
Using Apache Phoenix to store and access data 3

Using Apache Phoenix to store and access data
Date of Publish: 2018-08-30

http://docs.hortonworks.com

http://docs.hortonworks.com

Using Apache Phoenix to store and access data | Contents | ii

Contents

What's New in Apache Phoenix..4

Orchestrating SQL and APIs with Apache Phoenix...4
Enable Phoenix and interdependent components...4
Thin Client connectivity with Phoenix Query Server..5

Secure authentication on the Phoenix Query Server... 5
Options to obtain a client driver.. 5

Obtaining a driver for application development.. 6

Creating and using User-Defined functions (UDFs) in Phoenix.......................... 6

Overview of mapping Phoenix schemas to HBase namespaces............................7
Enable namespace mapping... 7

Namespace mapping properties in the hbase-site.xml file...7
Overview to managing schemas...8

Associating tables of a schema to a namespace...8
Associating table in a noncustomized environment without Kerberos..8
Associating table in a customized Kerberos environment...8

Understanding Apache Phoenix-spark connector... 9
Connect to secured cluster... 9
Considerations for setting up spark..9
Phoenix Spark connector usage examples... 10

Reading Phoenix tables.. 10
Saving Phoenix tables...11
Using PySpark to READ and WRITE tables.. 12

Limitations of Apache Phoenix-spark connector...13

Understanding Apache Phoenix-Hive connector...13
Considerations for setting up Hive.. 13
Apache Phoenix-Hive usage examples.. 14
Limitations of Phoenix-Hive connector... 15

Python library for Apache Phoenix..15
Example of Phoenix Python library...16

Using index in Phoenix...16
Global indexes in Phoenix... 16
Local indexes in Phoenix... 16
Using Phoenix client to load data..16

Using Apache Phoenix to store and access data | Contents | iii

Phoenix repair tool... 17

Run the Phoenix repair tool.. 17

Using Apache Phoenix to store and access data What's New in Apache Phoenix

What's New in Apache Phoenix

Phoenix in Hortonworks Data Platform (HDP) 3.0 includes the following new features:

• HBase 2.0 support

This is one of the major release driver.
• Python driver for Phoenix Query Server

This is a community driver that is brought into the Apache Phoenix project. It Provides Python db 2.0 API
implementation.

• Query log

This is a new system table "SYSTEM.LOG" that captures information about queries that are being run against the
cluster (client-driven).

• Column encoding

This is new to HDP. You can use a custom encoding scheme of data in the HBase table to reduce the amount
of space taken. This increases the performance due to less data to read and thereby reduces the storage. The
performance gain is 30% and above for the sparse tables.

• Hive 3.0 support for Phoenix

It provides updated phoenix-hive StorageHandler for the new Hive version.
• Spark 2.3 support for Phoenix

It provides updated phoenix-spark driver for new the Spark version.
• Supports GRANT and REVOKE commands

It provides automatic changes to indexes ACLs, if access changed for data table or view.
• This version introduces support for sampling tables.
• Supports atomic update (ON DUPLICATE KEY).
• Supports snapshot scanners for MR-based queries.
• Hardening of both the secondary indexes that includes Local and Global.

Orchestrating SQL and APIs with Apache Phoenix

Apache Phoenix is a SQL abstraction layer for interacting with Apache HBase and other Hadoop components.
Phoenix lets you create and interact with tables in the form of typical DDL/DML statements via its standard JDBC
API. With the driver APIs, Phoenix translates SQL to native HBase API calls.

Consequently, Phoenix provides a SQL skin for working with data and objects stored in the NoSQL schema of
HBase.

This Phoenix documentation focuses on interoperability with HBase. For more information about Phoenix
capabilities, see the Apache Phoenix website.

Related Information
Apache Phoenix website

Enable Phoenix and interdependent components
Use Ambari to enable phoenix and its related components.

4

http://phoenix.apache.org/index.html

Using Apache Phoenix to store and access data Orchestrating SQL and APIs with Apache Phoenix

About this task

If you have a Hortonworks Data Platform installation with Ambari, then no separate installation is required for
Phoenix.

To enable Phoenix with Ambari:

Procedure

1. Open Ambari.

2. Select Services tab > HBase > Configs tab.

3. Scroll down to the Phoenix SQL settings.

4. (Optional) Reset the Phoenix Query Timeout.

5. Click the Enable Phoenix slider button.

Note:

Your Phoenix installation must be the same version as the one that is packaged with the distribution of the
HDP stack version that is deployed across your cluster.

Thin Client connectivity with Phoenix Query Server
The Phoenix Query Server (PQS) is a component of the Apache Phoenix distribution. PQS provides an alternative
means to connect directly. PQS is a stand-alone server that converts custom API calls from "thin clients" to HTTP
requests that make use of Phoenix capabilities.

This topology offloads most computation to PQS and requires a smaller client-side footprint. The PQS client protocol
is based on the Avatica component of Apache Calcite.

Secure authentication on the Phoenix Query Server

About this task

You can enable Kerberos-based authentication on PQS with Ambari. If you chose to install HDP manually instead,
see Configuring Phoenix Query Server to enable the Kerberos protocol.

Related Information
Configuring Phoenix Query Server

Options to obtain a client driver
You have two options to develop an application that works with Phoenix, depending on the client-server architecture.
They are without PQS and with PQS.

Without Phoenix Query Server:

If your environment does not have a PQS layer, applications that connnect to Phoenix must use the Phoenix JDBC
client driver.

With Phoenix Query Server:

PQS is an abstraction layer that enables other languages such as Python and GoLang to work with Phoenix. The
layer provides a protocol buffer as an HTTP wrapper around Phoenix JDBC. You might prefer to use a non-Java
client driver for one of various reasons, such as to avoid the JVM footprint on the client or to develop with a different
application framework.

5

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/security-reference/content/kerberos_nonambari_configuring_phoenix_query_server.html

Using Apache Phoenix to store and access data Creating and using User-Defined functions (UDFs) in Phoenix

Obtaining a driver for application development
To obtain the appropriate driver for application development, visit the specified site and download the driver from
appropriate file path.

JDBC Driver Use the /usr/hdp/current/phoenix-client/phoenix-
client.jar file in the Hortonworks Phoenix server-client
repository. If you use the repository, download the JAR
file corresponding to your installed HDP version. With
Ambari, you can determine the HDP version by using
the Versions tab. Alternatively, run the hadoop version
command to print information displaying the HDP
version.

JDBC Driver as a Maven dependency See Download the HDP Maven Artifacts for Maven
artifact repositories that are available for HDP.

Microsoft .NET Driver Download and install a NuGet package for the
Microsoft .NET Driver for Apache Phoenix and Phoenix
Query Server.

Note: Operability with this driver is a Hortonworks
Technical Preview and considered under development.
Do not use this feature in your production systems.
If you have questions regarding this feature, contact
Support by logging a case on the Hortonworks Support
Portal.

Other non-Java drivers Other non-JDBC Drivers for Phoenix are available
as HDP add-ons and on other websites, but they are
not currently supported by Hortonworks. You can
find compatible client drivers by constructing a web
search string consisting of "avatica" and the name of an
application programming language that you want to use.
Example: avatica python .

Related Information
Hortonworks Phoenix server-client repository

Versions tab

Microsoft .NET Driver for Apache Phoenix and Phoenix Query Server

Hortonworks Support Portal

Creating and using User-Defined functions (UDFs) in Phoenix

With a user-defined function (UDF), you can extend the functionality of your SQL statements by creating scalar
functions that operate on a specific tenant.

For details about creating, dropping, and how to use UDFs for Phoenix, see User-defined functions on the Apache
website.

Related Information
User-defined functions

6

http://repo.hortonworks.com/content/repositories/releases/org/apache/phoenix/phoenix-server-client/
https://docs.hortonworks.com/HDPDocuments/Ambari-2.7.3.0/managing-and-monitoring-ambari/content/amb_finding_current_stack_and_versions_information.html
https://www.nuget.org/packages/Microsoft.Phoenix.Client/
https://hortonworks.secure.force.com/CustomerPortalLoginPage?startURL=home/home.jsp
https://phoenix.apache.org/udf.html

Using Apache Phoenix to store and access data Overview of mapping Phoenix schemas to HBase namespaces

Overview of mapping Phoenix schemas to HBase namespaces

You can map a Phoenix schema to an HBase namespace to gain multitenancy features in Phoenix.

HBase, which is often the underlying storage engine for Phoenix, has namespaces to support multitenancy features.
Multitenancy helps an HBase user or administrator perform access control and quota management tasks. Also,
namespaces enable tighter control of where a particular data set is stored on RegionsServers. See Enabling
Multitenancy with Namepaces for further information.

Prior to HDP 2.5, Phoenix tables could not be associated with a namespace other than the default namespace.

Related Information
Enabling Multitenancy with Namepaces

Enable namespace mapping
You can enable namespace mapping by setting an appropriate property in the hbase-site.xml of both the client and the
server.

About this task

Note:

After you set the properties to enable the mapping of Phoenix schemas to HBase namespaces, reverting
the property settings renders the Phoenix database unusable. Test or carefully plan the Phoenix to HBase
namespace mappings before implementing them.

To enable Phoenix schema mapping to a non-default HBase namespace:

Procedure

1. Set the phoenix.schema.isNamespaceMappingEnabled property to true in the hbase-site.xml file of both the client
and the server.

2. Restart the HBase Master and RegionServer processes.

Note:

You might not want to map Phoenix system tables to namespaces because there are compatibility issues with
your current applications. In this case, set the phoenix.schema.mapSystemTablesToNamespace property of
the hbase-site.xml file to false.

Namespace mapping properties in the hbase-site.xml file
There are two namespace properties in the hbase-site.xml file. They are
phoenix.schema.isNamespaceMappingEnabled and phoenix.schema.mapSystemTablesToNamespace.

phoenix.schema.isNamespaceMappingEnabled Enables mapping of tables of a Phoenix schema to a non-
default HBase namespace. To enable mapping of schema
to a non-default namespace, set the value of this property
to true. Default setting for this property is false.

phoenix.schema.mapSystemTablesToNamespace With true setting (default): After namespace mapping is
enabled with the other property, all system tables, if any,
are migrated to a namespace called system.

With false setting: System tables are associated with the
default namespace.

7

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.1.0/hbase-data-access/content/hbase-namespaces.html

Using Apache Phoenix to store and access data Associating tables of a schema to a namespace

Overview to managing schemas
You can use DDL statements such as CREATE SCHEMA, USE SCHEMA and DROP SCHEMA to manage
schemas.

You must have admin privileges in HBase to run CREATE SCHEMA or DROP SCHEMA.

See the Apache Phoenix Grammar reference page for how you can use these DDL statements.

As you create physical tables, views, and indexes, you can associate them with a schema. If the schema already has
namespace mapping enabled, the newly created objects automatically become part of the HBase namespace. The
directory of the HBase namespace that maps to the Phoenix schema inherits the schema name. For example, if the
schema name is store1, then the full path to the namespace is $hbase.rootdir/data/store1. See the "F.A.Q." section of
Apache Phoenix Namespace Mapping for more information.

Related Information
Apache Phoenix Grammar

Apache Phoenix Namespace Mapping

Associating tables of a schema to a namespace

After you enable namespace mapping on a Phoenix schema that already has tables, you can migrate the tables to an
HBase namespace. The namespace directory that contains the migrated tables inherits the schema name.

For example, if the schema name is store1, then the full path to the namespace is $hbase.rootdir/data/store1. System
tables are migrated to the namespace automatically during the first connection after enabling namespace properties.

Associating table in a noncustomized environment without Kerberos
You can run an appropriate command to associate a table in a noncustomized environment without Kerberos.

Procedure

• Run the following command to associate a table:

$bin/psql.py
ZooKeeper_hostname
-m
schema_name.table_name

Associating table in a customized Kerberos environment
You can run an appropriate command to associate a table in a customized Kerberos environment.

Before you begin

Prerequisite: In a Kerberos-secured environment, you must have admin privileges (user hbase) to complete the
following task.

Procedure

1. Navigate to the Phoenix home directory. The default location is /usr/hdp/current/phoenix-client/.

8

https://phoenix.apache.org/language/index.html
https://phoenix.apache.org/namspace_mapping.html

Using Apache Phoenix to store and access data Understanding Apache Phoenix-spark connector

2. Run a command to migrate a table of a schema to a namespace, using the following command syntax for the
options that apply to your environment:

$ bin/psql.py
ZooKeeper_hostnames:2181
:zookeeper.znode.parent
:HBase_headless_keytab_location
:principal_name
;TenantId=tenant_Id
;CurrentSCN=current_SCN
-m
schema_name.table_name

Additional information for valid command parameters:

• ZooKeeper_hostnames

Enter the ZooKeeper hostname or hostnames that compose the ZooKeeper quorum. If you enter multiple
hostnames, enter them as comma-separated values. This parameter is required. You must append the colon and
ZooKeeper port number if you invoke the other security parameters in the command. The default port number
is 2181.

• zookeeper.znode.parent

This setting is defined in the hbase-site.xml file.
• -m schema_name.table_name

The -m argument is required. There is a space before and after the -m option.

Understanding Apache Phoenix-spark connector

With Hortonworks Data Platform (HDP), you can use Apache Phoenix-spark plugin on your secured clusters to
perform READ and WRITE operations. You can use this tool with HDP 2.5 or later.

Connect to secured cluster
You can connect to a secured cluster using the Phoenix JDBC connector.

Procedure

Enter the following syntax in the shell:

jdbc:phoenix:<ZK hostnames>:<ZK port>:<root znode>:<principal name>:<keytab
 file location>

jdbc:phoenix:h1.hdp.local,h2.hdp.local,h3.hdp.local:2181:/hbase-
secure:user1@HDP.LOCAL:/Users/user1/keytabs/myuser.headless.keytab

You need Principal and keytab parameters only if you have not done the kinit before starting the job and want
Phoenix to log you in automatically.

Considerations for setting up spark
Set up Spark based on your requirement. Following are some of the considerations that you will have to take into
account.

9

Using Apache Phoenix to store and access data Understanding Apache Phoenix-spark connector

• You should configure the 'spark.executor.extraClassPath' and ‘spark.driver.extraClassPath’ in spark-defaults.conf
file to include the ‘phoenix-<version>-client.jar’ to ensure that all required Phoenix and HBase platform
dependencies are available on the classpath for the Spark executors and drivers.

• HDP Version Spark Version JARs to add (order dependent)

>=2.6.2 (including 3.0.0) Spark 2 phoenix-<version>-spark2.jar

phoenix-<version>-client.jar

>=2.6.2 (including 3.0.0) Spark 1 phoenix-<version>-spark.jar

phoenix-<version>-client.jar

2.6.0-2.6.1 Spark 2 Unsupported: upgrade to at least HDP-2.6.2

2.6.0-2.6.1 Spark 1 phoenix-<version>-spark.jar

phoenix-<version>-client.jar

2.5.x Spark 1 phoenix-<version>-client-spark.jar

• To enable your IDE, you can add the following provided dependency to your build:

<dependency><groupId>org.apache.phoenix</groupId>
<artifactId>phoenix-spark</artifactId>
<version>${phoenix.version}</version>
<scope>provided</scope></dependency>

Phoenix Spark connector usage examples
You can refer to the following Phoenix spark connector examples:

• Reading Phoenix tables
• Saving Phoenix tables
• Using PySpark to READ and WRITE tables

Reading Phoenix tables
For example, you have a Phoenix table with the following DDL, you can use use one of the following methods to load
the table:

• As a DataFrame using the Data Source API
• As a DataFrame using a configuration object
• As an an RDD using a Zookeeper URL

CREATE TABLE TABLE1 (ID BIGINT NOT NULL PRIMARY KEY, COL1 VARCHAR);
UPSERT INTO TABLE1 (ID, COL1) VALUES (1, 'test_row_1');
UPSERT INTO TABLE1 (ID, COL1) VALUES (2, 'test_row_2');

Example: Load a DataFrame using the Data Source API

import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._

val sc = new SparkContext("local", "phoenix-test")
val sqlContext = new SQLContext(sc)

val df = sqlContext.load(

10

Using Apache Phoenix to store and access data Understanding Apache Phoenix-spark connector

 "org.apache.phoenix.spark",
 Map("table" -> "TABLE1", "zkUrl" -> "phoenix-server:2181")
)

df
 .filter(df("COL1") === "test_row_1" && df("ID") === 1L)
 .select(df("ID"))
 .show

Example: Load as a DataFrame directly using a Configuration object

import org.apache.hadoop.conf.Configuration
import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._

val configuration = new Configuration()
// Can set Phoenix-specific settings, requires 'hbase.zookeeper.quorum'

val sc = new SparkContext("local", "phoenix-test")
val sqlContext = new SQLContext(sc)

// Loads the columns 'ID' and 'COL1' from TABLE1 as a DataFrame
val df = sqlContext.phoenixTableAsDataFrame(
 "TABLE1", Array("ID", "COL1"), conf = configuration
)

df.show

Example: Load as an RDD using a Zookeeper URL

import org.apache.spark.SparkContext
import org.apache.spark.sql.SQLContext
import org.apache.phoenix.spark._

val sc = new SparkContext("local", "phoenix-test")

// Loads the columns 'ID' and 'COL1' from TABLE1 as an RDD
val rdd: RDD[Map[String, AnyRef]] = sc.phoenixTableAsRDD(
 "TABLE1", Seq("ID", "COL1"), zkUrl = Some("phoenix-server:2181")
)

rdd.count()

val firstId = rdd1.first()("ID").asInstanceOf[Long]
val firstCol = rdd1.first()("COL1").asInstanceOf[String]

Saving Phoenix tables
You can refer to the following examples for saving RDDs and DataFrames.

Example: Saving RDDs

For example, you have a Phoenix table with the following DDL, you can save it as an RDD.

CREATE TABLE OUTPUT_TEST_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1
 VARCHAR, col2 INTEGER);

11

Using Apache Phoenix to store and access data Understanding Apache Phoenix-spark connector

The saveToPhoenix method is an implicit method on RDD[Product], or an RDD of Tuples. The data types must
correspond to one of the Java types supported by Phoenix.

import org.apache.spark.SparkContext
import org.apache.phoenix.spark._

val sc = new SparkContext("local", "phoenix-test")
val dataSet = List((1L, "1", 1), (2L, "2", 2), (3L, "3", 3))

sc
 .parallelize(dataSet)
 .saveToPhoenix(
 "OUTPUT_TEST_TABLE",
 Seq("ID","COL1","COL2"),
 zkUrl = Some("phoenix-server:2181")
)

Example: Saving DataFrames

The save is method on DataFrame allows passing in a data source type. You can use org.apache.phoenix.spark, and
must also pass in a table and zkUrl parameter to specify which table and server to persist the DataFrame to. The
column names are derived from the DataFrame’s schema field names, and must match the Phoenix column names.

The save method also takes a SaveMode option, for which only SaveMode.Overwrite is supported. For example, you
have a two Phoenix tables with the following DDL, you can save it as a DataFrames.

Using PySpark to READ and WRITE tables
With Spark’s DataFrame support, you can use pyspark to READ and WRITE from Phoenix tables.

Example: Load a DataFrame

Given a table TABLE1 and a Zookeeper url of localhost:2181, you can load the table as a DataFrame using the
following Python code in pyspark:

df = sqlContext.read \
 .format("org.apache.phoenix.spark") \
 .option("table", "TABLE1") \
 .option("zkUrl", "localhost:2181") \
 .load()

Example: Save a DataFrame

Given the same table and Zookeeper URLs above, you can save a DataFrame to a Phoenix table using the following
code:

df.write \
 .format("org.apache.phoenix.spark") \
 .mode("overwrite") \
 .option("table", "TABLE1") \
 .option("zkUrl", "localhost:2181") \
 .save()

Note:

The functions phoenixTableAsDataFrame, phoenixTableAsRDD and saveToPhoenix all support optionally
specifying a conf Hadoop configuration parameter with custom Phoenix client settings, as well as an optional
zkUrl parameter for the Phoenix connection URL.

12

https://phoenix.apache.org/language/datatypes.html

Using Apache Phoenix to store and access data Understanding Apache Phoenix-Hive connector

If zkUrl isn’t specified, it’s assumed that the “hbase.zookeeper.quorum” property has been set in the conf
parameter. Similarly, if no configuration is passed in, zkUrl must be specified.

Limitations of Apache Phoenix-spark connector
You should be aware of the following limitations on using the Apache Phoenix-Spark connector:

• You can use the DataSource API only for basic support for column and predicate pushdown.
• The DataSource API does not support passing custom Phoenix settings in configuration. You must create the

DataFrame or RDD directly, if you need a fine-grained configuration.
• There is no support for aggregate or distinct queries, but you can perform any operation on RDDs or DataFrame

formed after reading data from Phoenix.

Note:

The Phoenix JDBC driver normalizes column names, but the Phoenix-Spark integration does not perform
this operation while loading data from Phoenix Table. so, while creating data frames or RDDs from
Phoenix table(sparkContext.phoenixTableAsRDD or sqlContext.phoenixTableAsDataFrame), you must
specify column names in the same way as defined when the Phoenix table was created. However, while
persisting data frame in Phoenix , it can normalize the column names(which are not double quoted) by
default, which can also be turned off by setting the skipNormalizingIdentifier parameter to true.

df.saveToPhoenix(<tableName>, zkUrl = Some(quorumAddress),skipNormalizingIdentifier=true)

Understanding Apache Phoenix-Hive connector

With Hortonworks Data Platform (HDP), you can use the Phoenix-Hive Storage Handler on your secured clusters to
handle large joins and large aggregation. You can use this Storage Handler with HDP 2.6 or later.

This connector enables you to access the Phoenix data from Hive without any data transfer. So the Business
Intelligence (BI) logic in Hive can access the operational data available in Phoenix. Using this connector, you can
run a certain type of queries in Phoenix more efficiently than using Hive or other applications, however, this is not
a universal tool that can run all types of queries. In some cases, Phoenix can run queries faster than the Phoenix
Hive integration and vice versa. In others, you can run this tool to perform operations like many to many joins and
aggregations which Phoenix would otherwise struggle to effectively run on its own. This integration is better suited
for performing online analytical query processing (OLAP) operations than Phoenix.

Another use case for this connector is transferring the data between these two systems. You can use this connector to
simplify the data movement between Hive and Phoenix, since an intermediate form of the data (for example, a .CSV
file) is not required. The automatic movement of structured data between these two systems is the major advantage of
using this tool. You should be aware that for moving a large amount of data from Hive to Phoenix CSV bulk load is
preferable due to performance reasons.

A change to Hive in HDP 3.0 is that all StorageHandlers must be be marked as “external”. There is no such thing as
an non-external table created by a StorageHandler. If the corresponding Phoenix table exists when the Hive table is
created, it will mimic the HDP 2.x semantics of an “external” table. If the corresponding Phoenix table does not exist
when the Hive table is created, it will mimic the HDP 2.x semantics of a non-external table (for example, the Phoenix
table is dropped when the Hive table is dropped).

Considerations for setting up Hive
Make phoenix-$VERSION-hive.jar available for Hive:

13

Using Apache Phoenix to store and access data Understanding Apache Phoenix-Hive connector

• Add the phoenix-hive JAR to the HIVE_AUX_JARS_PATH variable in hive-env.sh.

HIVE_AUX_JARS_PATH=[..],file:///usr/hdp/current/phoenix-client/phoenix-
$VERSION-hive.jar

For HDP 3.0, you can add the following jar to the hive.aux.jars.path parameter as a comma-separated list. The
exact file name for HDP-3.0 exists below, but please note that the version will be different for subsequent HDP
3.x.x releases.

file:///usr/hdp/current/phoenix-client/phoenix-5.0.0.3.0.0.0-1634-hive.jar

• Add a property to hive-site.xml so that Hive MapReduce jobs can also add the phoenix-hive jar to the classpath:

<property>
<name>hive.aux.jars.path</name>
<value>file:///usr/hdp/current/phoenix-client/phoenix-$VERSION-hive.jar</
value>
</property>

Apache Phoenix-Hive usage examples
You can view the examples of creating a table, loading data, and querying data.

Creating a table

In HDP 3.0, all the Hive tables that are backed by a StorageHandler must use the EXTERNAL keyword. Creating an
external Hive table requires an existing table in Phoenix. Hive manages only the Hive metadata. Dropping an external
table from Hive deletes only the Hive metadata, but the Phoenix table is not deleted.

Use the create external table command to craete an EXTERNAL Hive table.

create external table ext_table (
 i1 int,
 s1 string,
 f1 float,
 d1 decimal
)
STORED BY 'org.apache.phoenix.hive.PhoenixStorageHandler'
TBLPROPERTIES (
 "phoenix.table.name" = "ext_table",
 "phoenix.zookeeper.quorum" = "localhost",
 "phoenix.zookeeper.znode.parent" = "/hbase",
 "phoenix.zookeeper.client.port" = "2181",
 "phoenix.rowkeys" = "i1",
 "phoenix.column.mapping" = "i1:i1, s1:s1, f1:f1, d1:d1"
);

Following are the parameters that you could use when creating an external table.

Parameter Default Value Description

phoenix.table.name The same name as the
Hive table

Name of the existing Phoenix table

phoenix.zookeeper.quorum localhost Specifies the ZooKeeper quorum for HBase

phoenix.zookeeper.znode.parent /hbase Specifies the ZooKeeper parent node for HBase

phoenix.zookeeper.client.port 2181 Specifies the ZooKeeper port

14

Using Apache Phoenix to store and access data Python library for Apache Phoenix

phoenix.rowkeys N/A The list of columns to be the primary key in a Phoenix table

phoenix.column.mapping N/A Mappings between column names for Hive and Phoenix

Load data

Use insert statement to load data to the Phoenix table through Hive.

insert into table T values (....);
insert into table T select c1,c2,c3 from source_table;

Query data

You can use HiveQL for querying data in a Phoenix table. A Hive query on a single table can be as fast as running the
query in the Phoenix CLI with the following property settings:

hive.fetch.task.conversion=more and hive.exec.parallel=true

Following are some of the parameters that you could use when querying the data.

Parameter Default Value Description

hbase.scan.cache 100 Read row size for a unit request

hbase.scan.cacheblock false Whether or not cache block

split.by.stats false If true, mappers use table statistics. One mapper per guide post.

[hive-table-name].reducer.count 1 Number of reducers. In Tez mode, this affects only single-table queries.
See Limitations.

[phoenix-table-name].query.hint Hint for Phoenix query (for example, NO_INDEX)

Limitations of Phoenix-Hive connector

Following are some of the limitations of Phoenix-Hive connector:

• Only 4K character specification is allowed to specify a full table. If the volume of the data is huge, then there is a
possibility to lose the metadata information.

• There is a difference in the way timestamp is saved in Phoenix and Hive. Phoenix uses binary format, whereas
Hive uses a text format to store data.

• Hive LLAP is not supported in this integration.
• As of HDP 3.0, the MapReduce engine for Hive is deprecated. Similarly, this tool is not guaranteed to work with

the MapReduce engine.

Python library for Apache Phoenix

The Apache Phoenix Python driver is a new addition to the Apache Phoenix. It was originally known as "Python
Phoenixdb".

For more information, see the Apache Phoenix site.

The Python driver provides the Python DB2.0 API , which is a generic interface for interacting with databases
through Python. This driver requires Phoenix Query Server (PQS) to interact with Phoenix. Using this driver, you can
execute queries and load data. All data types are expected to be functional and there are no limitations on the kind of
queries that this driver can execute.

15

Using Apache Phoenix to store and access data Using index in Phoenix

Note:

This driver does not support Kerberos authentication.

Example of Phoenix Python library
Following code is an example of Phoenix Python library.

db = phoenixdb.connect('http://localhost:8765', autocommit=True)
with db.cursor() as cursor:
cursor.execute("DROP TABLE IF EXISTS test")
cursor.execute("CREATE TABLE test (id INTEGER PRIMARY KEY, text VARCHAR)")
cursor.executemany("UPSERT INTO test VALUES (?, ?)", [[i, 'text
 {}'.format(i)] for i in range(10)])
with db.cursor() as cursor:
cursor.itersize = 4
cursor.execute("SELECT * FROM test WHERE id>1 ORDER BY id")
self.assertEqual(cursor.fetchall(), [[i, 'text {}'.format(i)] for i in
 range(2, 10)])
db.close()

Using index in Phoenix

Apache Phoenix automatically uses indexes to service a query.

Phoenix supports global and local indexes. Each is useful in specifc scenarios and has its own performance
characteristics.

Global indexes in Phoenix
You can use global indexes for READ-heavy use cases. Each global index is stored in its own table, and thus is not
co-located with the data table.

With global indexes, you can disperse the READ load between the main and secondary index table on different
RegionServers serving different sets of access patterns. A Global index is a covered index. It is used for queries only
when all columns in that query are included in that index.

Local indexes in Phoenix
You can use local indexes for WRITE-heavy use cases. Each local indexes is stored within the data table.

With global indexes, you can use local indexes even when all columns referenced in a query are not contained in the
index. This is done by default for local indexes, because the table and index data resides on the same region server
and hence it ensures that the lookup is local.

Using Phoenix client to load data
You must use Phoenix client to load data into the HBase database and also to write to the Phoenix tables.

Index updates are automatically generated by the Phoenix client and there is no user intervention or effort required.
Whenever a record is written to the Phoenix tables, the client generates updates for the indexes automatically.

16

Using Apache Phoenix to store and access data Phoenix repair tool

Note:

If Phoenix table has indexes, you can use JDBC driver or CSV bulk load table to update or ingest data.

It is highly recommended that you use Phoenix client to load data into the HBase database and also to write to the
Phoenix tables. If HBase APIs are used to write data to a Phoenix data table, indexes against that Phoenix data table
will not be updated.

Phoenix repair tool

Apache Phoenix depends on the SYSTEM.CATALOG table for metadata information, such as table structure
and index location, to function correctly. Use the Phoenix repair tool to validate the data integrity of the
SYSTEM.CATALOG table.

Note:

The Phoenix repair tool of HDP is a technical preview and considered under development. Do not use this
feature in your production systems. If you have questions regarding this feature, contact Support by logging a
case on the Hortonworks Support Portal.

If a Phoenix client is not functioning as expected and throwing exceptions such as ArrayIndexOutOfBound or
TableNotFound, this tool can help identify the problem and fix it.

The repair tool is designed to flag issues that are flagrant trouble spots and to fix SYSTEM.CATALOG problems
in a way that does not radically affect your Phoenix system. The tool prompts you to confirm changes before the
SYSTEM.CATALOG table is modified.

Do not use the Phoenix repair tool for an upgrade. The tool is designed to function ony with the current version of the
system catalog and to use the HBase API directly.

Related Information
Hortonworks Support Portal

Run the Phoenix repair tool

You can run the Phoenix repair tool to gather information about the components of the table. The tool provide
capabilities to fix certain problems.

About this task

Note:

Run the HDFS fsck and HBase hbck tools before running the Phoenix repair tool. Checking the condition of
HDFS and HBase is highly recommended because the Phoenix repair tool does not run on HDFS and HBase,
both of which must be in working order for the repair tool to fix Phoenix problems.

• The Phoenix repair tool looks for table records in the system catalog and collects all corresponding
information about columns and indexes. If certain inconsistencies are detected, then the tool prompts you
to verify that it should proceed with fixing the problems. The tool can fix the following problems:

• Missing or disabled physical table
• Incorrect number of columns in table metadata information
• Table record has columns with an internal index that is out of range
• The tool performs a cross-reference check between user tables and indexes. If a user table has an index

that misses a physical table, the tool offers to delete the link to this index as well as to delete the index

17

https://hortonworks.secure.force.com/CustomerPortalLoginPage?startURL=home/home.jsp

Using Apache Phoenix to store and access data Run the Phoenix repair tool

table record from the system catalog. If the physical table is disabled, the tool asks whether it needs to be
enabled.

• If you allow the Phoenix repair tool to fix an issue, the tool creates a snapshot of the
SYSTEM.CATALOG table. The snapshot is created in case you want to rollback the repair operation.

Prerequisites

Verify that no concurrent execution of the Phoenix repair tool launches or runs while you run the tool. Also,
ensure that no other clients modify the system catalog data while the tool runs.

Procedure

1. Run the psl.py utility with the -r option:

/usr/hdp/current/phoenix-client/psql.py -r

2. If the tool detects previously stored snapshots on the system, respond to the Restore dialogue prompt:

• Respond whether the tool should delete or retain the previously recorded snapshots.
• Indicate whether the tool should proceed with the integrity check or restore a table from the one of the

snapshots.

Results

After the tool completes the check, you can consider the SYSTEM.CATALOG table as validated. You can proceed
with SQL operations in the Phoenix CLI.

18

	Contents
	What's New in Apache Phoenix
	Orchestrating SQL and APIs with Apache Phoenix
	Enable Phoenix and interdependent components
	Thin Client connectivity with Phoenix Query Server
	Secure authentication on the Phoenix Query Server

	Options to obtain a client driver
	Obtaining a driver for application development

	Creating and using User-Defined functions (UDFs) in Phoenix
	Overview of mapping Phoenix schemas to HBase namespaces
	Enable namespace mapping
	Namespace mapping properties in the hbase-site.xml file

	Overview to managing schemas

	Associating tables of a schema to a namespace
	Associating table in a noncustomized environment without Kerberos
	Associating table in a customized Kerberos environment

	Understanding Apache Phoenix-spark connector
	Connect to secured cluster
	Considerations for setting up spark
	Phoenix Spark connector usage examples
	Reading Phoenix tables
	Saving Phoenix tables
	Using PySpark to READ and WRITE tables

	Limitations of Apache Phoenix-spark connector

	Understanding Apache Phoenix-Hive connector
	Considerations for setting up Hive
	Apache Phoenix-Hive usage examples
	Limitations of Phoenix-Hive connector

	Python library for Apache Phoenix
	Example of Phoenix Python library

	Using index in Phoenix
	Global indexes in Phoenix
	Local indexes in Phoenix
	Using Phoenix client to load data

	Phoenix repair tool
	Run the Phoenix repair tool

