
Hortonworks Data Platform

 (April 20, 2017)

Apache Hive Performance Tuning

docs.cloudera.com

http://docs.cloudera.com

HDP Hive Performance Tuning
Guide

April 20, 2017

ii

Hortonworks Data Platform: Apache Hive Performance Tuning
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

HDP Hive Performance Tuning
Guide

April 20, 2017

iii

Table of Contents
1. Hive Architectural Overview ... 1

1.1. Detailed Query Execution Architecture .. 1
2. Interactive SQL Query with Apache Hive LLAP (Technical Preview) 4

2.1. Interactive and Sub-Second SQL Queries .. 4
2.2. Enabling LLAP for Interactive Queries in Hive .. 4
2.3. Connecting Your Clients to a Dedicated HiveServer2 Endpoint 7
2.4. Monitoring Interactive Query Performance ... 8
2.5. Viewing Metrics in Grafana ... 9
2.6. Restarting HiveServer2 Interactive ... 9
2.7. Restarting LLAP ... 10
2.8. LLAP on Your Cluster .. 11

3. Hive High Performance Best Practices ... 14
3.1. Use the Tez Query Execution Engine ... 14

3.1.1. Configuring Tez .. 15
3.2. Debug Hive Queries with Tez View in Ambari .. 15
3.3. Use the ORC File Format ... 16
3.4. Use Column Statistics and the Cost-Based Optimizer (CBO) 17
3.5. Design Data Storage Smartly ... 18
3.6. Better Workload Management by Using Queues ... 19

3.6.1. Hive Setup for Using Multiple Queues .. 20
3.6.2. Guidelines for Interactive Queues ... 22
3.6.3. Guidelines for a Mix of Batch and Interactive Queues 23
3.6.4. Create and Configure YARN Capacity Scheduler Queues 23
3.6.5. Refreshing YARN Queues with Changed Settings 25
3.6.6. Setting Up Interactive Queues for HDP 2.2 ... 26
3.6.7. Hive, Tez, and YARN Settings in Ambari 2.1 and HDP 2.3 28
3.6.8. Setting Up Queues for Mixed Interactive and Batch Workloads 30

4. Configuring Memory Usage ... 31
4.1. Memory Settings for YARN ... 31
4.2. Selecting YARN Memory ... 31
4.3. Tez Memory Settings .. 31
4.4. Hive Memory Settings ... 32

5. Query Optimization ... 33

HDP Hive Performance Tuning
Guide

April 20, 2017

iv

List of Figures
1.1. SQL Query Execution Process .. 1
1.2. SQL Query Execution Process .. 2
2.1. Settings tab .. 5
2.2. HiveServer2 Interactive dialog box .. 5
2.3. HiveServer2 Interactive JDBC URL .. 8
2.4. HiveServer2 Interactive .. 8
2.5. Quick Links ... 8
2.6. HiveServer2 Interactive UI ... 9
2.7. Hive Summary Tab .. 10
2.8. HiveServer2 Restart ... 10
2.9. LLAP Restart ... 11
2.10. LLAP on Your Cluster .. 12
2.11. Hive Summary ... 12
2.12. Resource Manager UI .. 12
2.13. Concurrency Setting .. 13
3.1. Tez Query Execution Compared to MapReduce ... 14
3.2. ORC File Structure ... 16
3.3. Hive Data Abstractions .. 18
3.4. Cluster Configuration Using Queues .. 20
3.5. Hive Setup Using Multiple Queues ... 20
3.6. Multiple HiveServer2 Installations .. 21
3.7. YARN Capacity Scheduler .. 24
3.8. Ambari Capacity Scheduler View ... 25
3.9. Interactive Query Pane of Hive Configuration Page in Ambari 28
3.10. Optimization Pane of Hive Configuration Page in Ambari 29
3.11. Ordering Policy Setting in Ambari .. 29
4.1. Tez Container Configuration in Hive Web UI of Ambari ... 32
5.1. Garbage Collection Time ... 33

HDP Hive Performance Tuning
Guide

April 20, 2017

v

List of Tables
2.1. Interactive Query Properties .. 7
3.1. ORC Properties .. 17
3.2. Queues and Sessions for Increasing Numbers of Concurrent Users 27

HDP Hive Performance Tuning
Guide

April 20, 2017

1

1. Hive Architectural Overview
Important

This guide is intended as an introduction to Hive performance tuning. The
content is subject to frequent changes because a high number of updates in
this Hive domain is anticipated.

SQL queries are submitted to Hive and they are executed as follows:

1. Hive compiles the query.

2. An execution engine, such as Tez or MapReduce, executes the compiled query.

3. The resource manager, YARN, allocates resources for applications across the cluster.

4. The data that the query acts upon resides in HDFS (Hadoop Distributed File System).
Supported data formats are ORC, AVRO, Parquet, and text.

5. Query results are then returned over a JDBC/ODBC connection.

A simplified view of this process is shown in the following figure.

Figure 1.1. SQL Query Execution Process

1.1. Detailed Query Execution Architecture
The following diagram shows a detailed view of the HDP query execution architecture:

HDP Hive Performance Tuning
Guide

April 20, 2017

2

Figure 1.2. SQL Query Execution Process

The following sections explain major parts of the query execution architecture.

Hive Clients

You can connect to Hive using a JDBC/ODBC driver with a BI tool, such as Microstrategy,
Tableau, BusinessObjects, and others, or from another type of application that can access
Hive over a JDBC/ODBC connection. In addition, you can also use a command-line tool, such
as Beeline, that uses JDBC to connect to Hive. The Hive command-line interface (CLI) can
also be used, but it has been deprecated in the current release and Hortonworks does not
recommend that you use it for security reasons.

SQL in Hive

Hive supports a large number of standard SQL dialects. In a future release, when SQL:2011
is adopted, Hive will support ANSI-standard SQL.

HiveServer2

Clients communicate with HiveServer2 over a JDBC/ODBC connection, which can handle
multiple user sessions, each with a different thread. HiveServer2 can also handle long-
running sessions with asynchronous threads. An embedded metastore, which is different
from the MetastoreDB, also runs in HiveServer2. This metastore performs the following
tasks:

• Get statistics and schema from the MetastoreDB

• Compile queries

• Generate query execution plans

• Submit query execution plans

• Return query results to the client

Multiple HiveServer2 Instances for Different Workloads

HDP Hive Performance Tuning
Guide

April 20, 2017

3

Multiple HiveServer2 instances can be used for:

• Load-balancing and high availability using ZooKeeper

• Running multiple applications with different settings

Because HiveServer2 uses its own settings file, using one for ETL operations and another
for interactive queries is a common practice. All HiveServer2 instances can share the
same MetastoreDB. Consequently, setting up multiple HiveServer2 instances that have
embedded metastores is a simple operation.

Tez Execution

After query compilation, HiveServer2 generates a Tez graph that is submitted to YARN. A
Tez Application Master (AM) monitors the query while it is running.

Security

HiveServer2 performs standard SQL security checks when a query is submitted, including
connection authentication. After the connection authentication check, the server runs
authorization checks to make sure that the user who submits the query has permission to
access the databases, tables, columns, views, and other resources required by the query.
Hortonworks recommends that you use SQLStdAuth or Ranger to implement security.
Storage-based access controls, which is suitable for ETL workloads only, is also available.

File Formats

Hive supports many file formats. You can write your own SerDes (Serializers, Deserializers)
interface to support new file formats.

HDP Hive Performance Tuning
Guide

April 20, 2017

4

2. Interactive SQL Query with Apache
Hive LLAP (Technical Preview)

Note

This feature is in technical preview and considered under development. Do not
use this feature in your production systems. If you have questions regarding this
feature, contact Support by logging a case on the Hortonworks Support Portal
at https://support.hortonworks.com.

2.1. Interactive and Sub-Second SQL Queries
Many SQL workloads require fast response times because a person is waiting in real-time
for query output: for example, a Business Intelligence tool or a web dashboard.

Apache Hive enables interactive and subsecond SQL through Low Latency Analytical
Processing (LLAP), a new component introduced in Hive 2.0 that makes Hive faster by using
persistent query infrastructure and optimized data caching. LLAP is 100% compatible with
Hive SQL queries and data formats. Using LLAP gives you the benefit of interactive and sub-
second SQL while keeping all your data in Apache Hadoop.

To use LLAP in Hortonworks Data Platform, you must perform the following actions:

1. Enable LLAP.

2. Size LLAP appropriately.

3. Connect your clients to a dedicated HiveServer2 endpoint that is created when you
enable LLAP.

Note

LLAP supports only SQL standard authorization. SQL GRANT and REVOKE
statements are used for authorization. Storage-based authorization is not
supported.

Note

Wire encyption is not supported with LLAP.

2.2. Enabling LLAP for Interactive Queries in Hive
After you install Apache Ambari 2.4, you must configure Apache Hive to run interactive
queries:

1. Select the Hive service in the Ambari dashboard.

2. Click the Configs tab.

https://support.hortonworks.com/

HDP Hive Performance Tuning
Guide

April 20, 2017

5

3. In the Settings tab, locate the Interactive Query section:

Figure 2.1. Settings tab

4. Under Enable Interactive Query, move the slider.

The Select HiverServer2 Interactive host dialog box opens :

Figure 2.2. HiveServer2 Interactive dialog box

5. Assign HiveServer2 Interactive to the host that you want to run it on.

In most cases, you can keep the default setting.

6. Click Select.

HDP Hive Performance Tuning
Guide

April 20, 2017

6

The Settings tab opens again and displays additional configurations.

HDP Hive Performance Tuning
Guide

April 20, 2017

7

Note

Most configurations in the Settings panel will apply to your LLAP cluster
except for the following: Run as end user instead of Hive user in the
Security section, and Tez under the "Optimization' section'.

7. Modify settings as needed:

• For simple clusters that contain only a “default” queue, the system tries to manage the
queues, and creates an LLAP queue in YARN. In this case, the following two settings
are configurable:

• % of cluster capacity - Percentage of the cluster to be used for the interactive query
system

• Maximum Total Concurrent queries - Total concurrent queries that can execute for
this interactive setup, which determines the number of Application Masters to be
launched.

• For more complex clusters, you must specify the queue that LLAP will use from the
Interactive Query Queue menu.

The system tries to occupy the entire queue, and sets up parameters for LLAP
accordingly. You can still configure the Maximum Total Concurrent queries.

Table 2.1. Interactive Query Properties

Property Description

Number of LLAP Daemons The total number of LLAP daemons

YARN Memory per Daemon The YARN container size for each individual daemon

In-Memory Cache per Daemon A subset of the container size, the size of the cache, in
megabytes

Maximum CPUs per Daemon The number of executors per daemon: for example,
thenumber of fragments that can execute in parallel on
a daemon

8. If you make any changes to the configuration settings, click Save.

2.3. Connecting Your Clients to a Dedicated
HiveServer2 Endpoint

Hortonworks provides Hive JDBC drivers that enable you to connect to HiveServer2 so that
you can query, analyze, and visualize data stored in the Hortonworks Data Platform.

From the Apache Ambari UI, in the Hive>Services dashboard, you can copy the second
URL, the HiveServer2 Interactive JDBC URL, to paste into any JDBC client (such as a
Business Intelligence tool or Beeline):

HDP Hive Performance Tuning
Guide

April 20, 2017

8

Figure 2.3. HiveServer2 Interactive JDBC URL

Note

Hive CLI is not supported for LLAP.

After you enable interactive queries, links to HiveServer2 Interactive appear in the Hive
Summary tab, as shown in the following figure:

Figure 2.4. HiveServer2 Interactive

From the Quick Links menu, shown in the following figure, you can open the HiveServer2
Interactive UI, which enables you to view executing queries, see a recent history of queries,
and access the LLAP daemons:

Figure 2.5. Quick Links

2.4. Monitoring Interactive Query Performance
Select a link in the HiveServer2 Interactive UI to open a monitoring UI that shows you
heap, system, and cache metrics for the selected node:

HDP Hive Performance Tuning
Guide

April 20, 2017

9

Figure 2.6. HiveServer2 Interactive UI

2.5. Viewing Metrics in Grafana
The Ambari Metrics System includes Grafana, with prebuilt dashboards for advanced
visualization of cluster metrics. You can monitor the performance of the system through
the Hive LLAP dashboards. The following dashboards are available:

Hive LLAP Heatmap: Shows all the nodes that are running LLAP daemons, with percentage
summaries for available executors and cache. This dashboard enables you to identify the
hotspots in the cluster in terms of executors and cache.

Hive LLAP Overview: Shows the aggregated information across all of the clusters: for
example, the total cache memory from all the nodes. This dashboard enables you to
see that your cluster is configured and running correctly. For example, you might have
configured 10 nodes but see executors and cache accounted for only 8 nodes running.

If you find an issue in this dashboard, you can open the LLAP Daemon dashboard to see
which node is having the problem.

Hive LLAP Daemon: Metrics that show operating status for a specific Hive LLAP Daemon

2.6. Restarting HiveServer2 Interactive
After HiveServer2 starts, it shows up in the Hive Summary tab:

HDP Hive Performance Tuning
Guide

April 20, 2017

10

Figure 2.7. Hive Summary Tab

To restart the entire component, click the HiveServer2 Interactive link and select the
Started>Restart link.

Figure 2.8. HiveServer2 Restart

2.7. Restarting LLAP
To restart LLAP (the Slider Application) without having to restart the Hive server, select
Service Actions>Restart LLAP in the Apache Ambari interface:

HDP Hive Performance Tuning
Guide

April 20, 2017

11

Figure 2.9. LLAP Restart

This step is useful if you have added new UDFs, for example, and do not want to shut down
the HiveServer.

2.8. LLAP on Your Cluster
After setup, LLAP is transparent to Apache Hive users and Business Intelligence tools.
LLAP runs on YARN as a Slider Application. It can be monitored through the Resource
Manager UI or by using Apache Slider and YARN command line tools. Running through
Slider enables you to easily open your cluster, share resources with other applications,
remove your cluster, and flexibly utilize your resources. For example, you could run a large
LLAP cluster during the day for BI tools, and then reduce usage during nonbusiness hours
to use the cluster resources for ETL processing.

HDP Hive Performance Tuning
Guide

April 20, 2017

12

Figure 2.10. LLAP on Your Cluster

On your cluster, an extra HiveServer2 instance is installed that is dedicated to interactive
queries and LLAP. You can see this HiveServer2 instance listed in the Hive Summary page:

Figure 2.11. Hive Summary

In the Resource Manager UI, you can see the LLAP daemons themselves through the
Apache Slider YARN application that is running apps on the queue:

Figure 2.12. Resource Manager UI

The Apache Tez Application Masters are the same as the selected concurrency. If you
selected a total concurrency of 5, you see 5 Tez Application Masters. The following example
shows selecting a concurrency of 2:

HDP Hive Performance Tuning
Guide

April 20, 2017

13

Figure 2.13. Concurrency Setting

The Cluster Capacity slider is also very important in understanding how LLAP behaves on
your cluster. Note that selecting, for example, 60% of cluster capacity on a 10-node cluster
does not mean that LLAP runs on 6 nodes. HDP runs LLAP on n full nodes, after accounting
for resources required by the Slider Application and the Tez Application Masters.

HDP Hive Performance Tuning
Guide

April 20, 2017

14

3. Hive High Performance Best Practices
The following sections in this chapter describe best practices for increasing Hive
performance:

• Use the Tez Query Execution Engine [14]

• Debug Hive Queries with Tez View in Ambari [15]

• Use the ORC File Format [16]

• Use Column Statistics and the Cost-Based Optimizer (CBO) [17]

• Design Data Storage Smartly [18]

• Better Workload Management by Using Queues [19]

3.1. Use the Tez Query Execution Engine
The Tez query execution engine replaces MapReduce, executing Hive queries more
efficiently. For the best Hive performance, always use Tez. Currently, Hive on Spark shows
promise, but does not offer the same maturity that Tez offers. The following diagram
compares Tez to MapReduce query execution.

Figure 3.1. Tez Query Execution Compared to MapReduce

HDP Hive Performance Tuning
Guide

April 20, 2017

15

3.1.1. Configuring Tez
Tez works correctly after installing it without additional configuration, especially in later
releases of HDP (HDP 2.2.4 and Hive 0.14 and later). In current releases of HDP, Tez is the
default query execution engine. Make sure that you are using Tez by setting the following
property in hive-site.xml or the Hive web UI in Ambari:

SET hive.execution.engine=tez;

Advanced Settings

Using map joins is very efficient because one table (usually a dimension table) is held in
memory as a hash map on every node and the larger fact table is streamed. This minimizes
data movement, resulting in very fast joins. However, there must be enough memory for
the in-memory table so you must set more memory for a Tez container with the following
settings in hive-site.xml:

• Set the Tez container size to be a larger multiple of the YARN container size (4GB):

SET hive.tez.container.size=4096MB

• Set how much of this memory can be used for tables stored as the hash map (one-third
of the Tez container size is recommended):

SET hive.auto.convert.join.noconditionaltask.size=1370MB

Note

The size is shown in bytes in the hive-site.xml file, but set in MB with Ambari.
MB are shown in the above examples to make the size settings easier to
understand.

Tez Container Size Configuration Example

If you discover that you are not getting map joins, check the size of your Tez containers
in relation to YARN containers. The size of Tez containers must be a multiple of the YARN
container size. For example, if your YARN containers are set to 2GB, set Tez container size
to 4GB. Then run the EXPLAIN command with your query to view the query execution plan
to make sure you are getting map joins instead of shuffle joins. Keep in mind that if your
Tez containers are too large, the space is wasted. Also, do not configure more than one
processor per Tez container to limit the size of your largest container. As an example, if you
have 16 processors and 64GB of memory, configure one Tez container per processor and
set their size to 4GB and no larger.

3.2. Debug Hive Queries with Tez View in Ambari
To analyze Hive query execution in Tez, use the Ambari Tez View, which provides a
graphical view of executing Hive queries. See the Ambari Views Guide.

Tip

See the How to Analyze or Debug Hive Queries posting on Hortonworks
Community Connection for a short video presentation of how to access and use
the Ambari Tez View.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.0.3/bk_ambari-views/content/section_understanding_dags_vertices_tasks.html
https://community.hortonworks.com/articles/80293/how-to-analyze-or-debug-hive-queries.html

HDP Hive Performance Tuning
Guide

April 20, 2017

16

3.3. Use the ORC File Format
The ORC file format provides the following advantages:

• Efficient compression: Stored as columns and compressed, which leads to smaller disk
reads. The columnar format is also ideal for vectorization optimizations in Tez.

• Fast reads: ORC has a built-in index, min/max values, and other aggregates that cause
entire stripes to be skipped during reads. In addition, predicate pushdown pushes filters
into reads so that minimal rows are read. And Bloom filters further reduce the number of
rows that are returned.

• Proven in large-scale deployments: Facebook uses the ORC file format for a 300+ PB
deployment.

Figure 3.2. ORC File Structure

Specifying the Storage Format as ORC

In addition, to specifying the storage format, you can also specify a compression algorithm
for the table:

CREATE TABLE addresses (
 name string,
 street string,
 city string,
 state string,
 zip int
) STORED AS orc tblproperties ("orc.compress"="Zlib");

Note

Setting the compression algorithm is usually not required because your Hive
settings include a default algorithm.

HDP Hive Performance Tuning
Guide

April 20, 2017

17

Switching the Storage Format to ORC

You can read a table and create a copy in ORC with the following command:

CREATE TABLE a_orc STORED AS ORC AS SELECT * FROM A;

Ingestion as ORC

A common practice is to land data in HDFS as text, create a Hive external table over it, and
then store the data as ORC inside Hive where it becomes a Hive-managed table.

Advanced Settings

ORC has properties that usually do not need to be modified. However, for special cases you
can modify the properties listed in the following table when advised to by Hortonworks
Support.

Table 3.1. ORC Properties

Key Default Setting Notes

orc.compress ZLIB Compression type (NONE, ZLIB,
SNAPPY).

orc.compress.size 262,144 Number of bytes in each compression
block.

orc.stripe.size 268,435,456 Number of bytes in each stripe.

orc.row.index.stride 10,000 Number of rows between index entries
(>= 1,000).

orc.create.index true Sets whether to create row indexes.

orc.bloom.filter.columns -- Comma-separated list of column
names for which a Bloom filter must be
created.

orc.bloom.filter.fpp 0.05 False positive probability for a Bloom
filter. Must be greater than 0.0 and less
than 1.0.

3.4. Use Column Statistics and the Cost-Based
Optimizer (CBO)

A CBO generates more efficient query plans. In Hive, the CBO is enabled by default, but it
requires that column statistics be generated for tables. Column statistics can be expensive
to compute so they are not automated. Hive has a CBO that is based on Apache Calcite and
an older physical optimizer. All of the optimizations are being migrated to the CBO. The
physical optimizer performs better with statistics, but the CBO requires statistics.

Enabling the CBO

The CBO is enabled by default in Hive 0.14 and later. If you need to enable it manually, set
the following property in hive-site.xml:

SET hive.cbo.enable=true;

For the physical optimizer, set the following properties in hive-site.xml to generate
statistics:

HDP Hive Performance Tuning
Guide

April 20, 2017

18

SET hive.stats.fetch.column.stats=true;
SET hive.stats.fetch.partition.stats=true;

Gathering Statistics--Critical to the CBO

The CBO requires both table-level and column-level statistics:

• Table-level statistics:

Table-level statistics should always be collected. Make sure the following property is set
as follows in hive-site.xml to collect table-level statistics:

SET hive.stats.autogather=true;

If you have an existing table that does not have statistics collected, you can collect them
by running the following query:

ANALYZE TABLE <table_name> COMPUTE STATISTICS;

• Column-level statistics (critical):

Column-level statistics are expensive to compute and are not yet automated. The
recommended process to use for Hive 0.14 and later is to compute column statistics for
all of your existing tables using the following command:

ANALYZE TABLE <table_name> COMPUTE STATISTICS for COLUMNS;

As new partitions are added to the table, if the table is partitioned on "col1" and the new
partition has the key "x," then you must also use the following command:

ANALYZE TABLE <table_name> partition (coll="x") COMPUTE STATISTICS for
 COLUMNS;

3.5. Design Data Storage Smartly
Figure 3.3. Hive Data Abstractions

Partitions

In Hive, tables are often partitioned. Frequently, tables are partitioned by date-time as
incoming data is loaded into Hive each day. Large deployments can have tens of thousands
of partitions. Partitions map to physical directories on the file system.

Using partitions can significantly improve performance if a query has a filter on the
partitioned columns, which can prune partition scanning to one or a few partitions that

HDP Hive Performance Tuning
Guide

April 20, 2017

19

match the filter criteria. Partition pruning occurs directly when a partition key is present
in the WHERE clause. Pruning occurs indirectly when the partition key is discovered during
query processing. For example, after joining with a dimension table, the partition key might
come from the dimension table.

Partitioned columns are not written into the main table because they are the same for
the entire partition, so they are "virtual columns." However, to SQL queries, there is no
difference:

CREATE TABLE sale(id in, amount decimal)
PARTITIONED BY (xdate string, state string);

To insert data into this table, the partition key can be specified for fast loading:

INSERT INTO sale (xdate='2016-03-08', state='CA')
SELECT * FROM staging_table
WHERE xdate='2016-03-08' AND state='CA';

Without the partition key, the data can be loaded using dynamic partitions, but that makes
it slower:

hive-site.xml settings:

SET hive.exec.dynamic.partition.mode=nonstrict;
SET hive.exec.dynamic.partition=true;

SQL query:

INSERT INTO sale (xdate, state)
SELECT * FROM staging_table;

The virtual columns that are used as partitioning keys must be last. Otherwise, you must re-
order the columns using a SELECT statement similar to the following:

INSERT INTO sale (xdate, state='CA')
SELECT id, amount, other_columns..., xdate
FROM staging_table
WHERE state='CA';

Buckets

Tables or partitions can be further divided into buckets that are stored as files in the
directory for the table or the directories of partitions if the table is partitioned.

3.6. Better Workload Management by Using
Queues

Queues are the primary method used to manage multiple workloads. Queues can provide
workload isolation and can guarantee that capacity is available for different workloads.
Queues can also support meeting Service Level Agreements (SLAs) for different workloads.

Within each queue, you can allow one or more sessions to live simultaneously. Sessions
cooperatively share the resources of the queue.

HDP Hive Performance Tuning
Guide

April 20, 2017

20

For example, if you have a queue that is assigned 10% of cluster resources, those cluster
resources can be allocated anywhere in the cluster, depending on the query and data
placement. Where resources are allocated might change as more queries run.

The following figure shows a configuration in which 50% of the cluster capacity is assigned
to a "Default" queue for batch jobs, along with two queues for interactive Hive queries.
Each Hive queue is assigned 25% of cluster resources. Two sessions are used in the batch
queue and three sessions are used in each Hive queue:

Figure 3.4. Cluster Configuration Using Queues

3.6.1. Hive Setup for Using Multiple Queues

For multiple workloads or applications, using multiple HiveServer2 instances is
recommended. Each HiveServer2 instance can have its own settings for Hive and Tez.

Figure 3.5. Hive Setup Using Multiple Queues

Installing a Second Instance of HiveServer2

The following figure shows multiple HiveServer2 instances.

HDP Hive Performance Tuning
Guide

April 20, 2017

21

Figure 3.6. Multiple HiveServer2 Installations

To install a second instance of HiveServer2 manually:

Note

The following is a summarized task list for installation. For more information,
see the Installing Apache Hive and Apache HCatalog chapter of the Non-
Ambari Cluster Installation Guide. It is recommended that you validate the
installations as documented in the guide.

1. yum install hive hcatalog hadoop hadoop-hdfs hadoop-libhdfs
 hadoop-yarn hadoop-mapreduce hadoop-client openssl

If the new node is part of the cluster, which means it already has Hadoop and HDFS
installed on it, then you only need to install Hive and HCatalog:

yum install hive hcatalog

Note

Installing HCatalog separately is required for HDP 1.3.x because Hive and
HCatalog were not merged in that release.

2. Copy the following configuration files from the original HiveServer2 instance to the new
HiveServer2 instance:

• hive-site.xml and hiveserver2-site.xml (in HDP 2.2 and later) located under /etc/hive/
conf

• core-site.xml, hdfs-site.xml, mapred-site.xml, yarn-site.xml located under /etc/
hadoop/conf

3. Copy the database driver for the backing metastore DB (for example postgresql-jdbc.jar
for Postgre) from the lib folder of the original HiveServer2 instance to the lib folder of
the new HiveServer2 instance.

4. Start the HiveServer2 service:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_command-line-installation/content/ch_installing_hive_hcat_chapter.html

HDP Hive Performance Tuning
Guide

April 20, 2017

22

su $HIVE_USER
/usr/lib/hive/bin/hiveserver2 -hiveconf hive.metastore.uris=" "
-hiveconf hive.log.file=hiveserver2.log
>$HIVE_LOG_DIR/hiveserver2.out 2
>$HIVE_LOG_DIR/hiveserver2.log &

5. Connect to the new HiveServer2 instance by using Beeline and validate that it is running:

a. Open the Beeline command line shell to interact with HiveServer2:

/usr/bin/beeline

b. Establish a connection to the server:

!connect jdbc:hive2://$hive.server.full.hostname:10000
$HIVE_USER password org.apache.hive.jdbc.HiveDriver

c. Run sample commands:

show databases;
create table test2(a int, b string);
show tables;

To install a second instance of HiveServer2 with Ambari:

1. If the new HiveServer2 instance is on a new host that has not yet been added to the
cluster:

a. Open Ambari and navigate to the Hosts tab.

b. Follow the wizard instructions to add the new host to the cluster.

2. Navigate to the Hive services page.

3. Under Service Actions, select Add HiveServer2, and follow the wizard instructions to add
the HiveServer2 instance.

For information about adding hosts to a cluster or adding services with Ambari, see the
Ambari User's Guide.

3.6.2. Guidelines for Interactive Queues

The following general guidelines are recommended for interactive Hive queries. The
YARN, Tez, and HiveServer2 configuration settings used to implement these guidelines are
discussed in more detail in subsequent sections of this guide.

• Limit the number of queues--Because Capacity Scheduler queues allocate a fixed
percentage of cluster capacity, Hortonworks recommends configuring clusters with a few
small-capacity queues for interactive queries for HDP versions 2.2.x and earlier. For HDP
2.3 and later, a single interactive queue is recommended.

• Allocate queues based on query duration--For example, if you have two applications
with two different types of commonly used queries. One type of query takes
approximately 5 seconds to run, and the other type takes approximately 45 seconds
to run. If both of these types of queries were assigned to the same queue, the shorter-

https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.0.3/bk_ambari-operations/content/adding_a_service_to_your_hadoop_cluster.html

HDP Hive Performance Tuning
Guide

April 20, 2017

23

running queries must wait for the longer-running queries. In this case, it is recommended
that the two queries with different execution times be assigned to separate queues.

• Re-use containers to increase performance--Enabling Tez container re-use improves
performance by avoiding the memory overhead of reallocating container resources for
every task.

• Use sessions to allocate resources within individual queues--This strategy is better than
increasing the number of queues.

The following sections of this chapter contain instructions for configuring the above best
practices:

• Create and Configure YARN Capacity Scheduler Queues [23]

• Refreshing YARN Queues with Changed Settings [25]

• Setting Up Interactive Queues for HDP 2.2 [26]

• Hive, Tez, and YARN Settings in Ambari 2.1 and HDP 2.3 [28]

• Setting Up Queues for Mixed Interactive and Batch Workloads [30]

3.6.3. Guidelines for a Mix of Batch and Interactive Queues

When using a mix of batch and interactive queues, Hortonworks recommends that you
use multiple HiveServer2 instances with different settings for different applications. The
following section explains how to split up queues based on usage.

Usage-Based Queue Capacity Change

Set up two queues--one for batch and one for interactive workloads. Often, one of the
queues is under-utilized while the other queue is overwhelmed. In this situation, it is
optimum if one queue can use the unused resources of the other queue. To load-balance
between queues, set the capacity and maximum capacity properties for queues in the
conf/capacity-scheduler.xml file. Then when a queue workload reaches the level specified
in the capacity property and there is additional workload and unused capacity in the
other queue, the workload can expand to take up to the level specified in the maximum
capacity property. However, if the queue needs the capacity back, it is returned if the first
queue requests it.

Note

For information about how to set up a mix of batch and interactive queues, see
Setting Up Queues for Mixed Interactive and Batch Workloads.

3.6.4. Create and Configure YARN Capacity Scheduler
Queues

Capacity Scheduler queues can be used to allocate cluster resources among users and
groups. These settings can be accessed from Ambari > YARN > Configs > Scheduler or in
conf/capacity-scheduler.xml.

HDP Hive Performance Tuning
Guide

April 20, 2017

24

The following configuration example demonstrates how to set up Capacity Scheduler
queues. This example separates short- and long-running queries into two separate queues:

• hive1--This queue is used for short-duration queries and is assigned 50% of cluster
resources.

• hive2--This queue is used for longer-duration queries and is assigned 50% of cluster
resources.

The following capacity-scheduler.xml settings are used to implement this configuration:

yarn.scheduler.capacity.root.queues=hive1,hive2
yarn.scheduler.capacity.root.hive1.capacity=50
yarn.scheduler.capacity.root.hive2.capacity=50

Configure usage limits for these queues and their users with the following settings:

yarn.scheduler.capacity.root.hive1.maximum-capacity=50
yarn.scheduler.capacity.root.hive2.maximum-capacity=50
yarn.scheduler.capacity.root.hive1.user-limit=1
yarn.scheduler.capacity.root.hive2.user-limit=1

Setting maximum-capacity to 50 restricts queue users to 50% of the queue capacity with
a hard limit. If the maximum-capacity is set to more than 50%, the queue can use more
than its capacity when there are other idle resources in the cluster. However, any user can
use only the configured queue capacity. The default value of "1" for user-limit means that
any single user in the queue can at a maximum occupy 1X the queue's configured capacity.
These settings prevent users in one queue from monopolizing resources across all queues in
a cluster.

Figure 3.7. YARN Capacity Scheduler

This example is a basic introduction to queues. For more detailed information on allocating
cluster resources using Capacity Scheduler queues, see the "Capacity Scheduler" section of
the YARN Resource Management Guide.

Setup Using the Ambari Capacity Scheduler View

If you are using Ambari 2.1 or later, queues can be set up using the Ambari Capacity
Scheduler View as shown in the following image:

1. In Ambari, navigate to the administration page.

2. Click Views > CAPACITY-SCHEDULER > <your_view_name>, and then click Go to
instance at the top of your view page.

3. In your view instance page, select the queue you want to use or create a queue. See the
Ambari Views Guide.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_yarn-resource-management/content/ch_capacity_scheduler.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.0.3/bk_ambari-views/content/setting_up_queues.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.0.3/bk_ambari-views/content/setting_up_queues.html

HDP Hive Performance Tuning
Guide

April 20, 2017

25

To create the scenario that is shown in the following screen capture, select the root
queue and add hive1 and hive2 at that level.

Figure 3.8. Ambari Capacity Scheduler View

3.6.5. Refreshing YARN Queues with Changed Settings

YARN capacity can be changed without restarting the cluster by using the command-line
interface or by using Ambari.

Using the Command-Line Interface

Change queue properties and add new queues by editing the conf/capacity-scheduler.xml
file, and then run yarn rmadmin -refreshQueues:

$ vi $HADOOP_CONF_DIR/capacity-scheduler.xml
$ $HADOOP_YARN_HOME/bin/yarn rmadmin -refreshQueues

Note

Queues cannot be deleted. Currently, only adding new queues is supported.
The collective queue capacities must equal 100% in the queue configuration.
For example, if you have two queues in your configuration and one queue's
capacity is set to 25%, the other queue's capacity must be set to 75%.

Using Ambari

The Ambari Capacity Scheduler View allows the option to refresh the queue capacity by
using the Actions menu on the top left of the page in Ambari. In versions of Ambari before
2.1 and HDP 2.3, you must refresh the queue configuration by selecting Refresh YARN
Capacity Scheduler on the Service Actions menu of the YARN page in Ambari.

HDP Hive Performance Tuning
Guide

April 20, 2017

26

3.6.6. Setting Up Interactive Queues for HDP 2.2
In HDP 2.2 and earlier, interactive queues can be set up at the command-line.

In HDP 2.3 and later, you can use Ambari (a GUI) to set up interactive queues.

Configure Tez Container Reuse

Tez settings can be accessed from Ambari > Tez > Configs > Advanced, or in tez-site.xml.
Enabling Tez to re-use containers improves performance by avoiding the memory overhead
of reallocating container resources for every task. This can be achieved by configuring
queues to retain resources for a specified amount of time. Then subsequent queries run
faster. However, these settings apply globally to all jobs running in the cluster. To ensure
that the settings apply to only one application, you must use separate tez-site.xml files on
separate HiveServer2 nodes.

For better performance with smaller interactive queues on a busy cluster, retain resources
for 5 minutes. On a less busy cluster, or if consistent timing is important, you can retain
resources for up to 30 minutes.

Use the following settings in tez-site.xml to configure container reuse in Tez:

• Tez Application Master Waiting Period (in seconds)--Specifies the amount of time
that the Tez Application Master (AM) waits for a directed acyclic graph (DAG) to be
submitted before shutting down. For example, to set the waiting period to 15 minutes
(15 minutes X 60 seconds per minute=900 seconds) set the following property to 900:

tez.session.am.dag.submit.timeout.secs=900

• Tez min.held-containers--Specifies the minimum number of containers that the AM starts
with and retains after a query run is complete. If an AM retains a lot of containers, it
gives them up over time until it reaches the number set for min.held-containers. Set the
minimum number of containers to be retained with the following property:

tez.am.session.min.held-containers=<number_of_minimum_containers_to_retain>

For example, if you have an application that generates queries that require five to ten
containers, set the min.held-containers value to 5.

For more information on these settings and other Tez configuration settings, see the
"Configure Tez" section in the Non-Ambari Cluster Installation Guide

Configure HiveServer2 Settings

HiveServer2 is used for remote concurrent access to Hive. HiveServer2 settings can be
accessed from Ambari > Tez > Configs > Advanced or in hive-site.xml. You must restart
HiveServer2 for the updated settings to take effect.

Configure the following settings in hive-site.xml:

• Hive Execution Engine--Set this to "tez" to execute Hive queries using Tez:

hive.execution.engine=tez

• Enable Default Sessions--When enabled, a default session is used for jobs that use
HiveServer2 even if they do not use Tez. To enable default sessions, set to "true":

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_command-line-installation/content/ch_getting_ready_chapter.html

HDP Hive Performance Tuning
Guide

April 20, 2017

27

hive.server2.tez.initialize.default.sessions=true

• Specify the HiveServer2 Queues--To set multiple queues, use a comma-separated list of
queue names. For example, the following specifies the queues "hive1" and "hive2":

hive.server2.tez.default.queues=hive1,hive2

• Set the Number of Sessions in Each Queue--Sets the number of sessions for each queue
listed in hive.server2.tez.default.queues:

hive.server2.tez.sessions.per.default.queue=1

• Set enable.doAs to "False"--When set to "false," the Hive user identity is used instead of
the individual user identities for YARN. This setting enhances security and reuse:

hive.server2.enable.doAs=false

Note

When doAs is set to false, queries execute as the Hive user and not the end
user. When multiple queries run as the Hive user, they can share resources.
Otherwise, YARN does not allow resources to be shared across different users.
When the Hive user executes all of the queries, a Tez session opened for one
query and is holding onto resources can use those resources for the next query
without re-allocation.

For more information about these and other HiveServer2 configuration settings on Tez, see
the "Configure Hive and HiveServer2 for Tez" section in the Non-Ambari Cluster Installation
Guide

Adjusting Settings for Increase Numbers of Concurrent Users

As the number of concurrent users increases, keep the number of queues to a minimum
and increase the number of sessions in each queue. For example, for 5-10 concurrent users,
2-5 queues with 1-2 sessions each might be adequate. To set 3 queues with 2 sessions for
each queue:

hive.server2.tez.default.queues=hive1,hive2,hive3
hive.server2.tez.sessions.per.default.queue=2

If the number of concurrent users increases to 15, you might achieve better performance by
using 5 queues with 3 sessions per queue:

hive.server2.tez.default.queues=hive1,hive2,hive3,hive4,hive5
hive.server2.tez.sessions.per.default.queue=3

The following table provides general guidelines for the number of queues and sessions for
various numbers of concurrent users.

Table 3.2. Queues and Sessions for Increasing Numbers of Concurrent Users

Number of Users Number of Concurrent
Users

Number of Queues Number of Sessions per
Queue

50 5 2-5 1-2

100 10 5 2

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_command-line-installation/content/ch_getting_ready_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_command-line-installation/content/ch_getting_ready_chapter.html

HDP Hive Performance Tuning
Guide

April 20, 2017

28

Number of Users Number of Concurrent
Users

Number of Queues Number of Sessions per
Queue

150 15 5 3

200 20 5 4

3.6.7. Hive, Tez, and YARN Settings in Ambari 2.1 and HDP
2.3

HiveServer2 and Tez settings can also be set from the Hive configuration page in Ambari.

Hive and Tez

Hive configuration in the Interactive Query pane of the Hive configuration page in Ambari
enables choosing a set of default queues for the interactive queries. This pane also enables
you to initialize Tez sessions per session and choose sessions per queue:

Figure 3.9. Interactive Query Pane of Hive Configuration Page in Ambari

Under Optimization on the Hive configuration page, you can select holding containers and
choose the number of containers to hold:

HDP Hive Performance Tuning
Guide

April 20, 2017

29

Figure 3.10. Optimization Pane of Hive Configuration Page in Ambari

YARN Single Queue with Fair Scheduling

The concept of "fair scheduling" policy in YARN is introduced in HDP 2.3. Fair scheduling
enables all sessions running within a queue to get equal resources. For example, if there
is a query running already in a queue and taking up all of the resources, when the second
session with a query is introduced, the sessions eventually end up with equal numbers of
resources per session. Initially, there is a delay, but if ten queries are run concurrently most
of the time, the resources are divided equally among them.

Fair scheduling is specified by setting Ordering policy to fair in the Capacity Scheduler
View in Ambari, shown in the following figure. This is supported in HDP 2.3 and later. To
manually set this in the capacity-scheduler.xml file, see the YARN Resource Management
Guide.

Figure 3.11. Ordering Policy Setting in Ambari

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_yarn-resource-management/content/flexible_scheduling_policies.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_yarn-resource-management/content/flexible_scheduling_policies.html

HDP Hive Performance Tuning
Guide

April 20, 2017

30

3.6.8. Setting Up Queues for Mixed Interactive and Batch
Workloads

For queues that contain both interactive and batch workloads, you can set queues that are
based on usage or queues that are based on time.

Setting Up Usage-Based Queue Capacity Change

In general, adjustments for interactive queries do not adversely affect batch queries, so
both types of queries can run well together on the same cluster. You can use Capacity
Scheduler queues to divide cluster resources between batch and interactive queries. For
example, you might set up a configuration that allocates 50% of the cluster capacity to
a default queue for batch jobs, and two queues for interactive Hive queries, with each
assigned 25% of cluster resources as shown below:

yarn.scheduler.capacity.root.queues=default,hive1,hive2
yarn.scheduler.capacity.root.default.capacity=50
yarn.scheduler.capacity.root.hive1.capacity=25
yarn.scheduler.capacity.root.hive2.capacity=25

The following settings enable the capacity of the batch queue to expand to 100% when
the cluster is not being used (for example, at night). The maximum-capacity of the default
batch queue is set to 100%, and the user-limit-factor is increased to 2 to enable the queue
users to occupy half the configured capacity of the queue (50%):

yarn.scheduler.capacity.root.default.maximum-capacity=100
yarn.scheduler.capacity.root.default.user-limit-factor=2

Setting Up Time-Based Queue Capacity Change

It is common to allocate capacity to an interactive queue during the day when business
users are active and to allocate capacity to a batch queue during the night when batch
workloads are frequently executed. To configure this scenario, schedule-based policies are
used. This is an alpha Apache feature.

HDP Hive Performance Tuning
Guide

April 20, 2017

31

4. Configuring Memory Usage
Setting memory usage is simple, but very important. If configured incorrectly, jobs fail or
run inefficiently.

4.1. Memory Settings for YARN
YARN takes into account all of the available computing resources on each machine in
the cluster. Based on the available resources, YARN negotiates resource requests from
applications running in the cluster, such as MapReduce. YARN then provides processing
capacity to each application by allocating containers. A container is the basic unit of
processing capacity in YARN, and is an encapsulation of resource elements (for example,
memory, CPU, and so on).

In a Hadoop cluster, it is important to balance the memory (RAM) usage, processors (CPU
cores), and disks so that processing is not constrained by any one of these cluster resources.
Generally, allow for 2 containers per disk and per core for the best balance of cluster
utilization.

4.2. Selecting YARN Memory
It is important to leave enough memory for system tasks to run. Then divide the remaining
memory into containers and see what makes sense.

In yarn-site.xml, set yarn.nodemanager.resource.memory-mb to the memory that YARN
uses:

• For systems with 16GB of RAM or less, allocate one-quarter of the total memory for
system use and the rest can be used by YARN.

• For systems with more than 16GB of RAM, allocate one-eighth of the total memory for
system use and the rest can be used by YARN.

For more information, see the Non-Ambari Cluster Installation Guide

4.3. Tez Memory Settings
Tez must use the majority of the YARN container to run query fragments, but it must also
leave some space for system tasks to run.

For HDP 2.2 and earlier versions, the following settings in hive-site.xml work well:

• Xmx= 80% of container size

• Xms= 80% of container size

For HDP 2.3 and later versions, verify that the
TezConfiguration.TEZ_CONTAINER_MAX_JAVA_HEAP_FRACTION property is set to .8.

The following figure shows where you can configure the size of Tez containers in the Hive
web UI of Ambari:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_command-line-installation/content/ch_getting_ready_chapter.html

HDP Hive Performance Tuning
Guide

April 20, 2017

32

Figure 4.1. Tez Container Configuration in Hive Web UI of Ambari

4.4. Hive Memory Settings
There are 2 key memory size settings for Hive: Map Join hash table size and bytes per
reducer. However, these settings have implications on other optimizations.

Map Join Hash Table Size

hive.auto.convert.join.noconditionaltask.size is the maximum size of a table that is
converted into a hash table for Map Join. For smaller clusters, one-third of the total
memory is sufficient. If you have many dimension tables that join a fact table, these can
add up to a large size. In that case, memory can be limited to one-half GB to be on the safe
side.

Bytes Per Reducer

hive.exec.reducers.bytes.per.reducer is the size of data processed per reducer. Setting this
to a large number results in less parallelism. Setting it to a smaller number results in more
parallelism. How you set this depends on the application and the user priorities in terms of
latency and throughput in your environment. Usually, the default value works well and for
each application query this can be set once for a HiveServer2.

HDP Hive Performance Tuning
Guide

April 20, 2017

33

5. Query Optimization
This provides a checklist of common issues that you can use to diagnose query performance
in Hive.

Tip

To view query execution in Hive, use the Ambari Hive View, which has a Visual
Explain feature that presents a graphical representation of how the query
executes. See the Ambari Views Guide.

If a query is slow, check the following:

1. Are you getting the correct parallelism in the Mappers/Reducers?

You can see the number of tasks running per vertex using Hive View or Tez View. You
can then modify the parallelism to check if that helps.

a. If reducers do not have the correct parallelism, check
hive.exec.reducers.bytes.per.reducer. You can change this to a smaller value to
increase parallelism or change it to a larger value to decrease parallelism.

b. If mappers do not have the correct parallelism, you can modify tez.am.grouping.split-
waves. This is set to 1.7 by default, which means that the number of tasks set for
a vertex is equal to 1.7 of the available containers in the queue. Adjusting this to a
lower value increases parallelism but allocates less resources per job.

2. Are you getting unusually high garbage collection times?

a. Sometimes garbage collection inside the Java Virtual Machine can take up a
substantial portion of the total execution time. Check garbage collection time against
the CPU time by either enabling hive.tez.exec.print.summary, or by checking the Tez
UI:

Figure 5.1. Garbage Collection Time

b. If you see high garbage collection times, identify the operator that is causing it. Based
on the operator that is causing the high garbage collection times, you can take the
following actions:

• Map join: A large hash table can cause high garbage collection and can
negatively affect performance. For versions of HDP prior to 2.3, you can reduce
hive.auto.convert.join.noconditionaltask.size to reduce the number of map joins,
changing them into shuffle joins instead. However, this can decrease performance.
Alternatively, you can increase the container size, still using map joins, but there will
be more memory available to reduce the effects of garbage collection. In HDP 2.3

https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.0.3/bk_ambari-views/content/section_query_tab_hive_view.html

HDP Hive Performance Tuning
Guide

April 20, 2017

34

and later, map join operators support spilling if the hash table is too large. In this
case, garbage collection time is not high, but the join spill of the larger hash table
may impact the runtime performance.

• Insert into ORC: If inserting into a table that has a large number of columns, try
reducing hive.exec.orc.default.buffer.size to 64KB or increase the container size.

• Insert into partitioned table: Inserting a large number of tasks into multiple
partitions at the same time can create memory pressure. If this is the case, enable
hive.optimize.sort.dynamic.partition. Do not enable this flag when inserting into a
small number of partitions (less than 10) because this can slow query performance.

3. Are you getting a shuffle join and not a map join for smaller dimension tables?

hive.auto.convert.join.noconditionaltask.size determines whether a table
is broadcasted or shuffled for a join. If the small table size is larger than
hive.auto.convert.join.noconditonaltask.size a shuffle join is used. For accurate
size accounting by the compiler, run ANALYZE TABLE [table_name] COMPUTE
STATISTICS for COLUMNS. Then enable hive.stats.fetch.column.stats. This enables
the Hive physical optimizer to use more accurate per-column statistics instead of the
uncompressed file size in HDFS.

4. Are you getting an inefficient join order?

• The cost-based optimizer (CBO) tries to generate the most efficient join order.
For query plan optimization to work correctly, make sure that the columns that
are involved in joins, filters, and aggregates have column statistics and that
hive.cbo.enable is enabled. CBO does not support all operators, such as "sort by,"
scripts, and table functions. If your query contains these operators, rewrite the query
to include only the supported operators.

• If the CBO is still not generating the correct join order, rewrite the query using a
Common Table Expression (CTE).

	Hortonworks Data Platform
	Table of Contents
	1. Hive Architectural Overview
	1.1. Detailed Query Execution Architecture

	2. Interactive SQL Query with Apache Hive LLAP (Technical Preview)
	2.1. Interactive and Sub-Second SQL Queries
	2.2. Enabling LLAP for Interactive Queries in Hive
	2.3. Connecting Your Clients to a Dedicated HiveServer2 Endpoint
	2.4. Monitoring Interactive Query Performance
	2.5. Viewing Metrics in Grafana
	2.6. Restarting HiveServer2 Interactive
	2.7. Restarting LLAP
	2.8. LLAP on Your Cluster

	3. Hive High Performance Best Practices
	3.1. Use the Tez Query Execution Engine
	3.1.1. Configuring Tez

	3.2. Debug Hive Queries with Tez View in Ambari
	3.3. Use the ORC File Format
	3.4. Use Column Statistics and the Cost-Based Optimizer (CBO)
	3.5. Design Data Storage Smartly
	3.6. Better Workload Management by Using Queues
	3.6.1. Hive Setup for Using Multiple Queues
	3.6.2. Guidelines for Interactive Queues
	3.6.3. Guidelines for a Mix of Batch and Interactive Queues
	3.6.4. Create and Configure YARN Capacity Scheduler Queues
	3.6.5. Refreshing YARN Queues with Changed Settings
	3.6.6. Setting Up Interactive Queues for HDP 2.2
	3.6.7. Hive, Tez, and YARN Settings in Ambari 2.1 and HDP 2.3
	3.6.8. Setting Up Queues for Mixed Interactive and Batch Workloads

	4. Configuring Memory Usage
	4.1. Memory Settings for YARN
	4.2. Selecting YARN Memory
	4.3. Tez Memory Settings
	4.4. Hive Memory Settings

	5. Query Optimization

