Hortonworks Data Platform

Using Apache Storm

(September 30, 2015)

http://docs.cloudera.com

Hortonworks Data Platform September 30, 2015

Hortonworks Data Platform: Using Apache Storm
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 4.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform September 30, 2015

Table of Contents

1. USING APAChe STOIM ... 1
1.1. Basic StOrM CONCEPTS ...oeieiiirieiie e e e e e ettt e e e e e e et e e e e e e e er e e e e e e e eeennn e eeas 1
P PR Y oo 1 1 PP 2

LI T 2 o] £ PRSP PP PPPPPPPRPPPPPRPN 3

1.1.3. SEream GrOUPINGScceeiiiiiiiieii it 4

1.1.4. TOPOIOGIES ... 4

1.1.5. Processing Reliabilityccoooiiiiiii 5

1.1.6. Workers, EXecutors, and Tasksceeeuiieeiieeiiieeiiieeieeeeee e eeeaeesnneeees 6

1.1.7. Parallelism ... e 6

2. Installing and Configuring STOIMcoiiiiiiiiiiiiiiiiii e 12
3. Topology Development GUIAEIINESuuuureuiiiuiiiiiiiiiiiiiieieieieneee e 13
3.1. DebUJYING TOPOIOGIES ..eevveeriiiiiiiiieiiiiriiitiaiataeteaeetaeesaeeseseessesssssnsssnsssnsnnnsnnnnnnns 13

3.2. Determining Topology Parallelism UNitscooeriiiiimimimiiiiiiiiiiiieeeeeeeeeeeeeeeee 15

4. Streaming Data 10 HIVE ...cooiiiiiii e e 16
5. Ingesting Data with the Apache Kafka Spout Connectorcceiviiiiiiiiiiiiiiiinineneees 19
5.1. KafkaSpout and OpaqueTridentKafkaSpout Exampleseeeveeiiireiiiinennnns 19

5.2. Storm-Kafka APl ReEfErence ..o 20

5.3. KafkaSpout Limitations ... 22

5.4. Configuring Kafka for Use with the Storm-Kafka Connectorcccccceeeeiiiiies 23

5.5. Configuring KafkaSpout to Connect to a Secure Kafka Cluster 23

6. Ingesting Data from HDFSoumiiiiiiiii e 24
6.1. CoNfigUIING HDFS SPOUL ...euiiiiiiiiiiiiiiiiiiiititeietteeteteeeeaeeeeeeeaeaeeeeeeeseeeseeeseseenseenees 25

6.2. HDFS Spout EXample ...cooooiiiiiiie e e e 25

7. Writing Data WIth StOIM ... 27
7.1. Writing Data tO HDFSouiiiiiiiiiiiiiiiiiii it nenenenennnees 27
7.1.1. Storm-HDFS: Core Storm APIS ... 27

7.1.2. Storm-HDFS: Trident APISeiiiiiieeeec e 29

7.2. Writing Data tO HBASEccoeuiuuuiiiiiieiiieii e ee e e e e 29

7.3. Writing Data to Kafkacccooiie 31

7.4. Configuring Connectors for a Secure ClUStercooeiiiiiiiiiiiiie e 33

8. Packaging STOrm TOPOIOGIES ... s 38
9. Deploying and Managing Apache Storm TOPOIOGIESeuuuururrueriirieirieieieneeereaeneeenes 40
10. Example: RollingTopWords TOPOIOGYuuuruummmrmmmininiiiiiiiiiiiiiiineiineeeeeeeenees 42

Hortonworks Data Platform September 30, 2015

List of Tables

1.1.
1.2.
1.3.
3.1.
4.1.
4.2,
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
7.1.
8.1.
9.1.

1Y (0T 0 4 T @o T o Vel =T o £ PP PPP 1
STrEAM GIrOUPINGS ..eeiiieiuieeeeeeeietti e e e e e e eeeats s e e e e eeeeees e e e e aeeeeeesnn e e eeaeeeennnnnnaeeaas 4
Processing GUATANTEEScoeiiiiiiiiiiiiie ittt ettt e et e e e e e e e e e e e e ereees 5
Storm TOPOIOgY GUIAEINESeueeiiiiiiiiiiiiiiiiiiieiiietaeeeeeeeabeeeeeeeeeeeeeeaeseeeaeaeaenenenenenenees 13
HiveMIapper ArQUMENTSii it e e e et e e e e e e e e ee et e e e e e e e e eeeenaaans 16
HiveOptions Class Configuration Properties ... 17
KafkaConfig ParameEtersuuuuurueuiuiiiiiiiiiieiiieiiieieeeaeeenene et nenenennes 20
SpoutConfig Parameters ..o 21
TridentKatkaConfig Parametersccovivriiiiiiiiiiiiiiiiiieiceieeeeeeeeeeeeeee e 21
KafkaConfig FIeldscooiiiiiiiiiiiiiiiiiie e 21
SPoUtCoNTig Parameterscooooiiiiii i 22
TridentKafkaConfig Parameterscoiviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 23
SimpleHBaseMapper Methodsuueiii i e 30
oY eTo) oTe VA o= Tel 11 oY T =1 o - J TR 39
Topology AdmINiStrative ACIONSeeieieieiiiiiiiiiiiieereene 40

Hortonworks Data Platform

September 30, 2015

1. Using Apache Storm

The exponential increase in data from real-time sources such as machine sensors creates

a need for data processing systems that can ingest this data, process it, and respond in
real time. A typical use case involves an automated system that responds to sensor data by
sending email to support staff or placing an advertisement on a consumer's smart phone.
Apache Storm enables such data-driven and automated activity by providing a realtime,
scalable, and distributed solution for streaming data.

Apache Storm can be used with any programming language, and guarantees that data

streams are processed without data loss.

Storm is datatype-agnostic; it processes data streams of any data type.

A complete introduction to the Storm API is beyond the scope of this documentation.
However, the next section, Basic Storm Concepts, provides a brief overview of the most
essential concepts and a link to the javadoc API. For a more thorough discussion of Apache
Storm concepts, see the Apache Storm documentation for your version of Storm.

Experienced Storm developers may want to skip to later sections for information about
streaming data to Hive; ingesting data with the Apache Kafka spout; writing data to HDFS,
HBase, and Kafka; and deploying Storm topologies.

The last section, RollingTopWords Topology, lists the source code for a sample application

included with the storm starter.jar.

1.1. Basic Storm Concepts

Writing Storm applications requires an understanding of the following basic concepts.

Table 1.1. Storm Concepts

Storm Concept

Description

Tuple A named list of values of any data type. The native data
structure used by Storm.

Stream An unbounded sequence of tuples.

Spout Generates a stream from a realtime data source.

Bolt Contains data processing, persistence, and messaging alert

logic. Can also emit tuples for downstream bolts.

Stream Grouping

Controls the routing of tuples to bolts for processing.

Topology

A group of spouts and bolts wired together into a
workflow. A Storm application.

Processing Reliability

Storm guarantee about the delivery of tuples in a
topology.

Parallelism Attribute of distributed data processing that determines
how many jobs are processed simultaneously for a
topology. Topology developers adjust parallelism to tune
their applications.

Workers A Storm process. A worker may run one or more
executors.

Executors A Storm thread launched by a Storm worker. An executor
may run one or more tasks.

Tasks A Storm job from a spout or bolt.

http://storm.incubator.apache.org/documentation/Documentation.html

Hortonworks Data Platform September 30, 2015

Storm Concept Description

Process Controller Monitors and restarts failed Storm processes. Examples
include supervisord, monit, and daemontools.

Master/Nimbus Node The host in a multi-node Storm cluster that runs a process
controller, such as supervisord, and the Storm nimbus,

ui, and other related daemons. The process controller

is responsible for restarting failed process controller
daemons, such as supervisor, on slave nodes. The Storm
nimbus daemon is responsible for monitoring the Storm
cluster and assigning tasks to slave nodes for execution.

Slave Node A host in a multi-node Storm cluster that runs a process
controller daemon, such as supervisor, as well as the
worker processes that run Storm topologies. The process
controller daemon is responsible for restarting failed
worker processes.

The following subsections describe several of these concepts in more detail.

1.1.1. Spouts

All spouts must implement the backt ype. st orm t opol ogy. | Ri chSpout interface
from the core-storm API. BaseRi chSpout is the most basic implementation, but there are
several others, including C oj ur eSpout , DRPCSpout , and Feeder Spout . In addition,
Hortonworks provides a Kafka spout to ingest data from a Kafka cluster. The following
example, RandonBent enceSpout , is included with the st or m st art er connector
installed with Storm at/usr/lib/storm contrib/stormstarter.

package storm starter. spout;

i mport backt ype. st orm spout. Spout Qut put Col | ect or;

i nport backtype. stormtask. Topol ogyCont ext ;

i mport backtype. st orm t opol ogy. Qut put Fi el dsDecl ar er;
i mport backtype. st orm t opol ogy. base. BaseR chSpout ;

i nport backtype.stormtuple. Fi el ds;

i mport backtype. storm tupl e. Val ues;

inport backtype.stormutils.Uils;

import java.util.Mp;
inport java.util.Random

publi c cl ass RandonBSent enceSpout extends BaseRi chSpout {
Spout Qut put Col | ector _col | ector;
Random _r and;

@verride

public void open(Map conf, Topol ogyCont ext context, Spout Qutput Col | ector
collector) {

_collector = collector;

_rand = new Random();

}

@verride
publ i c void next Tupl e() {
Uils.sleep(100);

String[] sentences = new String[]{ "the cow junped over the nobon", "an apple
a day keeps the doctor away", "four score and seven years ago", "snow white
and the seven dwarfs", "i amat two with nature" };

Hortonworks Data Platform September 30, 2015

String sentence = sentences[_rand. nextlnt(sentences.|ength)];
_collector.emt(new Val ues(sentence));

}

@verride

public void ack(Cbject id) {
}

@verride

public void fail (Cbject id) {
}

@verride

publ i c void decl areQut put Fi el ds(Qut put Fi el dsDecl arer decl arer) {
decl arer. decl are(new Fi el ds("word"));

}
}

1.1.2. Bolts

All bolts must implement the | Ri chBol t interface. BaseRi chBol t is the most

basic implementation, but there are several others, including Bat chBol t Execut or,

C oj ureBol t, and Joi nResul t. The following example, Tot al Ranki ngsBol t. j ava,
is included with st or m st art er and installed with Storm at/ usr/1i b/ st orm
contrib/stormstarter.

package storm starter. bolt;

i mport backtype.stormtupl e. Tupl e;
i mport org. apache. | og4j . Logger;
inport stormstarter.tools. Ranki ngs;

/**
* This bolt nerges incom ng {@ink Ranki ngs}.
* <p/>
* |t can be used to nerge internedi ate rankings generated by {@i nk
I nt er nedi at eRanki ngsBolt} into a final,
* consol i dated ranking. To do so, configure this bolt with a gl obal G oupi ng
on {@ink |Internedi at eRanki ngsBol t}.
*/
public final class Total Ranki ngsBolt extends Abstract RankerBolt {

private static final |ong serial VersionU D = -8447525895532302198L;
private static final Logger LOG = Logger. get Logger (Tot al Ranki ngsBol t. cl ass);

publ i ¢ Tot al Ranki ngsBol t () {
super () ;

publ i ¢ Tot al Ranki ngsBolt (i nt topN) {
super (t opN) ;
}

publ i ¢ Tot al Ranki ngsBolt (int topN, int emtFrequencyl nSeconds) {
super (topN, em tFrequencyl nSeconds) ;

@verride

Hortonworks Data Platform

September 30, 2015

voi d updat eRanki ngsWt hTupl e(Tupl e tuple) {
Ranki ngs ranki ngsToBeMer ged = (Ranki ngs) tupl e. getVal ue(0);
super . get Ranki ngs() . updat eWt h(r anki ngsToBeMer ged) ;

super . get Ranki ngs() . pr uneZer oCount s() ;

}

@verride
Logger getLogger () {
return LOG

}
}

1.1.3. Stream Groupings

1.1.4.

Stream grouping allows Storm developers to control how tuples are routed to bolts in a
workflow. The following table describes the stream groupings available.

Table 1.2. Stream Groupings

Stream Grouping Description

Shuffle Sends tuples to bolts in random, round robin sequence.
Use for atomic operations, such as math.

Fields Sends tuples to a bolt based on one or more fields in the
tuple. Use to segment an incoming stream and to count
tuples of a specified type.

All Sends a single copy of each tuple to all instances of a
receiving bolt. Use to send a signal, such as clear cache or
refresh state, to all bolts.

Custom Customized processing sequence. Use to get maximum
flexibility of topology processing based on factors such as
data types, load, and seasonality.

Direct Source decides which bolt receives a tuple.

Global Sends tuples generated by all instances of a source to a
single target instance. Use for global counting operations.

Storm developers specify the field grouping for each bolt using methods on the
Topol ogyBui | der. Bol t Get t er inner class, as shown in the following excerpt from the
the Wor dCount Topol ogy. j ava example included with st orm st art er.

Topol ogyBui | der bui |l der =

bui | der . set Spout (" spout ",

bui | der.setBolt("split",

bui | der. set Bol t (" count ",
Fi el ds("word"));

new Topol ogyBui | der () ;

new RandonSent enceSpout (),
new Split Sentence(),
new Wor dCount (),

5);
8) . shuf f1 eG oupi ng(" spout ") ;

12).fi el dsG oupi ng("split", new

The first bolt uses shuffle grouping to split random sentences generated with the
Randontent enceSpout . The second bolt uses fields grouping to segment and perform a

count of individual words in the sentences.

Topologies

The following image depicts a Storm topology with a simple workflow.

Hortonworks Data Platform September 30, 2015

Storm topology

The Topol ogyBui | der class is the starting point for quickly writing Storm topologies
with the st or m cor e API. The class contains getter and setter methods for the spouts and
bolts that comprise the streaming data workflow, as shown in the following sample code.

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;
bui | der . set Spout ("spout 1", new BaseRi chSpout ());
bui | der . set Spout (" spout 2", new BaseRi chSpout ());
bui | der. setBol t ("bol t 1", new BaseBasi cBolt());
bui | der. setBol t ("bol t 2", new BaseBasi cBolt());
bui | der. set Bol t ("bol t 3", new BaseBasi cBol t());

1.1.5. Processing Reliability
Storm provides two types of guarantees when processing tuples for a Storm topology.

Table 1.3. Processing Guarantees

Guarantee Description

At least once Reliable; Tuples are processed at least once, but may be
processed more than once. Use when subsecond latency is
required and for unordered idempotent operations.

Exactly once Reliable; Tuples are processed only once. Requires the use
of a Trident spout and the Trident API.

Hortonworks Data Platform September 30, 2015

1.1.6.

1.1.7.

Workers, Executors, and Tasks

Apache Storm processes, called workers, run on predefined ports on the machine that hosts
Storm.

¢ Each worker process can run one or more executors, or threads, where each executor is a
thread spawned by the worker process.

¢ Each executor runs one or more tasks from the same component, where a component is
a spout or bolt from a topology.

Supervisor Node

Worker Process

Parallelism

Distributed applications take advantage of horizontally-scaled clusters by dividing
computation tasks across nodes in a cluster. Storm offers this and additional finer-grained
ways to increase the parallelism of a Storm topology:

* Increase the number of workers
* Increase the number of executors
¢ Increase the number of tasks

By default, Storm uses a parallelism factor of 1. Assuming a single-node Storm cluster, a
parallelism factor of 1 means that one worker, or JVM, is assigned to execute the topology,
and each component in the topology is assigned to a single executor. The following
diagram illustrates this scenario. The topology defines a data flow with three tasks, a spout
and two bolts.

S Note

Hortonworks recommends that Storm developers store parallelism settings in
a configuration file read by the topology at runtime rather than hard-coding
the values passed to the Parallelism API. This topic describes and illustrates
the use of the API, but developers can achieve the same effect by reading the
parallelism values from a configuration file.

Hortonworks Data Platform September 30, 2015

Worker (JVM)

Task: Task: Task:
MySpout MyBolt1 MyBolt2

Increasing Parallelism with Workers

Storm developers can easily increase the number of workers assigned to execute a topology
with the Conf i g. set NumWr ker s() method. This code assigns two workers to execute
the topology, as the following figure illustrates.

Config config = new Config();
confi g. set Numor kers(2);

Worker (JYM)

Task: Task:
MyBolt1 MyBolt2

Worker (JVM)

Hortonworks Data Platform September 30, 2015

Adding new workers comes at a cost: additional overhead for a new JVM.

This example adds an additional worker without additional executors or tasks, but to
take full advantage of this feature, Storm developers must add executors and tasks to the
additional JVMs (described in the following examples).

Increasing Parallelism with Executors

The parallelism APl enables Storm developers to specify the number of executors for each
worker with a parallelism hint, an optional third parameter to the set Bol t () method.
The following code sample sets this parameter for the MyBolt1 topology component.

Config config = new Config();

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

bui | der. set Spout (MY_SPOUT_| D, mySpout);

bui | der. setBol t (MY_BOLT1_I D, nyBoltl, 2).shuffleG oupi ng(MY_SPQUT_ID);
bui | der. set Bol t (MY_BOLT2_| D, nyBol t2). shuffl eG oupi ng(My_SPQUT_I D) ;

This code sample assigns two executors to the single, default worker for the specified
topology component, MyBolt1, as the following figure illustrates.

Worker (JVM)

Task:
MyBolt1

Task:
MyBolt1

The number of executors is set at the level of individual topology components, so adding
executors affects the code for the specified spouts and bolts. This differs from adding
workers, which affects only the configuration of the topology.

Increasing Parallelism with Tasks

Hortonworks Data Platform September 30, 2015

Finally, Storm developers can increase the number of tasks assigned to a single topology
component, such as a spout or bolt. By default, Storm assigns a single task to each
component, but developers can increase this number with the set NunTasks() method
on the Bol t Decl ar er and Spout Decl ar er objects returned by the set Bol t () and
set Spout () methods.

Config config = new Config();

Topol ogyBui | der bui | der = new Topol ogyBui | der () ;

bui | der . set Spout (MY_SPQUT_I| D, nySpout) ;

bui | der. setBol t (My_BOLT1_| D, nyBolt1).set NunTasks(2).

shuf f | eG oupi ng(MY_SPQOUT_I D) ;

bui | der. set Bol t (MY_BOLT1_I D, nyBolt2).shuffleG oupi ng(MY_SPOUT I D) ;

This code sample assigns two tasks to execute MyBolt1, as the following figure illustrates.
This added parallelism might be appropriate for a bolt containing a large amount of data
processing logic. However, adding tasks is like adding executors because the code for the
corresponding spouts or bolts also changes.

Worker (JVM)

Task:

MyBolt1

Task:
MyBolt1

Putting it All Together

Storm developers can fine-tune the parallelism of their topologies by combining new
workers, executors and tasks. The following code sample demonstrates all of the following:

¢ Split processing of the MySpout component between four tasks in two separate
executors across two workers

¢ Split processing of the MyBolt1 component between two executors across two workers

Hortonworks Data Platform September 30, 2015

¢ Centralize processing of the MyBolt2 component in a single task in a single executor in a
single worker on a single worker

Config config = new Config();

config. set Numor kers(2);

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

bui | der . set Spout (MY_SPQUT_I D, nySpout, 2).setNunTasks(4);

bui | der. set Bol t (MY_BOLT1_I D, nyBoltl, 2).setNunTasks(2).

shuf f | eG oupi ng(MY_SPQUT_I D) ;

bui | der. set Bol t (MY_BOLT2_I D, nyBol t 2). shuffl eG oupi ng(MY_SPOQUT_I D) ;

Task:
MyBolt1

Task:
MyBolt1

10

Hortonworks Data Platform September 30, 2015

The degree of parallelism depicted might be appropriate for the following topology
requirements:

* High-volume streaming data input
* Moderate data processing logic

* Low-volume topology output

11

Hortonworks Data Platform September 30, 2015

2. Installing and Configuring Storm

To install Storm using Ambari, see Adding a Service to your Hadoop cluster in the Ambari
User's Guide. To configure Storm for Kerberos security on an Ambari-managed cluster, see
Configuring Storm for Kerberos Over Ambari.

To install Storm manually, see Installing and Configuring Apache Storm in the Non-Ambari
Cluster Installation Guide.

If you are deploying a production cluster with Storm, you should configure the Storm
components to operate under supervision. For more information, see Configuring Storm
for Supervision in the Ambari Reference Guide. (The link is for Ambari version 2.2.2.0.)

12

https://dev.hortonworks.com.s3.amazonaws.com/HDPDocuments/Ambari-2.2.2.0/bk_Ambari_Users_Guide/content/_adding_a_service_to_your_hadoop_cluster.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-overview.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_installing_manually_book/content/ch_installing_storm_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_ambari_reference_guide/content/ch_configuring_storm_for_supervision.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_ambari_reference_guide/content/ch_configuring_storm_for_supervision.html

Hortonworks Data Platform

September 30, 2015

3. Topology Development Guidelines

Hortonworks recommends the following guidelines for all Storm topologies.

S Note

These recommendations focus on guidelines for writing and debugging Storm
topologies, rather than hardware tuning. Typically, most of the computation
burden falls on the Supervisor and Worker nodes in a Storm cluster. The
Nimbus node usually has a lighter load. For this reason, Hortonworks
recommends that organizations save their hardware resources for the relatively
burdened Supervisor and Worker nodes.

Table 3.1. Storm Topology Guidelines

Guideline

Description

Read topology configuration parameters from a file.

Rather than hard coding configuration information in your
Storm application, read the configuration parameters,
including parallelism hints for specific components,

from a file inside the mai n() method of the topology.
This speeds up the iterative process of debugging by
eliminating the need to rewrite and recompile code for
simple configuration changes.

Use a cache.

Use a cache to improve performance by eliminating
unnecessary operations over the network, such as making
frequent external service or lookup calls for reference data
needed for processing.

Tighten code in the execut e() method.

Every tuple is processed by the execut e() method, so
verify that the code in this method is as tight and efficient
as possible.

Perform benchmark testing to determine latencies.

Perform benchmark testing of the critical points in the
network flow of your topology. Knowing the capacity of
your data "pipes" provides a reliable standard for judging
the performance of your topology and its individual
components.

3.1. Debugging Topologies

This topic describes best practices for debugging Storm topologies, including basic
guidelines for configuring parallelism for individual topology components.

Debugging Storm topologies differs from debugging batch-oriented applications. Because
Storm topologies operate on streaming data (rather than data at rest, as in HDFS) they
are sensitive to data sources. When debugging Storm topologies, consider the following

questions:

* What are my data sources?

* At what rate do these data sources deliver messages?

* What size are the messages?

* What is my slowest data sink?

13

Hortonworks Data Platform September 30, 2015

The performance of a Storm topology degrades when it cannot ingest data fast enough to
keep up with the data source. In addition, the velocity of incoming streaming data changes
over time. When the data flow of the source exceeds what the topology can process,
memory buffers fill up and the topology suffers frequent timeouts and must replay tuples
to process them. (In contrast, MapReduce applications operate on data at rest in HDFS,
with a constant data velocity. These applications suffer from poor latencies, but do not
experience the buffer overflows and timeouts associated with streaming applications.)

Hortonworks recommends the following topology debugging technique to identify and
overcome poor topology performance due to mismatched data flow rates between source
and application.

1. Click Show Visualization in the Storm Ul to display a visual representation of your
topology and and find the data bottleneck in your Storm application. Thicker lines
between components denote larger data flows. A blue component represents the the
first component in the topology, such as the spout below from the WordCountTopology
included with st or m st ar t er . The color of the other topology components indicates
whether the component is exceeding cluster capacity: red components denote a data
bottleneck and green components indicate components operating within capacity.

Topology Visualization

Hide Visualization
Streams

@defeult ack_ack ack_init ack_fail

spout
0.00 ms,

default: 135404988

o

default: 87580: B7 %

3 Note

In addition to bolts in your topology, Storm uses its own bolts to perform
background work when a topology component acknowledges that it either
succeeded or failed to process a tuple. These names of these acker bolts
are prefixed with an underscore in the visualization, but do not appear
in the default view. You can display the component-specific data about
successful acknowledgements by selecting the _ack_ack check box. Select
the ack_fail checkbox to display component-specific data about failed
acknowledgements.

14

Hortonworks Data Platform September 30, 2015

2. Verify that you have found the topology bottleneck by rewriting the execut e()
method of the target bolt or spout to perform no operations.

If the performance of the topology improves, you have found the bottleneck.
Alternatively, turn off each topology component, one at a time, to find the component
responsible for the processing bottleneck.

3. Increase the timeout value for the topology.

Edit the value of t opol ogy. nessage. ti meout . secs in the storm.yaml
configuration file. The default value is 30 seconds. This configuration parameter controls
how long a tuple tree from the core-storm API or a batch from the Trident API has to
complete processing before Storm times out and fails the operation.

4. Override the maximum number of tuples or batches waiting for processing before a
spout temporarily stops emitting tuples to downstream bolts.

Edit the value of t opol ogy. max. spout . pendi ng in the storm.yaml configuration
file. The default is no limit. Hortonworks recommends that topologies using the core-
storm API start with a value of 1000 and slowly decrease the value as necessary.
Toplogies using the Trident API should start with a much lower value, between 1 and 5.

5. Increase the parallelism for the target spout or bolt, as described in the next section.

3.2. Determining Topology Parallelism Units

Hortonworks recommends using the following calculation to determine the total number
of parallelism units for a topology. Parallelism units are a useful conceptual tool for
determining how to distribute processing tasks across a distributed application.

(nunber of worker nodes in cluster * nunmber cores per worker node) - (nunber
of acker tasks)

Acker tasks are topology components that acknowledge a successfully processed tuple.
The following example assumes a Storm cluster with ten worker nodes, 16 CPU cores
per worker node, and ten acker tasks in the topology. This Storm topology has 150 total
parallelism units:

(10 * 16) - 10 = 150
Storm developers can mitigate the increased processing load associated with data

persistence operations, such as writing to HDFS and generating reports, by distributing the
most parallelism units to topology components that perform data persistence operations.

15

Hortonworks Data Platform September 30, 2015

4. Streaming Data to Hive

Both the core-storm and Trident APIs support streaming data directly to Apache Hive
using Hive transactions. Data committed in a transaction is immediately available to Hive
queries from other Hive clients. Storm developers stream data to existing table partitions
or configure the streaming Hive bolt to dynamically create desired table partitions. Use the
following steps to perform this procedure:

1. Instantiate an implementation of the H veMapper Interface.
2. Instantiate a Hi veOpt i ons class with the Hi veMapper implementation.

3. Instantiate a Hi veBol t with the Hi veOpt i ons class.

S Note
Currently, data may be streamed only into bucketed tables using the ORC file
format.

Core-storm API

Del i m t edRecor dH veMapper napper = new Del i mi t edRecor dHi veMapper ()
. W t hCol umFi el ds(new Fi el ds(col Nanes)) ;

H veOpti ons hiveOpti ons = new

Hi veOpti ons(net aSt or eURI , dbNane, t bl Nanme, mapper) ;

Hi veBolt hiveBolt = new Hi veBolt (hiveOptions);

Trident API

Del i m t edRecor dHi veMapper mapper = new Del i mi t edRecor dHi veMapper ()
. W t hCol umFi el ds(new Fi el ds(col Nanes))
.W thTi meAsPartitionField("YYYY VWM DD");

H veOpti ons hiveOpti ons = new Hi veOpti ons(et aSt or eURI, dbNane, t bl Nane, mapper)
. W t hTxnsPer Bat ch(10)
. W t hBat chSi ze(1000)
.wi t hldl eTi meout (10)

StateFactory factory = new Hi veStateFactory().w thOptions(hi veOptions);

TridentState state = stream partitionPersist(factory, hiveFields, new
Hi veUpdat er (),

new Fi el ds());

The rest of this topic describes these steps in greater detail.
Instantiate an Implementation of HiveMapper Interface

The storm-hive streaming bolt uses the Hi veMapper interface to map the names of

tuple fields to the names of Hive table columns. Storm provides two implementations:

Del i m t edRecor dH veMapper and JsonRecor dH veMapper . Both implementations
take the same arguments.

Table 4.1. HiveMapper Arguments

Argument Data Type Description

wi t hCol umFi el ds backt ype. storm tupl e. Fi el ds |The name of the tuple fields that you
want to map to table column names.

16

Hortonworks Data Platform September 30, 2015

Argument Data Type Description

wi thPartitionFields backt ype. storm tupl e. Fi el ds |The name of the tuple fields that you
want to map to table partitions.

wi t hTi neAsPartitionField String Requests that table partitions be
created with names set to system

time. Developers can specify any Java-
supported date format, such as "YYYY/
MM/DD".

The following sample code illustrates how to use Del i m t edRecor dHi veMapper :

Del i m t edRecor dHi veMapper mapper = new Del i mi t edRecor dHi veMapper ()
. W t hCol umFi el ds(new Fi el ds(col Nanes))
.Wi thPartitionFields(new Fi el ds(part Nanes));

Del i mi t edRecor dHi veMapper mapper = new Del i nmi t edRecor dHi veMapper ()
. W t hCol umFi el ds(new Fi el ds(col Nanes))
. Wi thTi meAsPartitionField("YYYY MM DD");
Instantiate a HiveOptions Class with the HiveMapper Implementation
Use the H veOpt i ons class to configure the transactions used by Hive to ingest the

streaming data, as illustrated in the following code sample.

H veOpti ons hiveQOpti ons = new Hi veOpti ons(net aSt or eURI, dbNane, t bl Nane, mapper)
. W t hTxnsPer Bat ch(10)
.wi t hBat chSi ze(1000)
.wi thldleTi meout (10);

The following table describes all configuration properties for the H veOpt i ons class.

Table 4.2. HiveOptions Class Configuration Properties

HiveOptions Configuration Property |Data Type Description

net aSt or eURl String Hive Metastore URI. Storm developers
can find this value in hi ve-si te. xm .

dbName String Database name

t bl Nare String Table name

mapper Mapper Two properties that start with

"org.apache.storm.hive.bolt.":
mapper . Del i mi t edRecor dH veMapper

mapper JsonRecor dH veMapper

wi t hTxnsPer Bat ch I nt eger Configures the number of desired
transactions per transaction batch.
Data from all transactions in a single
batch form a single compaction file.
Storm developers use this property in
conjunction with the wi t hBat chSi ze
property to control the size of
compaction files. The default value is
100.

Hive stores data in base files that
cannot be updated by HDFS. Instead,

17

Hortonworks Data Platform September 30, 2015

HiveOptions Configuration Property |Data Type Description

Hive creates a set of delta files for
each transaction that alters a table
or partition and stores them in a
separate delta directory. Occasionally,
Hive compacts, or merges, the base
and delta files. Hive performs all
compactions in the background
without affecting concurrent reads
and writes of other Hive clients. See
Transactions for more information
about Hive compactions.

w t hMaxOpenConnect i ons I nt eger Specifies the maximum number of
open connections. Each connection is
to a single Hive table paritition. The
default value is 500. When Hive reaches
this threshold, an idle connection is
terminated for each new connection
request. A connection is considered
idle if no data is written to the table
partition to which the connection is
made.

wi t hBat chSi ze I nt eger Specifies the maximum number of
Storm tuples written to Hive in a single
Hive transaction. The default value is
15000 tuples.

wi t hCal | Ti neout | nt eger Specifies the interval in seconds
between consecutive heartbeats

sent to Hive. Hive uses heartbeats

to prevent expiration of unused
transactions. Set this value to 0 to
disable heartbeats. The default value is
240.

wi t hAut oCreat ePartitions Bool ean Indicates whether HiveBolt should
automatically create the necessary Hive
partitions needed to store streaming
data. The default value is true.

wi t hKer ber osPri ni ci pal String Kerberos user principal for accessing a
secured Hive installation.

wi t hKer ber osKeyt ab String Kerberos keytab for accessing a
secured Hive installation.

Instantiate the HiveBolt with the HiveOptions class

The next step is to instantiate the Hive streaming bolt. The core-storm and Trident APIs use
different classes, as demonstrated in the following code samples:

Core-storm API

Hi veBol t hiveBolt = new Hi veBolt (hiveOptions);

Trident API

Stat eFactory factory = new H veStateFactory().w thOptions(hi veOptions);

TridentState state = stream partitionPersist(factory, hiveFields, new
Hi veUpdat er (),

new Fi el ds());

18

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_dataintegration/content/hive-013-feature-transactions.html

Hortonworks Data Platform September 30, 2015

5. Ingesting Data with the Apache Kafka
Spout Connector

Apache Kafka is a high-throughput, distributed messaging system. Apache Storm provides
a Kafka spout to facilitate ingesting data from Kafka 0.8x brokers. Storm developers should
include downstream bolts in their topologies to process data ingested with the Kafka
spout.

The st or m kaf ka components include a core-storm spout, as well as a fully transactional
Trident spout. Storm-kafka spouts provide the following key features:

* 'Exactly once' tuple processing with the Trident API
» Dynamic discovery of Kafka brokers and partitions

Hortonworks recommends that Storm developers use the Trident API. However, use the
core-storm API if sub-second latency is critical for your Storm topology.

* The core-storm API represents a Kafka spout with the Kaf kaSpout class.
» The Trident API provides a OQpaqueTri dent Kaf kaSpout class to represent the spout.

To initialize Kaf kaSpout and OpaqueTri dent Kaf kaSpout , Storm developers need
an instance of a subclass of the Kaf kaConf i g class, which represents configuration
information needed to ingest data from a Kafka cluster.

» The Kaf kaSpout constructor requires the Spout Conf i g subclass.
* The OpaqueTri dent Kaf kaSpout requires the Tr i dent Kaf kaConf i g subclass.

In turn, the constructors for both Kaf kaSpout and OpaqueTri dent Kaf kaSpout
require an implementation of the Br oker Host s interface, which is used to map Kafka
brokers to topic partitions. The storm-kafka component provides two implementations of
Br oker Host s: ZkHost s and St at i cHost s.

* Use the ZkHost s implementation to dynamically track broker-to-partition mapping.

* Use the St at i cHost s implementation for static broker-to-partition mapping.

5.1. KafkaSpout and OpaqueTridentKafkaSpout
Examples

The following code samples demonstrate the use of the Kaf kaSpout and
OpaqueTri dent Kaf kaSpout classes and related interfaces.

Core-storm API

Br oker Host s hosts = new ZkHost s(zkConnStri ng) ;
Spout Confi g spout Config = new Spout Confi g(hosts, topicNane, "/" + zkrootDir,
node) ;

19

Hortonworks Data Platform September 30, 2015

spout Confi g. scheme = new SchenmeAsMil ti Schene(new StringSchene());
Kaf kaSpout kaf kaSpout = new Kaf kaSpout (spout Confi g) ;

Trident API

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy() ;

Br oker Hosts zk = new ZkHost s("I| ocal host");

Tri dent Kaf kaConfi g spout Conf = new Tri dent Kaf kaConfi g(zk, "test-topic");
spout Conf . schenme = new SchemeAsMul ti Scheme(new StringScheme());
OpaqueTri dent Kaf kaSpout spout = new QpaqueTri dent Kaf kaSpout (spout Conf) ;

5.2. Storm-Kafka APl Reference

Javadoc for the st or m kaf ka component is installed at <$STORM HOVE>/ contri b/
st or m kaf ka/ st or m kaf ka- 0. 9. 3. 2. 2. 6. 0- <bui | dnunber >-j avadoc. j ar.
This section provides additional reference documentation for the primary classes and
interfaces of the st or m kaf ka component.

BrokerHosts Interface

The st or m kaf ka component provides two implementations of the Br oker Host s
interface: ZkHost s and St at i cHost s. Use the ZkHost s implementation to dynamically
track broker-to-partition mapping and the St at i cHost s implementation when broker-
to-partition mapping is static. The constructor for St at i cHost s requires an instance of
G obal Partitionl nformation:

Br oker brokerForPartition0 = new Broker ("l ocal host");//1 ocal host: 9092
Br oker brokerForPartitionl = new Broker ("l ocal host", 9092);//| ocal host: 9092
but we specified the port explicitly
Br oker brokerForPartition2 = new Broker ("l ocal host: 9092");//1 ocal host: 9092
speci fied as one string.
G obal Partitionlnformati on partitionlnfo = new d obal Partitionlnformation();
partitionl nfo.add(0, brokerForPartition0)//mapping formpartition O to
br oker For Partiti onO
partitionlnfo.add(1, brokerForPartitionl)//mpping formpartition 1 to
br oker For Partitionl
partitionl nfo.add(2, brokerForPartition2)//mapping formpartition 2 to
br oker ForPartiti on2
Stati cHosts hosts = new Stati cHosts(partitionlnfo);

KafkaConfig Class

Instantiate an instance of Kaf kaConf i g with one of the following constructors, each of
which requires an implementation of the Br oker Host s interface:

publ i ¢ Kaf kaConfi g(Broker Hosts hosts, String topic)
publ i c Kaf kaConfi g(BrokerHosts hosts, String topic, String clientld)

Table 5.1. KafkaConfig Parameters

KafkaConfig Parameter Description

host s Any implementation of the Br oker Host s interface,
currently either ZkHost s or St at i cHost s.

topic Name of the Kafka topic.

clientld Optional parameter used as part of the ZooKeeper path

where the spout's current offset is stored.

20

Hortonworks Data Platform

September 30, 2015

Both Spout Conf i g from the core-storm APl and Tr i dent Kaf kaConfi g from
the Trident APl extend Kaf kaConf i g. Instantiate these classes with the following

constructors:

Core-Storm API

Constructor publ i ¢ Spout Confi g(Br oker Host s host s,

String zkRoot, String id)

Table 5.2. SpoutConfig Parameters

String topic,

SpoutConfig Parameter

Description

host s Any implementation of the Br oker Host s interface,
currently either ZkHost s or St at i cHost s.
topic Name of the Kafka topic.
zkr oot Root directory in ZooKeeper where all topics and partition
information is stored. By default, this is / br oker s.
id Unique identifier for this spout.
Trident API

Constructors publ i ¢ Tri dent Kaf kaConfi g(Br oker Host s host s,
topic) public TridentKafkaConfi g(BrokerHosts hosts,

String id)

String
String topic,

Table 5.3. TridentKafkaConfig Parameters

TridentKafkaConfig Description

host s Any implementation of the Br oker Host s interface,
currently either ZkHost s or St at i cHost s.

topic Name of the Kafka topic.

clientid Unique identifier for this spout.

Kaf kaConf i g contains several fields used to configure the behavior of a Kafka spout in a

Storm topology:

Table 5.4. KafkaConfig Fields

KafkaConfig Field

Description

fetchSi zeByt es

Specifies the number of bytes to attempt to fetch in one
request to a Kafka server. The default is 1MB.

socket Ti meout Ms

Specifies the number of milliseconds to wait before a
socket fails an operation with a timeout. The default value
is 10 seconds.

buf f er Si zeByt es

Specifies the buffer size in bytes for network requests. The
default is TMB.

scheme

The interface that specifies how a byte[] from a Kafka
topic is transformed into a Storm tuple. The default,
Mul ti Schen®, returns a tuple with the byte[] and no
additional processing. The API provides the following
implementations: * st or m kaf ka. St ri ngSchene *
st or m kaf ka. KeyVal ueSchenmeAsMil ti Schene
* st orm kaf ka. St ri ngKeyVal ueSchene *

st or m kaf ka. KeyVal ueSchenmeAsMil ti Schene

21

Hortonworks Data Platform

September 30, 2015

KafkaConfig Field

Description

i gnoreZKOf f set s

To force the spout to ignore any consumer state
information stored in ZooKeeper, seti gnor eZkOf f set s
totrue.Iftrue, the spout always begins reading from
the offset defined by st art Of f set Ti me. For more
information, see "How KafkaSpout stores offsets of a
Kafka topic and recovers in case of failures."

startOffset Ti ne

Controls whether streaming for a topic starts from

the beginning of the topic or whether only new
messages are streamed. The following are valid values:
* kaf ka. api . Of f set Request . Earliest Ti ne()
- starts streaming from the beginning of the topic *
kaf ka. api . Of f set Request . Lat est Ti ne() -
streams only new messages

maxf f set Behi nd

Specifies how long a spout attempts to retry the
processing of a failed tuple. If a failing tuple's offset is less
then maxf f set Behi nd, the spout stops retrying the
tuple. The default is LONG. MAX_VALUE.

useStart O f set Ti neOf Of f set Qut OfF Range

Controls whether a spout streams messages from the
beginning of a topic when the spout throws an exception
for an out-of-range offset. The default value is true.

met ri csTi meBucket Si zel nSecs

Controls the time interval at which Storm reports spout-
related metrics. The default is 60 seconds.

5.3. KafkaSpout Limitations

Limitations

The current version of the Kafka spout contains the following limitations:

» Does not support Kafka 0.7x brokers.

* Storm developers must include ${ STORM HOVE} / | i b/ * in the CLASSPATH
environment variable from the command line when running kaf ka-
t opol ogy in local mode. Otherwise, developers will likely receive a
j ava. |l ang. NoCQ assDef FoundEr r or exception:

java -cp "/usr/lib/storm contrib/stormkaf ka-exanple-0.9.1.2.1.1.0-320-j ar -

wi t h- dependenci es. j ar:

lusr/lib/storm|ib/*" org.apache. st orm kaf ka. Test Kaf kaTopol ogy

<zookeeper _host >

* Secure Hadoop clusters must comment out the following statement from
${ STORM HOVE} / bi n/ kaf ka- server-start. sh:

EXTRA _ARGS="- nane kaf kaServer -I|oggc"

e Core-storm APl Constructor

publ i ¢ Spout Confi g(Br oker Hosts hosts,

i d)

Table 5.5. SpoutConfig Parameters

String topic, String zkRoot, String

SpoutConfig Parameter

Description

hosts

Any implementation of the Br oker Host s interface,
currently either ZkHost s or St at i cHost s.

22

https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures
https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures

Hortonworks Data Platform

September 30, 2015

SpoutConfig Parameter Description

t opi c Name of the Kafka topic.

zkr oot Root directory in ZooKeeper where all topics and
partition information is stored. By default, this is /
br okers.

id Unique identifier for this spout.

¢ Trident API Constructors

public Tri dent Kaf kaConfi g(Br oker Host s hosts, String topic)
public Trident Kaf kaConfi g(Br oker Hosts hosts, String topic, String id)

Table 5.6. TridentKafkaConfig Parameters

TridentKafkaConfig Description

hosts Any implementation of the Br oker Host s interface,
currently either ZkHost s or St at i cHost s.

topic Name of the Kafka topic.

clientid Unique identifier for this spout.

5.4. Configuring Kafka for Use with the Storm-

Kafka Connector

The storm-kafka connector requires some configuration of the Apache Kafka installation.
Kafka administrators must add a zookeeper . connect property, with the hostnames and
port numbers of the HDP ZooKeeper nodes, to Kafka's ser ver . properti es file.

5.5. Configuring KafkaSpout to Connect to a

Secure Kafka Cluster

To connect to a Kerberized Kafka topic:

1. Code: Add spout Confi g. securi t yProt ocol =PLAI NTEXTSASL to your Kafka

Spout configuration.

. Configuration: Add a KafkaClient section (excerpted from / usr/ hdp/ current/
kaf ka- br oker/ confi g/ kaf ka_j aas. conf)to/usr/ hdp/current/storm
supervi sor/conf/stormj aas. conf:

Kaf kadl i ent
{ com sun. security. aut h. nodul e. Kr b5Logi nMbdul e requi red useTi cket Cache=
true renewli cket =true servi ceNane="kaf ka"; }

. Setup: Add a Kafka ACL for the topic:

[usr/ hdp/ current/ kaf ka- br oker/ bi n/ kaf ka-acl s. sh --topic TEST --
add al | owhosts * --allowprincipals "User:stornusr" --operations
DESCRI BE, READ --config /usr/ hdp/current/kaf ka- broker/ confi g/
server. properties

23

Hortonworks Data Platform September 30, 2015

6. Ingesting Data from HDFS

The HDFS spout actively monitors a specified HDFS directory and consumes any new files
that appear in the directory, feeding data from HDFS to Storm.

2 Important

HDFS spout assumes that files visible in the monitored directory are not actively
being updated. Only after a file is completely written should it be made visible
to the spout. Following are two approaches for ensuring this:

* Write the file to another directory. When the write operation is finished,
move the file to the monitored directory.

* Create the file in the monitored directory with an ".ignore' suffix; HDFS spout
ignores files with an ".ignore' suffix. When the write operation is finished,
rename the file to omit the suffix.

When the spout is actively consuming a file, it renames the file with an . i npr ogr ess
suffix. After consuming all contents in the file, the file is moved to a configurable done
directory and the . i npr ogr ess suffix is dropped.

Concurrency

If multiple spout instances are used in the topology, each instance consumes a different file.
Synchronization among spout instances relies on lock files created in a subdirectory called

. | ock (by default) under the monitored directory. A file with the same name as the file
being consumed (without the . i npr ogr ess suffix) is created in the lock directory. Once
the file is completely consumed, the corresponding lock file is deleted.

Recovery from failure

Periodically, the spout records information about how much of the file has been consumed
in the lock file. If the spout instance crashes or there is a force kill of topology, another
spout can take over the file and resume from the location recorded in the lock file.

Certain error conditions (such as a spout crash) can leave residual lock files. Such a stale lock
file indicates that the corresponding input file has not been completely processed. When
detected, ownership of such stale lock files will be transferred to another spout.

The hdf sspout . | ock. ti neout . sec property specifies the duration of inactivity after
which lock files should be considered stale. The default timeout is five minutes. For lock

file ownership transfer to succeed, the HDFS lease on the file (from the previous lock
owner) should have expired. Spouts scan for stale lock files before selecting the next file for
consumption.

Lock on .lock Directory

HDFS spout instances create a DI RLOCK file in the . | ock directory to coordinate certain
accesses to the .lock directory itself. A spout will try to create it when it needs access to
the .lock directory, and then delete it when done. In error conditions such as a topology
crash, force kill, or untimely death of a spout, this file may not be deleted. Future instances

24

Hortonworks Data Platform September 30, 2015

of the spout will eventually recover the file once the DI RLOCK file becomes stale due to
inactivity for hdf sspout . | ock. ti neout . sec seconds.

API Support

HDFS spout supports core Storm, but does not currently support Trident.

6.1. Configuring HDFS Spout

The following member functions are required for Hdf sSpout :

. set Reader Type() Specifies which file reader to use:
* To read sequence files, set thisto ' seq' .
* To read text files, set thisto ' t ext ' .

¢ If you want to use a custom file
reader class that implements interface
org. apache. st orm hdf s. spout . Fi | eReader, set this
to the fully qualified class name.

. W t hQut put Fi el ds() Specifies names of output fields for the spout. The number of
fields depends upon the reader being used.

For convenience, built-in reader types expose a static member
called def aul t Fi el ds that can be used for setting this.

.setHdf sUri () Specifies the HDFS URI for HDFS NameNode; for example:
hdf s: / / nanenodehost : 8020.

. set SourceDir () Specifies the HDFS directory from which to read files; for
example, / dat a/ i nput dir.

.set ArchiveDir() Specifies the HDFS directory to move a file after the file is
completely processed; for example, / dat a/ done.

If this directory does not exist, it will be created automatically.

.setBadFil esDir() Specifies a directory to move a file if there is an error parsing
the contents of the file; for example, / dat a/ badfi | es.

If this directory does not exist it will be created automatically.

For additional configuration settings, see Apache HDFS spout Configuration Settings.

6.2. HDFS Spout Example

The following example creates an HDFS spout that reads text files from HDFS path
hdfs://1 ocal host: 54310/ sour ce.

/1 Instantiate spout to read text files
Hdf sSpout t ext Reader Spout = newHdf sSpout (). set Reader Type("text")

25

https://github.com/apache/storm/tree/master/external/storm-hdfs#configuration-settings

Hortonworks Data Platform September 30, 2015

. W t hQut put Fi el ds(Text Fi | eReader.
def aul t Fi el ds)

.setHdf sUri ("hdfs://
| ocal host:54310") // reqd

.set SourceDir("/data/in")

/1 reqd

.set Archi veDir ("/dat a/ done")
/1l reqd

.setBadFi |l esDir ("/data/badfiles");
/1 required

/1 |f using Kerberos

HashMap hdf sSettings = new HashMap()

hdf sSetti ngs. put ("hdfs. keytab. file", "/path/to/keytab");

hdf sSet ti ngs. put (" hdf s. ker ber os. pri nci pal ", "user @XAVPLE. coni') ;

t ext Reader Spout . set Hdf sC i ent Setti ngs(hdf sSetti ngs);

/1 Create topol ogy

Topol ogyBui | der bui | der = new Topol ogyBui | der () ;

bui | der . set Spout (" hdf sspout ", textReader Spout, SPOUT_NUM ;

/1 Set up bolts and wire up topol ogy

/1l Submt topology with config

Config conf = new Config();

St or mSubni tt er. submi t Topol ogyW t hPr ogr essBar ("t opol ogyNane", conf, buil der.
creat eTopol ogy());

A sample topology Hdf sSpout Topol ogy is provided in the st or m st art er module.

26

Hortonworks Data Platform September 30, 2015

7. Writing Data with Storm

Hortonworks provides a set of connectors that enable Storm developers to quickly write
streaming data to a Hadoop cluster. These connectors are located at/ usr/ | i b/ st orm
contri b. Each contains a . j ar file containing the connector's packaged classes and
dependencies, and another . j ar file with javadoc reference documentation.

This chapter describes how to use several connectors, and how to configure connectors in a
Kerberos-enabled cluster. For a more thorough discussion of Apache Storm connectors and
APIs, see the Apache Storm documentation for your version of Storm.

7.1. Writing Data to HDFS

The st or m hdf s connector supports core Storm and Trident APIs. You should use the
trident API unless your application requires sub-second latency.

7.1.1. Storm-HDFS: Core Storm APIs

The primary classes of the st or m hdf s connector are Hdf sBol t and

SequenceFi | eBol t, both located in the or g. apache. st or m hdf s. bol t package.
Use the Hdf sBol t class to write text data to HDFS and the SequenceFi | eBol t class to
write binary data.

Specify the following information when instantiating the bolt:

Hdf sBol t Methods
Wt hFsUr | Specifies the target HDFS URL and port number.

wi t hRecor dFor mat Specifies the delimiter that indicates a boundary
between data records. Storm developers can
customize by writing their own implementation of the
or g. apache. st orm hdf s. f or mat . Recor dFor mat
interface. Use the provided
or g. apache. storm hdfs. f or mat .
Del i m t edRecor dFor mat class as a convenience class for
writing delimited text data with delimiters such as tabs, comma-
separated values, and pipes. The st or m hdf s bolt uses the
Recor dFor mat implementation to convert tuples to byte
arrays, so this method can be used with both text and binary
data.

wi t hRot ati onPol i cy Specifies when to stop writing to a data file and
begin writing to another. Storm developers can
customize by writing their own implementation of the
org. apache. storm hdfs.rotation. Fil eSi zeRot ati onSi zePol i cy
interface.

wi t hSyncPol i cy Specifies how frequently to flush buffered data to
the HDFS filesystem. This action enables other HDFS
clients to read the synchronized data, even as the Storm

27

http://storm.incubator.apache.org/documentation/Documentation.html

Hortonworks Data Platform September 30, 2015

client continues to write data. Storm developers can
customize by writing their own implementation of the
or g. apache. storm hdf s. sync. SyncPol i cy interface.

wi t hFi | eNameFor mat Specifies the name of the data file. Storm developers
can customize by writing their own interface of the
or g. apache. storm hdf s. f ormat . Fi | eNaneFor mat
interface. The provided
or g. apache. storm hdf s. f or mat . Def aul t Fi | eNanmeFor mat
creates file names with the following naming format:
{prefix}-{conponent|d}-{taskld}-{rotati onNun}-
{timest anp}-{extension}.

Example: MyBol t - 5- 7- 1390579837830. t xt .
Example: Cluster Without High Availability ("HA")

The following example writes pipe-delimited files to the HDFS path hdf s: //

| ocal host: 8020/ f 00. After every 1,000 tuples it will synchronize with the filesystem,
making the data visible to other HDFS clients. It will rotate the files when they reach 5 MB
in size.

Note that the HdfsBolt is instantiated with an HDFS URL and port number.

“Tjava

/] use "|" instead of "," for field delimter

RecordFormat format = new Del i m t edRecor dFor mat ()
.wWithFieldDelimter("|");

/1 Synchroni ze the filesystem after every 1000 tupl es
SyncPol i cy syncPolicy = new Count SyncPol i cy(1000);

/] Rotate data files when they reach 5 MB
Fil eRot ati onPolicy rotationPolicy = new Fil eSi zeRot ati onPol i cy(5.0f, Units.
MB) ;

/1 Use default, Stormgenerated file nanes
Fi | eNaneFormat fil eNaneFor mat = new Def aul t Fi | eNanmeFor mat ()
.Wi thPath("/fool");

/1 Instantiate the Hdf sBolt

Hdf sBolt bolt = new Hdf sBolt ()
Wi thFsUrl ("hdfs://1ocal host: 8020")
. W t hFi | eNameFor mat (fi | eNanmeFor mat)
. Wi t hRecor dFor mat (f or nmat)
. Wit hRot ati onPol i cy(rotationPolicy)
. Wi t hSyncPol i cy(syncPolicy);

Example: HA-Enabled Cluster

The following example shows how to modify the previous example for an HA-enabled
cluster.

Here the HdfsBolt is instantiated with a nameservice ID, instead of using an HDFS URL and
port number.

28

Hortonworks Data Platform September 30, 2015

Hdf sBolt bolt = new Hdf sBolt ()
.W t hFsURL(" hdf s: // nyNaneservi cel D")
. W t hFi | eNanmeFor mat (fi | eNanmef or mat)
. W t hRecor dFor mat (f or mat)
. W t hRot ati onPol i cy(rotationPolicy)
. W t hSyncPol i cy(syncPol i cy) ;

To obtain the nameservice ID, check the df s. nameser vi ces property in your hdf s-
site. xm file; nnha in the following example:

<property>
<nane>df s. naneser vi ces</ nane>
<val ue>nnha</ val ue>

</ property>

7.1.2. Storm-HDFS: Trident APIs

The Trident APl implements a St at eFact or y class with an APl that resembles the
methods from the st or m code API, as shown in the following code sample:

Fi el ds hdf sFields = new Fields("fieldl", "field2");

Fi | eNaneFormat fil eNaneFor mat = new Def aul t Fi | eNanmeFor mat ()
Wi thPrefix("trident")

. W t hExt ensi on(".txt")

W thPath("/trident");

Recor dFor mat recordFormat = new Del i ni t edRecor dFor mat ()
. W t hFi el ds(hdf sFi el ds) ;

Fi | eRot ati onPolicy rotationPolicy = new Fil eSi zeRot ati onPol i cy(5. Of,
Fi | eSi zeRot ati onPol i cy. Units. MB);

Hdf sSt at e. Opti ons options = new Hdf sSt at e. Hdf sFi | eOpti ons()
. Wi t hFi | eNameFor mat (fi | eNaneFor mat)
. W t hRecor dFor mat (r ecor dFor mat)
. W t hRot ati onPol i cy(rotationPolicy)
.W thFsUrl ("hdfs://I ocal host: 8020");
StateFactory factory = new Hdf sSt at eFactory().w t hOpti ons(options);

TridentState state = stream partitionPersist(factory, hdfsFields, new
Hdf sUpdat er (), new Fields());

See the javadoc for the Trident API, included with the st or m hdf s connector, for more
information.

Limitations

Directory and file names changes are limited to a prepackaged file name format based on a
timestamp.

7.2. Writing Data to HBase

The st or m hbase connector supports the following key features:

29

Hortonworks Data Platform September 30, 2015

» Apache HBase 0.96 and above

* Incrementing counter columns

* Tuples failure if an update to an HBase table fails
* Ability to group puts in a single batch

* Writing to Kerberized HBase clusters (for more information, see Configuring Connectors
for a Secure Cluster)

The st or m hbase connector enables Storm developers to collect several

PUTS in a single operation and write to multiple HBase column families

and counter columns. A PUT is an HBase operation that inserts data into a

single HBase cell. Use the HBase client's write buffer to automatically batch:

hbase. client.wite. buffer.The primaryinterface in the st or m hbase connector
is the or g. apache. st or m hbase. bol t . mapper . HBaseMapper interface. However,
the default implementation, Si npl eHBaseMapper , writes a single column family.

Storm developers can implement the HBaseMapper interface themselves or extend

Si mpl eHBaseMapper if they want to change or override this behavior.

Table 7.1. SimpleHBaseMapper Methods

SimpleHBaseMapper Method Description

w t hRowKeyFi el d Specifies the row key for the target HBase row. A row key
uniquely identifies a row in HBase.

wi t hCol umFi el ds Specifies the target HBase column.

wi t hCount er Fi el ds Specifies the target HBase counter.

wi t hCol umFami |y Specifies the target HBase column family.

Example

The following example specifies the 'word' tuple as the row key, adds an HBase column for
the tuple 'word' field, adds an HBase counter column for the tuple 'count' field, and writes
data to the 'cf' column family.

Si npl eHBaseMapper mapper = new Si npl eHBaseMapper ()
. W t hRowKeyFi el d(" word")
. W t hCol umFi el ds(new Fi el ds("word"))
. W t hCount er Fi el ds(new Fi el ds("count™))
. W thCol ummFami [y("cf");

The st or m hbase connector supports the following versions of HBase:

* 0.96

* 0.98

Limitations

The current version of the st or m hbase connector has the following limitations:

* HBase table must be predefined

30

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_storm-user-guide/content/storm-connectors-secure.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_storm-user-guide/content/storm-connectors-secure.html

Hortonworks Data Platform September 30, 2015

» Cannot dynamically add new HBase columns; can write to only one column family at a
time

* Assumes that hbase-site. xnl isinthe $CLASSPATH environment variable

Tuple field names must match HBase column names
* Does not support the Trident API

* Supports writes but not lookups

7.3. Writing Data to Kafka

Storm provides a Kafka Bolt for both the core-storm and Trident APIs that writes data to
a Kafka cluster, also known as publishing to a topic using Kafka's terminology. Use the
following procedure to add a Storm component to your topology that writes data to a
Kafka cluster:

1. Instantiate a Kafka Bolt.

2. Configure the Kafka Bolt with a Tuple-to-Message mapper.
3. Configure the Kafka Bolt with a Kafka Topic Selector.

4. Configure the Kafka Bolt with the Kafka Producer properties.

The following code samples for each APl illustrate the construction of a simple Kafka Bolt.
The rest of this topic breaks the samples down to better describe each step.

Core-storm API

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

Fields fields = new Fi el ds("key", "nessage");

Fi xedBat chSpout spout = new Fi xedBat chSpout (fi el ds, 4,
new Val ues("stornt, "1
new Val ues("trident",
new Val ues("needs", "1
new Val ues("j avadoc",

DE

")
" 1") ,
"y,
"1m)
spout . set Cycl e(true);

bui | der . set Spout ("spout", spout, 5);

Kaf kaBolt bolt = new Kaf kaBol t ()

. Wi t hKaf kaTopi cSel ect or (new Def aul t Topi cSel ector("test"))

.wi t hTri dent Tupl eToKaf kaMapper (new Fi el dNameBasedTupl eToKaf kaMapper ());
bui | der. setBol t ("forwardToKaf ka", bolt, 8).shuffleG ouping("spout");

Config conf = new Config();
|/ set producer properties.
Properties props = new Properties();

props. put (" met adat a. broker.list", "local host:9092");
props. put ("request. required. acks", "1");
props. put ("serializer.class", "kafka.serializer.StringEncoder");

conf. put (Tri dent Kaf kaSt at e. KAFKA_BROKER _PROPERTI ES, pr ops);

St or nBubmi tt er. submi t Topol ogy(" kaf kabol t Test", conf, buil der.
creat eTopol ogy());

31

Hortonworks Data Platform September 30, 2015

Trident API
Fields fields = new Fields("word", "count");
Fi xedBat chSpout spout = new Fi xedBat chSpout (fi el ds, 4,
new Val ues("stornt, "1"),
new Val ues("trident", "1"),
new Val ues("needs", "1"),
new Val ues("j avadoc", "1")

)
spout . set Cycl e(true);

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();
Stream stream = topol ogy. newSt r ean(" spout 1", spout);

Tri dent Kaf kaSt at eFactory stateFactory = new Tri dent Kaf kaSt at eFact ory()

. Wi t hKaf kaTopi cSel ect or (new Def aul t Topi cSel ector("test"))

. Wi t hTri dent Tupl eToKaf kaMapper (new Fi el dNaneBasedTupl eToKaf kaMapper (" wor d",
"count"));

stream partitionPersist(stateFactory, fields, new Trident Kaf kaUpdater (), new
Fields());

Config conf = new Config();
[/ set producer properties.
Properties props = new Properties();

props. put (" et adat a. broker.list", "local host:9092");
props. put ("request. required. acks", "1");
props. put ("serializer.class", "kafka.serializer.StringEncoder");

conf. put (Tri dent Kaf kaSt at e. KAFKA_BROKER _PROPERTI ES, props);
St or nSubmi tter. subm t Topol ogy("kaf kaTri dent Test", conf, topol ogy.build());

Instantiate a KafkaBolt

The core-storm API uses the st or m kaf ka. bol t . Kaf kaBol t

class to instantiate a Kafka Bolt. The Trident APl uses a combination
of the st orm kaf ka. tri dent. Tri dent St at eFact ory and
storm kaf ka. trident. Tri dent Kaf kaSt at eFact ory classes.

Core-storm API

Kaf kaBolt bolt = new Kaf kaBol t () ;

Trident API

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy() ;
Stream stream = t opol ogy. newSt r ean{ " spout ") ;
Tri dent Kaf kaSt at eFact ory stateFactory = new Tri dent Kaf kaSt at eFact ory() ;
stream partitionPersist(stateFactory, fields, new Trident Kaf kaUpdater (), new
Fields());

Configure the KafkaBolt with a Tuple-to-Message Mapper

The KafkaBolt must map Storm tuples to Kafka messages. By default,

KafkaBolt looks for fields named "key" and "message." Storm provides the

storm kaf ka. tri dent. mapper. Fi el dNanmeBasedTupl eToKaf kaMapper class to
support this default behavior and provide backward compatibility. The class is used by both
the core-storm and Trident APIs.

Core-storm API

32

Hortonworks Data Platform September 30, 2015

Kaf kaBol t bolt = new Kaf kaBol t ()
.W t hTri dent Tupl eToKaf kaMapper (new Fi el dNameBasedTupl eToKaf kaMapper ());

Trident API
Tri dent Kaf kaSt at eFact ory stateFactory = new Tri dent Kaf kaSt at eFact ory()

. Wi t hTri dent Tupl eToKaf kaMapper (new Fi el dNaneBasedTupl eToKaf kaMapper (" wor d",
"count"));

Storm developers must specify the field names for the Storm tuple key and the Kafka
message for any implementation of the Tri dent Kaf kaSt at e in the Trident API. This
interface does not provide a default constructor.

However, some Kafka bolts may require more than two fields. Storm developers

may write their own implementation of the Tupl eToKaf kaMapper and

Tri dent Tupl eToKaf kaMapper interfaces to customize the mapping of Storm tuples to
Kafka messages. Both interfaces define 2 methods:

K get KeyFr omTupl e(Tupl e/ Tri dent Tupl e tupl e);

V get MessageFr onifupl e(Tupl e/ Tri dent Tupl e tupl e);

Configure the Kafka Bolt with a Kafka Topic Selector

3 Note

To ignore a message, return NULL from the get Topi cs() method.

Core-storm API

Kaf kaBol t bolt = new Kaf kaBolt().w t hTupl eToKaf kaMapper (new
Fi el dNanmeBasedTupl eToKaf kaMapper ())
. W t hTopi cSel ect or (new Def aul t Topi cSel ector());

Trident API

Tri dent Kaf kaSt at eFactory stateFactory = new Tri dent Kaf kaSt at eFact ory()
. Wi t hKaf kaTopi cSel ect or (new Def aul t Topi cSel ector("test"))
. W t hTri dent Tupl eToKaf kaMapper (new Fi el dNameBasedTupl eToKaf kaMapper (" wor d",
"count"));

Storm developers can write their own implementation of the Kaf kaTopi cSel ect or
interface if they need to write to multiple Kafka topics:

public interface KafkaTopi cSel ector {
String get Topi cs(Tupl e/ Tri dent Tupl e tupl e);

}

7.4. Configuring Connectors for a Secure Cluster

If your topology uses Storm-HDFS, Storm-HBase, or Storm-Hive connectors, and if the
corresponding components HDFS, HBase, and/or Hive are secured with Kerberos, then you
will need to complete the following additional configuration steps.

Storm-HDFS Connector Configuration

33

Hortonworks Data Platform September 30, 2015

To use the st or m hdf s connector in topologies that run on secure clusters:

1. Provide your own Kerberos keytab and principal name to the connectors. The Confi g
object that you pass into the topology must contain the storm keytab file and principal
name.

2. Specify an HdfsBolt conf i gKey, using the method
Hdf sBol t . wi t hConf i gKey (" sonekey") . The value map of this key should have the
following two properties:

hdf s. keytab.file: "<path-to-keytab>"

hdf s. ker beros. pri nci pal : "<princi pal >@host >"

where

<pat h- t o- keyt ab> specifies the path to the keytab file on the supervisor hosts

<pri nci pal >@host > specifies the user and domain; for example, st or m
adm n@XAMPLE. com

For example:

Config config = new Config();
confi g. put (Hdf sSecurityUtil.STORM KEYTAB _FI LE _KEY, "$keytab");
confi g. put (Hdf sSecurityUtil.STORM USER_NAME KEY, "$principal");

St or nBubmi tt er. submi t Topol ogy (" $t opol ogyNane", config, buil der.
creat eTopol ogy());

On worker hosts the bolt/trident-state code will use the keytab file and principal to
authenticate with the NameNode. Make sure that all workers have the keytab file,
stored in the same location.

3. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor
nodes. This is the keytab that is being used to authenticate to HDFS, typically the Storm
service keytab, st or m The user ID that the Storm worker is running under should have
access to it.

On an Ambari-managed cluster thisis / et ¢/ securi ty/ keyt abs/
storm servi ce. keyt ab (the " pat h-t o- keyt ab"), where the worker runs under
storm

4. If you set super vi sor. run. wor ker. as. user totr ue (see Running Workers as
Users in Configuring Storm for Kerberos over Ambari), make sure that the user that
the workers are running under (typically the st or mkeytab) has read access on those
keytabs. This is a manual step; an admin needs to go to each supervisor node and run
chmod to give file system permissions to the users on these keytab files.

3 Note

You do not need to create separate keytabs or principals; the general
guideline is to create a principal and keytab for each group of users that
requires the same access to these resources, and use that single keytab.

34

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-running-workers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-running-workers.html

Hortonworks Data Platform September 30, 2015

All of these connectors accept topology configurations. You can specify the keytab
location on the host and the principal through which the connector will login to that
system.

5. Configure the connector(s). Here is a sample configuration for the Storm-HDFS
connector (see Writing Data to HDFS with the Storm-HDFS Connector for a more
extensive example):

Hdf sBolt bolt = new HdfsBolt ()
.wWi thFsUrl ("hdfs:/ /| ocal host: 8020")
.wi t hFi | eNaneFor mat (fi | eNaneFor mat)
.wi t hRecor dFor mat (f or mat)
.wi thRot ati onPol i cy(rotationPolicy)
.wi thSyncPol i cy(syncPol i cy);
.wi t hConf i gKey("hdfs. config");

Map<String, Object> map = new HashMap<Stri ng, Qbj ect >();
map. put ("hdf s. keytab. file","/etc/security/keytabs/storm service. keytab");
map. put ("hdf s. kerberos. princi pal ", "st or mM@EST. HORTONWORKS. COM') ;

Config config = new Config();
config. put ("hdfs.config", map);

St or nSubmi tt er. subm t Topol ogy(" $t opol ogyNanme", confi g, bui | der.
creat eTopol ogy());

c Important

For the Storm-HDFS connector, you must package hdf s-site. xm and
core-site.xn (from your cluster configuration) in the topology .jar file.

In addition, include any configuration files for HDP components used in your
Storm topology, such as hive-site.xml and hbase-site.xml. This fulfills the
requirement that all related configuration files appear in the CLASSPATH of
your Storm topology at runtime.

Storm-HBase Connector Configuration

To use the st or m hbase connector in topologies that run on secure clusters:

1. Provide your own Kerberos keytab and principal name to the connectors. The Confi g
object that you pass into the topology must contain the storm keytab file and principal
name.

2. Specify an HBaseBolt conf i gKey, using the method
HBaseBol t . wi t hConfi gKey(" sonekey") . The value map of this key should have
the following two properties:
storm keytab.file: "<path-to-keytab-file>"

storm kerberos. principal: "<principal >@host >"

For example:

35

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_storm-user-guide/content/writing-data-with-storm-hdfs-connector.html

Hortonworks Data Platform September 30, 2015

Config config = new Config();
confi g. put (HBaseSecurityUtil.STORM KEYTAB FI LE KEY, "$keytab");
confi g. put (HBaseSecurityUtil.STORM USER NAVE KEY, "$principal");

St or nSubmi tt er. subm t Topol ogy(" $t opol ogyNane", config, buil der.
creat eTopol ogy());

On worker hosts the bolt/trident-state code will use the keytab file and principal to
authenticate with the NameNode. Make sure that all workers have the keytab file,
stored in the same location.

3. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor
nodes. This is the keytab that is being used to authenticate to HBase,typically the Storm
service keytab, st or m The user ID that the Storm worker is running under should have
access to it.

On an Ambari-managed cluster thisis/ et ¢/ securi ty/ keyt abs/
storm servi ce. keyt ab (the " pat h-t o- keyt ab"), where the worker runs under
storm

4. If you set super vi sor. run. wor ker . as. user totr ue (see Running Workers as
Users in Configuring Storm for Kerberos over Ambari), make sure that the user that
the workers are running under (typically the st or mkeytab) has read access on those
keytabs. This is a manual step; an admin needs to go to each supervisor node and run
chmod to give file system permissions to the users on these keytab files.

3 Note

You do not need to create separate keytabs or principals; the general
guideline is to create a principal and keytab for each group of users that
requires the same access to these resources, and use that single keytab.

All of these connectors accept topology configurations. You can specify the keytab
location on the host and the principal through which the connector will login to that
system.

5. Configure the connector(s). Here is a sample configuration for the Storm-HBase
connector:

HBaseBolt hbase = new HBaseBol t ("WrdCount"”, mapper).w t hConfi gKey("hbase.
config");

Map<Stri ng, Object> mapHbase = new HashMap<Stri ng, Qbj ect>();

mapHbase. put ("storm keytab.file","/etc/security/keytabs/storm service.
keyt ab") ;

mapHbase. put (" st orm ker beros. princi pal ", " st or M@EST. HORTONWORKS. COM') ;

Config config = new Config();
confi g. put ("hbase. confi g", mapHbase) ;

St or rSubmi t t er . submi t Topol ogy(" $t opol ogyNane", confi g, bui | der.
creat eTopol ogy());

36

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-running-workers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_secure-storm-ambari/content/ch_secure-storm-running-workers.html

Hortonworks Data Platform September 30, 2015

c Important

For the Storm-HBase connector, you must package hdf s-si te. xml , cor e-
site. xm , and hbase- si te. xm (from your cluster configuration) in the
topology .jar file.

In addition, include any other configuration files for HDP components used in
your Storm topology, such as hive-site.xml. This fulfills the requirement that all
related configuration files appear in the CLASSPATH of your Storm topology at
runtime.

Storm-Hive Connector Configuration
The Storm-Hive connector accepts configuration settings as part of the HiveOptions class.
There are two required settings for accessing secure Hive:

* wi t hKer ber osPri nci pal , the Kerberos principal for accessing Hive:
public Hi veOptions withKerberosPrincipal (String kerberosPrinci pal)
» wi t hKer ber osKeyt ab, the Kerberos keytab for accessing Hive:

public Hi veOpti ons w t hKer ber osKeyt ab(String ker ber osKeyt ab)

37

Hortonworks Data Platform September 30, 2015

8. Packaging Storm Topologies

Storm developers should verify that the following conditions are met when packaging their
topology into a .jar file:

* Use the maven-shade-plugin, rather than the maven-assembly-plugin to package your
Apache Storm topologies. The maven-shade-plugin provides the ability to merge JAR
manifest entries, which are used by the Hadoop client to resolve URL schemes.

* Include a dependency for the Hadoop version used in the Hadoop cluster.

* Include both of the Hadoop configuration files, hdf s-si te. xm andcore-site. xm,
in the jar file. In addition, include any configuration files for HDP components used
in your Storm topology, such as hi ve- si t e. xm and hbase-sit e. xn . This is the
easiest way to meet the requirement that all required configuration files appear in the
CLASSPATH of your Storm topology at runtime.

Maven Shade Plugin

Use the maven-shade-plugin, rather than the maven-assembly-plugin to package your
Apache Storm topologies. The maven-shade-plugin provides the ability to merge JAR
manifest entries, which are used by the Hadoop client to resolve URL schemes.

Use the following Maven configuration file to package your topology:

<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifact|d>maven- shade-pl ugi n</artifactld>
<ver si on>1. 4</ ver si on>
<confi gurati on>
<cr eat eDependencyReducedPon®t r ue</ cr eat eDependencyReducedPon»
</ confi guration>
<execut i ons>
<execut i on>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
<confi gurati on>
<transf or ner s>
<transformer inplenmentation="org.apache. maven.
pl ugi ns. shade. resour ce. Servi cesResour ceTr ansf or ner"/ >
<transfornmer inplenmentation="org.apache. maven.
pl ugi ns. shade. resour ce. Mani f est Resour ceTr ansf or ner " >
<mai nCl ass></ mai nCl ass>
</ transfornmer>
</transforners>
</ confi guration>
</ executi on>
</ execut i ons>
</ pl ugi n>

Hadoop Dependency

Include a dependency for the Hadoop version used in the Hadoop cluster; for example:

38

Hortonworks Data Platform

September 30, 2015

<dependency>

<gr oupl d>or g. apache. hadoop</ gr oupl d>
<artifactl d>hadoop-client</artifactld>
<version>2.7.1.2.3.2.0-2950</ ver si on>

<excl usi ons>
<excl usi on>

<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4j12</artifactld>

</ excl usi on>
</ excl usi ons>
</ dependency>

Troubleshooting

The following table describes common packaging errors.

Table 8.1. Topology Packing Errors

Error

Description

com googl e. pr ot obuf.
I nval i dPr ot ocol Buf f er Excepti on: Protocol
nmessage contained an invalid tag (zero)

Hadoop client version incompatibility

java. |l ang. Runti meException: Error
preparing HdfsBolt: No FileSystem for
scheme: hdfs

The .jar manifest files have not properly merged in the
topology.jar

39

Hortonworks Data Platform

September 30, 2015

9. Deploying and Managing Apache

Storm Topologies

Use the command-line interface to deploy a Storm topology after packaging it in a jar. For
example, use the following command to deploy WordCountTopology from the st or m

starter jar:

stormjar stormstarter-<starter_versi on>-storm <stormversi on>
.jar stormstarter.WrdCount Topol ogy WordCount -c ni nbus. host =sandbox.

hort onwor ks. com

Point a browser to the following URL to access the Storm Ul and to manage deployed

topologies.

http://<stormui-server>: 8080

S Note

You may need to configure Apache Storm to use a different port if Ambari is
also running on the same host with Apache Storm. Both applications use port

8080 by default.

Storm Ul

Cluster Summary
Version Nimbus uptime Supervisors

0.9.1.2.1.1.0-187 128 0

Topology summary

Name - W Status

WordCount WordCount-1-1395077335 ACTIVE

Supervisor summary

d Host Uptime

Nimbus Configuration

Used slots

- Value

Free slots Total slots Executors Tasks

0

Num executors I Num tasks

Used slots

Ampldev-storm-zookeeper

-Xmx768r

In the image above, no workers, executors, or tasks are running. However, the status of
the topology remains active and the uptime continues to increase. Storm topologies, unlike
traditional applications, remain active until an administrator deactivates or kills them.
Storm administrators use the Storm user interface to perform the following administrative

actions:

Table 9.1. Topology Administrative Actions

Topology Administrative Action Description

Activate Returns a topology to active status after it has been
deactivated.

Deactivate Sets the status of a topology to inactive. Topology uptime

is not affected by deactivation.

40

Hortonworks Data Platform September 30, 2015

Topology Administrative Action Description

Rebalance Dynamically increase or decrease the number of worker
processes and/or executors. The administrator does not
need to restart the cluster or the topology.

Kill Stops the topology and removes it from Apache Storm.
The topology no longer appears in the Storm Ul, and
the administrator must deploy the application again to
activate it.

Click any topology in the Topology Summary section to launch the Topology Summary
page. Administrators perform any of the topology actions in the table above by clicking the
corresponding button, shown in the following image.

Storm Ul

Topology summary
Name] Status Uptime Num workers Num executors Num tasks

WordCount-1-1395

m31s 0 0 0

Topology actions

Activate Deactivate Rebalance K

Topology stats
Window + Emitted Transferred Complete latency (ms) Ackec Failed

Al time

'Spouts (All time)

id Executors Tasks Emitted Transferred Complete latency (ms) Acked Failed Last error

Bolts (All time)

d Executors Tasks Emitted Transferred Capacity last 10m) Exscute lstency (ms) Executed Process latency (ms) Acked Failed Last error

Topology Configuration

The Executors field in the Spouts and Bolts sections show all running Storm threads,
including the host and port. If a bolt is experiencing latency issues, Storm developers should
look here to determine which executor has reached capacity. Click the port number to
display the log file for the corresponding executor.

41

Hortonworks Data Platform

September 30, 2015

10. Example: RollingTopWords Topology

The Rol | i ngTopWor ds. j ava is included with st orm st arter.

package stormstarter;

i mport
i nport
i mport
i mport
i nmport
i mport
i mport
i mport

/**

backt ype. st orm Confi g;

backt ype. storm testi ng. Test Wor dSpout ;
backt ype. st or m t opol ogy. Topol ogyBui | der;
backt ype. st orm t upl e. Fi el ds;

stormstarter.
storm starter.
stormstarter.
stormstarter.

bol t. I nt er nedi at eRanki ngsBol t ;
bol t. Rol I i ngCount Bol t ;

bol t . Tot al Ranki ngsBol t ;

util. StornRunner;

* This topol ogy does a conti nuous conputation of the top N words that the
t opol ogy has seen in ternms of cardinality.

* The top N conputation is done in a conpletely scalable way, and a simlar
approach could be used to compute things

* like trending topics or trending inmages on Twitter.

*/

public class RollingTopWrds {

private static final
private static final

i nt DEFAULT_RUNTI ME_| N_SECONDS = 60;
int TOP_N = 5;

private final Topol ogyBuil der buil der;
private final String topol ogyNane;
private final Config topol ogyConfig;

private

final int runtinelnSeconds;

public RollingTopWrds() throws I|nterruptedException {
bui | der = new Topol ogyBui | der () ;

t opol ogyNane = "sli di ngW ndowCount s";

t opol ogyConfi g = creat eTopol ogyConfi guration();

runti mel nSeconds =

wi r eTopol ogy() ;

DEFAULT_RUNTI ME_I N_SECONDS;

private static Config createTopol ogyConfiguration() {
Config conf = new Config();

conf. set Debug(true);

return conf;

}

private void w reTopol ogy() throws InterruptedException {
String spoutld = "wordGenerator";

String counterld = "counter";

String internedi ateRankerld = "internedi at eRanker";
String total Rankerld = "final Ranker";
bui | der . set Spout (spout | d, new Test Wr dSpout (), 5);
bui | der. setBolt(counterld, new RollingCountBolt(9, 3), 4).
fiel dsG oupi ng(spoutld, new Fields("word"));
bui | der. set Bol t (i nt er nedi at eRanker | d, new I nt er nedi at eRanki ngsBol t (TOP_N),
4).fiel dsG oupi ng(counterld, new Fields("obj"));
bui | der. setBol t (t ot al Ranker!ld, new Tot al Ranki ngsBol t (TOP_N)) .
gl obal Groupi ng(i nt er nedi at eRanker1d);

42

Hortonworks Data Platform September 30, 2015

}

public void run() throws InterruptedException {
St or mRunner . r unTopol ogyLocal | y(bui | der. creat eTopol ogy(), topol ogyNane,
t opol ogyConfi g, runtinel nSeconds);

public static void main(String[] args) throws Exception {
new Rol | i ngTopWords() . run();

}

43

	Hortonworks Data Platform
	Table of Contents
	1. Using Apache Storm
	1.1. Basic Storm Concepts
	1.1.1. Spouts
	1.1.2. Bolts
	1.1.3. Stream Groupings
	1.1.4. Topologies
	1.1.5. Processing Reliability
	1.1.6. Workers, Executors, and Tasks
	1.1.7. Parallelism

	2. Installing and Configuring Storm
	3. Topology Development Guidelines
	3.1. Debugging Topologies
	3.2. Determining Topology Parallelism Units

	4. Streaming Data to Hive
	5. Ingesting Data with the Apache Kafka Spout Connector
	5.1. KafkaSpout and OpaqueTridentKafkaSpout Examples
	5.2. Storm-Kafka API Reference
	5.3. KafkaSpout Limitations
	5.4. Configuring Kafka for Use with the Storm-Kafka Connector
	5.5. Configuring KafkaSpout to Connect to a Secure Kafka Cluster

	6. Ingesting Data from HDFS
	6.1. Configuring HDFS Spout
	6.2. HDFS Spout Example

	7. Writing Data with Storm
	7.1. Writing Data to HDFS
	7.1.1. Storm-HDFS: Core Storm APIs
	7.1.2. Storm-HDFS: Trident APIs

	7.2. Writing Data to HBase
	7.3. Writing Data to Kafka
	7.4. Configuring Connectors for a Secure Cluster

	8. Packaging Storm Topologies
	9. Deploying and Managing Apache Storm Topologies
	10. Example: RollingTopWords Topology

