
Hortonworks Data Platform

 (May 17, 2018)

Apache Spark Component Guide

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform May 17, 2018

ii

Hortonworks Data Platform: Apache Spark Component Guide
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform May 17, 2018

iii

Table of Contents
1. Analyzing Data with Apache Spark .. 1
2. Installing Spark .. 3

2.1. Installing Spark Using Ambari ... 3
2.2. Installing Spark Manually .. 6
2.3. Verifying Spark Configuration for Hive Access ... 7
2.4. Installing the Spark Thrift Server After Deploying Spark 7
2.5. Validating the Spark Installation ... 8

3. Configuring Spark .. 9
3.1. Configuring the Spark SQL Hive Warehouse Directory 9
3.2. Configuring the Spark Thrift Server ... 9

3.2.1. Enabling Spark SQL User Impersonation for the Spark Thrift Server 9
3.2.2. Customizing the Spark Thrift Server Port .. 11

3.3. Configuring the Livy Server ... 11
3.3.1. Configuring SSL for the Livy Server ... 11
3.3.2. Configuring High Availability for the Livy Server 12

3.4. Configuring the Spark History Server ... 12
3.5. Configuring Dynamic Resource Allocation .. 12

3.5.1. Customizing Dynamic Resource Allocation Settings on an Ambari-
Managed Cluster .. 13
3.5.2. Configuring Cluster Dynamic Resource Allocation Manually 14
3.5.3. Configuring a Job for Dynamic Resource Allocation 14
3.5.4. Dynamic Resource Allocation Properties ... 15

3.6. Configuring Spark for Wire Encryption .. 16
3.6.1. Configuring Spark for Wire Encryption ... 17
3.6.2. Configuring Spark2 for Wire Encryption .. 18

3.7. Configuring Spark for a Kerberos-Enabled Cluster .. 20
3.7.1. Configuring the Spark History Server .. 20
3.7.2. Configuring the Spark Thrift Server .. 20
3.7.3. Setting Up Access for Submitting Jobs .. 21

4. Running Spark ... 23
4.1. Specifying Which Version of Spark to Run ... 23
4.2. Running Sample Spark 1.x Applications ... 24

4.2.1. Spark Pi .. 25
4.2.2. WordCount .. 26

4.3. Running Sample Spark 2.x Applications ... 27
4.3.1. Spark Pi .. 28
4.3.2. WordCount .. 29

5. Submitting Spark Applications Through Livy ... 31
5.1. Using Livy with Spark Versions 1 and 2 .. 31
5.2. Using Livy with Interactive Notebooks ... 32
5.3. Using the Livy API to Run Spark Jobs: Overview ... 33
5.4. Running an Interactive Session With the Livy API ... 34

5.4.1. Livy Objects for Interactive Sessions .. 35
5.4.2. Setting Path Variables for Python ... 36
5.4.3. Livy API Reference for Interactive Sessions .. 37

5.5. Submitting Batch Applications Using the Livy API .. 39
5.5.1. Livy Batch Object .. 40
5.5.2. Livy API Reference for Batch Jobs ... 40

Hortonworks Data Platform May 17, 2018

iv

6. Running PySpark in a Virtual Environment ... 42
7. Automating Spark Jobs with Oozie Spark Action .. 43

7.1. Configuring Oozie Spark Action for Spark 1 .. 43
7.2. Configuring Oozie Spark Action for Spark 2 .. 45

8. Developing Spark Applications ... 48
8.1. Using the Spark DataFrame API .. 48
8.2. Using Spark SQL .. 50

8.2.1. Accessing Spark SQL through the Spark Shell .. 51
8.2.2. Accessing Spark SQL through JDBC or ODBC: Prerequisites 51
8.2.3. Accessing Spark SQL through JDBC ... 52
8.2.4. Accessing Spark SQL through ODBC ... 53
8.2.5. Spark SQL User Impersonation ... 53

8.3. Calling Hive User-Defined Functions ... 62
8.3.1. Using Built-in UDFs ... 62
8.3.2. Using Custom UDFs .. 62

8.4. Using Spark Streaming .. 63
8.4.1. Prerequisites ... 64
8.4.2. Building and Running a Secure Spark Streaming Job 64
8.4.3. Running Spark Streaming Jobs on a Kerberos-Enabled Cluster 65
8.4.4. Sample pom.xml File for Spark Streaming with Kafka 66

8.5. HBase Data on Spark with Connectors .. 69
8.5.1. Selecting a Connector ... 69
8.5.2. Using the Connector with Apache Phoenix ... 70

8.6. Accessing HDFS Files from Spark ... 70
8.6.1. Specifying Compression .. 71
8.6.2. Accessing HDFS from PySpark ... 71

8.7. Accessing ORC Data in Hive Tables .. 71
8.7.1. Accessing ORC Files from Spark .. 72
8.7.2. Predicate Push-Down Optimization ... 73
8.7.3. Loading ORC Data into DataFrames Using Predicate Push-Down 73
8.7.4. Optimizing Queries Through Partition Pruning 74
8.7.5. Enabling Vectorized Query Execution ... 74
8.7.6. Reading Hive ORC Tables ... 75
8.7.7. Additional Resources .. 75

8.8. Using Custom Libraries with Spark .. 75
9. Using Spark from R: SparkR ... 77

9.1. Prerequisites .. 77
9.2. SparkR Example .. 77

10. Tuning Spark .. 79
10.1. Provisioning Hardware .. 79
10.2. Checking Job Status .. 79
10.3. Checking Job History ... 79
10.4. Improving Software Performance .. 80

10.4.1. Configuring YARN Memory Allocation for Spark 80

Hortonworks Data Platform May 17, 2018

v

List of Tables
1.1. Spark and Livy Feature Support by HDP Version .. 1
3.1. Dynamic Resource Allocation Properties .. 15
3.2. Optional Dynamic Resource Allocation Properties .. 15
8.1. Comparison of the Spark-HBase Connectors .. 70

Hortonworks Data Platform May 17, 2018

1

1. Analyzing Data with Apache Spark
Hortonworks Data Platform (HDP) supports Apache Spark, a fast, large-scale data
processing engine.

Deep integration of Spark with YARN allows Spark to operate as a cluster tenant alongside
Apache engines such as Hive, Storm, and HBase, all running simultaneously on a single
data platform. Instead of creating and managing a set of dedicated clusters for Spark
applications, you can store data in a single location, access and analyze it with multiple
processing engines, and leverage your resources.

Spark on YARN leverages YARN services for resource allocation, runs Spark executors in
YARN containers, and supports workload management and Kerberos security features. It
has two modes:

• YARN-cluster mode, optimized for long-running production jobs

• YARN-client mode, best for interactive use such as prototyping, testing, and debugging

Spark shell and the Spark Thrift server run in YARN-client mode only.

HDP 2.6 supports Spark versions 1.6 and 2.0; Livy, for local and remote access to Spark
through the Livy REST API; and Apache Zeppelin, for browser-based notebook access to
Spark. (For more information about Zeppelin, see the Zeppelin Component Guide.)

Table 1.1. Spark and Livy Feature Support by HDP Version

HDP Version(s) 2.6.5 2.6.4 2.6.3 2.6.2 2.6.1 2.6.0 2.5.0, 2.5.3 2.4.3 2.4.2 2.4.0 2.3.4,
2.3.4.7,
2.3.6

2.3.2 2.2.8,
2.2.9,
2.3.0,

2.2.4, 2.2.6

Spark Version 1.6.3, 2.3.0 1.6.3, 2.2.0 1.6.3, 2.2.0 1.6.3, 2.1.1 1.6.3, 2.1.1 1.6.3, 2.1.0 1.6.2 1.6.2 1.6.1 1.6.0 1.5.2 1.4.1 1.3.1 1.2.1

Support for Livy 0.3 0.3 0.3 0.3 0.3 0.3

Support for Hive 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 1.2.1 0.13.1 0.13.1

Spark Core # # # # # # # # # # # # # #

Spark on YARN # # # # # # # # # # # # # #

Spark on YARN for Kerberos-enabled
clusters

#

Spark history server # # # # # # # # # # # # # #

Spark MLlib # # # # # # # # # # # # # #

ML Pipeline API # # # # # # # # # # # #

DataFrame API # # # # # # # # # # # # TP

Optimized Row Columnar (ORC) Files # # # # # # # # # # # # TP

PySpark # # # # # # # # # # # # TP

SparkR # # # # # # # TP TP TP TP TP

Spark SQL # # # # # # # # # # # TP TP TP

Spark SQL Thrift server for JDBC,
ODBC access

TP TP

Spark Streaming # # # # # # # # # # # TP TP TP

Structured Streaming TP TP TP

Dynamic resource allocation #* #* #* #* #* #* #* #* #* #* #* TP TP

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_zeppelin-component-guide/index.html

Hortonworks Data Platform May 17, 2018

2

HDP Version(s) 2.6.5 2.6.4 2.6.3 2.6.2 2.6.1 2.6.0 2.5.0, 2.5.3 2.4.3 2.4.2 2.4.0 2.3.4,
2.3.4.7,
2.3.6

2.3.2 2.2.8,
2.2.9,
2.3.0,

2.2.4, 2.2.6

Spark Version 1.6.3, 2.3.0 1.6.3, 2.2.0 1.6.3, 2.2.0 1.6.3, 2.1.1 1.6.3, 2.1.1 1.6.3, 2.1.0 1.6.2 1.6.2 1.6.1 1.6.0 1.5.2 1.4.1 1.3.1 1.2.1

HBase connector # # # # # # # TP TP

GraphX TP TP TP TP TP TP TP TP TP TP TP

DataSet API TP TP TP TP TP TP TP TP TP

* Dynamic Resource Allocation does not work with Spark Streaming.

TP: Technical Preview. Technical previews are considered under development.
Do not use these features in production systems. If you have questions regarding
these features, contact Support through the Hortonworks Support Portal, https://
support.hortonworks.com.

The following features and associated tools are not officially supported by Hortonworks:

• Spark Standalone

• Spark on Mesos

• Jupyter Notebook (formerly IPython)

https://support.hortonworks.com
https://support.hortonworks.com

Hortonworks Data Platform May 17, 2018

3

2. Installing Spark
Before installing Spark, ensure that your cluster meets the following prerequisites:

• HDP cluster stack version 2.6.0 or later

• (Optional) Ambari version 2.5.0 or later

• HDFS and YARN deployed on the cluster

You can choose to install Spark version 1, Spark version 2, or both. (To specify which version
of Spark runs a job, see Specifying Which Version of Spark to Run.)

Additionally, note the following requirements and recommendations for optional Spark
services and features:

• Spark Thrift server requires Hive deployed on the cluster.

• SparkR requires R binaries installed on all nodes.

• SparkR is not currently supported on SLES.

• Spark access through Livy requires the Livy server installed on the cluster.

• For clusters managed by Ambari, see Installing Spark Using Ambari.

• For clusters not managed by Ambari, see "Installing and Configuring Livy" in the Spark
or Spark 2 chapter of the Command Line Installation Guide, depending on the version
of Spark installed on your cluster.

• PySpark and associated libraries require Python version 2.7 or later, or Python version 3.4
or later, installed on all nodes.

• For optimal performance with MLlib, consider installing the netlib-java library.

2.1. Installing Spark Using Ambari
The following diagram shows the Spark installation process using Ambari. Before you
install Spark using Ambari, refer to Adding a Service in the Ambari Operations Guide
for background information about how to install Hortonworks Data Platform (HDP)
components using Ambari.

Caution

During the installation process, Ambari creates and edits several configuration
files. If you configure and manage your cluster using Ambari, do not edit these

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/spark-choose-version.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/install-spark-over-ambari.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/install_configure_livy.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/install_configure_livy2.html
https://github.com/fommil/netlib-java
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.2.2/bk_ambari-operations/content/adding_a_service_to_your_hadoop_cluster.html

Hortonworks Data Platform May 17, 2018

4

files during or after installation. Instead, use the Ambari web UI to revise
configuration settings.

To install Spark using Ambari, complete the following steps.

1. Click the Ambari "Services" tab.

2. In the Ambari "Actions" menu, select "Add Service."

This starts the Add Service wizard, displaying the Choose Services page. Some of the
services are enabled by default.

3. Scroll through the alphabetic list of components on the Choose Services page, and select
"Spark", "Spark2", or both:

4. Click "Next" to continue.

5. On the Assign Masters page, review the node assignment for the Spark History Server or
Spark2 History Server, depending on which Spark versions you are installing. Modify the
node assignment if desired, and click "Next":

6. On the Assign Slaves and Clients page:

a. Scroll to the right and choose the "Client" nodes that you want to run Spark clients.
These are the nodes from which Spark jobs can be submitted to YARN.

b. To install the optional Livy server, for security and user impersonation features, check
the "Livy Server" box for the desired node assignment on the Assign Slaves and Clients
page, for the version(s) of Spark you are deploying.

c. To install the optional Spark Thrift server at this time, for ODBC or JDBC access, review
Spark Thrift Server node assignments on the Assign Slaves and Clients page and assign
one or two nodes to it, as needed for the version(s) of Spark you are deploying. (To
install the Thrift server later, see Installing the Spark Thrift Server after Deploying
Spark.)

Deploying the Thrift server on multiple nodes increases scalability of the Thrift server.
When specifying the number of nodes, take into consideration the cluster capacity
allocated to Spark.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/install-sts-after-spark-install.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/install-sts-after-spark-install.html

Hortonworks Data Platform May 17, 2018

5

7. Click "Next" to continue.

8. Unless you are installing the Spark Thrift server now, use the default values displayed on
the Customize Services page. Note that there are two tabs, one for Spark settings, and
one for Spark2 settings.

9. If you are installing the Spark Thrift server at this time, complete the following steps:

a. Click the "Spark" or "Spark2" tab on the Customize Services page, depending on which
version of Spark you are installing.

b. Navigate to the "Advanced spark-thrift-sparkconf" group.

c. Set the spark.yarn.queue value to the name of the YARN queue that you want to
use.

Hortonworks Data Platform May 17, 2018

6

10.Click "Next" to continue.

11.If Kerberos is enabled on the cluster, review principal and keytab settings on the
Configure Identities page, modify settings if desired, and then click Next.

12.When the wizard displays the Review page, ensure that all HDP components correspond
to HDP 2.6.0 or later. Scroll down and check the node assignments for selected services;
for example:

13.Click "Deploy" to begin installation.

14.When Ambari displays the Install, Start and Test page, monitor the status bar and
messages for progress updates:

15.When the wizard presents a summary of results, click "Complete" to finish installing
Spark.

2.2. Installing Spark Manually
If you want to install Spark or Spark 2 on a cluster that is not managed by Ambari, see
Installing and Configuring Apache Spark or Installing and Configuring Apache Spark 2, in
the Command Line Installation Guide.

If you previously installed Spark on a cluster not managed by Ambari, and you want to
move to Spark 2:

1. Install Spark 2 according to the Spark 2 instructions in the Command Line Installation
Guide.

2. Ensure that each version of Spark uses a different port.

3. Test your Spark jobs on Spark 2. To direct a job to Spark 2 when Spark 1 is the default
version, see Specifying Which Version of Spark to Run.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/ch_installing_spark_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/ch_installing_spark2_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/spark-choose-version.html

Hortonworks Data Platform May 17, 2018

7

4. When finished testing, optionally remove Spark 1 from the cluster: stop all services
and then uninstall Spark. Manually check to make sure all library and configuration
directories have been removed.

2.3. Verifying Spark Configuration for Hive Access
When you install Spark using Ambari, the hive-site.xml file is automatically populated
with the Hive metastore location.

If you move Hive to a different server, edit the SPARK_HOME/conf/hive-site.xml file
so that it contains only the hive.metastore.uris property. Make sure that the host name
points to the URI where the Hive metastore is running, and that the Spark copy of hive-
site.xml contains only the hive.metastore.uris property.

<configuration>
 <property>
 <name>hive.metastore.uris</name>
 <!-- hostname must point to the Hive metastore URI in your cluster -->
 <value>thrift://hostname:9083</value>
 <description>URI for client to contact metastore server</description>
 </property>
</configuration>

2.4. Installing the Spark Thrift Server After
Deploying Spark

To install the Spark Thrift server after deploying Spark over Ambari, add the Thrift service
to the specified host or hosts. Deploying the Thrift server on multiple hosts increases
scalability of the Thrift server; the number of hosts should take into consideration the
cluster capacity allocated to Spark.

1. On the Summary tab, click "+ Add" and choose the Spark Thrift server:

Hortonworks Data Platform May 17, 2018

8

2. When Ambari prompts you to confirm the selection, click Confirm All:

The installation process runs in the background until it is complete:

2.5. Validating the Spark Installation
To validate the Spark or Spark2 installation process, run the Spark Pi and WordCount jobs
supplied with the Spark package. For more information, see Running Spark Applications.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/run-sample-apps.html

Hortonworks Data Platform May 17, 2018

9

3. Configuring Spark
This chapter describes how to configure Apache Spark services and features.

3.1. Configuring the Spark SQL Hive Warehouse
Directory

Since Spark 2.0.0, Spark references spark.sql.warehouse.dir as the default Spark
SQL Hive Warehouse location. To create databases, both the spark-defaults.conf and
spark-thrift-sparkconf.conf files should have a spark.sql.warehouse.dir
property that has the same value as the hive.metastore.warehouse.dir property.
The value of this property is usually /apps/hive/warehouse:

spark.sql.warehouse.dir=/apps/hive/warehouse

On an Ambari cluster, select Spark2 > Configs, then use Add Property in "Custom spark2-
defaults" and "Custom spark2-thrift-sparkconf" to add a spark.sql.warehouse.dir
property with the value /apps/hive/warehouse.

3.2. Configuring the Spark Thrift Server
Spark Thrift server is a service that allows JDBC and ODBC clients to run Spark SQL queries.
The Spark Thrift server is a variant of HiveServer2.

This subsection describes optional Spark Thrift Server features and configuration steps:

• Enabling user impersonation, so that SQL queries run under the identity of the user who
originated the query. (By default, queries run under the account associated with the
Spark Thrift server.)

• Customizing the Spark Thrift server port.

For information about configuring the Thrift server on a Kerberos-enabled cluster, see
Configuring the Spark Thrift Server in "Configuring Spark for a Kerberos-Enabled Cluster."

3.2.1. Enabling Spark SQL User Impersonation for the Spark
Thrift Server

By default, the Spark Thrift server runs queries under the identity of the operating system
account running the Spark Thrift server. In a multi-user environment, queries often need
to run under the identity of the end user who originated the query; this capability is called
"user impersonation."

When user impersonation is enabled, Spark Thrift server runs Spark SQL queries as the
submitting user. By running queries under the user account associated with the submitter,
the Thrift server can enforce user level permissions and access control lists. Associated data
cached in Spark is visible only to queries from the submitting user.

User impersonation enables granular access control for Spark SQL queries at the level of
files or tables.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/configuring-kerb.html

Hortonworks Data Platform May 17, 2018

10

The user impersonation feature is controlled with the doAs property. When doAs is set to
true, Spark Thrift server launches an on-demand Spark application to handle user queries.
These queries are shared only with connections from the same user. Spark Thrift server
forwards incoming queries to the appropriate Spark application for execution, making the
Spark Thrift server extremely lightweight: it merely acts as a proxy to forward requests and
responses. When all user connections for a Spark application are closed at the Spark Thrift
server, the corresponding Spark application also terminates.

Prerequisites

Spark SQL user impersonation is supported for Apache Spark 1 versions 1.6.3 and later.

If storage-based authorization is to be enabled, complete the instructions in Configuring
Storage-based Authorization in the Data Access Guide before enabling user impersonation.

Enabling User Impersonation on an Ambari-managed Cluster

To enable user impersonation for the Spark Thrift server on an Ambari-managed cluster,
complete the following steps:

1. Enable doAs support. Navigate to the “Advanced spark-hive-site-override” section and
set hive.server2.enable.doAs=true.

2. Add DataNucleus jars to the Spark Thrift server classpath. Navigate to the “Custom
spark-thrift-sparkconf” section and set the spark.jars property as follows:

spark.jars=/usr/hdp/current/spark-thriftserver/lib/datanucleus-api-jdo-3.2.
6.jar,/usr/hdp/current/spark-thriftserver/lib/datanucleus-core-3.2.10.jar,/
usr/hdp/current/spark-thriftserver/lib/datanucleus-rdbms-3.2.9.jar

3. (Optional) Disable Spark Yarn application for Spark Thrift server master. Navigate to the
"Advanced spark-thrift-sparkconf" section and set spark.master=local. This prevents
launching a spark-client HiveThriftServer2 application master, which is not needed when
doAs=true because queries are executed by the Spark AM, launched on behalf of the
user. When spark.master is set to local, SparkContext uses only the local machine
for driver and executor tasks.

(When the Thrift server runs with doAs set to false, you should set spark.master to
yarn-client, so that query execution leverages cluster resources.)

4. Restart the Spark Thrift server.

Enabling User Impersonation on an Cluster Not Managed by Ambari

To enable user impersonation for the Spark Thrift server on a cluster not managed by
Ambari, complete the following steps:

1. Enable doAs support. Add the following setting to the /usr/hdp/current/spark-
thriftserver/conf/hive-site.xml file:

<property>
 <name>hive.server2.enable.doAs</name>
 <value>true</value>
</property>

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_data-access/content/ref-5422cb60-d1d5-425a-b719-ec7bd03ee5d3.1.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_data-access/content/ref-5422cb60-d1d5-425a-b719-ec7bd03ee5d3.1.html

Hortonworks Data Platform May 17, 2018

11

2. Add DataNucleus jars to the Spark Thrift server classpath. Add the following setting
to the /usr/hdp/current/spark-thriftserver/conf/spark-thrift-
sparkconf.conf file:

spark.jars=/usr/hdp/current/spark-thriftserver/lib/datanucleus-api-jdo-3.2.
6.jar,/usr/hdp/current/spark-thriftserver/lib/datanucleus-core-3.2.10.jar,/
usr/hdp/current/spark-thriftserver/lib/datanucleus-rdbms-3.2.9.jar

3. (Optional) Disable Spark Yarn application for Spark Thrift server master. Add the
following setting to the /usr/hdp/current/spark-thriftserver/conf/spark-
thrift-sparkconf.conf file:

spark.master=local

This prevents launching an unused spark-client HiveThriftServer2 application master,
which is not needed when doAs=true because queries are executed by the Spark AM,
launched on behalf of the user. When spark.master is set to local, SparkContext
uses only the local machine for driver and executor tasks.

(When the Thrift server runs with doAs set to false, you should set spark.master to
yarn-client, so that query execution leverages cluster resources.)

4. Restart the Spark Thrift server.

For more information about user impersonation for the Spark Thrift Server, see Using Spark
SQL.

3.2.2. Customizing the Spark Thrift Server Port
The default Spark Thrift server port is 10015. To specify a different port, you can navigate
to the hive.server2.thrift.port setting in the "Advanced spark-hive-site-override"
category of the Spark configuration section and update the setting with your preferred
port number.

3.3. Configuring the Livy Server
On a cluster managed by Ambari, to configure the optional Livy service, complete the
following steps:

1. Navigate to Spark > Configs, Custom livy-conf category.

2. Add livy.superusers as a property, and set it to the Zeppelin service account.

For a cluster not managed by Ambari, see "Installing and Configuring Livy" in the Spark or
Spark 2 chapter of the Command Line Installation Guide, depending on the version of Spark
installed on your cluster.

3.3.1. Configuring SSL for the Livy Server
To enable SSL for Livy, configure the following parameters for the SSL certificate and key,
the keystore password, and the key password, respectively:

livy.keystore=<keystore_file>
livy.keystore.password = <storePassword>
livy.key-password = <KeyPassword>

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/using-spark-sql.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/using-spark-sql.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/ch_submit-spark-apps-livy.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/install_configure_livy.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/install_configure_livy2.html

Hortonworks Data Platform May 17, 2018

12

For background information about configuring SSL for Spark or Spark2, see Configuring
Spark for Wire Encryption.

3.3.2. Configuring High Availability for the Livy Server

By default, if the Livy server fails, all connected Spark clusters are terminated. This means
that all jobs and data will disappear immediately.

For deployments that require high availability, Livy supports session recovery, which ensures
that a Spark cluster remains available if the Livy server fails. After a restart, the Livy server
can connect to existing sessions and roll back to the state before failing.

Livy uses several property settings for recovery behavior related to high availability. If
your cluster is managed by Ambari, Ambari manages these settings. If your cluster is not
managed by Ambari, or for a list of recovery properties, see instructions for enabling Livy
recovery in the Spark or Spark2 chapter of the Command Line Installation Guide.

3.4. Configuring the Spark History Server
The Spark history server is a monitoring tool that displays information about completed
Spark applications. This information is pulled from the data that applications by default
write to a directory on Hadoop Distributed File System (HDFS). The information is then
presented in a web UI at <host>:<port>. (The default port is 18080.)

For information about configuring optional history server properties, see the Apache
Monitoring and Instrumentation document.

3.5. Configuring Dynamic Resource Allocation
When the dynamic resource allocation feature is enabled, an application's use of executors
is dynamically adjusted based on workload. This means that an application can relinquish
resources when the resources are no longer needed, and request them later when there is
more demand. This feature is particularly useful if multiple applications share resources in
your Spark cluster.

Dynamic resource allocation is available for use by the Spark Thrift server and general Spark
jobs.

Note

Dynamic Resource Allocation does not work with Spark Streaming.

You can configure dynamic resource allocation at either the cluster or the job level:

• Cluster level:

• On an Ambari-managed cluster, the Spark Thrift server uses dynamic resource
allocation by default. The Thrift server increases or decreases the number of running
executors based on a specified range, depending on load. (In addition, the Thrift
server runs in YARN mode by default, so the Thrift server uses resources from the

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/spark-encryption.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/spark-encryption.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/configure_livy.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/configure_livy2.html
http://spark.apache.org/docs/1.6.3/monitoring.html#viewing-after-the-fact
http://spark.apache.org/docs/1.6.3/monitoring.html#viewing-after-the-fact

Hortonworks Data Platform May 17, 2018

13

YARN cluster.) The associated shuffle service starts automatically, for use by the Thrift
server and general Spark jobs.

• On a manually installed cluster, dynamic resource allocation is not enabled by default
for the Thrift server or for other Spark applications. You can enable and configure
dynamic resource allocation and start the shuffle service during the Spark manual
installation or upgrade process.

• Job level: You can customize dynamic resource allocation settings on a per-job basis. Job
settings override cluster configuration settings.

Cluster configuration is the default, unless overridden by job configuration.

The following subsections describe each configuration approach, followed by a list of
dynamic resource allocation properties and a set of instructions for customizing the Spark
Thrift server port.

3.5.1. Customizing Dynamic Resource Allocation Settings on
an Ambari-Managed Cluster

On an Ambari-managed cluster, dynamic resource allocation is enabled and configured for
the Spark Thrift server as part of the Spark installation process. Dynamic resource allocation
is not enabled by default for general Spark jobs.

You can review dynamic resource allocation for the Spark Thrift server, and enable and
configure settings for general Spark jobs, by choosing Services > Spark and then navigating
to the "Advanced spark-thrift-sparkconf" group:

Hortonworks Data Platform May 17, 2018

14

The "Advanced spark-thrift-sparkconf" group lists required settings. You can specify
optional properties in the custom section. For a complete list of DRA properties, see
Dynamic Resource Allocation Properties.

Dynamic resource allocation requires an external shuffle service that runs on each worker
node as an auxiliary service of NodeManager. If you installed your cluster using Ambari,
the service is started automatically for use by the Thrift server and general Spark jobs; no
further steps are needed.

3.5.2. Configuring Cluster Dynamic Resource Allocation
Manually

To configure a cluster to run Spark jobs with dynamic resource allocation, complete the
following steps:

1. Add the following properties to the spark-defaults.conf file associated with your
Spark installation (typically in the $SPARK_HOME/conf directory):

• Set spark.dynamicAllocation.enabled to true.

• Set spark.shuffle.service.enabled to true.

2. (Optional) To specify a starting point and range for the number of executors, use the
following properties:

• spark.dynamicAllocation.initialExecutors

• spark.dynamicAllocation.minExecutors

• spark.dynamicAllocation.maxExecutors

Note that initialExecutors must be greater than or equal to minExecutors, and
less than or equal to maxExecutors.

For a description of each property, see Dynamic Resource Allocation Properties.

3. Start the shuffle service on each worker node in the cluster:

a. In the yarn-site.xml file on each node, add spark_shuffle
to yarn.nodemanager.aux-services, and then set
yarn.nodemanager.aux-services.spark_shuffle.class to
org.apache.spark.network.yarn.YarnShuffleService.

b. Review and, if necessary, edit spark.shuffle.service.* configuration settings.

For more information, see the Apache Spark Shuffle Behavior documentation.

c. Restart all NodeManagers in your cluster.

3.5.3. Configuring a Job for Dynamic Resource Allocation
There are two ways to customize dynamic resource allocation properties for a specific job:

• Include property values in the spark-submit command, using the -conf option.

https://spark.apache.org/docs/1.6.3/configuration.html#shuffle-behavior

Hortonworks Data Platform May 17, 2018

15

This approach loads the default spark-defaults.conf file first, and then applies
property values specified in your spark-submit command. Here is an example:

spark-submit --conf “property_name=property_value”

• Create a job-specific spark-defaults.conf file and pass it to the spark-submit
command.

This approach uses the specified properties file, without reading the default property file.
Here is an example:

spark-submit --properties-file <property_file>

3.5.4. Dynamic Resource Allocation Properties
See the following tables for more information about basic and optional dynamic resource
allocation properties. For more information, see the Apache Dynamic Resource Allocation
documentation.

Table 3.1. Dynamic Resource Allocation Properties

Property Name Value Meaning

spark.dynamicAllocation.
enabled

Default is true for the Spark Thrift
server, and false for Spark jobs.

Specifies whether to use dynamic
resource allocation, which scales the
number of executors registered for
an application up and down based
on workload. Note that this feature is
currently only available in YARN mode.

spark.shuffle.service.
enabled

true Enables the external shuffle service,
which preserves shuffle files written by
executors so that the executors can be
safely removed.

This property must be set to true
if spark.dynamicAllocation.
enabled is true.

spark.dynamicAllocation.
initialExecutors

Default is
spark.dynamicAllocation.
minExecutors

The initial number of executors to
run if dynamic resource allocation is
enabled.

This value must be greater than
or equal to the minExecutors
value, and less than or equal to the
maxExecutors value.

spark.dynamicAllocation.
maxExecutors

Default is infinity Specifies the upper bound for the
number of executors if dynamic
resource allocation is enabled.

spark.dynamicAllocation.
minExecutors

Default is 0 Specifies the lower bound for the
number of executors if dynamic
resource allocation is enabled.

Table 3.2. Optional Dynamic Resource Allocation Properties

Property Name Value Meaning

spark.dynamicAllocation.
executorIdleTimeout

Default is 60 seconds (60s) If dynamic resource allocation is
enabled and an executor has been idle
for more than this time, the executor is
removed.

http://spark.apache.org/docs/1.6.3/job-scheduling.html#dynamic-resource-allocation

Hortonworks Data Platform May 17, 2018

16

Property Name Value Meaning

spark.dynamicAllocation.
cachedExecutorIdleTimeout

Default is infinity If dynamic resource allocation is
enabled and an executor with
cached data blocks has been idle for
more than this time, the executor is
removed.

spark.dynamicAllocation.
schedulerBacklogTimeout

1 second (1s) If dynamic resource allocation is
enabled and there have been pending
tasks backlogged for more than this
time, new executors are requested.

spark.dynamicAllocation.
sustainedSchedulerBacklogTimeout

Default is
schedulerBacklogTimeout

Same as
spark.dynamicAllocation.
schedulerBacklogTimeout,but
used only for subsequent executor
requests.

3.6. Configuring Spark for Wire Encryption
You can configure Spark to protect sensitive data in transit, by enabling wire encryption.

In general, encryption protects data by making it unreadable without a phrase or digital
key to access the data. Data can be encrypted while it is in transit and when it is at rest:

• "In transit" encryption refers to data that is encrypted when it traverses a network. The
data is encrypted between the sender and receiver process across the network. Wire
encryption is a form of "in transit" encryption.

• "At rest" or "transparent" encryption refers to data stored in a database, on disk, or on
other types of persistent media.

Apache Spark supports "in transit" wire encryption of data for Apache Spark jobs. When
encryption is enabled, Spark encrypts all data that is moved across nodes in a cluster on
behalf of a job, including the following scenarios:

• Data that is moving between executors and drivers, such as during a collect()
operation.

• Data that is moving between executors, such as during a shuffle operation.

Spark does not support encryption for connectors accessing external sources; instead,
the connectors must handle any encryption requirements. For example, the Spark HDFS
connector supports transparent encrypted data access from HDFS: when transparent
encryption is enabled in HDFS, Spark jobs can use the HDFS connector to read encrypted
data from HDFS.

Spark does not support encrypted data on local disk, such as intermediate data written to a
local disk by an executor process when the data does not fit in memory. Additionally, wire
encryption is not supported for shuffle files, cached data, and other application files. For
these scenarios you should enable local disk encryption through your operating system.

In Spark 2.0, enabling wire encryption also enables HTTPS on the History Server UI, for
browsing historical job data.

The following two subsections describe how to configure Spark and Spark2 for wire
encryption, respectively.

Hortonworks Data Platform May 17, 2018

17

3.6.1. Configuring Spark for Wire Encryption

Use the following commands to configure Spark (version 1) for wire encryption:

1. On each node, create keystore files, certificates, and truststore files.

a. Create a keystore file:

keytool -genkey \
 -alias <host> \
 -keyalg RSA \
 -keysize 1024 \
 –dname CN=<host>,OU=hw,O=hw,L=paloalto,ST=ca,C=us \
 –keypass <KeyPassword> \
 -keystore <keystore_file> \
 -storepass <storePassword>

b. Create a certificate:

keytool -export \
 -alias <host> \
 -keystore <keystore_file> \
 -rfc –file <cert_file> \
 -storepass <StorePassword>

c. Create a truststore file:

keytool -import \
 -noprompt \
 -alias <host> \
 -file <cert_file> \
 -keystore <truststore_file> \
 -storepass <truststorePassword>

2. Create one truststore file that contains the public keys from all certificates.

a. Log on to one host and import the truststore file for that host:

keytool -import \
 -noprompt \
 -alias <hostname> \
 -file <cert_file> \
 -keystore <all_jks> \
 -storepass <allTruststorePassword>

b. Copy the <all_jks> file to the other nodes in your cluster, and repeat the keytool
command on each node.

3. Enable Spark authentication.

a. Set spark.authenticate to true in the yarn-site.xml file:

<property>
 <name>spark.authenticate</name>
 <value>true</value>
</property>

b. Set the following properties in the spark-defaults.conf file:

Hortonworks Data Platform May 17, 2018

18

spark.authenticate true
spark.authenticate.enableSaslEncryption true

4. Enable Spark SSL.

Set the following properties in the spark-defaults.conf file:

spark.ssl.enabled true
spark.ssl.keyPassword <KeyPassword>
spark.ssl.keyStore <keystore_file>
spark.ssl.keyStorePassword <storePassword>
spark.ssl.protocol TLS
spark.ssl.trustStore <all_jks>
spark.ssl.trustStorePassword <allTruststorePassword>

3.6.2. Configuring Spark2 for Wire Encryption
Use the following commands to configure Spark2 for wire encryption:

1. On each node, create keystore files, certificates, and truststore files.

a. Create a keystore file:

keytool -genkey \
 -alias <host> \
 -keyalg RSA \
 -keysize 1024 \
 –dname CN=<host>,OU=hw,O=hw,L=paloalto,ST=ca,C=us \
 –keypass <KeyPassword> \
 -keystore <keystore_file> \
 -storepass <storePassword>

b. Create a certificate:

keytool -export \
 -alias <host> \
 -keystore <keystore_file> \
 -rfc –file <cert_file> \
 -storepass <StorePassword>

c. Create a truststore file:

keytool -import \
 -noprompt \
 -alias <host> \
 -file <cert_file> \
 -keystore <truststore_file> \
 -storepass <truststorePassword>

2. Create one truststore file that contains the public keys from all certificates.

a. Log on to one host and import the truststore file for that host:

keytool -import \
 -noprompt \
 -alias <hostname> \
 -file <cert_file> \
 -keystore <all_jks> \
 -storepass <allTruststorePassword>

Hortonworks Data Platform May 17, 2018

19

b. Copy the <all_jks> file to the other nodes in your cluster, and repeat the keytool
command on each node.

3. Enable Spark2 authentication.

a. Set spark.authenticate to true in the yarn-site.xml file:

<property>
 <name>spark.authenticate</name>
 <value>true</value>
</property>

b. Set the following properties in the spark-defaults.conf file:

spark.authenticate true
spark.authenticate.enableSaslEncryption true

4. Enable Spark2 SSL.

Set the following properties in the spark-defaults.conf file:

spark.ssl.enabled true
spark.ssl.keyPassword <KeyPassword>
spark.ssl.keyStore <keystore_file>
spark.ssl.keyStorePassword <storePassword>
spark.ssl.protocol TLS
spark.ssl.trustStore <all_jks>
spark.ssl.trustStorePassword <allTruststorePassword>

5. Enable HTTPS for the Spark2 UI.

Set spark.ui.https.enabled to true in the spark-defaults.conf file:

spark.ui.https.enabled true

Note: In Spark2, enabling wire encryption also enables HTTPS on the History Server UI,
for browsing job history data.

6. (Optional) If you want to enable optional on-disk block encryption, which applies to
both shuffle and RDD blocks on disk, complete the following steps:

a. Add the following properties to the spark-defaults.conf file for Spark2:

spark.io.encryption.enabled true
spark.io.encryption.keySizeBits 128
spark.io.encryption.keygen.algorithm HmacSHA1

b. Enable RPC encryption.

For more information, see the Shuffle Behavior section of Apache Spark Properties
documentation, and the Apache Spark Security documentation.

http://spark.apache.org/docs/2.1.0/configuration.html#shuffle-behavior
http://spark.apache.org/docs/2.1.0/security.html

Hortonworks Data Platform May 17, 2018

20

3.7. Configuring Spark for a Kerberos-Enabled
Cluster

Before running Spark jobs on a Kerberos-enabled cluster, configure additional settings for
the following modules and scenarios:

• Spark history server

• Spark Thrift server

• Individuals who submit jobs

• Processes that submit jobs without human interaction

Each of these scenarios is described in the following subsections.

When Kerberos is enabled on an Ambari-managed cluster, Livy configuration for Kerberos
is handled automatically.

3.7.1. Configuring the Spark History Server

The Spark history server daemon must have a Kerberos account and keytab to run on a
Kerberos-enabled cluster.

When you enable Kerberos for a Hadoop cluster with Ambari, Ambari configures Kerberos
for the history server and automatically creates a Kerberos account and keytab for it. For
more information, see Enabling Kerberos Authentication Using Ambari in the HDP Security
Guide.

If your cluster is not managed by Ambari, or if you plan to enable Kerberos manually for
the history server, see Creating Service Principals and Keytab Files for HDP in the HDP
Security Guide.

3.7.2. Configuring the Spark Thrift Server

If you are installing the Spark Thrift server on a Kerberos-enabled cluster, note the
following requirements:

• The Spark Thrift server must run in the same host as HiveServer2, so that it can access
the hiveserver2 keytab.

• Permissions in /var/run/spark and /var/log/spark must specify read/write
permissions to the Hive service account.

• You must use the Hive service account to start the thriftserver process.

If you access Hive warehouse files through HiveServer2 on a deployment with fine-grained
access control, run the Spark Thrift server as user hive. This ensures that the Spark Thrift
server can access Hive keytabs, the Hive metastore, and HDFS data stored under user hive.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_security/content/configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_security/content/creating_service_principals_and_keytab_files_for_hdp.html

Hortonworks Data Platform May 17, 2018

21

Important

If you read files from HDFS directly through an interface such as Hive CLI or
Spark CLI (as opposed to HiveServer2 with fine-grained access control), you
should use a different service account for the Spark Thrift server. Configure the
account so that it can access Hive keytabs and the Hive metastore. Use of an
alternate account provides a more secure configuration: when the Spark Thrift
server runs queries as user hive, all data accessible to user hive is accessible to
the user submitting the query.

For Spark jobs that are not submitted through the Thrift server, the user submitting the job
must have access to the Hive metastore in secure mode, using the kinit command.

3.7.3. Setting Up Access for Submitting Jobs

Accounts that submit jobs on behalf of other processes must have a Kerberos account and
keytab. End users should use their own keytabs (instead of using a headless keytab) when
submitting a Spark job. The following two subsections describe both scenarios.

Setting Up Access for an Account

When access is authenticated without human interaction (as happens for processes that
submit job requests), the process uses a headless keytab. Security risk is mitigated by
ensuring that only the service that should be using the headless keytab has permission to
read it.

The following example creates a headless keytab for a spark service user account that will
submit Spark jobs on node blue1@example.com:

1. Create a Kerberos service principal for user spark:

kadmin.local -q "addprinc -randkey spark/blue1@EXAMPLE.COM"

2. Create the keytab:

kadmin.local -q "xst -k /etc/security/keytabs/spark.keytab
spark/blue1@EXAMPLE.COM"

3. For every node of your cluster, create a spark user and add it to the hadoop group:

useradd spark -g hadoop

4. Make spark the owner of the newly created keytab:

chown spark:hadoop /etc/security/keytabs/spark.keytab

5. Limit access by ensuring that user spark is the only user with access to the keytab:

chmod 400 /etc/security/keytabs/spark.keytab

In the following example, user spark runs the Spark Pi example in a Kerberos-enabled
environment:

Hortonworks Data Platform May 17, 2018

22

su spark
kinit -kt /etc/security/keytabs/spark.keytab spark/blue1@EXAMPLE.COM
cd /usr/hdp/current/spark-client/
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-cluster \
 --num-executors 1 \
 --driver-memory 512m \
 --executor-memory 512m \
 --executor-cores 1 \
 lib/spark-examples*.jar 10

Setting Up Access for an End User

Each person who submits jobs must have a Kerberos account and their own keytab; end
users should use their own keytabs (instead of using a headless keytab) when submitting
a Spark job. This is a best practice: submitting a job under the end user keytab delivers a
higher degree of audit capability.

In the following example, end user $USERNAME has their own keytab and runs the Spark Pi
job in a Kerberos-enabled environment:

su $USERNAME
kinit USERNAME@YOUR-LOCAL-REALM.COM
cd /usr/hdp/current/spark-client/
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-cluster \
 --num-executors 3 \
 --driver-memory 512m \
 --executor-memory 512m \
 --executor-cores 1 \
 lib/spark-examples*.jar 10

Hortonworks Data Platform May 17, 2018

23

4. Running Spark
You can run Spark interactively or from a client program:

• Submit interactive statements through the Scala, Python, or R shell, or through a high-
level notebook such as Zeppelin.

• Use APIs to create a Spark application that runs interactively or in batch mode, using
Scala, Python, R, or Java.

To launch Spark applications on a cluster, you can use the spark-submit script in the
Spark bin directory. You can also use the API interactively by launching an interactive shell
for Scala (spark-shell), Python (pyspark), or SparkR. Note that each interactive shell
automatically creates SparkContext in a variable called sc. For more informationa about
spark-submit, see the Apache Spark document Submitting Applications.

Alternately, you can use Livy to submit and manage Spark applications on a cluster. Livy
is a Spark service that allows local and remote applications to interact with Apache Spark
over an open source REST interface. Livy offers additional multi-tenancy and security
functionality. For more information about using Livy to run Spark Applications, see
Submitting Spark Applications through Livy.

This chapter describes how to specify Spark version for a Spark application, and how to run
Spark 1 and Spark 2 sample programs.

4.1. Specifying Which Version of Spark to Run
More than one version of Spark can run on a node. If your cluster runs Spark 1, you can
install Spark 2 and test jobs on Spark 2 in parallel with a Spark 1 working environment.
After verifying that all scripts and jobs run successfully with Spark 2 (including any changes
for backward compatibility), you can then step through transitioning jobs from Spark 1
to Spark 2. For more information about installing a second version of Spark, see Installing
Spark.

Use the following guidelines for determining which version of Spark runs a job by default,
and for specifying an alternate version if desired.

• By default, if only one version of Spark is installed on a node, your job runs with the
installed version.

• By default, if more than one version of Spark is installed on a node, your job runs with
the default version for your HDP package. In HDP 2.6, the default is Spark version 1.6.

• If you want to run jobs on the non-default version of Spark, use one of the following
approaches:

• If you use full paths in your scripts, change spark-client to spark2-client; for
example:

change /usr/hdp/current/spark-client/bin/spark-submit

http://spark.apache.org/docs/1.6.3/submitting-applications.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/ch_submit-spark-apps-livy.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/ch_installing-spark.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/ch_installing-spark.html

Hortonworks Data Platform May 17, 2018

24

to /usr/hdp/current/spark2-client/bin/spark-submit.

• If you do not use full paths, but instead launch jobs from the path, set the
SPARK_MAJOR_VERSION environment variable to the desired version of Spark before
you launch the job.

For example, if Spark 1.6.3 and Spark 2.0 are both installed on a node and you want to
run your job with Spark 2.0, set

SPARK_MAJOR_VERSION=2.

You can set SPARK_MAJOR_VERSION in automation scripts that use Spark, or in your
manual settings after logging on to the shell.

Note: The SPARK_MAJOR_VERSION environment variable can be set by any user who
logs on to a client machine to run Spark. The scope of the environment variable is local
to the user session.

The following example submits a SparkPi job to Spark 2, using spark-submit under /
usr/bin:

1. Navigate to a host where Spark 2.0 is installed.

2. Change to the Spark2 client directory:

cd /usr/hdp/current/spark2-client/

3. Set the SPARK_MAJOR_VERSION environment variable to 2:

export SPARK_MAJOR_VERSION=2

4. Run the Spark Pi example:

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-client \
 --num-executors 1 \
 --driver-memory 512m \
 --executor-memory 512m \
 --executor-cores 1 \
 examples/jars/spark-examples*.jar 10

Note that the path to spark-examples-*.jar is different than the path used for
Spark 1.x.

To change the environment variable setting later, either remove the environment variable
or change the setting to the newly desired version.

4.2. Running Sample Spark 1.x Applications
You can use the following sample programs, Spark Pi and Spark WordCount, to validate
your Spark installation and explore how to run Spark jobs from the command line and
Spark shell.

Hortonworks Data Platform May 17, 2018

25

4.2.1. Spark Pi
You can test your Spark installation by running the following compute-intensive example,
which calculates pi by “throwing darts” at a circle. The program generates points in the
unit square ((0,0) to (1,1)) and counts how many points fall within the unit circle within the
square. The result approximates pi.

Follow these steps to run the Spark Pi example:

1. Log on as a user with Hadoop Distributed File System (HDFS) access: for example, your
spark user, if you defined one, or hdfs.

When the job runs, the library is uploaded into HDFS, so the user running the job needs
permission to write to HDFS.

2. Navigate to a node with a Spark client and access the spark-client directory:

cd /usr/hdp/current/spark-client

su spark

3. Run the Apache Spark Pi job in yarn-client mode, using code from org.apache.spark:

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-client \
 --num-executors 1 \
 --driver-memory 512m \
 --executor-memory 512m \
 --executor-cores 1 \
 lib/spark-examples*.jar 10

Commonly used options include the following:

--class The entry point for your application: for example,
org.apache.spark.examples.SparkPi.

--master The master URL for the cluster: for example,
spark://23.195.26.187:7077.

--deploy-mode Whether to deploy your driver on the worker nodes
(cluster) or locally as an external client (default is
client).

--conf Arbitrary Spark configuration property in key=value
format. For values that contain spaces, enclose
“key=value” in double quotation marks.

<application-jar> Path to a bundled jar file that contains your
application and all dependencies. The URL must be
globally visible inside of your cluster: for instance, an
hdfs:// path or a file:// path that is present on
all nodes.

<application-arguments> Arguments passed to the main method of your main
class, if any.

Hortonworks Data Platform May 17, 2018

26

Your job should produce output similar to the following. Note the value of pi in the
output.

17/03/12 14:28:35 INFO scheduler.DAGScheduler: Job 0 finished: reduce at
 SparkPi.scala:36, took 1.721177 s
Pi is roughly 3.141296
17/03/12 14:28:35 INFO spark.ContextCleaner: Cleaned accumulator 1

You can also view job status in a browser by navigating to the YARN ResourceManager
Web UI and viewing job history server information. (For more information about
checking job status and history, see Tuning and Troubleshooting Spark.)

4.2.2. WordCount

WordCount is a simple program that counts how often a word occurs in a text file. The
code builds a dataset of (String, Int) pairs called counts, and saves the dataset to a file.

The following example submits WordCount code to the Scala shell:

1. Select an input file for the Spark WordCount example.

You can use any text file as input.

2. Log on as a user with HDFS access: for example, your spark user (if you defined one) or
hdfs.

The following example uses log4j.properties as the input file:

cd /usr/hdp/current/spark-client/

su spark

3. Upload the input file to HDFS:

hadoop fs -copyFromLocal /etc/hadoop/conf/log4j.properties /tmp/
data

4. Run the Spark shell:

./bin/spark-shell --master yarn-client --driver-memory 512m --
executor-memory 512m

You should see output similar to the following (with additional status messages):

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/ch_tuning-spark.html

Hortonworks Data Platform May 17, 2018

27

Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 1.6.3
 /_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.
0_112)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
SQL context available as sqlContext.

scala>

5. At the scala> prompt, submit the job by typing the following commands, replacing
node names, file name, and file location with your own values:

val file = sc.textFile("/tmp/data")
val counts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).
reduceByKey(_ + _)
counts.saveAsTextFile("/tmp/wordcount")

6. Use one of the following approaches to view job output:

• View output in the Scala shell:

scala> counts.count()

• View the full output from within the Scala shell:

scala> counts.toArray().foreach(println)

• View the output using HDFS:

a. Exit the Scala shell.

b. View WordCount job status:

hadoop fs -ls /tmp/wordcount

You should see output similar to the following:

/tmp/wordcount/_SUCCESS
/tmp/wordcount/part-00000
/tmp/wordcount/part-00001

c. Use the HDFS cat command to list WordCount output:

hadoop fs -cat /tmp/wordcount/part-00000

4.3. Running Sample Spark 2.x Applications
You can use the following sample programs, Spark Pi and Spark WordCount, to validate
your Spark installation and explore how to run Spark jobs from the command line and
Spark shell.

Hortonworks Data Platform May 17, 2018

28

4.3.1. Spark Pi
You can test your Spark installation by running the following compute-intensive example,
which calculates pi by “throwing darts” at a circle. The program generates points in the
unit square ((0,0) to (1,1)) and counts how many points fall within the unit circle within the
square. The result approximates pi.

Follow these steps to run the Spark Pi example:

1. Log on as a user with Hadoop Distributed File System (HDFS) access: for example, your
spark user, if you defined one, or hdfs.

When the job runs, the library is uploaded into HDFS, so the user running the job needs
permission to write to HDFS.

2. Navigate to a node with a Spark client and access the spark2-client directory:

cd /usr/hdp/current/spark2-client

su spark

3. Run the Apache Spark Pi job in yarn-client mode, using code from org.apache.spark:

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-client \
 --num-executors 1 \
 --driver-memory 512m \
 --executor-memory 512m \
 --executor-cores 1 \
 examples/jars/spark-examples*.jar 10

Commonly used options include the following:

--class The entry point for your application: for example,
org.apache.spark.examples.SparkPi.

--master The master URL for the cluster: for example,
spark://23.195.26.187:7077.

--deploy-mode Whether to deploy your driver on the worker nodes
(cluster) or locally as an external client (default is
client).

--conf Arbitrary Spark configuration property in key=value
format. For values that contain spaces, enclose
“key=value” in double quotation marks.

<application-jar> Path to a bundled jar file that contains your
application and all dependencies. The URL must be
globally visible inside of your cluster: for instance, an
hdfs:// path or a file:// path that is present on
all nodes.

<application-arguments> Arguments passed to the main method of your main
class, if any.

Hortonworks Data Platform May 17, 2018

29

Your job should produce output similar to the following. Note the value of pi in the
output.

17/03/22 23:21:10 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.
scala:38, took 1.302805 s
Pi is roughly 3.1445191445191445

You can also view job status in a browser by navigating to the YARN ResourceManager
Web UI and viewing job history server information. (For more information about
checking job status and history, see Tuning and Troubleshooting Spark.)

4.3.2. WordCount
WordCount is a simple program that counts how often a word occurs in a text file. The
code builds a dataset of (String, Int) pairs called counts, and saves the dataset to a file.

The following example submits WordCount code to the Scala shell:

1. Select an input file for the Spark WordCount example.

You can use any text file as input.

2. Log on as a user with HDFS access: for example, your spark user (if you defined one) or
hdfs.

The following example uses log4j.properties as the input file:

cd /usr/hdp/current/spark2-client/

su spark

3. Upload the input file to HDFS:

hadoop fs -copyFromLocal /etc/hadoop/conf/log4j.properties /tmp/
data

4. Run the Spark shell:

./bin/spark-shell --master yarn-client --driver-memory 512m --
executor-memory 512m

You should see output similar to the following (with additional status messages):

Spark context Web UI available at http://172.26.236.247:4041
Spark context available as 'sc' (master = yarn, app id =
 application_1490217230866_0002).
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.1.0.2.6.0.0-598
 /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.
0_112)

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/ch_tuning-spark.html

Hortonworks Data Platform May 17, 2018

30

Type in expressions to have them evaluated.
Type :help for more information.

scala>

5. At the scala> prompt, submit the job by typing the following commands, replacing
node names, file name, and file location with your own values:

val file = sc.textFile("/tmp/data")
val counts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).
reduceByKey(_ + _)
counts.saveAsTextFile("/tmp/wordcount")

6. Use one of the following approaches to view job output:

• View output in the Scala shell:

scala> counts.count()

• View the full output from within the Scala shell:

scala> counts.toArray().foreach(println)

• View the output using HDFS:

a. Exit the Scala shell.

b. View WordCount job status:

hadoop fs -ls /tmp/wordcount

You should see output similar to the following:

/tmp/wordcount/_SUCCESS
/tmp/wordcount/part-00000
/tmp/wordcount/part-00001

c. Use the HDFS cat command to list WordCount output:

hadoop fs -cat /tmp/wordcount/part-00000

Hortonworks Data Platform May 17, 2018

31

5. Submitting Spark Applications Through
Livy

Livy is a Spark service that allows local and remote applications to interact with Apache
Spark over an open source REST interface. You can use Livy to submit and manage Spark
jobs on a cluster. Livy extends Spark capabilities, offering additional multi-tenancy and
security features. Applications can run code inside Spark without needing to maintain a
local Spark context.

Features include the following:

• Jobs can be submitted from anywhere, using the REST API.

• Livy supports user impersonation: the Livy server submits jobs on behalf of the user who
submits the requests. Multiple users can share the same server ("user impersonation"
support). This is important for multi-tenant environments, and it avoids unnecessary
permission escalation.

• Livy supports security features such as Kerberos authentication and wire encryption.

• REST APIs are backed by SPNEGO authentication, which the requested user should get
authenticated by Kerberos at first.

• RPCs between Livy Server and Remote SparkContext are encrypted with SASL.

• The Livy server uses keytabs to authenticate itself to Kerberos.

Livy 0.3.0 supports programmatic and interactive access to Spark1 and Spark2 with Scala
2.10, and Scala 2.11:

• Use an interactive notebook to access Spark through Livy.

• Develop a Scala, Java, or Python client that uses the Livy API. The Livy REST API supports
full Spark 1 and Spark 2 functionality including SparkSession, and SparkSession with Hive
enabled.

• Run an interactive session, provided by spark-shell, PySpark, or SparkR REPLs.

• Submit batch applications to Spark.

Code runs in a Spark context, either locally or in YARN; YARN cluster mode is
recommended.

To install Livy on an Ambari-managed cluster, see Installing Spark Using Ambari. To install
Livy on a cluster not managed by Ambari, see the Spark sections of the Command Line
Installation Guide. For additional configuration steps, see Configuring the Livy Server.

5.1. Using Livy with Spark Versions 1 and 2
In HDP 2.6, Livy supports both Spark1 and Spark2 in one build. To specify which version
of Spark to use, set SPARK_HOME to Spark1 or Spark2. Livy automatically differentiates
between the two.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/install-spark-over-ambari.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/config-livy.html

Hortonworks Data Platform May 17, 2018

32

Here is a sample export statement in the livy-env.sh file:

export SPARK_HOME=<path-to>/spark-2.1.0-bin-hadoop2.6

Scala Support

Livy supports Scala versions 2.10 and 2.11.

For default Scala builds, Spark 1.6 with Scala 2.10 or Spark 2.0 with Scala 2.11, Livy
automatically detects the correct Scala version and associated jar files.

If you require a different Spark-Scala combination, such as Spark 2.0 with Scala 2.10, set
livy.spark.scalaVersion to the desired version so that Livy uses the right jar files.

5.2. Using Livy with Interactive Notebooks
You can submit Spark commands through Livy from an interactive Apache Zeppelin
notebook:

When you run code in a Zeppelin notebook using the %livy directive, the notebook
offloads code execution to Livy and Spark:

Hortonworks Data Platform May 17, 2018

33

For more information about Zeppelin and Livy, see the Zeppelin Component Guide.

5.3. Using the Livy API to Run Spark Jobs:
Overview

Using the Livy API to run Spark jobs is similar to using the original Spark API. The following
two examples calculate Pi; the first example uses the Spark API, and the second example
uses the Livy API.

Calculate Pi using the Spark API:

def sample(p):
 x, y = random(), random()
 return 1 if x*x + y*y < 1 else 0
 count = sc.parallelize(xrange(0, NUM_SAMPLES)).map(sample) \
 .reduce(lambda a, b: a + b)

Calculate Pi using the Livy API:

def f(_):
 x = random() * 2 - 1
 y = random() * 2 - 1
 return 1 if x ** 2 + y ** 2 <= 1 else 0
 def pi_job(context):
 count = context.sc.parallelize(range(1, samples + 1), slices).map(f).
reduce(add)
 return 4.0 * count / samples

There are two main differences between the two APIs:

• When using the Spark API, the entry point (SparkContext) is created by user who wrote
the code. When using the Livy API, SparkContext is offered by the framework; the user
does not need to create it.

• The client submits code to the Livy server through the REST API. The Livy server sends the
code to a specific Spark cluster for execution.

Architecturally, the client creates a remote Spark cluster, initializes it, and submits jobs
through REST APIs. The Livy server unwraps and rewraps the job, and then sends it to the
remote SparkContext through RPC. While the job runs the client waits for the result, using
the same path. The following diagram illustrates the process:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_zeppelin-component-guide/content/ch_overview.html
http://spark.apache.org/examples.html

Hortonworks Data Platform May 17, 2018

34

5.4. Running an Interactive Session With the Livy
API

Running an interactive session with Livy is similar to using Spark shell or PySpark, but the
shell does not run locally. Instead, it runs in a remote cluster, transferring data back and
forth through a network.

The Livy REST API supports GET, POST, and DELETE calls for interactive sessions.

The following example shows how to create an interactive session, submit a statement, and
retrieve the result of the statement; the return ID could be used for further queries.

1. Create an interactive session. The following POST request starts a new Spark cluster with
a remote Spark interpreter; the remote Spark interpreter is used to receive and execute
code snippets, and return the result.

POST /sessions
 host = 'http://localhost:8998'
 data = {'kind': 'spark'}
 headers = {'Content-Type': 'application/json'}
 r = requests.post(host + '/sessions', data=json.dumps(data),
 headers=headers)
 r.json()

{u'state': u'starting', u'id': 0, u'kind': u'spark'}

2. Submit a statement. The following POST request submits a code snippet to a remote
Spark interpreter, and returns a statement ID for querying the result after execution is
finished.

POST /sessions/{sessionId}/statements
 data = {'code': 'sc.parallelize(1 to 10).count()'}
 r = requests.post(statements_url, data=json.dumps(data), headers=
headers)
 r.json()

{u'output': None, u'state': u'running', u'id': 0}

Hortonworks Data Platform May 17, 2018

35

3. Get the result of a statement. The following GET request returns the result of a
statement in JSON format, which you can parse to extract elements of the result.

GET /sessions/{sessionId}/statements/{statementId}
 statement_url = host + r.headers['location']
 r = requests.get(statement_url, headers=headers)
 pprint.pprint(r.json())

{u'id': 0,
 u'output': {u'data': {u'text/plain': u'res0: Long = 10'},
 u'execution_count': 0,
 u'status': u'ok'},
 u'state': u'available'}

The remainder of this section describes Livy objects and REST API calls for interactive
sessions.

5.4.1. Livy Objects for Interactive Sessions

Session Object

A session object represents an interactive shell:

Property Description Type

id A non-negative integer that
represents a specific session of
interest

int

appId Application ID for this session string

owner Remote user who submitted this
session

string

proxyUser User ID to impersonate when running string

kind Session kind (see the following "kind"
table for values)

session kind

log Log file data list of strings

state Session state (see the following "state"
table for values)

string

appInfo Detailed application information key=value map

The following values are valid for the kind property in a session object:

Value Description

spark Interactive Scala Spark session

pyspark Interactive Python 2 Spark session

pyspark3 Interactive Python 3 Spark session

sparkr Interactive R Spark session

The following values are valid for the state property in a session object:

Value Description

not_started Session has not started

starting Session is starting

idle Session is waiting for input

busy Session is executing a statement

Hortonworks Data Platform May 17, 2018

36

Value Description

shutting_down Session is shutting down

error Session terminated due to an error

dead Session exited

success Session successfully stopped

Statement Object

A statement object represents the result of an execution statement.

Property Description Type

id A non-negative integer that
represents a specific statement of
interest

integer

state Execution state (see the following
"state" table for values)

statement state

output Execution output (see the following
"output" table for values)

statement output

The following values are valid for the state property in a statement object:

value Description

waiting Statement is queued, execution has not started

running Statement is running

available Statement has a response ready

error Statement failed

cancelling Statement is being cancelled

cancelled Statement is cancelled

The following values are valid for the output property in a statement object:

Property Description Type

status Execution status, such as "starting",
"idle", or "available".

string

execution_count Execution count integer (monotonically increasing)

data Statement output An object mapping a mime type
to the result. If the mime type is
application/json, the value is a
JSON value.

5.4.2. Setting Path Variables for Python

To change the Python executable used by a Livy session, follow the instructions for your
version of Python.

pyspark

Livy reads the path from the PYSPARK_PYTHON environment variable (this is the same as
PySpark).

• If Livy is running in local mode, simply set the environment variable (this is the same as
PySpark).

Hortonworks Data Platform May 17, 2018

37

• If the Livy session is running in yarn-cluster mode, set
spark.yarn.appMasterEnv.PYSPARK_PYTHON in the SparkConf file, so that the
environment variable is passed to the driver.

pyspark3

Livy reads the path from environment variable PYSPARK3_PYTHON.

• If Livy is running in local mode, simply set the environment variable.

• If the Livy session is running in yarn-cluster mode, set
spark.yarn.appMasterEnv.PYSPARK3_PYTHON in SparkConf file, so that the
environment variable is passed to the driver.

5.4.3. Livy API Reference for Interactive Sessions

GET

GET /sessions returns all active interactive sessions.

Request Parameter Description Type

from Starting index for fetching sessions int

size Number of sessions to fetch int

Response Description Type

from Starting index of fetched sessions int

total Number of sessions fetched int

sessions Session list list

The following response shows zero active sessions:

 {"from":0,"total":0,"sessions":[]}

GET /sessions/{sessionId} returns information about the specified session.

GET /sessions/{sessionId}/state returns the state of the specified session:

Response Description Type

id A non-negative integer that
represents a specific session

int

state Current state of the session string

GET /sessions/{sessionId}/logs retrieves log records for the specified session.

Request Parameters Description Type

from Offset int

size Maximum number of log records to
retrieve

int

Response Description Type

id A non-negative integer that
represents a specific session

int

Hortonworks Data Platform May 17, 2018

38

Response Description Type

from Offset from the start of the log file int

size Number of log records retrieved int

log Log records list of strings

GET /sessions/{sessionId}/statements returns all the statements in a session.

Response Description Type

statements List of statements in the specified
session

list

GET /sessions/{sessionId}/statements/{statementId} returns a specified
statement in a session.

Response Description Type

statement object (for more
information see "Livy Objects for
Interactive Sessions")

Statement statement object

POST

POST /sessions creates a new interactive Scala, Python, or R shell in the cluster.

Request Parameter Description Type

kind Session kind (required) session kind

proxyUser User ID to impersonate when starting
the session

string

jars Jar files to be used in this session list of strings

pyFiles Python files to be used in this session list of strings

files Other files to be used in this session list of strings

driverMemory Amount of memory to use for the
driver process

string

driverCores Number of cores to use for the driver
process

int

executorMemory Amount of memory to use for each
executor process

string

executorCores Number of cores to use for each
executor process

int

numExecutors Number of executors to launch for
this session

int

archives Archives to be used in this session list of strings

queue The name of the YARN queue to
which the job should be submitted

string

name Name of this session string

conf Spark configuration properties Map of key=value

heartbeatTimeoutInSecond Timeout in second to which session be
orphaned

int

Response Description Type

session object (for more information
see "Livy Objects for Interactive
Sessions")

The created session session object

Hortonworks Data Platform May 17, 2018

39

The following response shows a PySpark session in the process of starting:

 {"id":0,"state":"starting","kind":"pyspark","log":[]}

POST /sessions/{sessionId}/statements runs a statement in a session.

Request Parameter Description Type

code The code to execute string

Response Description Type

statement object (for more
information see "Livy Objects for
Interactive Sessions")

Result of an execution statement statement object

POST /sessions/{sessionId}/statements/{statementId}/cancel cancels the
specified statement in the session.

Response Description Type

cancellation message Reports "cancelled" string

DELETE

DELETE /sessions/{sessionId} terminates the session.

5.5. Submitting Batch Applications Using the Livy
API

Spark provides a spark-submit command for submitting batch applications. Livy
provides equivalent functionality through REST APIs, using job specifications specified in a
JSON document.

The following example shows a spark-submit command that submits a SparkPi job,
followed by an example that uses Livy POST requests to submit the job. The remainder of
this subsection describes Livy objects and REST API syntax. For additional examples and
information, see the readme.rst file at https://github.com/hortonworks/livy-release/
releases/tag/HDP-2.6.0.3-8-tag.

The following command uses spark-submit to submit a SparkPi job:

./bin/spark-submit \
 --class org.apache.spark.examples.SparkPi \
 --master yarn \
 --deploy-mode cluster \
 --executor-memory 20G \
 /path/to/examples.jar 1000

To submit the SparkPi job using Livy, complete the following steps. Note: the POST request
does not upload local jars to the cluster. You should upload required jar files to HDFS
before running the job. This is the main difference between the Livy API and spark-
submit.

1. Form a JSON structure with the required job parameters:

https://github.com/hortonworks/livy-release/releases/tag/HDP-2.6.0.3-8-tag
https://github.com/hortonworks/livy-release/releases/tag/HDP-2.6.0.3-8-tag

Hortonworks Data Platform May 17, 2018

40

{ "className": "org.apache.spark.examples.SparkPi",
 "executorMemory": "20g",
 "args": [2000],
 "file": "/path/to/examples.jar"
 }

2. Specify master and deploy mode in the livy.conf file.

3. To submit the SparkPi application to the Livy server, use the a POST /batches request.

4. The Livy server helps launch the application in the cluster.

5.5.1. Livy Batch Object

Batch session APIs operate on batch objects, defined as follows:

Property Description Type

id A non-negative integer that
represents a specific batch session

int

appId The application ID for this session String

appInfo Detailed application info Map of key=value

log Log records list of strings

state Batch state string

5.5.2. Livy API Reference for Batch Jobs

GET /batches returns all active batch sessions.

Request Parameters Description Type

from Starting index used to fetch sessions int

size Number of sessions to fetch int

Response Description Type

from Starting index of fetched sessions int

total Number of sessions fetched int

sessions List of active batch sessions list

GET /batches/{batchId} returns the batch session information as a batch object.

GET /batches/{batchId}/state returns the state of batch session:

Response Description Type

id A non-negative integer that
represents a specific batch session

int

state The current state of batch session string

GET /batches/{batchId}/log retrieves log records for the specified batch session.

Request Parameters Description Type

from Offset into log file int

size Max number of log lines to return int

Hortonworks Data Platform May 17, 2018

41

Response Description Type

id A non-negative integer that
represents a specific batch session

int

from Offset from start of the log file int

size Number of log records returned int

log Log records list of strings

POST /batches creates a new batch environment and runs a specified application:

Request Body Description Type

file File containing the application to run
(required)

path

proxyUser User ID to impersonate when running
the job

string

className Application Java or Spark main class string

args Command line arguments for the
application

list of strings

jars Jar files to be used in this session list of strings

pyFiles Python files to be used in this session list of strings

files Other files to be used in this session list of strings

driverMemory Amount of memory to use for the
driver process

string

driverCores Number of cores to use for the driver
process

int

executorMemory Amount of memory to use for each
executor process

string

executorCores Number of cores to use for each
executor

int

numExecutors Number of executors to launch for
this session

int

archives Archives to be used in this session list of strings

queue The name of the YARN queue to
which the job should be submitted

string

name Name of this session string

conf Spark configuration properties Map of key=val

Response Description Type

batch object (for more information
see "Livy Batch Object")

The created batch object batch object

DELETE /batches/{batchId} terminates the Batch job.

Hortonworks Data Platform May 17, 2018

42

6. Running PySpark in a Virtual
Environment

For many PySpark applications, it is sufficient to use --py-files to specify dependencies.
However, there are times when --py-files is inconvenient, such as the following
scenarios:

• A large PySpark application has many dependencies, including transitive dependencies.

• A large application needs a Python package that requires C code to be compiled before
installation.

• You want to run different versions of Python for different applications.

For these situations, you can create a virtual environment as an isolated Python runtime
environment. HDP 2.6 supports VirtualEnv for PySpark in both local and distributed
environments, easing the transition from a local environment to a distributed environment.

Note: This feature is currently only supported in YARN mode.

For more information, see Using VirtualEnv with PySpark.

https://community.hortonworks.com/articles/104949/using-virtualenv-with-pyspark-1.html

Hortonworks Data Platform May 17, 2018

43

7. Automating Spark Jobs with Oozie
Spark Action

If you use Apache Spark as part of a complex workflow with multiple processing steps,
triggers, and interdependencies, consider using Apache Oozie to automate jobs. Oozie is a
workflow engine that executes sequences of actions structured as directed acyclic graphs
(DAGs). Each action is an individual unit of work, such as a Spark job or Hive query.

The Oozie "Spark action" runs a Spark job as part of an Oozie workflow. The workflow
waits until the Spark job completes before continuing to the next action.

For additional information about Spark action, see the Apache Oozie Spark Action
Extension documentation. For general information about Oozie, see Using HDP for
Workflow and Scheduling with Oozie. For general information about using Workflow
Manager, see the Workflow Management Guide.

Note

In HDP 2.6, Oozie works with either Spark 1 or Spark 2 (not side-by-side
deployments). You can configure Spark 2 through manual steps (not Ambari).

Support for yarn-client execution mode for Oozie Spark action will be removed
in a future release. Oozie will continue to support yarn-cluster execution mode
for Oozie Spark action.

7.1. Configuring Oozie Spark Action for Spark 1
To place a Spark job into an Oozie workflow, you need two configuration files:

• A workflow XML file that defines workflow logic and parameters for running the Spark
job. Some of the elements in a Spark action are specific to Spark; others are common to
many types of actions.

• A job.properties file for configuring the Oozie job.

You can configure a Spark action manually, or on an Ambari-managed cluster you can use
the Spark action editor in the Ambari Oozie Workflow Manager (WFM). The Workflow
Manager is designed to help build powerful workflows.

For two examples that use Oozie Workflow Manager--one that creates a new Spark action,
and another that imports and runs an existing Spark workflow--see the Hortonworks
Community Connection article Apache Ambari Workflow Manager View for Apache Oozie:
Part 7 (Spark Action & PySpark).

Here is the basic structure of a workflow definition XML file for a Spark action:

<workflow-app name="[WF-DEF-NAME]" xmlns="uri:oozie:workflow:0.3">
 ...
 <action name="[NODE-NAME]">
 <spark xmlns="uri:oozie:spark-action:0.1">

https://oozie.apache.org/docs/4.2.0/DG_SparkActionExtension.html
https://oozie.apache.org/docs/4.2.0/DG_SparkActionExtension.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_data-movement-and-integration/content/ch_data_movement_using_oozie.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_data-movement-and-integration/content/ch_data_movement_using_oozie.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_workflow-management/content/index.html
https://community.hortonworks.com/articles/84071/apache-ambari-workflow-manager-view-for-apache-ooz-2.html
https://community.hortonworks.com/articles/84071/apache-ambari-workflow-manager-view-for-apache-ooz-2.html

Hortonworks Data Platform May 17, 2018

44

 <job-tracker>[JOB-TRACKER]</job-tracker>
 <name-node>[NAME-NODE]</name-node>
 <prepare>
 <delete path="[PATH]"/>
 ...
 <mkdir path="[PATH]"/>
 ...
 </prepare>
 <job-xml>[SPARK SETTINGS FILE]</job-xml>
 <configuration>
 <property>
 <name>[PROPERTY-NAME]</name>
 <value>[PROPERTY-VALUE]</value>
 </property>
 ...
 </configuration>
 <master>[SPARK MASTER URL]</master>
 <mode>[SPARK MODE]</mode>
 <name>[SPARK JOB NAME]</name>
 <class>[SPARK MAIN CLASS]</class>
 <jar>[SPARK DEPENDENCIES JAR / PYTHON FILE]</jar>
 <spark-opts>[SPARK-OPTIONS]</spark-opts>
 <arg>[ARG-VALUE]</arg>
 ...
 <arg>[ARG-VALUE]</arg>
 ...
 </spark>
 <ok to="[NODE-NAME]"/>
 <error to="[NODE-NAME]"/>
 </action>
 ...
</workflow-app>

The following examples show a workflow definition XML file and an Oozie job
configuration file for running a SparkPi job (Spark version 1.x).

Sample Workflow.xml file for SparkPi app:

<workflow-app xmlns=’uri:oozie:workflow:0.5# name=’SparkWordCount’>
 <start to=’spark-node’ />
 <action name=’spark-node’>
 <spark xmlns="uri:oozie:spark-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <prepare>
 <delete path="${nameNode}/user/${wf:user()}/${examplesRoot}/
output-data"/>
 </prepare>
 <master>${master}</master>
 <name>SparkPi</name>
 <class>org.apache.spark.examples.SparkPi</class>
 <jar>lib/spark-examples.jar</jar>
 <spark-opts>--executor-memory 20G --num-executors 50</spark-opts>
 <arg>value=10</arg>
 </spark>
 <ok to="end" />
 <error to="fail" />
 </action>
 <kill name="fail">
 <message>Workflow failed, error

Hortonworks Data Platform May 17, 2018

45

 message[${wf:errorMessage(wf:lastErrorNode())}] </message>
 </kill>
 <end name=’end’ />
 </workflow-app>

Sample Job.properties file for SparkPi app:

nameNode=hdfs://host:8020
jobTracker=host:8050
queueName=default
examplesRoot=examples
oozie.use.system.libpath=true
oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/apps/
pyspark
master=yarn-cluster

7.2. Configuring Oozie Spark Action for Spark 2
To use Oozie Spark action with Spark 2 jobs, create a spark2 ShareLib directory, copy
associated files into it, and then point Oozie to spark2. (The Oozie ShareLib is a set of
libraries that allow jobs to run on any node in a cluster.)

1. Create a spark2 ShareLib directory under the Oozie ShareLib directory associated with
the oozie service user:

hdfs dfs -mkdir /user/oozie/share/lib/lib_<ts>/spark2

2. Copy spark2 jar files from the spark2 jar directory to the Oozie spark2 ShareLib:

hdfs dfs -put \
 /usr/hdp/current/spark2-client/jars/* \
 /user/oozie/share/lib/lib_<ts>/spark2/

3. Copy the oozie-sharelib-spark jar file from the spark ShareLib directory to the
spark2 ShareLib directory:

hdfs dfs -cp \
 /user/oozie/share/lib/lib_<ts>/spark/oozie-sharelib-spark-*.jar \
 /user/oozie/share/lib/lib_<ts>/spark2/

4. Copy the hive-site.xml file for Spark2 to the spark2 ShareLib:

hdfs dfs -put \
 /usr/hdp/current/spark2-client/conf/hive-site.xml \
 /user/oozie/share/lib/lib_<ts>/spark2/

5. Copy Python libraries to the spark2 ShareLib:

hdfs dfs -put \
 /usr/hdp/current/spark2-client/python/lib/py* \
 /user/oozie/share/lib/lib_<ts>/spark2/

6. Run the Oozie sharelibupdate command:

oozie admin –sharelibupdate

To verify the configuration, run the Oozie shareliblist command. You should see
spark2 in the results.

Hortonworks Data Platform May 17, 2018

46

oozie admin –shareliblist spark2

To run a Spark job with the spark2 ShareLib, set the following properties in the
job.properties file:

oozie.action.sharelib.for.spark=spark2
oozie.action.sharelib.for.spark.exclusion=oozie/jackson

The following examples show a workflow definition XML file, an Oozie job configuration
file, and a Python script for running a Spark2-Pi job.

Sample Workflow.xml file for spark2-Pi:

<workflow-app xmlns='uri:oozie:workflow:0.5' name='SparkPythonPi'>
 <start to='spark-node' />

 <action name='spark-node'>
 <spark xmlns="uri:oozie:spark-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <master>${master}</master>
 <name>Python-Spark-Pi</name>
 <jar>pi.py</jar>
 </spark>
 <ok to="end" />
 <error to="fail" />
 </action>

 <kill name="fail">
 <message>Workflow failed, error message
 [${wf:errorMessage(wf:lastErrorNode())}]</message>
 </kill>
 <end name='end' />
 </workflow-app>

Sample Job.properties file for spark2-Pi:

nameNode=hdfs://host:8020
jobTracker=host:8050
queueName=default
examplesRoot=examples
oozie.use.system.libpath=true
oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/apps/
pyspark
master=yarn-cluster
oozie.action.sharelib.for.spark=spark2

Sample Python script, lib/pi.py:

import sys
from random import random
from operator import add
from pyspark import SparkContext

if __name__ == "__main__":
"""
Usage: pi [partitions]
"""
sc = SparkContext(appName="Python-Spark-Pi")
partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2

Hortonworks Data Platform May 17, 2018

47

n = 100000 * partitions

def f(_):
x = random() * 2 - 1
y = random() * 2 - 1
return 1 if x ** 2 + y ** 2 < 1 else 0

count = sc.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
print("Pi is roughly %f" % (4.0 * count / n))

sc.stop()

Hortonworks Data Platform May 17, 2018

48

8. Developing Spark Applications
Apache Spark enables you to quickly develop applications and process jobs. It is designed
for fast application development and processing. Spark Core is the underlying execution
engine; other services, such as Spark SQL, MLlib, and Spark Streaming, are built on top of
the Spark Core.

Depending on your use case, you can extend your use of Spark into several domains,
including the following described in this chapter:

• Spark DataFrames

• Spark SQL

• Calling Hive user-defined functions from Spark SQL

• Spark Streaming

• Accessing HBase tables, HDFS files, and ORC data (Hive)

• Using custom libraries

Additional resources:

• To get started with Spark, see the Apache Spark Quick Start and the Spark 1.6.3 and
Spark 2.0 overviews.

• For more information about application development, see the Apache Spark
Programming Guide.

• For more information about using Livy to submit Spark jobs, see Submitting Spark
Applications Through Livy.

8.1. Using the Spark DataFrame API
A DataFrame is a distributed collection of data organized into named columns. It is
conceptually equivalent to a table in a relational database or a data frame in R or in the
Python pandas library. You can construct DataFrames from a wide array of sources,
including structured data files, Apache Hive tables, and existing Spark resilient distributed
datasets (RDD). The Spark DataFrame API is available in Scala, Java, Python, and R.

This subsection contains several examples of DataFrame API use.

To list JSON file contents as a DataFrame:

1. As user spark, upload the people.txt and people.json sample files to the Hadoop
Distributed File System (HDFS):

cd /usr/hdp/current/spark-client
su spark
hdfs dfs -copyFromLocal examples/src/main/resources/people.txt people.txt
hdfs dfs -copyFromLocal examples/src/main/resources/people.json people.json

http://spark.apache.org/docs/1.6.3/quick-start.html
http://spark.apache.org/docs/1.6.3/
http://spark.apache.org/docs/2.0.1/
http://spark.apache.org/docs/1.6.3/programming-guide.html
http://spark.apache.org/docs/1.6.3/programming-guide.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/ch_submit-spark-apps-livy.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/ch_submit-spark-apps-livy.html

Hortonworks Data Platform May 17, 2018

49

2. Launch the Spark shell:

cd /usr/hdp/current/spark-client
su spark
./bin/spark-shell --num-executors 1 --executor-memory 512m --master yarn-
client

3. At the Spark shell, type the following:

scala> val df = sqlContext.read.format("json").load("people.json")

4. Using df.show, display the contents of the DataFrame:

scala> df.show
17/03/12 11:24:10 INFO YarnScheduler: Removed TaskSet 2.0, whose tasks have
 all completed, from pool

+----+-------+
| age| name|
+----+-------+
null	Michael
30	Andy
19	Justin
+----+-------+

The following examples use Scala to access DataFrame df defined in the previous
subsection:

// Import the DataFrame functions API
scala> import org.apache.spark.sql.functions._

// Select all rows, but increment age by 1
scala> df.select(df("name"), df("age") + 1).show()

// Select people older than 21
scala> df.filter(df("age") > 21).show()

// Count people by age
scala> df.groupBy("age").count().show()

The following example uses the DataFrame API to specify a schema for people.txt, and
then retrieves names from a temporary table associated with the schema:

import org.apache.spark.sql._

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val people = sc.textFile("people.txt")
val schemaString = "name age"

import org.apache.spark.sql.types.{StructType,StructField,StringType}

val schema = StructType(schemaString.split(" ").map(fieldName =>
 StructField(fieldName, StringType, true)))
val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))
val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)

peopleDataFrame.registerTempTable("people")

val results = sqlContext.sql("SELECT name FROM people")

Hortonworks Data Platform May 17, 2018

50

results.map(t => "Name: " + t(0)).collect().foreach(println)

This produces output similar to the following:

17/03/12 14:36:49 INFO cluster.YarnScheduler: Removed TaskSet 13.0, whose
 tasks have all completed, from pool
17/03/12 14:36:49 INFO scheduler.DAGScheduler: ResultStage 13 (collect at :33)
 finished in 0.129 s
17/03/12 14:36:49 INFO scheduler.DAGScheduler: Job 10 finished: collect
 at :33, took 0.162827 s
Name: Michael
Name: Andy
Name: Justin

8.2. Using Spark SQL
Using SQLContext, Apache Spark SQL can read data directly from the file system. This
is useful when the data you are trying to analyze does not reside in Apache Hive (for
example, JSON files stored in HDFS).

Using HiveContext, Spark SQL can also read data by interacting with the Hive MetaStore.
If you already use Hive, you should use HiveContext; it supports all Hive data formats and
user-defined functions (UDFs), and it enables you to have full access to the HiveQL parser.
HiveContext extends SQLContext, so HiveContext supports all SQLContext functionality.

There are two ways to interact with Spark SQL:

• Interactive access using the Spark shell (see Accessing Spark SQL through the Spark Shell).

• From an application, operating through one of the following two APIs and the Spark
Thrift server:

• JDBC, using your own Java code or the Beeline JDBC client

• ODBC, through the Simba ODBC driver

For more information about JDBC and ODBC access, see Accessing Spark SQL through
JDBC: Prerequisites and Accessing Spark SQL through JDBC and ODBC.

The following diagram illustrates the access process, depending on whether you are using
the Spark shell or business intelligence (BI) application:

The following subsections describe how to access Spark SQL through the Spark shell, and
through JDBC and ODBC.

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/jdbc-odbc-access-sparksql.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/jdbc-odbc-access-sparksql.html

Hortonworks Data Platform May 17, 2018

51

8.2.1. Accessing Spark SQL through the Spark Shell
The following sample command launches the Spark shell on a YARN cluster:

./bin/spark-shell --num-executors 1 --executor-memory 512m --
master yarn-client

To read data directly from the file system, construct a SQLContext. For an example that
uses SQLContext and the Spark DataFrame API to access a JSON file, see Using the Spark
DataFrame API.

To read data by interacting with the Hive Metastore, construct a HiveContext instance
(HiveContext extends SQLContext). For an example of the use of HiveContext (instantiated
as val sqlContext), see Accessing ORC Files from Spark.

8.2.2. Accessing Spark SQL through JDBC or ODBC:
Prerequisites

Using the Spark Thrift server, you can remotely access Spark SQL over JDBC (using the JDBC
Beeline client) or ODBC (using the Simba driver).

The following prerequisites must be met before accessing Spark SQL through JDBC or
ODBC:

• The Spark Thrift server must be deployed on the cluster.

• For an Ambari-managed cluster, deploy and launch the Spark Thrift server using the
Ambari web UI (see Installing and Configuring Spark Over Ambari).

• For a cluster that is not managed by Ambari, see Starting the Spark Thrift Server in the
Non-Ambari Cluster Installation Guide.

• Ensure that SPARK_HOME is defined as your Spark directory:

export SPARK_HOME=/usr/hdp/current/spark-client

If you want to enable user impersonation for the Spark Thrift server, so that the Thrift
server runs Spark SQL jobs as the submitting user, see Configuring the Spark Thrift server.

Before accessing Spark SQL through JDBC or ODBC, note the following caveats:

• The Spark Thrift server works in YARN client mode only.

• ODBC and JDBC client configurations must match Spark Thrift server configuration
parameters. For example, if the Thrift server is configured to listen in binary mode,
the client should send binary requests and use HTTP mode when the Thrift server is
configured over HTTP.

• All client requests coming to the Spark Thrift server share a SparkContext.

Additional Spark Thrift Server Commands

To list available Thrift server options, run ./sbin/start-thriftserver.sh --help.

To manually stop the Spark Thrift server, run the following commands:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/spark-dataframe-api.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/spark-dataframe-api.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/orc-spark.html
https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/install-sts-after-spark-install.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_command-line-installation/content/starting_sts.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/config-sts.html

Hortonworks Data Platform May 17, 2018

52

su spark
./sbin/stop-thriftserver.sh

8.2.3. Accessing Spark SQL through JDBC
To access Spark SQL through JDBC, you need a JDBC URL connection string to supply
connection information to the JDBC data source. Connection strings for the Spark SQL JDBC
driver have the following format:

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?
<hiveConfs>#<hiveVars>

JDBC Parameter Description

host The node hosting the Thrift server

port The port number on which the Thrift server listens

dbName The name of the Hive database to run the query against

sessionConfs Optional configuration parameters for the
JDBC or ODBC driver in the following format:
<key1>=<value1>;<key2>=<key2>...;

hiveConfs Optional configuration parameters for
Hive on the server in the following format:
<key1>=<value1>;<key2>=<key2>; ...

These settings last for the duration of the user session.

hiveVars Optional configuration parameters for
Hive variables in the following format:
<key1>=<value1>;<key2>=<key2>; ...

These settings persist for the duration of the user session.

Note

The Spark Thrift server is a variant of HiveServer2, so you can use many of the
same settings. For more information about JDBC connection strings, including
transport and security settings, see Hive JDBC and ODBC Drivers in the HDP
Data Access Guide.

The following connection string accesses Spark SQL through JDBC on a Kerberos-enabled
cluster:

beeline> !connect jdbc:hive2://localhost:10002/default;httpPath=/;principal=
hive/hdp-team.example.com@EXAMPLE.COM

The following connection string accesses Spark SQL through JDBC over HTTP transport on a
Kerberos-enabled cluster:

beeline> !connect jdbc:hive2://localhost:10002/default;transportMode=
http;httpPath=/;principal=hive/hdp-team.example.com@EXAMPLE.COM

To access Spark SQL, complete the following steps:

1. Connect to the Thrift server over the Beeline JDBC client.

a. From the SPARK_HOME directory, launch Beeline:

su spark
./bin/beeline

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_data-access/content/hive-jdbc-odbc-drivers.html

Hortonworks Data Platform May 17, 2018

53

b. At the Beeline prompt, connect to the Spark SQL Thrift server with the JDBC
connection string:

beeline> !connect jdbc:hive2://localhost:10015

The host port must match the host port on which the Spark Thrift server is running.

You should see output similar to the following:

beeline> !connect jdbc:hive2://localhost:10015
Connecting to jdbc:hive2://localhost:10015
Enter username for jdbc:hive2://localhost:10015:
Enter password for jdbc:hive2://localhost:10015:
...
Connected to: Spark SQL (version 1.6.3)
Driver: Spark Project Core (version 1.6.3.2.4.0.0-169)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://localhost:10015>

2. When connected, issue a Spark SQL statement.

The following example executes a SHOW TABLES query:

0: jdbc:hive2://localhost:10015> show tables;
+------------+--------------+--+
| tableName | isTemporary |
+------------+--------------+--+
sample_07	false
sample_08	false
testtable	false
+------------+--------------+--+
3 rows selected (2.399 seconds)
0: jdbc:hive2://localhost:10015>

8.2.4. Accessing Spark SQL through ODBC

If you want to access Spark SQL through ODBC, first download the ODBC Spark driver for
the operating system you want to use for the ODBC client. After downloading the driver,
refer to the Hortonworks ODBC Driver with SQL Connector for Apache Spark User Guide for
installation and configuration instructions.

Drivers and associated documentation are available in the "Hortonworks Data Platform
Add-Ons" section of the Hortonworks downloads page (http://hortonworks.com/
downloads/) under "Hortonworks ODBC Driver for SparkSQL." If the latest version of HDP
is newer than your version, check the Hortonworks Data Platform Archive area of the add-
ons section for the version of the driver that corresponds to your version of HDP.

8.2.5. Spark SQL User Impersonation

When user impersonation is enabled for Spark SQL through the Spark Thrift server, the
Thrift server runs queries as the submitting user. By running queries under the user account
associated with the submitter, the Thrift Server can enforce user level permissions and
access control lists. This enables granular access control to Spark SQL at the level of files or
tables. Associated data cached in Spark is visible only to queries from the submitting user.

https://hortonworks.com/downloads/
https://hortonworks.com/downloads/

Hortonworks Data Platform May 17, 2018

54

Spark SQL user impersonation is supported for Apache Spark 1 versions 1.6.3 and later. To
enable user impersonation, see Enabling User Impersonation for the Spark Thrift Server.
The following paragraphs illustrate several features of user impersonation.

8.2.5.1. Permissions and ACL Enforcement

When user impersonation is enabled, permissions and ACL restrictions are applied on
behalf of the submitting user. In the following example, “foo_db” database has a table
“drivers”, which only user “foo” can access:

A Beeline session running as user “foo” can access the data, read the drivers table, and
create a new table based on the table:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/config-sts-user-imp.html

Hortonworks Data Platform May 17, 2018

55

Spark queries run in a YARN application as user “foo”:

Hortonworks Data Platform May 17, 2018

56

All user permissions and access control lists are enforced while accessing tables, data or
other resources. In addition, all output generated is for user “foo”.

For the table created in the preceding Beeline session, the owner is user “foo”:

The per-user Spark Application Master ("AM") caches data in memory without other users
being able to access the data--cached data and state are restricted to the Spark AM running
the query. Data and state information are not stored in the Spark Thrift server, so they are
not visible to other users. Spark master runs as yarn-cluster, but query execution works as
though it is yarn-client (essentially a yarn-cluster user program that accepts queries from
STS indefinitely).

8.2.5.2. Spark Thrift Server as Proxy

The Spark Thrift server does not run user queries; it forwards them to the appropriate
user-specific Spark AM. This improves the scalability and fault tolerance of the Spark Thrift
server.

When user impersonation is enabled for the Spark Thrift server, the Thrift Server is
responsible for the following features and capabilities:

• Authorizing incoming user connections (SASL authorization that validates the user
Beeline/socket connection).

• Managing Spark applications launched on behalf of users:

• Launching Spark application if no appropriate application exists for the incoming
request.

Hortonworks Data Platform May 17, 2018

57

• Terminating the Spark AM when all associated user connections are closed at the
Spark Thrift server.

• Acting as a proxy and forwarding requests/responses to the appropriate user’s Spark
AM.

• Ensuring that long-running Spark SQL sessions persist, by keeping the Kerberos state
valid.

• The Spark Thrift server and Spark AM, when launched on behalf of a user, can be long-
running applications in clusters with Kerberos enabled.

• The submitter's principal and keytab are not required for long-running Spark AM
processes, although the Spark Thrift server requires the Hive principal and keytab.

8.2.5.3. Enhancements for Connection URL Support.

The connection URL format for Hive is described in Apache Hive documentation. In user
impersonation mode, the Spark Thrift server supports a default database and hivevar
variables.

Specifying Default Database in the Connection URL

Specifying the connection URL as jdbc:hive2://$HOST:$PORT/my_db results in an
implicit “use my_db” when a user connects.

For an example, see the preceding Beeline example where the !connect command
specifies the connection URL for “foo_db”.

Support for hivevar Variables

Hive variables can be used to parameterize queries. To set a Hive variable, use the set
hivevar command:

set hivevar:key=value

You can also set a Hive variable as part of the connection URL. In the following Beeline
example, plan=miles is appended to the connection URL. The variable is referenced in
the query as ${hivevar:plan}.

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-ConnectionURLFormat

Hortonworks Data Platform May 17, 2018

58

8.2.5.4. Advanced Connection Management Features

By default, all connections for a user are forwarded to the same Spark AM to execute the
query. In some cases, it is necessary to exercise finer-grained control.

Specifying Named Connections

When user impersonation is enabled, Spark supports user-named connections identified by
a user-specified connectionId (a Hive conf parameter in the connection URL). This can
be useful when overriding Spark configurations such as queue, memory configuration, or
executor configuration settings.

Every Spark AM managed by the Spark Thrift server is associated with a user and
connectionId. Connection IDs are not globally unique; they are specific to the user.

You can specify connectionId to control which Spark AM executes queries. If you not
specify connectionId, a default connectionId is associated with the Spark AM.

To explicitly name a connection, set the Hive conf parameter to
spark.sql.thriftServer.connectionId, as shown in the following session:

Hortonworks Data Platform May 17, 2018

59

Note: Named connections allow users to specify their own Spark AM connections. They are
scoped to individual users, and do not allow a user to access the Spark AM associated with
another user.

If the Spark AM is available, the connection is associated with the existing Spark AM.

Data Sharing and Named Connections

Each connectionId for a user identifies a different Spark AM.

For a user, cached data is shared and available only within a single AM, not across Spark
AM’s.

Different user connections on the same Spark AM can leverage previously cached data.
Each user connection has its own Hive session (which maintains the current database,
Hive variables, and so on), but shares the underlying cached data, executors, and Spark
application.

The following example shows a session for the first connection from user “foo” to named
connection “conn1”:

Hortonworks Data Platform May 17, 2018

60

After caching the ‘drivers’ table, the query runs an order of magnitude faster.

A second connection to the same connectionId from user “foo” leverages the cached
table from the other active Beeline session, significantly increasing query execution speed:

Hortonworks Data Platform May 17, 2018

61

Overriding Spark Configuration Settings

If the Spark Thrift server is unable to find an existing Spark AM for a user connection,
by default the Thrift server launches a new Spark AM to service user queries. This is
applicable to named connections and unnamed connections. When a new Spark AM is to
be launched, you can override current Spark configuration settings by specifying them in
the connection URL. Specify Spark configuration settings as hiveconf variables prepended
by the sparkconf prefix:

The following connection URL includes a spark.executor.memory setting of 4 GB:

Hortonworks Data Platform May 17, 2018

62

jdbc:hive2://sandbox.hortonworks.com:10015/foo_db;principal=hive/_HOST@REALM.
COM?spark.sql.thriftServer.connectionId=my_conn;sparkconf.spark.executor.
memory=4g

The environment tab of the Spark application shows the appropriate value:

8.3. Calling Hive User-Defined Functions
You can call built-in Hive UDFs, UDAFs, and UDTFs and custom UDFs from Spark SQL
applications if the functions are available in the standard Hive .jar file. When using Hive
UDFs, use HiveContext (not SQLContext).

8.3.1. Using Built-in UDFs

The following interactive example reads and writes to HDFS under Hive directories, using
hiveContext and the built-in collect_list(col) UDF. The collect_list(col)
UDF returns a list of objects with duplicates. In a production environment, this type of
operation runs under an account with appropriate HDFS permissions; the following
example uses hdfs user.

1. Launch the Spark Shell on a YARN cluster:

su hdfs
cd $SPARK_HOME
./bin/spark-shell --num-executors 2 --executor-memory 512m --master yarn-
client

2. At the Scala REPL prompt, construct a HiveContext instance:

val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)

3. Invoke the Hive collect_list UDF:

scala> hiveContext.sql("from TestTable SELECT key, collect_list(value) group
 by key order by key").collect.foreach(println)

8.3.2. Using Custom UDFs

You can register custom functions in Python, Java, or Scala, and use them within SQL
statements.

When using a custom UDF, ensure that the .jar file for your UDF is included with your
application, or use the --jars command-line option to specify the file.

Hortonworks Data Platform May 17, 2018

63

The following example uses a custom Hive UDF. This example uses the more limited
SQLContext, instead of HiveContext.

1. Launch spark-shell with hive-udf.jar as its parameter:

./bin/spark-shell --jars <path-to-your-hive-udf>.jar

2. From spark-shell, define a function:

scala> sqlContext.sql("""create temporary function balance as 'org.package.
hiveudf.BalanceFromRechargesAndOrders'""");

3. From spark-shell, invoke your UDF:

scala> sqlContext.sql("""
create table recharges_with_balance_array as
select
 reseller_id,
 phone_number,
 phone_credit_id,
 date_recharge,
 phone_credit_value,
 balance(orders,'date_order', 'order_value', reseller_id, date_recharge,
 phone_credit_value) as balance
from orders
""");

8.4. Using Spark Streaming
Spark Streaming is an extension of the core spark package. Using Spark Streaming, your
applications can ingest data from sources such as Apache Kafka and Apache Flume; process
the data using complex algorithms expressed with high-level functions like map, reduce,
join, and window; and send results to file systems, databases, and live dashboards.

Spark Streaming receives live input data streams and divides the data into batches, which
are then processed by the Spark engine to generate the final stream of results in batches:

See the Apache Spark Streaming Programming Guide for conceptual information;
programming examples in Scala, Java, and Python; and performance tuning
recommendations.

Apache Spark 1.6 has built-in support for the Apache Kafka 08 API. If you want to access
a Kafka 0.10 cluster using new Kafka 0.10 APIs (such as wire encryption support) from
Spark 1.6 streaming jobs, the spark-kafka-0-10-connector package supports a Kafka
0.10 connector for Spark 1.x streaming. See the package readme file for additional
documentation.

The remainder of this subsection describes general steps for developers using Spark
Streaming with Kafka on a Kerberos-enabled cluster; it includes a sample pom.xml file for

https://spark.apache.org/docs/1.6.3/streaming-programming-guide.html
https://github.com/hortonworks-spark/skc

Hortonworks Data Platform May 17, 2018

64

Spark Streaming applications with Kafka. For additional examples, see the Apache GitHub
example repositories for Scala, Java, and Python.

Important

Dynamic Resource Allocation does not work with Spark Streaming.

8.4.1. Prerequisites
Before running a Spark Streaming application, Spark and Kafka must be deployed on the
cluster.

Unless you are running a job that is part of the Spark examples package installed by
Hortonworks Data Platform (HDP), you must add or retrieve the HDP spark-streaming-
kafka .jar file and associated .jar files before running your Spark job.

8.4.2. Building and Running a Secure Spark Streaming Job
Depending on your compilation and build processes, one or more of the following tasks
might be required before running a Spark Streaming job:

• If you are using maven as a compile tool:

1. Add the Hortonworks repository to your pom.xml file:

<repository>
 <id>hortonworks</id>
 <name>hortonworks repo</name>
 <url>http://repo.hortonworks.com/content/repositories/releases/</url>
</repository>

2. Specify the Hortonworks version number for Spark streaming Kafka and streaming
dependencies to your pom.xml file:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming-kafka_2.10</artifactId>
 <version>1.6.3.2.4.2.0-90</version>
</dependency>

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming_2.10</artifactId>
 <version>1.6.3.2.4.2.0-90</version>
 <scope>provided</scope>
</dependency>

Note that the correct version number includes the Spark version and the HDP version.

3. (Optional) If you prefer to pack an uber .jar rather than use the default ("provided"),
add the maven-shade-plugin to your pom.xml file:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <executions>

https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/python/streaming

Hortonworks Data Platform May 17, 2018

65

 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>
 <exclude>META-INF/*.SF</exclude>
 <exclude>META-INF/*.DSA</exclude>
 <exclude>META-INF/*.RSA</exclude>
 </excludes>
 </filter>
 </filters>
 <finalName>uber-${project.artifactId}-${project.version}</
finalName>
 </configuration>
</plugin>

• Instructions for submitting your job depend on whether you used an uber .jar file or not:

• If you kept the default .jar scope and you can access an external network, use --
packages to download dependencies in the runtime library:

spark-submit --master yarn-client \
 --num-executors 1 \
 --packages org.apache.spark:spark-streaming-kafka_2.10:1.6.3.2.4.2.
0-90 \
 --repositories http://repo.hortonworks.com/content/repositories/
releases/ \
 --class <user-main-class> \
 <user-application.jar> \
 <user arg lists>

The artifact and repository locations should be the same as specified in your pom.xml
file.

• If you packed the .jar file into an uber .jar, submit the .jar file in the same way as you
would a regular Spark application:

spark-submit --master yarn-client \
 --num-executors 1 \
 --class <user-main-class> \
 <user-uber-application.jar> \
 <user arg lists>

For a sample pom.xml file, see Sample pom.xml file for Spark Streaming with Kafka.

8.4.3. Running Spark Streaming Jobs on a Kerberos-Enabled
Cluster

To run a Spark Streaming job on a Kerberos-enabled cluster, complete the following steps:

1. Select or create a user account to be used as principal.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/using-spark-streaming.html#spark-streaming-pom-file

Hortonworks Data Platform May 17, 2018

66

This should not be the kafka or spark service account.

2. Generate a keytab for the user.

3. Create a Java Authentication and Authorization Service (JAAS) login configuration file:
for example, key.conf.

4. Add configuration settings that specify the user keytab.

The keytab and configuration files are distributed using YARN local resources. Because
they reside in the current directory of the Spark YARN container, you should specify the
location as ./v.keytab.

The following example specifies keytab location ./v.keytab for principal
vagrant@example.com:

KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="v.keytab"
 storeKey=true
 useTicketCache=false
 serviceName="kafka"
 principal="vagrant@EXAMPLE.COM";
};

5. In your spark-submit command, pass the JAAS configuration file and keytab as local
resource files, using the --files option, and specify the JAAS configuration file options
to the JVM options specified for the driver and executor:

spark-submit \
 --files key.conf#key.conf,v.keytab#v.keytab \
 --driver-java-options "-Djava.security.auth.login.config=./key.conf" \
 --conf "spark.executor.extraJavaOptions=-Djava.security.auth.login.
config=./key.conf" \
...

6. Pass any relevant Kafka security options to your streaming application.

For example, the KafkaWordCount example accepts PLAINTEXTSASL as the last option
in the command line:

KafkaWordCount /vagrant/spark-examples.jar c6402:2181 abc ts 1
PLAINTEXTSASL

8.4.4. Sample pom.xml File for Spark Streaming with Kafka
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>test</groupId>
 <artifactId>spark-kafka</artifactId>

Hortonworks Data Platform May 17, 2018

67

 <version>1.0-SNAPSHOT</version>

 <repositories>
 <repository>
 <id>hortonworks</id>
 <name>hortonworks repo</name>
 <url>http://repo.hortonworks.com/content/repositories/releases/</
url>
 </repository>
 </repositories>

 <dependencies>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming-kafka_2.10</artifactId>
 <version>1.6.3.2.4.2.0-90</version>
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming_2.10</artifactId>
 <version>1.6.3.2.4.2.0-90</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <defaultGoal>package</defaultGoal>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 <resource>
 <directory>src/test/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-resources-plugin</artifactId>
 <configuration>
 <encoding>UTF-8</encoding>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>copy-resources</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>net.alchim31.maven</groupId>
 <artifactId>scala-maven-plugin</artifactId>
 <version>3.2.0</version>
 <configuration>
 <recompileMode>incremental</recompileMode>
 <args>
 <arg>-target:jvm-1.7</arg>
 </args>

Hortonworks Data Platform May 17, 2018

68

 <javacArgs>
 <javacArg>-source</javacArg>
 <javacArg>1.7</javacArg>
 <javacArg>-target</javacArg>
 <javacArg>1.7</javacArg>
 </javacArgs>
 </configuration>
 <executions>
 <execution>
 <id>scala-compile</id>
 <phase>process-resources</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 <execution>
 <id>scala-test-compile</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>

 <executions>
 <execution>
 <phase>compile</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <filters>
 <filter>
 <artifact>*:*</artifact>
 <excludes>

Hortonworks Data Platform May 17, 2018

69

 <exclude>META-INF/*.SF</exclude>
 <exclude>META-INF/*.DSA</exclude>
 <exclude>META-INF/*.RSA</exclude>
 </excludes>
 </filter>
 </filters>
 <finalName>uber-${project.artifactId}-${project.version}</
finalName>
 </configuration>
 </plugin>

 </plugins>

 </build>
</project>

8.5. HBase Data on Spark with Connectors
Software connectors are architectural elements in the cluster that facilitate interaction
between different Hadoop components. For real-time and near-real-time data analytics,
there are connectors that bridge the gap between the HBase key-value store and complex
relational SQL queries that Spark supports. Developers can enrich applications and
interactive tools with connectors because connectors allow operations such as complex SQL
queries on top of an HBase table inside Spark and table JOINs against data frames.

Important

The HDP bundle includes two different connectors that extract datasets out of
HBase and streams them into Spark:

• Hortonworks Spark-HBase Connector

• RDD-Based Spark-HBase Connector: a connector from Apache HBase
that uses resilient distributed datasets (RDDs)

8.5.1. Selecting a Connector

The two connectors are designed to meet the needs of different workloads. In general,
use the Hortonworks Spark-HBase Connector for SparkSQL, DataFrame, and other
fixed schema workloads. Use the RDD-Based Spark-HBase Connector for RDDs and
other flexible schema workloads.

Hortonworks Spark-HBase Connector

When using the connector developed by Hortonworks, the underlying context is data
frame, with support for optimizations such as partition pruning, predicate pushdowns,
and scanning. The connector is highly optimized to push down filters into the HBase level,
speeding up workload. The tradeoff is limited flexibility because you must specify your
schema upfront. The connector leverages the standard Spark DataSource API for query
optimization.

The connector is open-sourced for the community. The Hortonworks Spark-HBase
Connector library is available as a downloadable Spark package at https://github.com/

https://github.com/hortonworks-spark/shc

Hortonworks Data Platform May 17, 2018

70

hortonworks-spark/shc. The repository readme file contains information about how to use
the package with Spark applications.

For more information about the connector, see A Year in Review blog.

RDD-Based Spark-HBase Connector

The RDD-based connector is developed by the Apache community. The connector is
designed with full flexibility in mind: you can define schema on read and therefore it
is suitable for workloads where schema is undefined at ingestion time. However, the
architecture has some tradeoffs when it comes to performance.

Refer to the following table for other factors that might affect your choice of connector,
source repos, and code examples.

Table 8.1. Comparison of the Spark-HBase Connectors

 Hortonworks Spark-HBase Connector
Connector

RDD-Based Spark-HBase Connector

Source Hortonworks Apache HBase community

Apache Open Source? Yes Yes

Requires a Schema? Yes: Fixed schema No: Flexible schema

Suitable Data for
Connector

SparkSQL or DataFrame RDD

Main Repo shc git repo Apache hbase-spark git repo

Sample Code for Java Not available Apache hbase.git repo

Sample Code for
Scala

shc git repo Apache hbase.git repo

8.5.2. Using the Connector with Apache Phoenix

If you use a Spark-HBase connector in an environment that uses Apache Phoenix as a
SQL skin, be aware that both connectors use only HBase .jar files by default. If you want
to submit jobs on an HBase cluster with Phoenix enabled, you must include --jars
phoenix-server.jar in your spark-submit command. For example:

./bin/spark-submit --class your.application.class \
--master yarn-client \
--num-executors 2 \
--driver-memory 512m \
--executor-memory 512m --executor-cores 1 \
--packages com.hortonworks:shc:1.0.0-1.6-s_2.10 \
--repositories http://repo.hortonworks.com/content/groups/
public/ \
--jars /usr/hdp/current/phoenix-client/phoenix-server.jar \
--files /etc/hbase/conf/hbase-site.xml /To/your/application/jar

8.6. Accessing HDFS Files from Spark
This subsection contains information for running Spark jobs over HDFS data.

https://github.com/hortonworks-spark/shc
https://hortonworks.com/blog/spark-hbase-connector-a-year-in-review/
https://github.com/hortonworks-spark/shc
https://github.com/hortonworks-spark/shc/tree/master/examples/src/main/scala/org/apache/spark/sql/execution/datasources/hbase

Hortonworks Data Platform May 17, 2018

71

8.6.1. Specifying Compression
To add a compression library to Spark, you can use the --jars option. For an example, see
Adding Libraries to Spark.

To save a Spark RDD to HDFS in compressed format, use code similar to the following (the
example uses the GZip algorithm):

rdd.saveAsHadoopFile("/tmp/spark_compressed",
 "org.apache.hadoop.mapred.TextOutputFormat",
 compressionCodecClass="org.apache.hadoop.io.compress.
GzipCodec")

For more information about supported compression algorithms, see Configuring HDFS
Compression in the HDFS Administration Guide.

8.6.2. Accessing HDFS from PySpark
When accessing an HDFS file from PySpark, you must set HADOOP_CONF_DIR in an
environment variable, as in the following example:

export HADOOP_CONF_DIR=/etc/hadoop/conf
[hrt_qa@ip-172-31-42-188 spark]$ pyspark
[hrt_qa@ip-172-31-42-188 spark]$ >>>lines = sc.textFile("hdfs://
ip-172-31-42-188.ec2.internal:8020/tmp/PySparkTest/file-01")
.......

If HADOOP_CONF_DIR is not set properly, you might see the following error:

Error from secure cluster

2016-08-22 00:27:06,046|t1.machine|INFO|1580|140672245782272|MainThread|
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.
PythonRDD.collectAndServe.
2016-08-22 00:27:06,047|t1.machine|INFO|1580|140672245782272|MainThread|: org.
apache.hadoop.security.AccessControlException: SIMPLE authentication is not
 enabled. Available:[TOKEN, KERBEROS]
2016-08-22 00:27:06,047|t1.machine|INFO|1580|140672245782272|MainThread|at
 sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
2016-08-22 00:27:06,047|t1.machine|INFO|1580|140672245782272|
MainThread|at sun.reflect.NativeConstructorAccessorImpl.
newInstance(NativeConstructorAccessorImpl.java:57)
2016-08-22 00:27:06,048|t1.machine|INFO|1580|140672245782272|MainThread|at
{code}

8.7. Accessing ORC Data in Hive Tables
Apache Spark on HDP supports the Optimized Row Columnar (ORC) file format, a self-
describing, type-aware, column-based file format that is one of the primary file formats
supported in Apache Hive. ORC reduces I/O overhead by accessing only the columns that
are required for the current query. It requires significantly fewer seek operations because
all columns within a single group of row data (known as a stripe) are stored together on
disk.

Spark ORC data source supports ACID transactions, snapshot isolation, built-in indexes, and
complex data types (such as array, map, and struct), and provides read and write access

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_spark-component-guide/content/spark-add-libraries.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_hdfs-administration/content/ch_configuring_hdfs_compression.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_hdfs-administration/content/ch_configuring_hdfs_compression.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC#LanguageManualORC-FileStructure
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

Hortonworks Data Platform May 17, 2018

72

to ORC files. It leverages the Spark SQL Catalyst engine for common optimizations such as
column pruning, predicate push-down, and partition pruning.

Note

You may encounter an issue (SPARK-24322) with the Spark ORC file native
implementation where the timestamp type returns incorrect millisecond values
with spark.sql.orc.impl=native.

Workaround: Set spark.sql.orc.impl=hive.

8.7.1. Accessing ORC Files from Spark

To start using ORC, you can define a SparkSession instance:

import org.apache.spark.sql.SparkSession
val spark = SparkSession.builder().getOrCreate()
import spark.implicits._

The following example uses data structures to demonstrate working with complex types.
The Person struct data type has a name, an age, and a sequence of contacts, which are
themselves defined by names and phone numbers.

1. Define Contact and Person data structures:

case class Contact(name: String, phone: String)
case class Person(name: String, age: Int, contacts: Seq[Contact])

2. Create 100 Person records:

val records = (1 to 100).map { i =>;
 Person(s"name_$i", i, (0 to 1).map { m => Contact(s"contact_$m", s"phone_
$m") })
}

In the physical file, these records are saved in columnar format. When accessing ORC files
through the DataFrame API, you see rows.

3. To write person records as ORC files to a directory named “people”, you can use the
following command:

records.toDF().write.format("orc").save("people")

4. Read the objects back:

val people = sqlContext.read.format("orc").load("people.json")

5. For reuse in future operations, register the new "people" directory as temporary table
“people”:

people.createOrReplaceTempView("people")

6. After you register the temporary table “people”, you can query columns from the
underlying table:

sqlContext.sql("SELECT name FROM people WHERE age < 15").count()

https://issues.apache.org/jira/browse/SPARK-24322

Hortonworks Data Platform May 17, 2018

73

In this example the physical table scan loads only columns name and age at runtime,
without reading the contacts column from the file system. This improves read performance.

You can also use Spark DataFrameReader and DataFrameWriter methods to access
ORC files.

8.7.2. Predicate Push-Down Optimization

The columnar nature of the ORC format helps avoid reading unnecessary columns, but
it is still possible to read unnecessary rows. The example in this subsection reads all rows
in which the age value is between 0 and 100, even though the query requested rows in
which the age value is less than 15 ("...WHERE age < 15"). Such full table scanning is an
expensive operation.

ORC avoids this type of overhead by using predicate push-down, with three levels of built-in
indexes within each file: file level, stripe level, and row level:

• File-level and stripe-level statistics are in the file footer, making it easy to determine if the
rest of the file must be read.

• Row-level indexes include column statistics for each row group and position, for finding
the start of the row group.

ORC uses these indexes to move the filter operation to the data loading phase by reading
only data that potentially includes required rows.

This combination of predicate push-down with columnar storage reduces disk I/O
significantly, especially for larger datasets in which I/O bandwidth becomes the main
bottleneck to performance.

ORC predicate push-down is enabled by default in Spark SQL.

8.7.3. Loading ORC Data into DataFrames Using Predicate
Push-Down

DataFrames look similar to Spark RDDs but have higher-level semantics built into their
operators. This allows optimization to be pushed down to the underlying query engine.

Here is the Scala API version of the SELECT query used in the previous section, using the
DataFrame API:

val spark = SparkSession.builder().getOrCreate()
val people = spark.read.format("orc").load("peoplePartitioned")
people.filter(people("age") < 15).select("name").show()

DataFrames are not limited to Scala. There is a Java API and, for data scientists, a Python
API binding:

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
people = spark.read.format("orc").load("peoplePartitioned")
people.filter(people.age < 15).select("name").show()

https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/sql/DataFrameReader.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/sql/DataFrameWriter.html

Hortonworks Data Platform May 17, 2018

74

8.7.4. Optimizing Queries Through Partition Pruning

When predicate push-down optimization is not applicable—for example, if all stripes
contain records that match the predicate condition—a query with a WHERE clause might
need to read the entire data set. This becomes a bottleneck over a large table. Partition
pruning is another optimization method; it exploits query semantics to avoid reading large
amounts of data unnecessarily.

Partition pruning is possible when data within a table is split across multiple logical
partitions. Each partition corresponds to a particular value of a partition column and
is stored as a subdirectory within the table root directory on HDFS. Where applicable,
only the required partitions (subdirectories) of a table are queried, thereby avoiding
unnecessary I/O.

Spark supports saving data in a partitioned layout seamlessly, through the partitionBy
method available during data source write operations. To partition the "people" table by
the “age” column, you can use the following command:

people.write.format("orc").partitionBy("age").save("peoplePartitioned")

As a result, records are automatically partitioned by the age field and then
saved into different directories: for example, peoplePartitioned/age=1/,
peoplePartitioned/age=2/, and so on.

After partitioning the data, subsequent queries can omit large amounts of I/O when
the partition column is referenced in predicates. For example, the following query
automatically locates and loads the file under peoplePartitioned/age=20/and omits
all others:

val peoplePartitioned = spark.read.format("orc").load("peoplePartitioned")
peoplePartitioned.createOrReplaceTempView("peoplePartitioned")
spark.sql("SELECT * FROM peoplePartitioned WHERE age = 20")

8.7.5. Enabling Vectorized Query Execution

Vectorized query execution is a feature that greatly reduces the CPU usage for typical query
operations such as scans, filters, aggregates, and joins. Vectorization is also implemented
for the ORC format. Spark also uses Whole Stage Codegen and this vectorization (for
Parquet) since Spark 2.0 (released on July 26, 2016).

Use the following steps to implement the new ORC format and enable vectorization for
ORC files with SparkSQL.

1. On the Ambari Dashboard, select Spark2 > Configs. For Spark shells and applications,
click Custom spark2-defaults, then add the following properties. For the Spark Thrift
Server, add these properties under Custom spark2-thrift-sparkconf.

• spark.sql.orc.enabled=true – Enables the new ORC format to read/write
Spark data source tables and files.

• spark.sql.hive.convertMetastoreOrc=true – Enables the new ORC format
to read/write Hive tables.

Hortonworks Data Platform May 17, 2018

75

• spark.sql.orc.char.enabled=true – Enables the new ORC format to use
CHAR types to read Hive tables. By default, STRING types are used for performance
reasons. This is an optional configuration for Hive compatibility.

2. Click Save, then restart Spark and any other components that require a restart.

8.7.6. Reading Hive ORC Tables

For existing Hive tables, Spark can read them without createOrReplaceTempView. If
the table is stored as ORC format, predicate Push-down, partition pruning, and vectorized
query execution are also applied according to the configuration.

spark.sql("SELECT * FROM hiveTable WHERE age = 20")

8.7.7. Additional Resources

• Apache ORC website: https://orc.apache.org/

• ORC performance:

• http://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-
performance/

• https://www.slideshare.net/Hadoop_Summit/performance-update-when-apache-orc-
met-apache-spark-81023199

• Get Started with Spark: http://hortonworks.com/hadoop/spark/get-started/

8.8. Using Custom Libraries with Spark
Spark comes equipped with a selection of libraries, including Spark SQL, Spark Streaming,
and MLlib.

If you want to use a custom library, such as a compression library or Magellan, you can use
one of the following two spark-submit script options:

• The --jars option, which transfers associated .jar files to the cluster. Specify a list of
comma-separated .jar files.

• The --packages option, which pulls files directly from Spark packages. This approach
requires an internet connection.

For example, you can use the --jars option to add codec files. The following example
adds the LZO compression library:

spark-submit --driver-memory 1G \
 --executor-memory 1G \
 --master yarn-client \
 --jars /usr/hdp/2.6.0.3-8/hadoop/lib/hadoop-lzo-0.6.0.2.6.0.3-8.jar \
 test_read_write.py

For more information about the two options, see Advanced Dependency Management on
the Apache Spark "Submitting Applications" web page.

https://orc.apache.org/
https://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/
https://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/
https://www.slideshare.net/Hadoop_Summit/performance-update-when-apache-orc-met-apache-spark-81023199
https://www.slideshare.net/Hadoop_Summit/performance-update-when-apache-orc-met-apache-spark-81023199
https://hortonworks.com/hadoop/spark/get-started/
https://hortonworks.com/blog/magellan-geospatial-analytics-in-spark/
http://spark.apache.org/docs/1.6.3/submitting-applications.html#advanced-dependency-management

Hortonworks Data Platform May 17, 2018

76

Note

If you launch a Spark job that references a codec library without specifying
where the codec resides, Spark returns an error similar to the following:

Caused by: java.lang.IllegalArgumentException: Compression codec
 com.hadoop.compression.lzo.LzoCodec not found.

To address this issue, specify the codec file with the --jars option in your job
submit command.

Hortonworks Data Platform May 17, 2018

77

9. Using Spark from R: SparkR
SparkR is an R package that provides a lightweight front end for using Apache Spark
from R, supporting large-scale analytics on Hortonworks Data Platform (HDP) from the R
language and environment.

SparkR provides a distributed data frame implementation that supports operations like
selection, filtering, and aggregation on large datasets. In addition, SparkR supports
distributed machine learning through MLlib.

This chapter lists prerequisites, followed by a SparkR example. Here are several links to
additional information:

• For information about SparkR architecture and the use of SparkR in a data science
workflow, see Integrate SparkR and R for Better Data Science Workflow.

• For information about how to install and use R packages with SparkR, see Using R
Packages with SparkR.

• For additional SparkR information, see the Apache SparkR documentation for your
version of Apache Spark (the link is for Spark 1, version 1.6.3).

9.1. Prerequisites
Before you run SparkR, ensure that your cluster meets the following prerequisites:

• R must be installed on all nodes. Commands for installing R are specific to the operating
system. For example, for CentOS you would log on as root and run the following
command:

yum install R

• JAVA_HOME must be set on all nodes.

9.2. SparkR Example
The following example launches SparkR, and then uses R to create a people DataFrame
in Spark 1.6. The example then lists part of the DataFrame, and reads the DataFrame. (For
more information about Spark DataFrames, see "Using the Spark DataFrame API").

1. Launch SparkR:

su spark
cd /usr/hdp/2.6.0.0-598/spark/bin
./sparkR

Output similar to the following displays:

https://hortonworks.com/blog/integrate-sparkr-and-r-for-better-data-science-workflow/
https://community.hortonworks.com/content/kbentry/105781/using-r-packages-with-sparkr-3.html
https://community.hortonworks.com/content/kbentry/105781/using-r-packages-with-sparkr-3.html
https://spark.apache.org/docs/1.6.3/sparkr.html

Hortonworks Data Platform May 17, 2018

78

Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 1.6.3
 /_/

Spark context is available as sc, SQL context is available as sqlContext
>

2. From your R prompt (not the Spark shell), initialize SQLContext, create a DataFrame,
and list the first few rows:

sqlContext <- sparkRSQL.init(sc)
df <- createDataFrame(sqlContext, faithful)
head(df)

You should see results similar to the following:

...
 eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55

3. Read the people DataFrame:

people <- read.df(sqlContext, "people.json", "json")
head(people)

You should see results similar to the following:

 age name
1 NA Michael
2 30 Andy
3 19 Justin

Hortonworks Data Platform May 17, 2018

79

10. Tuning Spark
When tuning Apache Spark applications, it is important to understand how Spark works
and what types of resources your application requires. For example, machine learning
tasks are usually CPU intensive, whereas extract, transform, load (ETL) operations are I/O
intensive.

This chapter provides an overview of approaches for assessing and tuning Spark
performance.

10.1. Provisioning Hardware
For general information about Spark memory use, including node distribution, local disk,
memory, network, and CPU core recommendations, see the Apache Spark Hardware
Provisioning document.

10.2. Checking Job Status
If a job takes longer than expected or does not finish successfully, check the following to
understand more about where the job stalled or failed:

• To list running applications by ID from the command line, use yarn application –
list.

• To see a description of a resilient distributed dataset (RDD) and its recursive
dependencies (useful for understanding how jobs are executed) use toDebugString()
on the RDD.

• To check the query plan when using the DataFrame API, use DataFrame#explain().

10.3. Checking Job History
You can use the following resources to view job history:

• Spark history server UI: view information about Spark jobs that have completed.

1. On an Ambari-managed cluster, in the Ambari Services tab, select Spark.

2. Click Quick Links.

3. Choose the Spark history server UI.

Ambari displays a list of jobs.

4. Click "App ID" for job details.

• Spark history server web UI: view information about Spark jobs that have completed.

In a browser window, navigate to the history server web UI. The default host port is
<host>:18080.

https://spark.apache.org/docs/1.6.3/hardware-provisioning.html
https://spark.apache.org/docs/1.6.3/hardware-provisioning.html

Hortonworks Data Platform May 17, 2018

80

• YARN web UI: view job history and time spent in various stages of the job:

http://<host>:8088/proxy/<job_id>/environment/

http://<host>:8088/proxy/<app_id>/stages/

• yarn logs command: list the contents of all log files from all containers associated with
the specified application.

yarn logs -applicationId <app_id>.

• Hadoop Distributed File System (HDFS) shell or API: view container log files.

For more information, see "Debugging your Application" in the Apache document
Running Spark on YARN.

10.4. Improving Software Performance
To improve Spark performance, assess and tune the following operations:

• Minimize shuffle operations where possible.

• Match join strategy (ShuffledHashJoin vs. BroadcastHashJoin) to the table.

This requires manual configuration.

• Consider switching from the default serializer to the Kryo serializer to improve
performance.

This requires manual configuration and class registration.

• Adjust YARN memory allocation

The following subsection describes YARN memory allocation in more detail.

10.4.1. Configuring YARN Memory Allocation for Spark

This section describes how to manually configure YARN memory allocation settings based
on node hardware specifications.

YARN evaluates all available compute resources on each machine in a cluster and
negotiates resource requests from applications running in the cluster. YARN then provides
processing capacity to each application by allocating containers. A container is the basic
unit of processing capacity in YARN; it is an encapsulation of resource elements such as
memory (RAM) and CPU.

In a Hadoop cluster, it is important to balance the use of RAM, CPU cores, and disks so that
processing is not constrained by any one of these cluster resources.

When determining the appropriate YARN memory configurations for Spark, note the
following values on each node:

• RAM (amount of memory)

http://spark.apache.org/docs/1.6.3/running-on-yarn.html

Hortonworks Data Platform May 17, 2018

81

• CORES (number of CPU cores)

When configuring YARN memory allocation for Spark, consider the following information:

• Driver memory does not need to be large if the job does not aggregate much data (as
with a collect() action).

• There are tradeoffs between num-executors and executor-memory.

Large executor memory does not imply better performance, due to JVM garbage
collection. Sometimes it is better to configure a larger number of small JVMs than a small
number of large JVMs.

• Executor processes are not released if the job has not finished, even if they are no longer
in use.

Therefore, do not overallocate executors above your estimated requirements.

In yarn-cluster mode, the Spark driver runs inside an application master process that
is managed by YARN on the cluster. The client can stop after initiating the application.
The following example shows starting a YARN client in yarn-cluster mode, specifying
the number of executors and associated memory and core, and driver memory. The client
starts the default Application Master, and SparkPi runs as a child thread of the Application
Master. The client periodically polls the Application Master for status updates and displays
them on the console.

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-cluster \
 --num-executors 3 \
 --driver-memory 4g \
 --executor-memory 2g \
 --executor-cores 1 \
 lib/spark-examples*.jar 10

In yarn-client mode, the driver runs in the client process. The application master is
used only to request resources for YARN. To launch a Spark application in yarn-client
mode, replace yarn-cluster with yarn-client. The following example launches the
Spark shell in yarn-client mode and specifies the number of executors and associated
memory:

./bin/spark-shell --num-executors 32 \
 --executor-memory 24g \
 --master yarn-client

	Hortonworks Data Platform
	Table of Contents
	1. Analyzing Data with Apache Spark
	2. Installing Spark
	2.1. Installing Spark Using Ambari
	2.2. Installing Spark Manually
	2.3. Verifying Spark Configuration for Hive Access
	2.4. Installing the Spark Thrift Server After Deploying Spark
	2.5. Validating the Spark Installation

	3. Configuring Spark
	3.1. Configuring the Spark SQL Hive Warehouse Directory
	3.2. Configuring the Spark Thrift Server
	3.2.1. Enabling Spark SQL User Impersonation for the Spark Thrift Server
	3.2.2. Customizing the Spark Thrift Server Port

	3.3. Configuring the Livy Server
	3.3.1. Configuring SSL for the Livy Server
	3.3.2. Configuring High Availability for the Livy Server

	3.4. Configuring the Spark History Server
	3.5. Configuring Dynamic Resource Allocation
	3.5.1. Customizing Dynamic Resource Allocation Settings on an Ambari-Managed Cluster
	3.5.2. Configuring Cluster Dynamic Resource Allocation Manually
	3.5.3. Configuring a Job for Dynamic Resource Allocation
	3.5.4. Dynamic Resource Allocation Properties

	3.6. Configuring Spark for Wire Encryption
	3.6.1. Configuring Spark for Wire Encryption
	3.6.2. Configuring Spark2 for Wire Encryption

	3.7. Configuring Spark for a Kerberos-Enabled Cluster
	3.7.1. Configuring the Spark History Server
	3.7.2. Configuring the Spark Thrift Server
	3.7.3. Setting Up Access for Submitting Jobs

	4. Running Spark
	4.1. Specifying Which Version of Spark to Run
	4.2. Running Sample Spark 1.x Applications
	4.2.1. Spark Pi
	4.2.2. WordCount

	4.3. Running Sample Spark 2.x Applications
	4.3.1. Spark Pi
	4.3.2. WordCount

	5. Submitting Spark Applications Through Livy
	5.1. Using Livy with Spark Versions 1 and 2
	5.2. Using Livy with Interactive Notebooks
	5.3. Using the Livy API to Run Spark Jobs: Overview
	5.4. Running an Interactive Session With the Livy API
	5.4.1. Livy Objects for Interactive Sessions
	5.4.2. Setting Path Variables for Python
	5.4.3. Livy API Reference for Interactive Sessions

	5.5. Submitting Batch Applications Using the Livy API
	5.5.1. Livy Batch Object
	5.5.2. Livy API Reference for Batch Jobs

	6. Running PySpark in a Virtual Environment
	7. Automating Spark Jobs with Oozie Spark Action
	7.1. Configuring Oozie Spark Action for Spark 1
	7.2. Configuring Oozie Spark Action for Spark 2

	8. Developing Spark Applications
	8.1. Using the Spark DataFrame API
	8.2. Using Spark SQL
	8.2.1. Accessing Spark SQL through the Spark Shell
	8.2.2. Accessing Spark SQL through JDBC or ODBC: Prerequisites
	8.2.3. Accessing Spark SQL through JDBC
	8.2.4. Accessing Spark SQL through ODBC
	8.2.5. Spark SQL User Impersonation
	8.2.5.1. Permissions and ACL Enforcement
	8.2.5.2. Spark Thrift Server as Proxy
	8.2.5.3. Enhancements for Connection URL Support.
	8.2.5.4. Advanced Connection Management Features

	8.3. Calling Hive User-Defined Functions
	8.3.1. Using Built-in UDFs
	8.3.2. Using Custom UDFs

	8.4. Using Spark Streaming
	8.4.1. Prerequisites
	8.4.2. Building and Running a Secure Spark Streaming Job
	8.4.3. Running Spark Streaming Jobs on a Kerberos-Enabled Cluster
	8.4.4. Sample pom.xml File for Spark Streaming with Kafka

	8.5. HBase Data on Spark with Connectors
	8.5.1. Selecting a Connector
	8.5.2. Using the Connector with Apache Phoenix

	8.6. Accessing HDFS Files from Spark
	8.6.1. Specifying Compression
	8.6.2. Accessing HDFS from PySpark

	8.7. Accessing ORC Data in Hive Tables
	8.7.1. Accessing ORC Files from Spark
	8.7.2. Predicate Push-Down Optimization
	8.7.3. Loading ORC Data into DataFrames Using Predicate Push-Down
	8.7.4. Optimizing Queries Through Partition Pruning
	8.7.5. Enabling Vectorized Query Execution
	8.7.6. Reading Hive ORC Tables
	8.7.7. Additional Resources

	8.8. Using Custom Libraries with Spark

	9. Using Spark from R: SparkR
	9.1. Prerequisites
	9.2. SparkR Example

	10. Tuning Spark
	10.1. Provisioning Hardware
	10.2. Checking Job Status
	10.3. Checking Job History
	10.4. Improving Software Performance
	10.4.1. Configuring YARN Memory Allocation for Spark

