

8. Packaging Storm Topologies
Storm developers should verify that the following conditions are met when packaging their
topology into a .jar file:

• Use the maven-shade-plugin, rather than the maven-assembly-plugin to package your
Apache Storm topologies. The maven-shade-plugin provides the ability to merge JAR
manifest entries, which are used by the Hadoop client to resolve URL schemes.

• Include a dependency for the Hadoop version used in the Hadoop cluster.

• Include both of the Hadoop configuration files, hdfs-site.xml and core-site.xml,
in the .jar file. In addition, include any configuration files for HDP components used
in your Storm topology, such as hive-site.xml and hbase-site.xml. This is the
easiest way to meet the requirement that all required configuration files appear in the
CLASSPATH of your Storm topology at runtime.

Maven Shade Plugin

Use the maven-shade-plugin, rather than the maven-assembly-plugin to package your
Apache Storm topologies. The maven-shade-plugin provides the ability to merge JAR
manifest entries, which are used by the Hadoop client to resolve URL schemes.

Use the following Maven configuration file to package your topology:

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.4</version>
 <configuration>
 <createDependencyReducedPom>true</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer implementation="org.apache.maven.
plugins.shade.resource.ServicesResourceTransformer"/>
 <transformer implementation="org.apache.maven.
plugins.shade.resource.ManifestResourceTransformer">
 <mainClass></mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
</plugin>

Hadoop Dependency

Include a dependency for the Hadoop version used in the Hadoop cluster; for example:

Hortonworks Data Platform September 30, 2015

39

<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>2.7.1.2.3.2.0-2950</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Troubleshooting

The following table describes common packaging errors.

Table 8.1. Topology Packing Errors

Error Description

com.google.protobuf.
InvalidProtocolBufferException: Protocol
message contained an invalid tag (zero)

Hadoop client version incompatibility

java.lang.RuntimeException: Error
preparing HdfsBolt: No FileSystem for
scheme: hdfs

The .jar manifest files have not properly merged in the
topology.jar

Hortonworks Data Platform September 30, 2015

40

9. Deploying and Managing Apache
Storm Topologies

Use the command-line interface to deploy a Storm topology after packaging it in a jar. For
example, use the following command to deploy WordCountTopology from the storm-
starter jar:

storm jar storm-starter-<starter_version>-storm-<storm_version>
 .jar storm.starter.WordCountTopology WordCount -c nimbus.host=sandbox.
hortonworks.com

Point a browser to the following URL to access the Storm UI and to manage deployed
topologies.

http://<storm-ui-server>:8080

Note

You may need to configure Apache Storm to use a different port if Ambari is
also running on the same host with Apache Storm. Both applications use port
8080 by default.

In the image above, no workers, executors, or tasks are running. However, the status of
the topology remains active and the uptime continues to increase. Storm topologies, unlike
traditional applications, remain active until an administrator deactivates or kills them.
Storm administrators use the Storm user interface to perform the following administrative
actions:

Table 9.1. Topology Administrative Actions

Topology Administrative Action Description

Activate Returns a topology to active status after it has been
deactivated.

Deactivate Sets the status of a topology to inactive. Topology uptime
is not affected by deactivation.

Hortonworks Data Platform September 30, 2015

41

Topology Administrative Action Description

Rebalance Dynamically increase or decrease the number of worker
processes and/or executors. The administrator does not
need to restart the cluster or the topology.

Kill Stops the topology and removes it from Apache Storm.
The topology no longer appears in the Storm UI, and
the administrator must deploy the application again to
activate it.

Click any topology in the Topology Summary section to launch the Topology Summary
page. Administrators perform any of the topology actions in the table above by clicking the
corresponding button, shown in the following image.

The Executors field in the Spouts and Bolts sections show all running Storm threads,
including the host and port. If a bolt is experiencing latency issues, Storm developers should
look here to determine which executor has reached capacity. Click the port number to
display the log file for the corresponding executor.

Hortonworks Data Platform September 30, 2015

42

10. Example: RollingTopWords Topology
The RollingTopWords.java is included with storm-starter.

package storm.starter;

import backtype.storm.Config;
import backtype.storm.testing.TestWordSpout;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import storm.starter.bolt.IntermediateRankingsBolt;
import storm.starter.bolt.RollingCountBolt;
import storm.starter.bolt.TotalRankingsBolt;
import storm.starter.util.StormRunner;

/**
* This topology does a continuous computation of the top N words that the
 topology has seen in terms of cardinality.
* The top N computation is done in a completely scalable way, and a similar
 approach could be used to compute things
* like trending topics or trending images on Twitter.
*/
public class RollingTopWords {

 private static final int DEFAULT_RUNTIME_IN_SECONDS = 60;
 private static final int TOP_N = 5;

 private final TopologyBuilder builder;
 private final String topologyName;
 private final Config topologyConfig;
 private final int runtimeInSeconds;

 public RollingTopWords() throws InterruptedException {
 builder = new TopologyBuilder();
 topologyName = "slidingWindowCounts";
 topologyConfig = createTopologyConfiguration();
 runtimeInSeconds = DEFAULT_RUNTIME_IN_SECONDS;

 wireTopology();
 }

 private static Config createTopologyConfiguration() {
 Config conf = new Config();
 conf.setDebug(true);
 return conf;
 }

 private void wireTopology() throws InterruptedException {
 String spoutId = "wordGenerator";
 String counterId = "counter";
 String intermediateRankerId = "intermediateRanker";
 String totalRankerId = "finalRanker";
 builder.setSpout(spoutId, new TestWordSpout(), 5);
 builder.setBolt(counterId, new RollingCountBolt(9, 3), 4).
fieldsGrouping(spoutId, new Fields("word"));
 builder.setBolt(intermediateRankerId, new IntermediateRankingsBolt(TOP_N),
 4).fieldsGrouping(counterId, new Fields("obj"));
 builder.setBolt(totalRankerId, new TotalRankingsBolt(TOP_N)).
globalGrouping(intermediateRankerId);

Hortonworks Data Platform September 30, 2015

43

 }

 public void run() throws InterruptedException {
 StormRunner.runTopologyLocally(builder.createTopology(), topologyName,
 topologyConfig, runtimeInSeconds);
 }

 public static void main(String[] args) throws Exception {
 new RollingTopWords().run();
 }
}

	Hortonworks Data Platform
	Table of Contents
	1. Using Apache Storm
	1.1. Basic Storm Concepts
	1.1.1. Spouts
	1.1.2. Bolts
	1.1.3. Stream Groupings
	1.1.4. Topologies
	1.1.5. Processing Reliability
	1.1.6. Workers, Executors, and Tasks
	1.1.7. Parallelism

	2. Installing and Configuring Storm
	3. Topology Development Guidelines
	3.1. Debugging Topologies
	3.2. Determining Topology Parallelism Units

	4. Streaming Data to Hive
	5. Ingesting Data with the Apache Kafka Spout Connector
	5.1. KafkaSpout and OpaqueTridentKafkaSpout Examples
	5.2. Storm-Kafka API Reference
	5.3. KafkaSpout Limitations
	5.4. Configuring Kafka for Use with the Storm-Kafka Connector
	5.5. Configuring KafkaSpout to Connect to a Secure Kafka Cluster

	6. Ingesting Data from HDFS
	6.1. Configuring HDFS Spout
	6.2. HDFS Spout Example

	7. Writing Data with Storm
	7.1. Writing Data to HDFS
	7.1.1. Storm-HDFS: Core Storm APIs
	7.1.2. Storm-HDFS: Trident APIs

	7.2. Writing Data to HBase
	7.3. Writing Data to Kafka
	7.4. Configuring Connectors for a Secure Cluster

	8. Packaging Storm Topologies
	9. Deploying and Managing Apache Storm Topologies
	10. Example: RollingTopWords Topology

