NiFi System Administrator's Guide

Date published:
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

SYStEM REQUITEMENTS.....ociieiie ettt nne e sre s e enseensee e 7
How to install and start NiFi........cccooiiiiic e 7
POIt CONFIQUIALION.eiiiiitieiiiestie et sr e s sre e enreesseesnneenaeeas 8
N T RSO SR 8

= pplelc e o= s Ao la]NC= < o ST 8
Configuration BeSt PracCtiCeS........ccuiiieeiieiieeriee et see et ssee e snee s 9
Recommended ANtiVirus EXCIUSIONS.........ccooiiiiieiiee et 10
SECUrity CONfIQUIALION......cccuiiiiiiieetie et e e nre e 10
TLS GENEFatioN TOOIKIT......couiiuiieiriiiteetese sttt sttt sttt ae bbbt ebe s b e sae s b e b e see e e e e e e e e 11

TLS CIPNEI SUITES.....c. ettt sttt ettt sttt e et et s e e se e e e e et e st e aeeae e Rt ebesbesbesb e st seese e be b e e e e eneeneeneanennes 12

UsSer AULNENTICALION.c.eii e e e sreeennas 12
SINGIE USEN ...ttt et b e bttt e et b et E et bt E e e b e e b e Rt E Rt R Rt R R R Rt Rt bt b et bt 13
Lightweight Directory AcCesS ProtOCOl (LDAP) ..ottt sttt e 13
=1 0= 01 15
OPENIT COMNECL.......cueiteieiteeeteie ettt ettt sttt e et sb et b et b et e b e s e ek e seeb e seeb e seebeseeb e seehe s b e st e b e st e b e e ebeneebese et e seebeneenens 16
YL 1 RS 16
AAPBCNE KINOX.. vttt ettt b bbb b st bbbt bbbt b et b et b e e e b et b e e Rt bbb Rt bt b et r e 17

JSON WED TOKENS.....ctiiereeieieieieseeeeeeseetestesaestesteseestestesteseessenseneeneeseaseaseesesaessesbesbeseeseensenteseesansenseneeseesensens 18
Multi-Tenant AUtNOrIZatiON.........ccveiiieiee e 18
WU 110 1= g Oo a1 1o 01 = 1 o o OSSR 18

F T L 0 = (S IS 11 o T 19
FilEUSEr GIOUPPTOVITEY ..ottt sttt et s sessestesbesaeseeteseeseensenaennennenens 19

L AapUSErGrOUPPIOVIAENcceeeeeeeeeeetesese st st e e se et e e se e esestesaesresbestesaeseenteseeseenseneennennenens 19

S T LU LS = o0 o] 101/ o = S 21
AZUreGraphlUSEr GrOUPPTOVITEScceieiiesii et seeie e e et e st steste e sr e te e see e e e ae s eneeneeseenenrennes 22

CompOoSite IMPIEMENLELIONS.......ccueieieeieeeeeee ettt s e e e e e e e e esesse e e eseesessesresreseeseeseenen 23

T AN ww oS o 1T o (01 o L= 23

StandardM anagEAAULNOIIZENocuvciee sttt st sre st e s e e e e e e e e e e e eneens 24
FHLEAULNONTZEN ...ttt bbbttt bt ne st st 24

Initial Admin Identity (NeW NiFi INSLANCE).........cceviiiiiieiiieie e s e e eneas 25

Legacy Authorized Users (NiFi INnstance Upgrade)..........cocvveeeeeieeeeesenieseseseseesesiesee e esseseseesennes 31

ClUSEEr NOGE TAENEITIES. ... ettt et et st se ettt st e b e e sbe e nbe e 33

Configuring USErS & ACCESS POLICIES........ccuciiiriristese st ses e steste e ae e e te e s re s te e ste st e e te e e e enaeneeneenennes 34
Creating USErS @0 GIOUDS.....ccveeeeeeeeeereeeetestessestestessessessessessesssssessessesessssssesessessessessessessessessessessensen 34

AACCESS POLICIES. ...ttt sttt et e st e e b s st e s be s s at e s s beesbe s s bessaeeeabessabesbessabessbeesnesesbessnessabessnns 37

| Contents | iv

VIeWiNG POIICIES ON USEIS.......coiiiiiiteiie ettt e bt ettt e e se et eaesbesae e sbe b es 39

Access Policy Configuration EXAMPIES........cociiruiierieieeeieeeiesiese sttt s sre s 41
ENcryption Configuration..........ccceeieeiieiieeiie e se s 54
K@Y DENVELION FUNCHIONS.......ieitiietireete ettt ettt et s b e s bese b e e st sb et et e e sb et eb et ebese et e seebennene s 54

NIFi LEJACY KDF.....oucveeeceeeeeeseeeeees e sees s ssss s ss s sses e ssss s sss s ssss s ssss st s ssessssensen 54

OpenSSL PKCSHS V1.5 EVP_BYIESTOKEYciiiiieieiieieieeeiee st 54

Tt o TP PP 55

RS o1/ oL TSP PP U PTPTPSRRSON 55

=T N PSRRI 56

0] OO USRS RTPRPPR PR 56

Y 10 TP PO SRS PRSP 56

Salt ANA TV ENCOGING. ...+ttt ettt st b e s b e e b e e a e et b et bt b et b et st e e e b e et e e b e 57

NI LBOACY .. vttt ettt h e bbbt b e e bbbt bbbttt b et et 57

OpenSSL PKCSHS V1.5 EVP_BYIESTOKEYciiiiieieiieieieecieeee st s 57

Berypt, SCrypt, PBKDF2, ATQONZ......c.coiiiiieieiesieeiesreste st sresne e snesne e eneas 58

Java Cryptography Extension (JCE) Limited Strength Jurisdiction POlICIES.........cccooevereiereicieieececese e 60

Allow Insecure CryptographiC MOOES..........c.cirieuirieirieerieer ettt sene 61
Encrypted Passwords in FIOWS..........cooviiiiii e 62
Encrypted Passwords in Configuration Files..........cccov i, 63
HaShiCOrP VaUIT PrOVITEIS.......oiuiitiiiie ittt ettt b e b b ettt e e e e e et e e e e e seeneeaeebesbesnesben 63
REQUITEH PIOPEITIES.ce ettt b bttt b e bbb et e se e e et e e e e eseeaeeaeebesbesaesbesbeseeseen 64

1O ol1iTo 7= I o/ (0] o/ g =TSRSS 64

AWS KIMS PIOVITES ...ttt ettt a bbbt b bt s e et e bese e e e st e e et eaeeRe e Rt ebeebesbeseeebe b se et enseneeneaneas 65
REQUITEH PIOPEITIES.ceeieeiteeteite ittt ettt b bbbt e b be e e e s et e e e e ebeeaeeaeebesbesaesbeebeseeseens 65

1O ol1iTo 7= I o/ (0] o/ g =TSRSS 65

AWS SECTELS MaANAQES PrOVITENeueeeeeeeeiee ettt sttt st e ettt ae b bt sbe b e s bese et e eese e e ene e e e e eneebesaesbens 65

1O ol1iTo 7= I o/ (0] o/ g =TSRSS 65

AZUre KeY VAUt KEY PrOVITESottt ettt b bt et s b e b e e b e be b e se e e e e e e e e eneas 66
REQUITEH PIOPEITIES.ceeti ittt ettt b bbbt e e e be st e se et et e e e e eseeaeeaeebesbesaesbesbeseeseens 66

AZUre Ky Vallt SECIEL PrOVIAEN.......cccooieiriieeieitere ettt ae bbb e e s e e e e enesbesaeene 66
REQUITEH PIOPEITIES.ceeti ittt ettt b bbbt e e e be st e se et et e e e e eseeaeeaeebesbesaesbesbeseeseens 66

GOOQIE ClOUT KIMS PIOVIAES......eitiiteieietirie ettt ettt b bbb b b e e b beseese e e e e e e e e e seeseeneebesbesaesbens 67
REQUITEH PIOPEITIES.ceeee ittt sttt bbb bbb e be e e e e et e e e e eseeaeeaeebesbesbesbeebeseeseens 67

Property CONEXT IMAIDPING.ceoeeueeiereeeeetere sttt et ee ettt ebesbesaesbesbesbese e ee e e seeneeseeaeaseebesbesaesbesbeseeseensanes 67
= 10] 0= OSSR 68

NiFi Toolkit Administrative TOOIS.......cccocveiiiiieiie e 68
Clustering Configuration..........c.ecceeiieeciie it e et eereesree s 69
WA= (ol = L= O 11 (= 4 oo O 69

WY CIUSEEI ...ttt sttt e et e ae s ae s be s bese et e s te e eseeneeseeseeReeseaseeeeabeseeseetentesennseneeneennenens 69

1= 001170 oo S 70
Communication Within the CIUSIEN ... 71
Y= g = o T o T N o L= R 71
DiISCONNECE INOGES.......ceeeereieires ettt n e r bt r e 71

OFf10B0 NOGES.........coeueirereiiisisie et b st ne e bt nenp b ne e nen e nnas 72

DEELE NOUES......c.eiveeieiereeteie sttt e R bt e e bt r et e r e es 72

DECOMMISSION NOUES.......ccuviiitiiiticitee et ceee st s e e e st e s st e e b e s st e s bessbbessbessaesssbessasesabessabesbessatessbessreseares 73

| Contents | v

NiFi CLI NOGE COMMENGS......c.eeerireeririeririeiereeesree st s et r s s b e s sb e b s st n b nn s nnenes 73

FIOW ETECTION. ...ttt et b et bt b e se b se b s e bt se bt se bt seesenbenenn et e b e e ere e 73

B F S T O T (= g (F o USSR 74
Cluster Firewall CONfiQUIBLION...........ciiiiieiiiese ettt sb bbb e e et e e e e e e e e e e e aeebesbesaesbesbeseeseeneas 75
B0 10 1011= S g 1o To] 1o TR USRS 75
StAte M ANAGEIMENT.......co i e e rne e e s e nr e e e eanes 75
ConfigUING SEALE PrOVILEIS.......ccuiiitiieiiieiireeteret ettt bbb 76
EMDEdded ZOOK EEDE SEIVEN......ci ittt sttt ettt b et b et b et b et be et e b e e b e 77

ZOOK EEPEr ACCESS CONLIOL....ueueitieeiiteiirieest ettt ettt b bbbt b e bbbt e b b e b e b e s s 78
Securing ZooKeeper With KEIDEIOS..........oiiiiiiiee bbb 78
Kerberizing Embedded ZOOK EEDEr SEIVET ..ottt 79

Kerberizing NiFi's ZOOKEEPEr ClIENL........ciiiireirieirieree ettt 80
Troubleshooting Kerberos Configuration............coeereereenieineeree et 82

Securing ZOOKEEPEr WIth TLS. ...ttt et et ettt b et b e et eb e e b e 82
Embedded ZooKeeper WIth TLS. ...ttt sttt sttt b et s eb e e b 83

ZOOK EEPES IMIIGIELOTecvereetieetere ettt etttk e s bbb s bt b et b e bt s bt e bt b et b et b et e b et b e e e b et b et ae st 85
BOOLStrap PrOpPErtiES......cccveeiie ettt sr e sreennee s 85
NOLITICAION SEIVICES.... .ottt nneas 86
EMail NOUFICATION SEIVICE.cuiiietireciiieciesee ettt b e eb e e b e b e b nn s e 87

HTTP NOUTICATION SEIVICE......ceitieetireetiieet ettt b bt b s b st n s e nnenes 88
) VA @] o U = o o R 89
K EIDEINOS SEIVICE.....ceieeiiiiteeeeee ettt e e 90
NN 0= TSSO ST 91
ANAIYEICS FrameEWOI K......cccuiiiiiiiieieesie ettt 92
Y U T o e 1< U= 93
Upgrade RECOMMENGALIONS.........cciueirieirieiete sttt sttt sttt sttt b et b et b ettt b e e bt eb e e b e s bbb 93

COrE PrOPEITIES. ...ttt ettt ettt ettt se et r ekt e bt e st s b e st b e s e e b e e e b e e e b e s e ek e s e ebeseeb e s e e bt s b e heebene e b et eb et b e neebe e 93

SEAE MANAGEIMENT. ...t e e et b bt a e R e bt e Rt b e e R e s R se e n e s e e e e e e e e s e nenne e 95

H2 SEINGS. ettt bbbt b bRt E e R bR e R R R R AR bt bbb 95
REPOSITONY ENCIYPLION.ctieetiieetireetereet sttt ettt b bt b e s e b st b e b e e b e s b e e bt se e bt st e bt b e st st e ne b et nnenes 96
FIOWHFITE REDOSITONYttt sttt sttt sttt b et bt b e e b s e b e se bt s e bt se e bt s b e ne s b et e b et e b e neebeseebeseebeseebe e 96

Write Ahead FIOWFITE REPOSITONY.....c.ciiieiirieiiteeeiee ettt 97
Encrypted Write Ahead FlowFile REpOSItOry PrOPEIiES........ccviiiiiririiiiees s 97
VOlatile FIOWFIE REDOSITONY......c.eiteiiteiiterieteseete ettt st sttt b et b e sttt b e s b e e bbb bbbt 98
ROCKSDB FIOWFII€ REDOSITONY......cveuirieiiiteiriee sttt sttt sttt sttt sttt b ettt b e e b e e b e s e e 98

SWAD IMANAGEIMENT. ...ttt r e se et h e e s e bt e R e e R e s R e e Rt e R e s e se e s e e e ne e e e e e e e e enennenneere s 101
CONEENE REPOSITONY....cteeevieetireetert ettt ettt sttt b e bt se st seese s b eaeeb e e e bt e eb e s eb e s e b e s e eb e e e bt s e ene s b e s e b e e naenenne s 101

File System Content REPOSITONY PrOPEITIES.......coueiiiiiiiiirereeie sttt s eb e s b e 101
Encrypted File System Content REPOSITOrY PropertieS.........ccieeriririieriieriieeiesieieseee e 102
Volatile Content REPOSITONY PrOPEITIES........ccciuiririiieiireeiereet sttt ss e snenes 103
PrOVENENCE REDOSITONY......ieeuirieieieeieriee sttt sttt sttt et b e b s bbbt bt b et b et ek et b e neebeseebese e b e neebe b ne b 103

Write Ahead Provenance REPOSITONY PrOPEIMIES........ccoi ittt 104

Encrypted Write Ahead Provenance RepOSItOry Properties.........ooooereeeirierienerese s 106

Persistent Provenance REPOSITOrY PrOPEITIES........coo ittt s sae b 107
Volatile Provenance REPOSITONY PrOPEITIES.... ..o iiiereieeeeieeeeetesie sttt sttt b e sb e b e e e s 108
SEAEUS HiSLOIY REPOSITOIYceeeiieieieieiee ettt ettt b et ae b e e b e bt sb e be b se e e e tene e e ene e e eneeneas 108
[N MEMOTY FEPOSITONY .. .c.eiiteeterte ittt sttt ettt eaeebe s bt s bt sbe st e sbese e be s bese e e et e e e e eseeaeeneebesbesbesaesbeneeses 109

S S IS L= 0 LR = 10] (0] USSR 109

SItE 10 ST PrOPEITIES. .. cee ettt ettt ettt h e b e bt bt e b e s b se et et se e e e e e e e e eneeneene e 109
Site to Site Routing Properties for REVEISE PrOXIES.........ccoi it 110
Site t0 Site PrOtOCOI SEOUENCE.......ceiuiriirieeterte ettt b et b e e e e se e e nesbe e e 111
Reverse Proxy CONfIGQUIBLIONS.........cciieiiiirierie et eee ettt st st s se e ee e e s e seesesbesbesbesbesbees 111

Site to Site and Reverse Proxy EXAMPIES.........coo it 112

TS oI (0] 1< 1 (=TSSR 115
S o LA (0] 1= g (=SSR 117
Identity MapPiNg PrOPEITIES.......coiieieieietese et a ettt e et e e e e et seeae e st sbeebesbesbesbeseeseen 118
ClUSLEr COMIMON PrOPEITIES.......eiuiitiiteiteititer ettt sttt e et be et e b e st e e e e et et ebeebesaesbesbesbeseenbanbeseans 119
(O 11 (=g N ol [fo] o1 g 1] =R 119
o] Q= o= gl 0 0= =SSR 120
(S 1 0= 0L (0] 1= (=PSSOSR 121
ANBIYEICS PrOPEITIES. ...ttt ettt h e a e ae bt b e bt s e e b et st e e e n e e e e e eseeaeeaeebeebesaesbesbeneeneens 122
RUNtime MONItONNG PrOPErtiES.........oouiieieieeeieeeeetee sttt ettt be e ae b e be b b e beseeseannan 122
(00 (g T o]0 1= 1TSS 123
(8 oo | =T L o T AN 1 PR 123
PreServe CUSLOM PrOCESSOIS......cc.ciiiiieiteriesieeiesteetesteeste st e stesaeeseesseestesaeesbesaeesbesatesbeensesbeensesseesesneessesneesaesnees 123
Preserve MOGIfIEO INARS........oi ettt ettt s et se e be st e s beseesbebeseeseenteee e eneenenneens 123
Clear Activity and Shutdown EXiSting NiFi.........ccoeiriirincriicee e 124
INStall the NEW NIFT VEISION. ...t sttt e e s sesaesbesbeneeseenan 124
Update the Configuration Files for Your New NiFi INStallation............ccocoveiiinninnincenee e 124
Migrating a Flow with Sensitive PrOPErties..... ..o e 126
Updating the Sensitive Properties KEY ... e 126

S i A NN L= Y N T PSS 127
ProCESSOr LOCALIONS........iiiiieieiieeiieeie sttt et sre et et sreesne e 127
Available Configuration OPLIONS...........ccciriiriireresesese s e eseese e ere s e sesresresresresteseesaeseseessesseseesessessensessensens 127
INSEAlING CUSLOM PrOCESSOIS. ... c.veveuieueeeeseetestesteetesestessestesteseessessesseseseesesseeseesessessestessesesssessessessensensensesessennes 128
AULOl0adiNg CUSLOM PrOCESSOIS.......cuveuieueeieetiriesiestesesteseetesaeseesseseeeesessessessestesaeseessestessessansenseneesensessessessessees 128
INAR PrOVIGEIS. ..ottt st s st b et e R bR bRt ne R bt e e r e e nrenis 129
HDFS NAR PrOVIGES ..ottt 129

NIFT QIaQNOSLICS......eeeieiiiieesie et sre e sre e sneeennee s 129

Automatic diagnostics on restart and SNULAOWN............oiiriiiereee e e e erea 130

System Requirements

Apache NiFi can run on something as simple as alaptop, but it can also be clustered across many enterprise-class
servers. Therefore, the amount of hardware and memory needed will depend on the size and nature of the dataflow
involved. The datais stored on disk while NiFi is processing it. So NiFi needs to have sufficient disk space allocated
for its various repositories, particularly the content repository, flowfile repository, and provenance repository. NiFi
has the following minimum system requirements:

* Requires Java8or Javall
e Supported Operating Systems:

Linux
Unix
Windows
macOS

e Supported Web Browsers:

Microsoft Edge: Current & (Current - 1)
Mozilla FireFox: Current & (Current - 1)
Google Chrome: Current & (Current - 1)
Safari: Current & (Current - 1)

Note: Under sustained and extremely high throughput the CodeCache settings may need to be tuned to avoid
sudden performance loss. See the Bootstrap Properties section for more information.

¢ Linux/Unix/macOS

Decompress and untar into desired installation directory
Make any desired edits in files found under <installdir>/conf

« At aminimum, we recommend editing the nifi.properties file and entering a password for the nifi.sensiti
ve.props.key (see System Properties on page 93 below)
From the <installdir>/bin directory, execute the following commands by typing ./nifi.sh <command>:

o gtart: starts NiFi in the background

o stop: stops NiFi that is running in the background

e dtatus: provides the current status of NiFi

e run: runs NiFi in the foreground and waits for a Ctrl-C to initiate shutdown of NiFi
» install: installs NiFi as a service that can then be controlled via

¢ servicenifi start
e service nifi stop
* service nifi status

Port Configuration

¢ Windows

Decompress into the desired installation directory
Make any desired edits in the files found under <installdir>/conf

* At aminimum, we recommend editing the nifi.properties file and entering a password for the nifi.sensiti
ve.props.key (see System Properties on page 93 below)

Navigate to the <installdir>/bin directory

Double-click run-nifi.bat. Thisruns NiFi in the foreground and waits for a Ctrl-C to initiate shutdown of NiFi

To see the current status of NiFi, double-click status-nifi.bat

When NiFi first starts up, the following files and directories are created:

e content_repository

e database _repository

» flowfile_repository

e provenance repository

» work directory

« logsdirectory

» Within the conf directory, the flow.xml.gz fileis created

K

Note: For security purposes, when no security configuration is provided NiFi will now bind to 127.0.0.1
by default and the Ul will only be accessible through this loopback interface. HTTPS properties should be
configured to access NiFi from other interfaces. See the Security Configuration for guidance on how to do
this.

See the Security Properties on page 117 section of this guide for more information about configuring NiFi
repositories and configuration files.

The following table lists the default ports used by NiFi and the corresponding property in the nifi.propertiesfile.

HTTPS Port nifi.web.https.port 8443
Remote Input Socket Port* nifi.remote.input.socket.port 10443
Cluster Node Protocol Port* nifi.cluster.node.protocol .port 11443
Cluster Node Load Balancing Port nifi.cluster.node.load.balance.port 6342
Web HTTP Forwarding Port nifi.web.http.port.forwarding none

K

Note: The ports marked with an asterisk (*) have property values that are blank by default in nifi.properties.
The values shown in the table are the default values for these ports when TLS Toolkit is used to generate
nifi.properties for a secured NiFi instance. The default Certificate Authority Port used by TLS Toolkit is
9443.

Configuration Best Practices

The following table lists the default ports used by an Embedded ZooK eeper Server on page 77 and the
corresponding property in the zookeeper.propertiesfile.

ZooK eeper Client Port (Deprecated: client port | clientPort 2181
isno longer specified on a separate line as of

NiFi 1.10.x)

ZooK eeper Server Quorum and L eader server.1 none
Election Ports

Note: Commented examples for the ZooK eeper server ports are included in the zookeeper.propertiesfilein
B the form server.N=nifi-nodeN-hostname: 2888:3888;2181.

If you are running on Linux, consider these best practices. Typical Linux defaults are not necessarily well-tuned

for the needs of an 10 intensive application like NiFi. For all of these areas, your distribution’s requirements may
vary. Use these sections as advice, but consult your distribution-specific documentation for how best to achieve these
recommendations.

Maximum File Handles

NiFi will at any one time potentially have avery large number of file handles open. Increase the
limits by editing /etc/security/limits.conf to add something like

hard nofile 50000
* soft nofile 50000

M aximum Forked Processes

NiFi may be configured to generate a significant number of threads. To increase the allowable
number, edit /etc/security/limits.conf

hard nproc 10000
* soft nproc 10000

And your distribution may require an edit to /etc/security/limits.d/90-nproc.conf by adding

* soft nproc 10000

Increase the number of TCP socket portsavailable

Thisis particularly important if your flow will be setting up and tearing down alarge number of
socketsin asmall period of time.

sudo sysctl -w net.ipv4.ip_|ocal port range="10000 65000"

Set how long socketsstay ina TIMED_WAIT state when closed

Y ou don't want your sockets to sit and linger too long given that you want to be able to quickly
setup and teardown new sockets. It is agood idea to read more about it and adjust to something like

Recommended Antivirus Exclusions

for kernel 2.6

sudo sysctl -w net.ipv4d. netfilter.ip_conntrack_tcp_tineout_tine_wait="1"

for kernel 3.0

sudo sysctl -w net.netfilter.nf _conntrack tcp_ tineout tine wait="1"

Tell Linux you never want NiFi to swap

Swapping is fantastic for some applications. It isn't good for something like NiFi that always
wants to be running. To tell Linux you'd like swapping off, you can edit /etc/sysctl.conf to add the
following line

vm swappi ness = 0

For the partitions handling the various NiFi repos, turn off things like atime. Doing so can cause a surprising bump in
throughput. Edit the /etc/fstab file and for the partition(s) of interest, add the noatime option.

Antivirus software can take a long time to scan large directories and the numerous files within them. Additionally,
if the antivirus software locks files or directories during a scan, those resources are unavailable to NiFi processes,
causing latency or unavailability of these resourcesin a NiFi instance/cluster. To prevent these performance and
reliability issues from occurring, it is highly recommended to configure your antivirus software to skip scans on the
following NiFi directories:

e content_repository
» flowfile_repository

* logs
e provenance repository
e dtate

NiFi provides several different configuration options for security purposes. The most important properties are those
under the "security properties’ heading in the nifi.propertiesfile. In order to run securely, the following properties
must be set:

nifi.security.keystore Filename of the Keystore that contains the server's private key.
nifi.security.keystoreType The type of Keystore. Must be PKCS12 or JKS or BCFKS. JKSis
the preferred type, BCFKS and PKCS12 fileswill be loaded with
BouncyCastle provider.
nifi.security.keystorePasswd The password for the Keystore.
nifi.security.keyPasswd The password for the certificate in the Keystore. If not set, the value of

nifi.security.keystorePasswd will be used.

10

Security Configuration

nifi.security.truststore Filename of the Truststore that will be used to authorize those
connecting to NiFi. A secured instance with no Truststore will refuse
all incoming connections.

nifi.security.truststoreType The type of the Truststore. Must be PKCS12 or JKS or BCFKS. JKS
isthe preferred type, BCFKS and PKCS12 files will be loaded with
BouncyCastle provider.

nifi.security.truststorePasswd The password for the Truststore.

Once the above properties have been configured, we can enable the User Interface to be accessed over HTTPS instead
of HTTP. Thisis accomplished by setting the nifi.web.https.host and nifi.web.https.port properties. The nifi.web
.https.host property indicates which hostname the server should run on. If it is desired that the HTTPS interface be
accessible from all network interfaces, avalue of 0.0.0.0 should be used. To allow admins to configure the application
to run only on specific network interfaces, nifi.web.http.network.interface* or nifi.web.https.network.interface*
properties can be specified.

Note: It isimportant when enabling HTTPS that the nifi.web.http.port property be unset. NiFi only supports
E running on HTTP or HTTPS, not both simultaneously.

NiFi's web server will REQUIRE certificate based client authentication for users accessing the User Interface when
not configured with an alternative authentication mechanism which would require one way SSL (for instance LDAP,
Openld Connect, etc). Enabling an alternative authentication mechanism will configure the web server to WANT
certificate base client authentication. Thiswill alow it to support users with certificates and those without that may be
logging in with credentials. See User Authentication on page 12 for more details.

Now that the User Interface has been secured, we can easily secure Site-to-Site connections and inner-cluster
communications, aswell. Thisis accomplished by setting the nifi.remote.input.secure and nifi.cluster.protocol.is.sec
ure properties, respectively, to true. These communications will always REQUIRE two way SSL as the nodes will use
their configured keystore/truststore for authentication.

Automatic refreshing of NiFi'sweb SSL context factory can be enabled using the following properties:

nifi.security.autorel oad.enabled Specifies whether the SSL context factory should be automatically
reloaded if updates to the keystore and truststore are detected. By
default, it is set to false.

nifi.security.autoreload.interval Specifiestheinterval at which the keystore and truststore are checked
for updates. Only appliesif nifi.security.autoreload.enabled is set to
true. The default valueis 10 secs.

Once the nifi.security.autorel oad.enabled property is set to true, any valid changes to the configured keystore and
truststore will cause NiFi's SSL context factory to be reloaded, allowing clients to pick up the changes. Thisis
intended to allow expired certificates to be updated in the keystore and new trusted certificates to be added in the
truststore, all without having to restart the NiFi server.

Note: Changesto any of the nifi.security.keystore* or nifi.security.truststore* properties will not be picked
B up by the auto-refreshing logic, which assumes the passwords and store paths will remain the same.

In order to facilitate the secure setup of NiFi, you can use the tls-toolkit command line utility to automatically
generate the required keystores, truststore, and relevant configuration files. Thisis especially useful for securing
multiple NiFi nodes, which can be atedious and error-prone process.

11

User Authentication

The Java Runtime Environment provides the ability to specify custom TL S cipher suites to be used by servers when
accepting client connections. See https://java.com/en/configure_crypto.html for more information. To use this feature
for the NiFi web service, the following NiFi properties may be set:

nifi.web.https.ciphersuites.include Set of ciphersthat are available to be used by incoming client
connections. Replaces system defaults if set.

nifi.web.https.ciphersuites.exclude Set of ciphersthat must not be used by incoming client connections.
Filters available ciphersif set.

Each property should take the form of a commarseparated list of common cipher names as specified https://
docs.oracle.com/javase/8/docs/technotes/gui des/security/StandardNames.html#ciphersuites. Regular expressions (for
example *.*GCM_SHA256$) may al so be specified.

The semantics match the use of the following Jetty APIs:

» https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/util/ssl/
SslContextFactory.html#setl ncludeCipher Suites(java.lang.String...)

« https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/j etty/util/ssl/
SslContextFactory.html#setExcludeCipherSuites(java.lang.String...)

NiFi supports user authentication via client certificates, via username/password, via Apache Knox, or via http://
openid.net/connect.

Username/password authentication is performed by a'Login Identity Provider'. The Login Identity Provider isa
pluggable mechanism for authenticating users via their username/password. Which Login Identity Provider to useis
configured in the nifi.propertiesfile. Currently NiFi offers username/password with Login Identity Providers options
for Single User on page 13, Lightweight Directory Access Protocol (LDAP) on page 13 and Kerberos on

page 15.

The nifi.login.identity.provider.configuration.file property specifies the configuration file for Login Identity
Providers. By default, this property is set to ./conf/login-identity-providers.xml.

The nifi.security.user.login.identity.provider property indicates which of the configured Login Identity Provider
should be used. The default value of this property is single-user-provider supporting authentication with a generated
username and password.

During Openld Connect authentication, NiFi will redirect users to login with the Provider before returning to NiFi.
NiFi will then call the Provider to obtain the user identity.

During Apache Knox authentication, NiFi will redirect users to login with Apache Knox before returning to NiFi.
NiFi will verify the Apache Knox token during authentication.

Note: NiFi can only be configured for username/password, Openld Connect, or Apache Knox at agiven
Ij time. It does not support running each of these concurrently. NiFi will require client certificates for
authenticating users over HTTPS if none of these are configured.

A user cannot anonymously authenticate with a secured instance of NiFi unless nifi.security.allow.anonymous.authen
tication is set to true. If thisisthe case, NiFi must also be configured with an Authorizer that supports authorizing an

anonymous user. Currently, NiFi does not ship with any Authorizers that support this. There is afeature request here

to help support it (https://issues.apache.org/jira/browse/NIFI-2730).

12

https://java.com/en/configure_crypto.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#ciphersuites
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#ciphersuites
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/util/ssl/SslContextFactory.html#setIncludeCipherSuites(java.lang.String...)
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/util/ssl/SslContextFactory.html#setIncludeCipherSuites(java.lang.String...)
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/util/ssl/SslContextFactory.html#setExcludeCipherSuites(java.lang.String...)
https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/util/ssl/SslContextFactory.html#setExcludeCipherSuites(java.lang.String...)
http://openid.net/connect
http://openid.net/connect
https://issues.apache.org/jira/browse/NIFI-2730

User Authentication

There are three scenarios to consider when setting nifi.security.allow.anonymous.authentication. When the user is
directly calling an endpoint with no attempted authentication then nifi.security.allow.anonymous.authentication will
control whether the request is authenticated or rejected. The other two scenarios are when the request is proxied.
This could either be proxied by a NiFi node (e.g. anodein the NiFi cluster) or by a separate proxy that is proxying
arequest for an anonymous user. In these proxy scenarios nifi.security.allow.anonymous.authentication will control
whether the request is authenticated or rejected. In all three of these scenarios if the request is authenticated it will
subsequently be subjected to normal authorization based on the requested resource.

E Note: NiFi does not perform user authentication over HTTP. Using HTTP, all users will be granted all roles.

The default Single User Login Identity Provider supports automated generation of username and password
credentials.

The generated username will be arandom UUID consisting of 36 characters. The generated password will be a
random string consisting of 32 characters and stored using berypt hashing.

The default configuration in nifi.properties enables Single User authentication:

nifi.security.user.login.identity.provider=single-user-provider

The default login-identity-providers.xml includes a blank provider definition:

<provi der >

<identifier>single-user-provider</identifier>

<cl ass>or g. apache. ni fi.aut henti cation. si ngl e. user. Si ngl eUser Logi nl denti t
yProvi der </ cl ass>

<property nane="User nane"/>

<property nane="Password"/>
</ provi der >

The following command can be used to change the Username and Password:

$./bin/nifi.sh set-single-user-credentials <usernanme> <passwor d>

Below is an example and description of configuring a Login Identity Provider that integrates with a Directory Server
to authenticate users.

Set the following in nifi.properties to enable LDAP username/password authentication:

nifi.security.user.login.identity.provider=ldap-provider
Modify login-identity-providers.xml to enable the |dap-provider. Here is the sample provided in the file:
<provi der >

<identifier>l dap-provider</identifier>
<cl ass>or g. apache. ni fi .| dap. LdapProvi der </ cl ass>

13

User Authentication

name="Aut henti cati on Strategy">START_TLS</ property>

Keyst or e Passwor d"></ property>

Trust st ore Passwor d"></property>
Truststore Type"></property>

Shut down Graceful | y"></property>

Strat egy" >FOLLON/ property>

<property

<property nane="Manager DN'></property>

<pr operty nane="Manager Password"></property>
<property name="TLS - Keystore"></property>
<property name="TLS -

<property name="TLS - Keystore Type"></property>
<property nane="TLS - Truststore"></property>
<property nanme="TLS -

<property nanme="TLS -

<property name="TLS - dient Auth"></property>
<property name="TLS - Protocol "></property>
<property nanme="TLS -

<property nane="Referra

<property nane="Connect Ti nmeout">10 secs</property>
<property name="Read Ti neout">10 secs</property>
<property name="Url"></property>

<property nane="User Search Base"></property>
<property nane="User Search Filter"></property>
<property nane="ldentity Strategy">USE DN</ property>
<property

</ provi der >

The |dap-provider has the following properties:

Authentication Strategy

Manager DN

Manager Password

TLS- Keystore

TLS- Keystore Password

TLS- Keystore Type

TLS- Truststore

TLS- Truststore Password

TLS- Truststore Type

TLS- Client Auth

TLS- Protocol

name="Aut henti cati on Expiration">12 hours</property>

How the connection to the LDAP server is authenticated. Possible
values are ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

The DN of the manager that is used to bind to the LDAP server to
search for users.

The password of the manager that is used to bind to the LDAP server to
search for users.

Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

Password for the Keystore that is used when connecting to LDAP using
LDAPSor START_TLS.

Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS(i.e. JKSor PKCS12).

Path to the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS.

Password for the Truststore that is used when connecting to LDAP
using LDAPS or START_TLS.

Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS(i.e. JKSor PKCS12).

Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

14

User Authentication

Property Name Description

TLS- Shutdown Gracefully Specifies whether the TL S should be shut down gracefully before the
target context is closed. Defaults to false.

Referral Strategy Strategy for handling referrals. Possible values are FOLLOW, IGNO
RE, THROW.

Connect Timeout Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e. |dap://<host
name>:<port>).

User Search Base Base DN for searching for users (i.e. CN=Users,DC=example,DC=c
om).

User Search Filter Filter for searching for users against the User Search Base. (i.e. SAMA

ccountName={ 0}). The user specified nameisinserted into '{ 0} ".

Identity Strategy Strategy to identify users. Possible values are USE_DN and USE_
USERNAME. The default functionality if this property ismissing is
USE_DN in order to retain backward compatibility. USE_DN will use
thefull DN of the user entry if possible. USE_USERNAME will use
the username the user logged in with.

Authentication Expiration The duration of how long the user authentication isvalid for. If the
user never logs out, they will be required to log back in following this
duration.

Note: For changes to nifi.properties and login-identity-providers.xml to take effect, NiFi needsto be
E restarted. If NiFi is clustered, configuration files must be the same on all nodes.

Kerberos
Below is an example and description of configuring a Login Identity Provider that integrates with a Kerberos Key
Distribution Center (KDC) to authenticate users.

Set the following in nifi.properties to enable Kerberos username/password authentication:

nifi.security.user.login.identity.provider=kerberos-provider

Modify login-identity-providers.xml to enable the kerberos-provider. Here is the sample provided in the file:

<pr ovi der >
<identifier>kerberos-provider</identifier>
<cl ass>or g. apache. ni fi. ker ber os. Ker ber osProvi der </ cl ass>
<property nanme="Defaul t Real nf >Nl FI . APACHE. ORG</ pr operty>
<property name="Aut henti cation Expiration">12 hours</property>
</ provi der >

The kerberos-provider has the following properties:

Property Name Description

Default Realm Default realm to provide when user enters incomplete user principal
(i.e. NIFI.APACHE.ORG).

15

User Authentication

Property Name Description

Authentication Expiration The duration of how long the user authentication isvalid for. If the
user never logs out, they will be required to log back in following this
duration.

See also Kerberos Service on page 90 to allow single sign-on access via client Kerberos tickets.

Note: For changes to nifi.properties and login-identity-providers.xml to take effect, NiFi needsto be
E restarted. If NiFi is clustered, configuration files must be the same on all nodes.

Openld Connect

To enable authentication via Openld Connect the following properties must be configured in nifi.properties.

Property Name Description

nifi.security.user.oidc.discovery.url The discovery URL for the desired Openld Connect Provider (http:/
openid.net/specs/openid-connect-discovery-1_0.html).

nifi.security.user.oidc.connect.timeout Connect timeout when communicating with the Openld Connect
Provider.

nifi.security.user.oidc.read.timeout Read timeout when communicating with the Openld Connect Provider.

nifi.security.user.oidc.client.id Theclientid for NiFi after registration with the Openld Connect
Provider.

nifi.security.user.oidc.client.secret The client secret for NiFi after registration with the Openld Connect
Provider.

nifi.security.user.oidc.preferred.jwsal gorithm The preferred algorithm for validating identity tokens. If thisvalueis

blank, it will default to RS256 which is required to be supported by the
Openld Connect Provider according to the specification. If thisvalue
is HS256, HS384, or HS512, NiFi will attempt to validate HMAC
protected tokens using the specified client secret. If thisvalueis none,
NiFi will attempt to validate unsecured/plain tokens. Other values for
this algorithm will attempt to parse as an RSA or EC agorithm to be
used in conjunction with the JSON Web Key (JWK) provided through
the jwks_uri in the metadata found at the discovery URL.

nifi.security.user.oidc.additional .scopes Comma separated scopes that are sent to Openld Connect Provider in
addition to openid and email.

nifi.security.user.oidc.claim.identifying.user Claim that identifies the user to be logged in; default is email. May
need to be requested via the nifi.security.user.oidc.additional .scopes
before usage.

nifi.security.user.oidc.fallback.claims.identifying.user Comma separated possible fallback claims used to identify the user in

case nifi.security.user.oidc.claim.identifying.user claim is not present
for the login user.

SAML

To enable authentication via SAML the following properties must be configured in nifi.properties.

Property Name Description

nifi.security.user.saml.idp.metadata.url The URL for obtaining the identity provider's metadata. The metadata
can be retrieved from the identity provider via http:// or https://, or a
local file can be referenced using file:// .

16

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html

User Authentication

Property Name Description

nifi.security.user.saml.sp.entity.id

The entity id of the service provider (i.e. NiFi). This value will be used
asthe Issuer for SAML authentication requests and should be avalid
URI. In some cases the service provider entity id must be registered
ahead of time with the identity provider.

nifi.security.user.saml.identity.attribute.name

The name of a SAML assertion attribute containing the user'sidentity.
This property is optional and if not specified, or if the attribute is not
found, then the Namel D of the Subject will be used.

nifi.security.user.saml.group.attribute.name

The name of a SAML assertion attribute containing group names the
user belongsto. This property is optional, but if popul ated the groups
will be passed along to the authorization process.

nifi.security.user.saml.metadata.signing.enabled

Enables signing of the generated service provider metadata.

nifi.security.user.saml.request.signing.enabled

Controls the value of AuthnRequestsSigned in the generated service
provider metadata from nifi-api/access/saml/metadata. This indicates
that the service provider (i.e. NiFi) should not sign authentication
requests sent to the identity provider, but the requests may still need to
be signed if the identity provider indicates WantAuthnRequestSigned=t
rue.

nifi.security.user.saml.want.assertions.signed

Controls the value of WantAssertionsSigned in the generated service
provider metadata from nifi-api/access/saml/metadata. This indicates
that the identity provider should sign assertions, but some identity
providers may provide their own configuration for controlling whether
assertions are signed.

nifi.security.user.saml.signature.algorithm

The algorithm to use when signing SAML messages. Reference the
https://git.shibbol eth.net/view/?p=java-xmltooling.git;a=bl ob;f=src/
main/javalorg/opensaml/xmi/signature/SignatureConstants,java for a
list of valid values. If not specified, adefault of SHA-256 will be used.

nifi.security.user.saml.signature.digest.algorithm

The digest algorithm to use when signing SAML messages. Reference
the https://git.shibbol eth.net/view/?p=java-xmltooling.git;a=bl ob;f=src/
main/javalorg/opensaml/xml/signature/SignatureConstants,java for a
list of valid values. If not specified, adefault of SHA-256 will be used.

nifi.security.user.saml.message.|ogging.enabled

Enables logging of SAML messages for debugging purposes.

nifi.security.user.saml.authentication.expiration

The expiration of the NiFi IWT that will be produced from a successful
SAML authentication response.

nifi.security.user.saml.single.logout.enabled

Enables SAML Singlel ogout which causes alogout from NiFi to
logout of the identity provider. By default, alogout of NiFi will only
remove the NiFi JWT.

nifi.security.user.saml.http.client.truststore.strategy

The truststore strategy when the IDP metadata URL begins with https.
A value of JDK indicates to use the JDK's default truststore. A value
of 'NIFI"indicates to use the truststore specified by nifi.security.trusts
tore.

nifi.security.user.saml.http.client.connect.timeout

The connection timeout when communicating with the SAML IDP.

nifi.security.user.saml.http.client.read.timeout

The read timeout when communicating with the SAML IDP.

Apache Knox

To enable authentication via Apache Knox the following properties must be configured in nifi.properties.

Property Name

nifi.security.user.knox.url

Description

The URL for the Apache Knox login page.

17

https://git.shibboleth.net/view/?p=java-xmltooling.git;a=blob;f=src/main/java/org/opensaml/xml/signature/SignatureConstants.java
https://git.shibboleth.net/view/?p=java-xmltooling.git;a=blob;f=src/main/java/org/opensaml/xml/signature/SignatureConstants.java
https://git.shibboleth.net/view/?p=java-xmltooling.git;a=blob;f=src/main/java/org/opensaml/xml/signature/SignatureConstants.java
https://git.shibboleth.net/view/?p=java-xmltooling.git;a=blob;f=src/main/java/org/opensaml/xml/signature/SignatureConstants.java

Multi-Tenant Authorization

Property Name Description

nifi.security.user.knox.publicKey The path to the Apache Knox public key that will be used to verify the
signatures of the authentication tokensin the HTTP Cookie.

nifi.security.user.knox.cookieName The name of the HTTP Cookie that Apache Knox will generate after
successful login.
nifi.security.user.knox.audiences Optional. A comma separate listed of allowed audiences. If set, the

audience in the token must be present in thislisting. The audience that
is populated in the token can be configured in Knox.

JSON Web Tokens

NiFi uses JISON Web Tokens to provide authenticated access after the initial login process. Generated JSON Web
Tokensinclude the authenticated user identity aswell as the issuer and expiration from the configured L ogin Identity
Provider.

NiFi uses generated RSA Key Pairs with akey size of 4096 hits to support the PS512 algorithm for JSON Web
Signatures. The system stores RSA Public Keys using the configured local State Provider and retains the RSA Private
Key in memory. This approach supports signature verification for the expiration configured in the Login Identity
Provider without persisting the private key.

JSON Web Token support includes revocation on logout using JSON Web Token Identifiers. The system denies
access for expired tokens based on the Login Identity Provider configuration, but revocation invalidates the token
prior to expiration. The system stores revoked identifiers using the configured local State Provider and runsa
scheduled command to delete revoked identifiers after the associated expiration.

The following settings can be configured in nifi.properties to control JSON Web Token signing.

Property Name Description

nifi.security.user.jws.key.rotation.period JSON Web Signature Key Rotation Period defines how often the
system generates anew RSA Key Pair, expressed as an 1SO 8601
duration. The default is one hour: PT1H

Multi-Tenant Authorization

After you have configured NiFi to run securely and with an authentication mechanism, you must configure who
has access to the system, and the level of their access. Y ou can do this using 'multi-tenant authorization'. Multi-
tenant authorization enables multiple groups of users (tenants) to command, control, and observe different parts of
the dataflow, with varying levels of authorization. When an authenticated user attempts to view or modify a NiFi
resource, the system checks whether the user has privileges to perform that action. These privileges are defined by
policies that you can apply system-wide or to individual components.

Authorizer Configuration
An 'authorizer' grants users the privileges to manage users and policies by creating preliminary authorizations at
startup.
Authorizers are configured using two properties in the nifi.propertiesfile:

e Thenifi.authorizer.configuration.file property specifies the configuration file where authorizers are defined. By
default, the authorizers.xml file located in the root installation conf directory is selected.

18

Multi-Tenant Authorization

« The nifi.security.user.authorizer property indicates which of the configured authorizers in the authorizers.xml file
to use.

The authorizers.xml file is used to define and configure available authorizers. The default authorizer is

the StandardM anagedA uthorizer. The managed authorizer is comprised of a UserGroupProvider and a
AccessPolicyProvider. The users, group, and access policies will be loaded and optionally configured through these
providers. The managed authorizer will make all access decisions based on these provided users, groups, and access
policies.

During startup there is a check to ensure that there are no two users/groups with the same identity/name. This check
is executed regardless of the configured implementation. Thisis necessary because thisis how users/groups are
identified and authorized during access decisions.

The default UserGroupProvider is the FileUserGroupProvider, however, you can develop additional
UserGroupProviders as extensions. The FileUserGroupProvider has the following properties:

* UsersFile - The file where the FileUserGroupProvider stores users and groups. By default, the users.xml in the
conf directory is chosen.

* Legacy Authorized Users File - The full path to an existing authorized-users.xml that will be automatically be
used to load the users and groups into the Users File.

e |nitial User Identity - The identity of a users and systems to seed the Users File. The name of each property must
be unique, for example: "Initial User Identity A", "Initial User Identity B", "Initial User Identity C" or "Initial User
Identity 1", "Initial User Identity 2", "Initial User Identity 3"

Another option for the UserGroupProvider is the LdapUserGroupProvider. By default, this option is commented out
but can be configured in lieu of the FileUserGroupProvider. Thiswill sync users and groups from a directory server
and will present them in the NiFi Ul in read only form.

The LdapUserGroupProvider has the following properties:

Authentication Strategy How the connection to the LDAP server is authenticated. Possible
vauesare ANONYMOUS, SIMPLE, LDAPS, or START_TLS.

Manager DN The DN of the manager that is used to bind to the LDAP server to
search for users.

Manager Password The password of the manager that is used to bind to the LDAP server to
search for users.

TLS- Keystore Path to the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS - Keystore Password Password for the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS.

TLS- Keystore Type Type of the Keystore that is used when connecting to LDAP using
LDAPS or START_TLS(i.e. KSor PKCS12).

TLS- Truststore Path to the Truststore that is used when connecting to LDAP using
LDAPSor START_TLS.

TLS- Truststore Password Password for the Truststore that is used when connecting to LDAP
using LDAPSor START_TLS.

19

Multi-Tenant Authorization

Property Name Description

TLS- Truststore Type

Type of the Truststore that is used when connecting to LDAP using
LDAPS or START_TLS(i.e. JKSor PKCS12).

TLS- Client Auth

Client authentication policy when connecting to LDAP using LDAPS
or START_TLS. Possible values are REQUIRED, WANT, NONE.

TLS - Protocol

Protocol to use when connecting to LDAP using LDAPS or
START_TLS. (i.e. TLS, TLSv1.1, TLSv1.2, etc).

TLS- Shutdown Gracefully

Specifies whether the TLS should be shut down gracefully before the
target context is closed. Defaults to false.

Referral Strategy

Strategy for handling referrals. Possible values are FOLLOW, IGNO
RE, THROW.

Connect Timeout

Duration of connect timeout. (i.e. 10 secs).

Read Timeout Duration of read timeout. (i.e. 10 secs).

Url Space-separated list of URLs of the LDAP servers (i.e. |dap://<host
name>:<port>).

Page Size Sets the page size when retrieving users and groups. If not specified, no

paging is performed.

Group Membership - Enforce Case Sensitivity

Sets whether group membership decisions are case sensitive. When
auser or group isinferred (by not specifying or user or group search
base or user identity attribute or group name attribute) case sensitivity
is enforced since the value to use for the user identity or group name
would be ambiguous. Defaults to false.

Sync Interval Duration of time between syncing users and groups. (i.e. 30 mins).
Minimum allowable value is 10 secs.

User Search Base Base DN for searching for users (i.e. ou=users,o=nifi). Required to
search users.

User Object Class Object class for identifying users (i.e. person). Required if searching
users.

User Search Scope Search scope for searching users (ONE_LEVEL, OBJECT, or SUBT

REE). Required if searching users.

User Search Filter

Filter for searching for users against the User Search Base (i.e. (mem
berof=cn=team1,ou=groups,o=nifi)). Optional .

User Identity Attribute

Attribute to use to extract user identity (i.e. cn). Optional. If not set, the
entire DN is used.

User Group Name Attribute

Attribute to use to define group membership (i.e. memberof). Optional.
If not set group membership will not be calculated through the users.
Will rely on group membership being defined through Group Member
Attribute if set. The value of this property is the name of the attribute in
the user Idap entry that associates them with a group. The value of that
user attribute could be a dn or group name for instance. What value is
expected is configured in the User Group Name Attribute - Referenced
Group Attribute.

User Group Name Attribute - Referenced Group Attribute

If blank, the value of the attribute defined in User Group Name Attr
ibute is expected to be the full dn of the group. If not blank, this
property will define the attribute of the group Idap entry that the value
of the attribute defined in User Group Name Attribute is referencing
(i.e. name). Use of this property requires that Group Search Base is
also configured.

20

Multi-Tenant Authorization

Property Name Description

Group Search Base Base DN for searching for groups (i.e. ou=groups,o=nifi). Required to
search groups.

Group Object Class Object class for identifying groups (i.e. groupOfNames). Required if
searching groups.

Group Search Scope Search scope for searching groups (ONE_LEVEL, OBJECT, or SUBT
REE). Required if searching groups.

Group Search Filter Filter for searching for groups against the Group Search Base.
Optional.

Group Name Attribute Attribute to use to extract group name (i.e. cn). Optional. If not set, the

entire DN is used.

Group Member Attribute Attribute to use to define group membership (i.e. member). Optional.
If not set group membership will not be cal culated through the groups.
Will rely on group membership being defined through User Group
Name Attribute if set. The value of this property is the name of the
attribute in the group Idap entry that associates them with auser. The
vaue of that group attribute could be a dn or memberUid for instance.
What value is expected is configured in the Group Member Attribute -

Referenced User Attribute. (i.e. member: cn=User 1,ou=users,o=nifi
vs. memberUid: userl)

Group Member Attribute - Referenced User Attribute If blank, the value of the attribute defined in Group Member Attribute
is expected to be the full dn of the user. If not blank, this property will
define the attribute of the user Idap entry that the value of the attribute
defined in Group Member Attribute is referencing (i.e. uid). Use of this
property requires that User Search Base is also configured. (i.e. memb
er: cn=User 1,ou=users,o=nifi vs. memberUid: userl)

Note: Any identity mapping rules specified in nifi.properties will also be applied to the user identities. Group
E names are not mapped.

ShellUserGroupProvider

The ShellUserGroupProvider fetches user and group details from Unix-like systems using shell commands.
This provider executes various shell pipelines with commands such as getent on Linux and dscl on macOS.

Supported systems may be configured to retrieve users and groups from an external source, such asLDAP or NIS.
In these cases the shell commands will return those external users and groups. This provides administrators another
mechanism to integrate user and group directory services.

The ShellUserGroupProvider has the following properties:

Property Name Description

Initial Refresh Delay Duration of initial delay beforefirst user and group refresh. (i.e. 10 s
ecs). Default is5 mins.

Refresh Delay Duration of delay between each user and group refresh. (i.e. 10 secs).
Default is5 mins.

Exclude Groups Regular expression used to exclude groups. Default is", which means
no groups are excluded.

Exclude Users Regular expression used to exclude users. Default is ", which means no
users are excluded.

Like LdapUserGroupProvider, the ShellUserGroupProvider is commented out in the authorizers.xml file. Refer to
that comment for usage examples.

21

Multi-Tenant Authorization

AzureGraphUserGroupProvider

The AzureGraphUserGroupProvider fetches users and groups from Azure Active Directory (AAD) using the

Microsoft Graph API.

A subset of groups are fetched based on filter conditions (Group Filter Prefix, Group Filter Suffix, Group Filter Sub
string, and Group Filter List Inclusion) evaluated against the displayName property of the Azure AD group. Member
users are then loaded from these groups. At least one filter condition should be specified.

This provider requires an Azure app registration with:

» Microsoft Graph Group.Read.All and User.Read.All API permissions with admin consent

e A client secret or application password
» ID token claimsfor upn and/or email

See https://docs.microsoft.com/en-us/graph/auth-v2-service and https://docs.microsoft.com/en-us/azure/active-
directory/devel op/scenario-daemon-app-registration for more information on how to create a valid app registration.

The AzureGraphUserGroupProvider has the following properties:

Property Name Description

Refresh Delay

Duration of delay between each user and group refresh. Default is5 mi
ns.

Authority Endpoint

The endpoint of the Azure AD login. This can be found in the Azure
portal under Azure Active Directory # App registrations # [application
name] # Endpoints. For example, the global authority endpoint is
https://login.microsoftonline.com.

Directory ID

Tenant ID or Directory ID of the Azure AD tenant. This can be found
in the Azure portal under Azure Active Directory # App registrations #
[application name] # Directory (tenant) ID.

Application ID

Client ID or Application I1D of the Azure app registration. This can
be found in the Azure portal under Azure Active Directory # App
registrations # [application name] # Overview # Application (client)
ID.

Client Secret

A client secret from the Azure app registration. Secrets can be created
in the Azure portal under Azure Active Directory # App registrations #
[application name] # Certificates & secrets# Client secrets #[+] New
client secret.

Group Filter Prefix

Prefix filter for Azure AD groups. Matches against the group
displayName to retrieve only groups with names starting with the
provided prefix.

Group Filter Suffix

Suffix filter for Azure AD groups. Matches against the group
displayName to retrieve only groups with names ending with the
provided suffix.

Group Filter Substring

Substring filter for Azure AD groups. Matches against the group
displayName to retrieve only groups with names containing the
provided substring.

Group Filter List Inclusion

Comma-separated list of Azure AD groups. If no string-based matching
filter (i.e., prefix, suffix, and substring) is specified, set this property to
avoid fetching all groups and usersin the Azure AD tenant.

Page Size

Page size to use with the Microsoft Graph API. Set to 0 to disable
paging API calls. Default: 50, Max: 999.

Claim for Username

The property of the user directory object mapped to the NiFi user name
field. Default is'upn’. 'email’ is another option when nifi.security.user.o
idc.fallback.claims.identifying.user is set to 'upn'.

22

https://docs.microsoft.com/en-us/graph/auth-v2-service
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-daemon-app-registration
https://docs.microsoft.com/en-us/azure/active-directory/develop/scenario-daemon-app-registration
https://login.microsoftonline.com

Multi-Tenant Authorization

Like LdapUserGroupProvider and ShellUserGroupProvider, the AzureGraphUserGroupProvider configuration is
commented out in the authorizers.xml file. Refer to the comment for a starter configuration.

Composite Implementations

Another option for the UserGroupProvider are composite implementations. This means that multiple sources/
implementations can be configured and composed. For instance, an admin can configure users/groups to

be loaded from afile and a directory server. There are two composite implementations, one that supports
multiple UserGroupProviders and one that supports multiple UserGroupProviders and a single configurable
UserGroupProvider.

The CompositeUserGroupProvider will provide support for retrieving users and groups from multiple sources. The
CompositeUserGroupProvider has the following property:

Property Name Description

User Group Provider [unique key] Theidentifier of user group providersto load from. The name of each
property must be unique, for example: "User Group Provider A", "User
Group Provider B", "User Group Provider C" or "User Group Provider
1", "User Group Provider 2", "User Group Provider 3"

Note: Any identity mapping rules specified in nifi.properties are not applied in this implementation. This
behavior would need to be applied by the base implementation.

The CompositeConfigurableUserGroupProvider will provide support for retrieving users and groups from multiple
sources. Additionally, a single configurable user group provider is required. Users from the configurable user group
provider are configurable, however users loaded from one of the User Group Provider [unique key] will not be. The
CompositeConfigurableUserGroupProvider has the following properties:

Property Name Description

Configurable User Group Provider A configurable user group provider.

User Group Provider [unique key] Theidentifier of user group providersto load from. The name of each
property must be unique, for example: "User Group Provider A", "User
Group Provider B", "User Group Provider C" or "User Group Provider
1", "User Group Provider 2", "User Group Provider 3"

FileAccessPolicyProvider

The default AccessPolicyProvider is the FileAccessPolicyProvider, however, you can develop additiona
AccessPolicyProvider as extensions. The FileAccessPolicyProvider has the following properties:

Property Name Description

User Group Provider Theidentifier for an User Group Provider defined above that will be
used to access users and groups for use in the managed access policies.

Authorizations File The file where the FileAccessPolicyProvider will store policies.

Initial Admin Identity Theidentity of aninitial admin user that will be granted access to the
Ul and given the ability to create additional users, groups, and poalicies.
The value of this property could be a DN when using certificates or
LDAP, or aKerberos principal. This property will only be used when
there are no other policies defined. If this property is specified then a
Legacy Authorized Users File can not be specified.

Legacy Authorized Users File The full path to an existing authorized-users.xml that will be
automatically converted to the new authorizations model. If this
property is specified then an Initial Admin Identity can not be
specified, and this property will only be used when there are no other
users, groups, and policies defined.

23

Multi-Tenant Authorization

Property Name Description

Node Identity Theidentity of aNiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other
node. If not clustered these properties can be ignored. The name of
each property must be unique, for example for athree node cluster:
"Node Identity A", "Node Identity B", "Node Identity C" or "Node
Identity 1", "Node Identity 2", "Node Identity 3"

Node Group The name of agroup containing NiFi cluster nodes. The typical use for
thisis when nodes are dynamically added/removed from the cluster.

Note: Theidentities configured in the Initial Admin Identity, the Node Identity properties, or discoveredin a
§ Legacy Authorized Users File must be available in the configured User Group Provider.

§ Note: Any usersin the legacy users file must be found in the configured User Group Provider.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the node identities, so the
§ values should be the unmapped identities (i.e. full DN from a certificate). Thisidentity must be found in the
configured User Group Provider.

StandardManagedAuthorizer

The default authorizer is the StandardM anagedA uthorizer, however, you can devel op additional authorizers as
extensions. The StandardM anagedA uthorizer has the following property:

Property Name Description

Access Policy Provider Theidentifier for an Access Policy Provider defined above.

FileAuthorizer

The FileAuthorizer has been replaced with the more granular StandardM anagedA uthorizer approach described above.
However, it is still available for backwards compatibility reasons. The FileAuthorizer has the following properties:

Property Name Description

Authorizations File The file where the FileAuthorizer stores policies. By default, the
authorizations.xml in the conf directory is chosen.

UsersFile The file where the FileAuthorizer stores users and groups. By defaullt,
the users.xml in the conf directory is chosen.

Initial Admin Identity The identity of aninitial admin user that is granted access to the Ul
and given the ability to create additional users, groups, and policies.
This property is only used when there are no other users, groups, and
policies defined.

Legacy Authorized Users File The full path to an existing authorized-users.xml that is automatically
converted to the multi-tenant authorization model. This property is only
used when there are no other users, groups, and policies defined.

Node Identity Theidentity of aNiFi cluster node. When clustered, a property for each
node should be defined, so that every node knows about every other
node. If not clustered, these properties can be ignored.

Note: Any identity mapping rules specified in nifi.properties will also be applied to the initial admin identity,
so the value should be the unmapped identity.

24

Multi-Tenant Authorization

Note: Any identity mapping rules specified in nifi.properties will also be applied to the node identities, so the
E values should be the unmapped identities (i.e. full DN from a certificate).

If you are setting up a secured NiFi instance for the first time, you must manually designate an "Initial Admin
Identity" in the authorizers.xml file. Thisinitial admin user is granted access to the Ul and given the ability to create
additional users, groups, and policies. The value of this property could be a DN (when using certificates or LDAP) or
aKerberos principal. If you are the NiFi administrator, add yourself as the "Initial Admin Identity".

After you have edited and saved the authorizers.xml file, restart NiFi. The "Initial Admin Identity" user and
administrative policies are added to the users.xml and authorizations.xml files during restart. Once NiFi starts, the
"Initial Admin Identity" user is able to access the Ul and begin managing users, groups, and policies.

Note: For abrand new secure flow, providing the "Initial Admin Identity" gives that user accessto get into

E the Ul and to manage users, groups and policies. But if that user wants to start modifying the flow, they need
to grant themselves policies for the root process group. The system is unable to do this automatically because
in anew flow the UUID of the root process group is not permanent until the flow.xml.gz is generated. If the
NiFi instance is an upgrade from an existing flow.xml.gz or a 1.x instance going from unsecure to secure,
then the "Initial Admin Identity" user is automatically given the privileges to modify the flow.

Some common use cases are described below.

Here is an example LDAP entry using the name John Smith:

<aut hori zer s>
<user Gr oupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi.aut horization. Fil eUser G oupProvi der </ cl ass>
<property nane="Users File">./conf/users.xmn </ property>
<property nane="Legacy Authorized Users File"></property>

<property nane="Initial User ldentity 1">cn=John Smith, ou=peopl e,
dc=exanpl e, dc=conx/ pr operty>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>or g. apache. ni fi. aut horizati on. Fi | eAccessPol i cyProvi der</cl a

Ss>

<property name="User G oup Provider">file-user-group-provider</prope
rty>

<property nane="Aut hori zations File"> /conf/authorizations.xmn </pro
perty>

<property nane="Initial Admn Identity">cn=John Snith, ou=peopl e, d
c=exanpl e, dc=conx/ pr operty>
<property nane="Legacy Authorized Users File"></property>

<property nane="Node |dentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<identifier>managed- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dvanagedAut hori zer</cl a
ss>
<property nane="Access Policy Provider">file-access-policy-provider<
/ property>
</ aut hori zer>
</ aut hori zer s>

25

Multi-Tenant Authorization

Here is an example Kerberos entry using the name John Smith and realm NIFI.APACHE.ORG:

<aut hori zer s>
<user Gr oupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi. aut horizati on. Fi | eUser G oupPr ovi der </ cl ass>
<property nane="Users File">./conf/users.xm </ property>
<property nane="Legacy Authorized Users File"></property>

<property nane="Initial User ldentity 1">johnsnith@\l Fl. APACHE. ORG</
property>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>file-access-policy-provider</identifier>
<cl ass>org. apache. ni fi.aut horizati on. Fi |l eAccessPol i cyProvi der</cl a
ss>
<property nane="User G oup Provider">fil e-user-group-provider</prope
rty>
<property nane="Aut horizations File"> /conf/authorizations.xm </pro
perty>
<property nanme="Initial Admin Identity">j ohnsm th@\l FI . APACHE. ORG</
property>
<property nane="Legacy Authorized Users File"></property>

<property name="Node ldentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<i denti fi er>nanaged- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dvanagedAut hori zer</cl a
ss>
<property nane="Access Policy Provider">file-access-policy-provider<
/ property>
</ aut hori zer >
</ aut hori zer s>

Here is an example loading users and groups from LDAP. Group membership will be driven through the member
attribute of each group. Authorization will still use file-based access policies:

dn: cn=User 1, ou=users, o=nifi

obj ect O ass: organi zati onal Person
obj ect C ass: person

obj ect d ass: i net OrgPerson

obj ectd ass: top

cn: User 1

sn: Userl

uid: userl

dn: cn=User 2, ou=users, o=nifi

obj ect ass: organi zati onal Person
obj ect d ass: person

obj ect d ass: i net OrgPerson

obj ectd ass: top

cn: User 2

sn: User?2

uid: user2

dn: cn=adm ns, ou=gr oups, o=ni fi

26

Multi-Tenant Authorization

obj ect d ass:
obj ect d ass:
adm ns

cn:
nmenber :
menber :

top

cn=User

<aut hori zer s>
<user G oupPr ovi der >

<identifier>l dap-user-group-provider</identifier>

<cl ass>org. apache. ni fi .l dap.tenants. LdapUser Gr oupPr ovi der </ cl ass>

nane="Aut henti cati on Strategy">ANONYMOUS</ pr operty>

<property

<property
<property
<property
<property
<property
<property
<property
<property
<property
<property
<property

<property
<property
<property
<property
<property
<property
<property

1!
cn=User 2,

gr oupOf Nanes

ou=users, o=ni fi
ou=users, o=ni fi

name=" Manager
name=" Manager

DN'></ pr operty>
Passwor d" ></ pr operty>

nane="TLS - Keystore"></property>

nane="TLS - Keystore Password"></property>
nane="TLS - Keystore Type"></property>
nane="TLS - Truststore"></property>
nane="TLS - Truststore Password"></property>
name="TLS - Truststore Type"></property>
nane="TLS - dient Auth"></property>
nane="TLS - Protocol "></property>

nane="TLS - Shutdown Graceful |l y"></property>

nane="Referral Strategy">FO.LOM/ property>
nane="Connect Ti meout">10 secs</property>
nane="Read Ti meout">10 secs</property>
name="Ur| ">l dap://| ocal host : 10389</ pr opert y>
name="Page Si ze"></property>

nane="Sync | nterval ">30 m ns</property>
nanme="G oup Menbership -

Enf orce Case Sensitivity">fal se</

property>

<property
<property
<property
<property
<property
<property
<property

te" ></ property>

<property
<property
<property
<property
<property
<property
<property

</ property>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>file-access-policy-provider</identifier>
<cl ass>org. apache. ni fi. aut horizati on. Fil eAccessPol i cyProvi der</cl as

S>
operty>

erty>

name="User
name="User
name="User
name="User
nane="User
name="User
name="User

Sear ch Base">ou=users, o=ni fi </ property>

bj ect Cl ass" >person</ property>

Search Scope">ONE_LEVEL</ pr operty>

Search Filter"></property>

Identity Attribute">cn</property>

G oup Name Attribute"></property>

Group Nane Attribute - Referenced Group Attribu

name=" G oup
name=" G oup
name=" G oup
name=" G oup
name="G oup
name=" G oup
name=" G oup

Sear ch Scope" >ONE_LEVEL</ property>
Search Filter"></property>

Nane Attribute">cn</property>
Menber Attri bute">nenber </ property>
Menber Attribute -

Sear ch Base">ou=groups, o=ni fi </ property>
bj ect O ass" >gr oupOf Names</ property>

Ref erenced User Attribute">

<property nane="User G oup Provider">| dap-user-group-provider</pr

<property

<property
<property

<property

name="Aut hori zations File">./conf/authori zations.xm </ prop

name="Ini ti al
nane="Legacy Authorized Users File"></property>

name="Node |dentity 1"></property>

</ accessPol i cyProvi der >
<aut hori zer >
<identifier>nanaged- aut hori zer</identifier>

Adm n Identity">John Snith</property>

27

Multi-Tenant Authorization

<cl ass>or g. apache. ni fi. aut hori zati on. St andar dManagedAut hori zer</cl a

Ss>

<property nane="Access Policy Provider">file-access-policy-provider<

/ property>
</ aut hori zer >
</ aut hori zer s>

The Initial Admin Identity value would have loaded from the cn from John Smith's entry based on the User Identity

Attribute value.

Here is an example loading users and groups from LDAP. Group membership will be driven through the member uid
attribute of each group. Authorization will still use file-based access policies:

dn: uid=User 1, ou=Users, dc=I ocal

obj ect d ass: i net OrgPerson
obj ect d ass: posi xAccount
obj ect d ass: shadowAccount
uid: userl

cn: User 1

dn: ui d=User 2, ou=Users, dc=I ocal

obj ect d ass: i net OrgPerson
obj ect d ass: posi xAccount
obj ect d ass: shadowAccount
ui d: user2

cn: User 2

dn: cn=Manager s, ou=G oups, dc=I ocal

obj ect d ass: posi xG oup
cn: Managers

menber Ui d: userl

menber Ui d: user2

<aut hori zer s>
<user Gr oupPr ovi der >

<identifier>l dap-user-group-provider</identifier>
<cl ass>org. apache. ni fi .l dap.tenants. LdapUser Gr oupPr ovi der </ cl ass>
<property nane="Aut hentication Strategy">ANONYMOUS</ pr operty>
<property nane="Manager DN'></property>
<property nanme="Manager Password"></property>

<property nane="TLS
<property nane="TLS
<property nane="TLS
<property nanme="TLS
<property nanme="TLS
<property nanme="TLS
<property nane="TLS
<property nane="TLS
<property nane="TLS

Keyst or e" ></ property>

Keyst or e Passwor d"></ property>
Keyst ore Type"></property>

Tr ust st or e" ></ property>

Trust st ore Passwor d"></property>
Truststore Type"></property>
Client Auth"></property>

Pr ot ocol " ></ property>

Shut down Graceful | y"></property>

<property nanme="Referral Strategy">FO.LOA/ property>
<property nanme="Connect Ti meout">10 secs</property>
<property name="Read Ti neout">10 secs</property>

<property nane="Url ">l dap://I| ocal host: 10389</ pr operty>
<property nane="Page Si ze"></property>
<property nane="Sync |nterval">30 m ns</property>

<property nanme="G oup Menbership -

property>

Enf orce Case Sensitivity">fal se</

<property nane="User Search Base">ou=Users, dc=l ocal </ property>
<property nane="User Cbject C ass">posi xAccount </ property>

28

Multi-Tenant Authorization

<property name="User Search Scope">ONE_LEVEL</ property>

<property name="User Search Filter"></property>

<property nane="User ldentity Attribute">cn</property>

<property nane="User Group Nanme Attri bute"></property>

<property nane="User Group Nane Attribute - Referenced Goup Attr
i but e" ></ property>

<property nanme="G oup Search Base">ou=G oups, dc=Il ocal </ property>
<property nanme="G oup Obj ect C ass">posi xG oup</ property>
<property nane="G oup Search Scope">ONE LEVEL</ property>
<property nane="Goup Search Filter"></property>
<property name="G oup Nanme Attribute">cn</property>
<property nane="G oup Menber Attribute">nenber U d</property>
<property name="G oup Menber Attribute - Referenced User Attribute
">ui d</ property>

</ user G oupPr ovi der >

<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>org. apache. ni fi.aut horization. Fil eAccessPol i cyProvider</cla

sSs>
<property nane="User G oup Provider">l dap-user-group-provider</prope
rty>
<property nane="Aut hori zations File"> /conf/authorizations.xm </pro
perty>
<property name="lnitial Adm n Identity">John Sm th</property>
<property nane="Legacy Authorized Users File"></property>
<property nane="Node ldentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<identifier>managed- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dManagedAut hori zer </ cl
ass>

<property nane="Access Policy Provider">file-access-policy-provider
</ property>
</ aut hori zer >
</ aut hori zer s>

Hereis an example composite implementation loading users and groups from LDAP and alocal file. Group
membership will be driven through the member attribute of each group. The users from LDAP will be read only while
the users loaded from the file will be configurablein UI.

dn: cn=User 1, ou=users, o=nifi

obj ect O ass: organi zati onal Person
obj ect O ass: person

obj ect d ass: i net OrgPerson

obj ectd ass: top

cn: User 1

sn: Userl

uid: userl

dn: cn=User 2, ou=users, o=nifi

obj ect d ass: organi zati onal Person
obj ect d ass: person

obj ect d ass: i net OrgPerson

obj ectd ass: top

cn: User 2

sn: User2

uid: user2

29

Multi-Tenant Authorization

dn: cn=admi ns, ou=gr oups, o=ni fi

obj ect d ass: groupO Nanes

obj ectd ass: top

cn: adm ns

menber: cn=User 1, ou=users,o=nifi

menber: cn=User 2, ou=users,o=nifi

<aut hori zer s>

<user Gr oupPr ovi der >

<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi.aut horization. Fil eUser G oupPr ovi der </ cl ass>
<property nane="Users File">./conf/users.xm </ property>
<property nanme="Legacy Authorized Users File"></property>

<property name="lnitial User ldentity 1">cn=nifi-nodel, ou=servers
, dc=exanpl e, dc=conx/ pr operty>
<property nane="Initial User ldentity 2">cn=nifi-node2, ou=servers,

dc=exanpl e, dc=conx/ pr operty>
</ user G oupPr ovi der >
<user Gr oupPr ovi der >
<identifier>l dap-user-group-provider</identifier>
<cl ass>org. apache. ni fi .l dap.tenants. LdapUser Gr oupPr ovi der </ cl ass>

<property nane="Aut henti cation Strategy">ANONYMOUS</ pr operty>

<property nane="Manager DN'></property>

<property nanme="Manager Password"></property>

<property name="TLS - Keystore"></property>

<property nane="TLS - Keystore Password"></property>

<property nane="TLS - Keystore Type"></property>

<property nanme="TLS - Truststore"></property>

<property nanme="TLS - Truststore Password"></property>

<property name="TLS - Truststore Type"></property>

<property name="TLS - dient Auth"></property>

<property nane="TLS - Protocol "></property>

<property nane="TLS - Shutdown Graceful |l y"></property>

<property nanme="Referral Strategy">FO.LOM/ property>

<property nanme="Connect Ti meout">10 secs</property>

<property name="Read Ti neout">10 secs</property>

<property nane="Url ">l dap://I| ocal host: 10389</ pr operty>

<property nane="Page Si ze"></property>

<property nane="Sync |Interval">30 m ns</property>

<property nanme="G oup Menbership - Enforce Case Sensitivity">fal se</
property>

<property nane="User Search Base">ou=users, o=nifi </ property>

<property nane="User Cbject C ass">person</property>

<property nane="User Search Scope">ONE_LEVEL</ property>

<property name="User Search Filter"></property>

<property name="User ldentity Attribute">cn</property>

<property nane="User Group Name Attribute"></property>

<property nane="User Group Nanme Attribute - Referenced Goup Attr

i but e" ></ property>

<property nane="G oup Search Base">ou=groups, o=ni fi </ property>
<property nanme="Goup Object C ass">groupOf Nanes</property>
<property name="G oup Search Scope">ONE_LEVEL</ property>
<property nane="Goup Search Filter"></property>

<property nanme="G oup Nane Attribute">cn</property>

<property nanme="G oup Menber Attri bute">nenber</property>
<property nanme="G oup Menber Attribute - Referenced User Attri but

e"></ property>
</ user G oupPr ovi der >
<user Gr oupPr ovi der >
<i dentifier>conposite-user-group-provider</identifier>

30

Multi-Tenant Authorization

<cl ass>or g. apache. ni fi. aut hori zati on. Conposi t eConf i gur abl eUser G o
upProvi der </ cl ass>
<property nane="Confi gurable User G oup Provider">fil e-user-group-
provi der </ property>
<property nane="User G oup Provider 1">|dap-user-group-provider</pr
operty>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>org. apache. ni fi.aut horization. Fil eAccessPol i cyProvi der</cl as

S>

<property nanme="User G oup Provider">conposite-user-group-provider</
property>

<property name="Aut hori zations File">./conf/authorizations.xm </pro
perty>

<property nane="Initial Admn Identity">John Snith</property>
<property nane="Legacy Authorized Users File"></property>

<property nanme="Node ldentity 1">cn=nifi-nodel, ou=servers, dc=exanpl e
, dc=conx/ property>
<property nane="Node ldentity 2">cn=nifi-node2, ou=servers, dc=exam
pl e, dc=conx/ pr operty>
</ accessPol i cyProvi der>
<aut hori zer >
<identifier>managed- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dvanagedAut hori zer</ c
| ass>
<property nane="Access Policy Provider">file-access-policy-provide
r</ property>
</ aut hori zer>
</ aut hori zer s>

In this example, the users and groups are loaded from LDAP but the servers are managed in alocal file. The Initial
Admin Identity value came from an attribute in aLDAP entry based on the User Identity Attribute. The Node Identity
values are established in the local file using the Initial User Identity properties.

If you are upgrading from a 0.x NiFi instance, you can convert your previously configured users and roles to the
multi-tenant authorization model. In the authorizers.xml file, specify the location of your existing authorized-
usersxml file in the Legacy Authorized Users File property.

Hereis an example entry:

<aut hori zers>
<user G oupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. Fi | eUser G oupPr ovi der </ cl ass>
<property nane="Users File">./conf/users.xm </ property>
<property nane="Legacy Authorized Users File">/Users/johnsmth/confi
g_files/authorized-users. xm </ property>
<property nanme="Initial User ldentity 1"></property>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>or g. apache. ni fi.aut hori zation. Fi | eAccessPol i cyProvi der </ cl
ass>
<property nane="User G oup Provider">fil e-user-group-provider</prop
erty>
<property name="Aut horizations File">./conf/authorizations.xm </pr
operty>
<property nane="Initial Admn Identity"></property>

31

Multi-Tenant Authorization

<property nane="lLegacy Authorized Users File">/Users/johnsmth/confi
g_files/authorized-users. xm </ property>
<property nane="Node |dentity 1"></property>
</ accessPol i cyProvi der >
<aut hori zer >
<identifier>managed- aut hori zer</identifier>
<cl ass>or g. apache. ni fi . aut hori zati on. St andar dvanagedAut hori zer</ c
| ass>
<property nane="Access Policy Provider">file-access-policy-provide
r</ property>
</ aut hori zer >
</ aut hori zer s>

After you have edited and saved the authorizers.xml file, restart NiFi. Users and roles from the authorized-users.xml
file are converted and added as identities and policiesin the users.xml and authorizations.xml files. Once the
application starts, users who previously had alegacy Administrator role can access the Ul and begin managing users,
groups, and policies.

The following tables summarize the global and component policies assigned to each legacy roleif the NiFi instance
has an existing flow.xml.gz:

Global Access Policies

Admin DFM Monitor Provenance NiFi Proxy
* * *

view the Ul

access the * * * *
controller - view

access the *
controller -
modify

access parameter
contexts - view

access parameter
contexts - modify

query provenance *

access restricted *
components

access all policies | *
- view

access all policies | *
- modify

access users/user | *
groups - view

accessusersluser | *
groups - modify

retrieve site-to-site *
details

view system * *
diagnostics

proxy user *
requests

32

Multi-Tenant Authorization

Admin DFM Monitor Provenance NiFi Proxy

access counters

Component Access Policies on the Root Process Group

Admin DFM Monitor Provenance NiFi Proxy
* * *

view the
component

modify the *
component

view the data * * *

modify the data * *

view provenance *

For details on the individual policiesin the table, see Access Policies on page 37.

Note: NiFi failsto restart if values exist for both the Initial Admin Identity and Legacy Authorized Users File
E properties. Y ou can specify only one of these values to initialize authorizations.

Note: Do not manually edit the authorizations.xml file. Create authorizations only during initial setup and
E afterwards using the NiFi Ul.

Cluster Node Identities

If you are running NiFi in a clustered environment, you must specify the identities for each node. The authorization
policies required for the nodes to communicate are created during startup.

For example, if you are setting up a 2 node cluster with the following DNs for each node:

cn=ni fi-1, ou=peopl e, dc=exanpl e, dc=com
cn=ni fi -2, ou=peopl e, dc=exanpl e, dc=com

<aut hori zer s>
<user GroupPr ovi der >
<identifier>file-user-group-provider</identifier>
<cl ass>or g. apache. ni fi.aut horization. Fil eUser G oupProvi der </ cl ass>
<property nanme="Users File">./conf/users.xm </ property>
<property nane="Legacy Authorized Users File"></property>

<property nanme="Initial User ldentity 1">johnsnith@\l Fl.APACHE. ORG</
property>
<property nane="Initial User ldentity 2">cn=nifi-1, ou=peopl e, dc=exa
npl e, dc=conx/ property>
<property name="lnitial User ldentity 3">cn=nifi-2, ou=peopl e, dc=e
xanpl e, dc=conx/ pr operty>
</ user G oupPr ovi der >
<accessPol i cyProvi der >
<identifier>fil e-access-policy-provider</identifier>
<cl ass>or g. apache. ni fi.authorization. Fil eAccessPol i cyProvi der</cl a

ss>
<property name="User G oup Provider">file-user-group-provider</prope
rty>
<property nane="Aut hori zations File"> /conf/authorizations.xm </pro
perty>

33

Multi-Tenant Authorization

<property nanme="Initial Admin Identity">j ohnsm th@\l FI . APACHE. ORG</
property>
<property nane="Legacy Authorized Users File"></property>

<property nane="Node ldentity 1">cn=nifi-1, ou=peopl e, dc=exanpl e, d
c=conx/ property>
<property nanme="Node ldentity 2">cn=nifi-2, ou=peopl e, dc=exanpl e, dc=
conk/ property>
</ accessPol i cyProvi der >
<aut hori zer >
<i denti fi er>nmanaged- aut hori zer</identifier>
<cl ass>or g. apache. ni fi. aut hori zati on. St andar dvanagedAut hori zer </ cl as
S>
<property nane="Access Policy Provider">file-access-policy-provid
er </ property>
</ aut hori zer>
</ aut hori zers>

Note: Inacluster, all nodes must have the same authorizations.xml and users.xml. The only exception isif
IE anode has empty authorizations.xml and user.xml files prior to joining the cluster. In this scenario, the node
inherits them from the cluster during startup.

Now that initial authorizations have been created, additional users, groups and authorizations can be created and
managed in the NiFi UI.

Depending on the capabilities of the configured UserGroupProvider and AccessPolicyProvider the users, groups, and
policieswill be configurable in the Ul. If the extensions are not configurable the users, groups, and policies will read-
only inthe Ul. If the configured authorizer does not use UserGroupProvider and AccessPolicyProvider the users and
policies may or may not be visible and configurable in the Ul based on the underlying implementation.

This section assumes the users, groups, and policies are configurable in the Ul and describes:

* How to create users and groups

» How access policies are used to define authorizations

» How to view policiesthat are set on auser

» How to configure access policies by walking through specific examples

Note: Instructions requiring interaction with the Ul assume the application is being accessed by Userl, a user
with administrator privileges, such asthe "Initial Admin Identity" user or a converted legacy admin user (see
Authorizers.xml Setup).

From the Ul, select "Users' from the Globa Menu. This opens adialog to create and manage users and groups.

Multi-Tenant Authorization

»
NiFi Users
Displaying 1 of 1
. Filter by user v o=
'-
User Member of: S A

o

bt

2 Last updated: 11:45:51 EST

NiFi Flow

b

Click the Add icon (

&+

). To create auser, enter the 'ldentity’ information relevant to the authentication method chosen to secure your NiFi
instance. Click OK.

35

Multi-Tenant Authorization

User/Group

© Individual Group

Identity

User?2|

Member of

e

To create agroup, select the "Group" radio button, enter the name of the group and select the usersto be included in
the group. Click OK.

36

Multi-Tenant Authorization

User/Group

Individual) Group

Identity
Group_A

Members
Userl
User2

Y ou can manage the ability for users and groups to view or modify NiFi resources using ‘access policies. There are
two types of access policies that can be applied to aresource:

Access Policies

« View- If aview policy is created for aresource, only the users or groups that are added to that policy are able to
see the details of that resource.

» Modify - If aresource has a modify policy, only the users or groups that are added to that policy can change the
configuration of that resource.

Y ou can create and apply access policies on both global and component levels.

Global Access Policies

37

Multi-Tenant Authorization

Global access policies govern the following system level authorizations:

Policy Privilege Global Menu Selection Resour ce Descr iptor

view the Ul Allows usersto view the Ul [flow

access the controller Allows users to view/modify the [controller
controller including Reporting
Tasks, Controller Services,
Parameter Contexts and Nodesin

the Cluster

Controller Settings

access parameter contexts Allows users to view/modify Parameter Contexts
Parameter Contexts. Accessto
Parameter Contexts are inherited
from the "access the controller"

policies unless overridden.

/parameter-contexts

Allows users to submit a Data Provenance
Provenance Search and request

Event Lineage

query provenance /provenance

access restricted components Allows usersto create/modify N/A
restricted components assuming
other permissions are sufficient.
The restricted components

may indicate which specific
permissions are required.
Permissions can be granted for
specific restrictions or be granted
regardless of restrictions. If
permission is granted regardless
of restrictions, the user can create/
modify al restricted components.

[restricted-components

access all policies Allows users to view/modify the | Policies

policies for al components

Ipolicies

access users/user groups Allows usersto view/modify the | Users tenants

users and user groups

Allows other NiFi instancesto N/A /site-to-site

retrieve Site-To-Site details

retrieve site-to-site details

view system diagnostics Allows users to view System

Diagnostics

Summary /system

proxy user requests Allows proxy machines to send N/A /proxy

requests on the behalf of others

access counters Allows users to view/modify Counters /counters

Counters

Component Level Access Policies

Component level access policies govern the following component level authorizations:

Resour ce Descriptor & Action

resource="/<component-type>/<component-U

Privilege

view the component Allows users to view component configuration

details

UID>" action="R"

modify the component

Allows users to modify component
configuration details

resource="/<component-type>/<component-U
UID>" action="W"

38

Multi-Tenant Authorization

operate the component

view provenance

view the data

modify the data

view the policies

modify the policies

receive data via site-to-site

send data via site-to-site

Allows users to operate components by
changing component run status (start/stop/
enable/disable), remote port transmission
status, or terminating processor threads

Allows users to view provenance events
generated by this component

Allows users to view metadata and content for
this component in flowfile queues in outbound
connections and through provenance events

Allows users to empty flowfile queuesin
outbound connections and submit replays
through provenance events

Allows usersto view thelist of userswho can
view/modify a component

Allows users to modify thelist of users who
can view/modify a component

Allows a port to receive data from NiFi
instances

Allows a port to send data from NiFi instances

resource="/operation/<component-type>/<c
omponent-UUID>" action="W"

resource="/provenance-data/<component-ty
pe>/<component-UUID>" action="R"

resource="/data/<component-type>/<compon

ent-UUID>" action="R"

resource="/data/<component-type>/<compon
ent-UUID>" action="W"

resource="/policies/<component-type>/<co
mponent-UUID>" action="R"

resource="/policies/<component-type>/<co
mponent-UUID>" action="W"

resource="/data-transfer/input-ports/<port-U
UID>" action="W"

resource="/data-transfer/output-ports/<port-
UUID>" action="W"

Note: You can apply access policies to all component types except connections. Connection authorizations

K
K

are inferred by the individual access policies on the source and destination components of the connection, as
well as the access policy of the process group containing the components. Thisis discussed in more detail in
the Creating a Connection and Editing a Connection examples below.

Note: In order to access List Queue or Delete Queue for a connection, a user requires permission to the "view
the data' and "modify the data’ policies on the component. In a clustered environment, all nodes must be be
added to these policies as well, as a user request could be replicated through any node in the cluster.

An administrator does not need to manually create policies for every component in the dataflow. To reduce the
amount of time admins spend on authorization management, policies are inherited from parent resource to child
resource. For example, if auser is given access to view and modify a process group, that user can also view and
modify the components in the process group. Policy inheritance enables an administrator to assign policies at one
time and have the policies apply throughout the entire dataflow.

Y ou can override an inherited policy. Overriding a policy removes the inherited policy, breaking the chain of
inheritance from parent to child, and creates a replacement policy to add users as desired. Inherited policies and their
users can be restored by deleting the replacement policy.

N
N

Note: "View the policies’ and "modify the policies’ component-level access policies are an exception to this
inherited behavior. When a user is added to either policy, they are added to the current list of administrators.
They do not override higher level administrators. For this reason, only component specific administrators

are displayed for the "view the policies’ and "modify the policies’ access policies.

Note: Y ou cannot modify the users/groups on an inherited policy. Users and groups can only be added or
removed from a parent policy or an override policy.

From the Ul, select "Users’ from the Global Menu. This opens the NiFi Users dialog.

39

Multi-Tenant Authorization

»
NiFi Users
Displaying 1 of 1
. Filter by user v o=
'-
User Member of: S a

View User
Policies

o

bt

2 Last updated: 11:45:51 EST

NiFi Flow

b 4

Select the View User Policiesicon (

Q,

).

40

Multi-Tenant Authorization

B x

Filt

4
(User1 .
e
- Component policy for process group NiFi Flow read —
Component policy for process group NiFi Flow write -
Component policy for processor GetFile read -
Component policy for processor GetFile write =
L Global policy to access all policies write To
— Global policy to access all policies read
d: Global policy to access restricted components write
E Global policy to access the controller write
: Global policy to access the controller read
9 Global policy to access users/user groups read
i Global policy to access users/user groups write
t Global policy to view the user interface read
Some policies may be inherited by descendant components unless explicitly overridden.
c [e=]
NiFi Flow

User

[

The User Policies window displays the global and component level policies that have been set for the chosen user.
Select the Go Toicon (

—

) to navigate to that component in the canvas.

Access Policy Configuration Examples

The most effective way to understand how to create and apply access policiesis to walk through some common
examples. The following scenarios assume Userl is an administrator and User2 is a newly added user that has only
been given accessto the Ul.

Let's begin with two processors on the canvas as our starting point: GenerateFlowFile and LogAttribute.

41

Multi-Tenant Authorization

52 0 = 0/0bytes @0 @ 0 >0 To A2 o i 10:06:41 EST Q
@ Navigate
Q Operate S|
y NiFi Flow
I i= Process Group
401fedad-e293-4118-9%ae-8a6d6b72b819
T X > B - 3-
A GenerateFlowFile] A LogAttribute
— GenerateFlowFile | 1= LogAttribute
In 0 (0 bytes) 5 min In 0 (0 bytes) 5min
Read/Write 0 bytes / 0 bytes 5 min | Read/Write 0 bytes /0 bytes 5 min
Out 0 (0 bytes) 5 min | Out 0 (0 bytes) 5 min
| Tasks/Time 0 /00:00:00.000 5 min | Tasks/Time 0/00:00:00.000 5 min
NiFi Flow

s

Userl can add components to the dataflow and is able to move, edit and connect all processors. The details and
properties of the root process group and processors are visible to Userl.

o = 0/0bytes @0 @0 >0 Zo A2 * 0 < 10:08:12 EST Q
\ /
@ Navigate Useri
&9 operate B Component Toolbar Active
GenerateFlowFile
> Processor

3f32a3d0-0156-1000-0000-0000712787f1
& X X > B g
4] & Woeee

T

. ~| A GenerateFlowFile |#® Configure - [~] A Loghttribute
Operate Paleﬂe Ac‘t|ve GenerateFlowFile i Status History { LogAttribute
In 0 (0 bytes) O Upstream connections - In 0 (0 bytes) 5 min
Read/Write 0 bytes /0 bytes © Downstream connections Read/Write 0 bytes / 0 bytes 5 min
Out 0 (0 bytes) . Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 | & Usage | Tasks/Time 0/00:00:00.000 5 min
& Change color
£ Center in view
() Copy
i Delete

NiFi Flow

s

Userl wantsto maintain their current privileges to the dataflow and its components.

User2 is unable to add components to the dataflow or move, edit, or connect components. The details and properties
of the root process group and processors are hidden from User2.

42

Multi-Tenant Authorization

#o = 0/0bytes @0 ® o0 >0 wo A2 0 2 10:12:19 EST (oW [
\ /
@ Navigate User2
{:\ Operate =] Component Toolbar Inactive
3f32a3d0-0156-1000-0000-0000...
>~ Processor

3f32a3d0-0156-1000-0000-0000712787f1

T on = A

Operate Palette Inactive ;
i 0.0 bytes)

! - |aa Status History i —— (0ytes) D0l

| Read/Write 0 bytes /0 bytes Read/Write 0 bytes/ 0 bytes 5 min

{ Out 0 (0 bytes) O Upstream connections Out 0 (0 bytes) Smin |
5 Tasks/Time 0/ 00:00:00.000 O Downstream connections Tasks/Time 0/ 00:00:00.000 Smin |
: & Center in view

401fedad-e293-4118-99%ae-8a6d6b72b819

Moving a Processor

To allow User2 to move the GenerateFlowFile processor in the dataflow and only that processor, Userl performs the
following steps:

1. Select the GenerateFlowFile processor so that it is highlighted.
2. Select the Access Policiesicon (

&,

) from the Operate palette and the Access Policies dialog opens.

Multi-Tenant Authorization

. Select "modify the component" from the policy drop-down. The "modify the component" policy that currently
exists on the processor (child) is the "modify the component” policy inherited from the root process group (parent)
on which Userl has privileges.

Override Link

Access Policies

Showing effective policy inherited from Process Group NiFi Flow. Override this policy.

€ n FlowFil .

_— a E:c :::re o e view the component A4

c view the component 2]
;|

E Userl modify the component (-]

kil view the data o

! madify the data (2]

F receive data via site-to-site o
=

send data via site-to-site (2]

view the policies 2]

maodify the policies 2]

& Lastupdated: 10:17:17 EST

NiFi Flow

. Select the Override link in the policy inheritance message. When creating the replacement policy, you are given
achoice to override with a copy of the inherited policy or an empty policy. Select the Override button to create a

copy.

Override Policy

Do you want to override with a copy of the
inherited policy or an empty policy?

© copy
) Empty

OVERRIDE

Multi-Tenant Authorization

5. On the replacement policy that is created, select the Add User icon (

&+

). Find or enter User2 in the User Identity field and select OK. With these changes, Userl maintains the ability to
move both processors on the canvas. User2 can now move the GenerateFl owfFile processor but cannot move the
LogAttribute processor.

!_! A = —/ g=—0 g=—0 OUn . =, —

x
Access Policies E

G , .
. [; E‘:{‘iiﬁ?ﬂowme maodify the component v & o

E User1 L}

31 User2]

< Last updated: 10:21:38 EST

NiFi Flow

- —

o —

ni & [| =
0 0/ 0 bytes 0 0 0 [1] A2 0 = 10:43:24 EST / Q E

@ Navigate AN NN User2
{: Operate (=] i E &
~ | 3f32a3d0-0156-1000-0000-0000... ; In 0 (0 bytes) . 5min |
) Processor Read/Write 0 bytes /0 bytes 5 min
3f32a3d0-0156-1000-0000-0000712787f1 . Out 0 (0 bytes) 5 min H
¥ > H LT O e
=) W oeere
Original position of : o :
GenerateFlowFile —» ' 0 (0 bytes) smin_|
Processor g::"’w"“" EE’D":;:;]”’Y“’S Smin_{

| Tasks/Time 0/00:00:00.000

401fedad-e293-4118-99ae-8a6d6b72b819

Editing a Processor

In the "Moving a Processor" example above, User2 was added to the "modify the component” policy for
GenerateFlowFile. Without the ability to view the processor properties, User2 is unable to modify the processor's
configuration. In order to edit a component, a user must be on both the "view the component" and "modify the
component” policies. To implement this, Userl performs the following steps:

45

Multi-Tenant Authorization

1. Select the GenerateFlowFile processor.
2. Select the Access Paliciesicon (

Q,

) from the Operate pal ette and the Access Policies dialog opens.

3. Sdlect "view the component” from the policy drop-down. The view the component” policy that currently exists on
the processor (child) is the "view the component” policy inherited from the root process group (parent) on which

Userl has privileges.

= A M ©—/™ ~— ©@—b g—3 M00n =

»

Access Policies

x
Override Link E

Showing effective policy inherited from Process Group NiFi Flow. Override this policy.

~| GenerateFlowFile
-

Processor

E Userl

view the component
view the componemw
maodify the component
view the data

maodify the data

view the policies

madify the policies

® © © O © © © © ¢

—

& Last updated: 10:48:29 EST

NiFi Flow

4. Select the Override link in the policy inheritance message, keep the default of Copy policy and select the Override

button.

46

Multi-Tenant Authorization

5. Ontheoverride policy that is created, select the Add User icon (

a4

). Find or enter User2 in the User Identity field and select OK. With these changes, Userl maintains the ability to
view and edit the processors on the canvas. User2 can now view and edit the GenerateFlowFile processor.

Access Policies

~ | GenerateFlowFile X
! Processor view the component v & 1M

User =

Userl]
User2]

lrmim e el

< Last updated: 10:49:58 EST

#o ‘= 0/ 0 bytes @0 (=] >0 Ho A2 50 2 10:54:56 EST Q =l
@ Navigate | User2
~~ | A GenerateFlowFile
éb Operate S| GenerateFlowFile % Configure &
. Status Histor
GenerateFlowFile In 0 (0 bytes) e Eory
1 Processor Read/Write 0 bytes /0 bytes © Upstream connections
3f32a3d0-0156-1000-0000-0000712787f1 Out 0 (0 bytes) © Downstream connections
'ﬂ' \k > . Tasks/Time 0/00:00:00.000 & Usage
& Change color
& & Woeer & Center in view

&) Copy
& Delete ,_‘A ____________
. S’

Operate Palette Active | .
| In 0 (0bytes) Smin |
| Read/Write 0bytes/ 0 bytes Smin |
i out 0(0 bytes) 5min |

Tasks/Time 0/00:00:00.000 smin |

401fedad-e293-4118-99ae-8abd6b72b819

Creating a Connection

With the access palicies configured as discussed in the previous two examples, Userl is able to connect
GenerateFlowFile to LogAttribute:

47

Multi-Tenant Authorization

2o = 0/0bytes @0 @ 0 >0 To A2 o < 11:05:12 EST Q
@ Navigate User1
~~| A GenerateFlowFile

0 Operate S| GenerateFlowFile

GenerateFlowFile In 0 (0 bytes) 5 min

) Processor Read/Write 0 bytes / 0 bytes 5 min

3f32a3d0-0156-1000-0000-0000712787f1 Out 0 (0 bytes) 5 min

Tasks/Time 0/00:00:00.000 5 min
L JCN X > B e -
4] o Woeere

A LogAttribute

LogAttribute QE?
In 0 (0 bytes) ° 5 min
Read/Write 0 bytes / 0 bytes 5 min
Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min

NiFi Flow

s

User2 cannot make the connection:

o = 0/0bytes @0 @ 0 >0 no A2 0 £ 11:07:11 EST Q e
@ Navigate User2
~~| A GenerateFlowFile

{b Operate E GenerateFlowFile

GenerateFlowFile In 0 (0 bytes) 5 min

] Processor Read/Write 0 bytes / 0 bytes 5 min

3f32a3d0-0156-1000-0000-0000712787f1 Out 0 (0 bytes) 5 min

Tasks/Time 0/ 00:00:00.000 5min
o Y > m
7} o 1 oeeTe

In 0 (0 bytes)

5 min
| Read/Write 0byles/0 bytes ° Smin
| out 0/(0 bytes) Smin |
Tasks/Time 0/ 00:00:00.000 5min :

401fedad-e293-4118-99ae-8a6d6b72b819

Thisis because:

* User2 does not have modify access on the process group.

« Even though User2 has view and modify access to the source component (GenerateFlowFile), User2 does not
have an access policy on the destination component (L ogAttribute).

To allow User2 to connect GenerateFlowFile to LogAttribute, as Userl:
1. Select the root process group. The Operate pa ette is updated with details for the root process group.

Multi-Tenant Authorization

2. Select the Access Paliciesicon (

&,

) from the Operate pal ette and the Access Policies dialog opens.
3. Select "modify the component” from the policy drop-down.

x
_ | Access Policies
=G " ELEZE!%VLUD view the component v & o
% view the component 2]
|‘ Userl modify the con'lponent® 7] o
4 view the data 7]
‘_ modify the data o
receive data via site-to-site L2]
| send data via site-to-site 2]
view the policies [7]
medify the policies 2]
& Lastupdated: 11:10:09 EST
- L

4. Select the Add User icon (

a4

). Find or enter User2 and select OK.

Access Policies

NiFi Flow modify the component v i

‘W= Process Group
User1 @
User2]

- B I"PHG)|J

= Lastupdated: 11:11:59 EST

49

Multi-Tenant Authorization

By adding User2 to the "maodify the component” policy on the process group, User2 is added to the "modify the
component” policy on the LogAttribute processor by policy inheritance. To confirm this, highlight the LogAttribute
processor and select the Access Policiesicon (

&,

) from the Operate palette:

Access Policies

Showing effective policy inherited from Process Group NiFi Flow. Override this policy.

I;ff,ff;t:g:b ute modify the component v

User «

User1

User2

e el

& Lastupdated: 11:14:38 EST

NiFi Flow

s

With these changes, User2 can now connect the GenerateFlowFile processor to the LogAttribute processor.

0 = 0/ 0 bytes @0 0 >0] A2 % 0 Z 111712 EST Q
@ WNavigate User2
~~| A GenerateFlowFile

éb Operate B GenerateFlowFile
GenerateFlowFile In 0 (0 bytes) 5 min

) Processor Read/Write 0 bytes / 0 bytes 5 min

3f32a3d0-0156-1000-0000-0000712787f1 Out 0 (0 bytes) 5 min

Tasks/Time 0/00:00:00.000 5min
& ¥ bR = -

@& o M oeere

S A 9
In 0 (0 bytes) ° 5 min 5

Read/Write 0 bytes / 0 bytes Smin
| out 0 (0 bytes) Smin

i Tasks/Time 0/00:00:00.000 Smin |

401fedad-e293-4118-99ae-8a6d6b72b819

Multi-Tenant Authorization

#o = 0/0bytes @0 @0 »0 o A2 o £ 11:18:42 EST Q
® Navigate User2
~~| M GenerateFlowFile
{:\ Operate B GenerateFlowFile
68c89018-0158-1000-f351-29c¢d... In 0 (0 bytes) 5min
Connection Read/Write 0 bytes / 0 bytes 5min
68¢89018-0158-1000-f351-29cd70ea03f7 Out 0 (0 bytes) 5min
Tasks/Time 0/00:00:00.000 5min
> B -
[t | uewed 00byes, |

|_\ -i I}
g A s

In 0 (0 bytes) Smin
| Read/Write 0 bytes /0 bytes smin
| Out 0(0 bytes) Smin |
| Tasks/Time 0/00:00:00.000 Smin |

401fedad-e293-4118-99%ae-8a6d6b72b819

Editing a Connection

Assume Userl or User2 adds a ReplaceText processor to the root process group:

#o = 0/0bytes ®0 ® 0 >0 2 A1 * 0 Z 11:34:53 EST Q
@ nNavigate =
~~| M GenerateFlowFile
Q Operate E] GenerateFlowFile
NiFi Flow In 0 (D bytes) 5 min
¥ Process Group Read/Write 0 bytes / 0 bytes 5 min
401fedad-e293-4118-9%ae-Ba6d6b72b819 Out 0 (0 bytes) 5min
Tasks/Time 0/ 00:00:00.000 5min
% a >m o T
Name success
Queued 0 (0 bytes)

|

W LogAttribute
= Logattribute

A\ ReplaceText In 0 (0 bytes) 5 min

ReplaceText Read/Write 0 bytes / 0 bytes 5 min
n 0 (0 bytes) 5 min Out 0 (0 bytes) 5 min
Read/Write 0 bytes / 0 bytes 5 min | Tasks/Time 0/ 00:00:00.000 5 min
out 0 (0 bytes) Smin | '
Tasks/Time 0/ 00:00:00.000 5min |

NiFi Flow

Userl can select and change the existing connection (between GenerateFlowFile to LogAttribute) to now connect
GenerateFlowFile to ReplaceText:

51

Multi-Tenant Authorization

#o = 0/0bytes @0 @ 0 >0 2 A1 o i 11:44:56 EST Q
@ Mavigate @ ... e User1
~~| M GenerateFlowFile
Q Operate E] GenerateFlowFile
o success In 0 (0 bytes) 5 min
Connection Read/Write 0 bytes / 0 bytes 5 min
68c89018-0158-1000-f351-20¢d70ea03f7 Out 0 (0 bytes) 5 min
Tasks/Time 0/00:00:00.000 5 min
£ > B c=-
0 peELETE
Name success

Queued 0 (0 bytes)

W LogAttribute
— Loghttribute

A ReplaceText In 0 (0 bytes) 5 min
ReplaceText & Read/Write O bytes / 0 bytes 5 min

In 0 (0 bytes) 5 min Out 0 (0 bytes) 5 min

Read/Write 0 bytes /0 5 min Tasks/Time 0/ 00:00:00.000 5 min |

Out 0 (0 bytes) 5min i

Tasks/Time 0/00:00:00.000 5 min

NiFi Flow

s 4

User 2 isunable to perform this action.

#o = 0/0 bytes @0 [S0) >0 H2 A1 To 11:47:08 EST Q
@ Navigate = User2
~~| M GenerateFlowFile
{: Operate S GenerateFlowFile
401fedad-e293-4118-99ae-8abd... In 0 (0 bytes) 5 min

¥ Process Group Read/Write 0 bytes /0 bytes Smin |
401fedad-e293-4118-99ae-Babd6b72b819 Out 0 (0 bytes) 5 min [

Tasks/Time 0/00:00:00.000 Smin |

o bR -

]

i A i In 0 (0 bytes) 5 min
| = i Read/Write 0 bytes / 0 bytes 5 min
! In 0 (0 bytes) Smin | Out 0 (0 bytes) 5 min
! Read/Write O bytes /0 bytes Smin | | Tasks/Time 0/00:00:00.000 5 min
| out 0 (0 bytes) Smin |
i Tasks/Time 0 /00:00:00.000 Smin |

401fedad-e293-4118-99ae-8a6d6b72b819

To allow User2 to connect GenerateFlowFile to ReplaceText, as Userl:

1. Select the root process group. The Operate palette is updated with details for the root process group.
2. Select the Access Policiesicon (

Q,

52

Multi-Tenant Authorization

3. Select "view the component" from the policy drop-down.

x
Access Policies
=.@ [= EFLELE:%‘:;UD view the component v & o
’t view the component & (7]
|1 Userl modify the compaonent] o
4 view the data o
i maodify the data 7]
receive data via site-to-site (2]
| send data via site-to-site (2]
view the policies (7]
modify the policies o
& Lastupdated: 11:49:44 EST
d L

4. Select the Add User icon (

&+

). Find or enter User2 and select OK.

Access Policies

NiFi Flow -
®® Frocess Group view the component v & o

User1 @
User2 @

- B (‘;'"6)|

& Lastupdated: 11:51:08 EST

NiFi Flow

Being added to both the view and modify policies for the process group, User2 can now connect the
GenerateFl owFile processor to the ReplaceText processor.

53

Encryption Configuration

ni ‘ ':b] Io_T:b EE Eéi D? } =/ Userz =
0 0/0 bytes 0 0 0 2 1 0 £ 11:52:08 EST / QE

@ Navigate @ USEFQ
I GenerateFlowFile
{:' Operate =) Flow
success In 0 (0 bytes)
nnect Read/Write 0 bytes / 0 bytes
68c89018-0158-1000-f351-29cd70eal3f7 Out 0(0 bytes)
Tasks/Time 0/00:00:00.000
o > B =

1 oeceTE /

Name success
Queued 0 (0 bytes)

f'! LogaAttribute

ReplaceText In 0 (0 bytes)
placeText & Read/Write 0 bytes / 0 bytes

In 0 (0 bytes) Out 0 (0 bytes)
Read/Write 0 bytes / 0 byt nir Tasks/Time 0/ 00:00:00.000

Out 0 (0 bytes)
Tasks/Time 0/00:00:00.000

NiFi Flow

This section provides an overview of the capabilities of NiFi to encrypt and decrypt data.

The EncryptContent processor allows for the encryption and decryption of data, both internal to NiFi and integrated
with external systems, such as openssl and other data sources and consumers.

Key Derivation Functions (KDF) are mechanisms by which human-readable information, usually a password or
other secret information, is translated into a cryptographic key suitable for data protection. For further information,
read the https://en.wikipedia.org/wiki/Key derivation_function. Currently, KDFs are ingested by CipherProvider
implementations and return afully-initialized Cipher object to be used for encryption or decryption. Due to the use of
a CipherProviderFactory, the KDFs are not customizable at thistime. Future enhancements will include the ability to
provide custom cost parameters to the KDF at initialization time. As awork-around, CipherProvider instances can be
initialized with custom cost parameters in the constructor but thisis not currently supported by the CipherProviderFa
ctory. If you do not have a need for a specific KDF, Argon2 isrecommended asit is arobust, secure, performant, and
user-friendly default and is widely supported on multiple platforms. Here are the KDFs currently supported by NiFi
(primarily in the EncryptContent processor for password-based encryption (PBE)) and relevant notes:

» Theoriginal KDF used by NiFi for internal key derivation for PBE, thisis 1000 iterations of the MD5 digest over
the concatenation of the password and 8 or 16 bytes of random salt (the salt length depends on the selected cipher
block size).

» ThisKDF isdeprecated as of NiFi 0.5.0 and should only be used for backwards compatibility to decrypt data that
was previously encrypted by alegacy version of NiFi.

https://en.wikipedia.org/wiki/Key_derivation_function

Encryption Configuration

This KDF was added in v0.4.0.

ThisKDF is provided for compatibility with data encrypted using OpenSSL's default PBE, known as EVP_Byte
sToKey. Thisisasingle iteration of MD5 over the concatenation of the password and 8 bytes of random ASCI|
salt. OpenSSL recommends using PBKDF2 for key derivation but does not expose the library method necessary to
the command-line tool, so this KDF is till the de facto default for command-line encryption.

This KDF was added in v0.5.0.

https://en.wikipedia.org/wiki/Bcrypt is an adaptive function based on the https://en.wikipedia.org/wiki/
Blowfish_(cipher) cipher. This KDF is recommended as it automatically incorporates arandom 16 byte salt,
configurable cost parameter (or "work factor"), and is hardened against brute-force attacks using https.//
en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units (which share memory between
cores) by requiring access to "large” blocks of memory during the key derivation. It isless resistant to https://
en.wikipedia.org/wiki/Field-programmable_gate array brute-force attacks where the gate arrays have access to
individual embedded RAM blocks.

Because the length of a Berypt-derived hash is always 184 bits, the hash output (not including the algorithm, work
factor, or salt) isthen fed to a SHA-512 digest and truncated to the desired key length. This provides the benefit of
the avalanche effect over the input. This key stretching mechanism was introduced in Apache NiFi 1.12.0.

Note: Prior to this, the complete output (algorithm, work factor, salt, and hash output for atotal of 480
bits) was provided to the SHA-512 digest function. NiFi can transparently handle decrypting data (under
10 MiB) encrypted using a key derived viathislegacy process.
The recommended minimum work factor is 12 (212 key derivation rounds) (as of 2/1/2016 on commodity
hardware) and should be increased to the threshold at which legitimate systems will encounter detrimental delays
(see schedule below or use BeryptCipherProviderGroovy Test#testDef aultConstructor Shoul dProvideStrongWork
Factor() to calculate safe minimums).
The salt format is $2a$10$ABCDEFGHIJKLMNOPQRSTUV. The salt is delimited by $ and the three sections
areasfollows:

e 2a-theversion of the format. An extensive explanation can be found http://blog.ircmaxell.com/2012/12/
seven-ways-to-screw-up-berypt.html. NiFi currently uses 2afor all salts generated internally.

e 10-thework factor. Thisis actually the log2 value, so the total iteration count would be 210 (1024) in this
case.

e ABCDEFGHIIKLMNOPQRSTUV - the 22 character, Radix64-encoded, unpadded, raw salt value. This
decodes to a 16 byte salt used in the key derivation.

B Note: The Berypt Radix64 encoding is not compatible with standard MIME Base64 encoding.

This KDF was added in v0.5.0.

https://en.wikipedia.org/wiki/Scrypt is an adaptive function designed in response to berypt. ThisKDF is
recommended as it requires relatively large amounts of memory for each derivation, making it resistant to
hardware brute-force attacks.

The recommended minimum cost is N=214 (16,384), r=8, p=1 (as of 2/1/2016 on commaodity hardware). p must
be a positive integer and less than (2732 # 1) * (Hlen/MFlen) where Hlen is the length in octets of the digest
function output (32 for SHA-256) and MFlen is the length in octets of the mixing function output, defined asr *
128. These parameters should be increased to the threshold at which legitimate systems will encounter detrimental
delays (see schedule below or use ScryptCipherProviderGroovy Test#testDefaultConstructor Shoul dProvideStrong
Parameters() to calculate safe minimums).

55

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/Blowfish_(cipher)
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html
http://blog.ircmaxell.com/2012/12/seven-ways-to-screw-up-bcrypt.html
https://en.wikipedia.org/wiki/Scrypt

Encryption Configuration

The salt format is $s0$€0101$ABCDEFGHIJKLMNOPQRSTUV. The sdlt is delimited by $ and the three
sections are as follows:

e 90- theversion of the format. NiFi currently uses SO for all salts generated internally.

e €0101 - the cost parameters. Thisis actually a hexadecimal encoding of N, r, p using shifts. This can be
formed/parsed using Scrypt#encodeParams() and Scrypt#parseParameters().

» Some external libraries encode N, r, and p separately in the form $4000$1$1$ (N is stored in hex encoding
as 0x4000, which is 0d16384, or 214 as Oxe = 0d14). A utility method is available at ScryptCipherProvider
#trandateSalt() which will convert the external form to the internal form.

* ABCDEFGHIJKLMNOPQRSTUV - the 12-44 character, Base64-encoded, unpadded, raw salt value. This
decodes to a 8-32 byte salt used in the key derivation.

This KDF was added in v0.5.0.

https://en.wikipedia.org/wiki/PBK DF2 is an adaptive derivation function which uses an internal pseudorandom
function (PRF) and iteratesit many times over a password and salt (at least 16 bytes).

The PRF is recommended to be HMAC/SHA-256 or HMAC/SHA-512. The use of an HMAC cryptographic hash
function mitigates alength extension attack.

The recommended minimum number of iterationsis 160,000 (as of 2/1/2016 on commaodity hardware). This
number should be doubled every two years (see schedule below or use PBK DF2CipherProviderGroovy Test#testD
efaultConstructorShoul dProvideStronglterationCount() to calculate safe minimums).

This KDF is not memory-hard (can be parallelized massively with commodity hardware) but is still recommended
as sufficient by NIST SP SP 800-132 and many cryptographers (when used with a proper iteration count and
HMAC cryptographic hash function).

This KDF was added in v0.5.0.

This KDF performs no operation on the input and is amarker to indicate the raw key is provided to the cipher.
The key must be provided in hexadecimal encoding and be of avalid length for the associated cipher/a gorithm.

This KDF was added in v1.12.0.

https://en.wikipedia.org/wiki/Argon2 is a key derivation function which won the Password Hashing Competition
in 2015. This KDF is recommended as it offers a variety of modes which can be tailored to prevention of GPU
attacks, prevention of side-channel attacks, or a combination of both. It allows for a variable output key length.
The recommended minimum cost is memory=216 (65,536) KiB, iterations=5, parallelism=8 (as of 4/22/2020 on
commodity hardware). The https://password-hashing.net/argon2-specs.pdf Section 9 describes an algorithm used
to determine recommended parameters. These parameters should be increased to the threshold at which legitimate
systems will encounter detrimental delays (use Argon2SecureHasher Test#testDefaultCostParamsShoul dBeSuff
icient() to calculate safe minimums).

The salt format is $argon2id$v=19$m=65536,t=5,p=8$ABCDEFGHIJKLMNOPQRSTUYV. The sat is delimited
by $ and the four sections are as follows:

e argon2id - the "type" of algorithm (2i, 2d, 2id). NiFi currently uses argon2id for all salts generated internally.
e v=19 - the version of the algorithm in decimal (0d19 = 0x13). NiFi currently uses 0d19 for all salts generated
internally.

* m=65536,t=5,p=8 - the cost parameters. This contains the memory, iterations, and parallelism in order.

e ABCDEFGHIJKLMNOPQRSTUV - the 12-44 character, Base64-encoded, unpadded, raw salt value. This
decodes to a 8-32 byte salt used in the key derivation.

http://stackoverflow.com/a/30308723/70465

56

https://en.wikipedia.org/wiki/PBKDF2
https://en.wikipedia.org/wiki/Argon2
https://password-hashing.net/argon2-specs.pdf
http://stackoverflow.com/a/30308723/70465

Encryption Configuration

* https://lwww.owasp.org/index.php/Password_Storage Cheat_Sheet#Work_Factor
 http://security.stackexchange.com/a/3993/16485

« http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html

« http://security.stackexchange.com/a/26253/16485

» http://security.stackexchange.com/a/6415/16485
 http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/

 https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/berypt/
BCrypt.html

e https.//lwww.openssl.org/docsmanl.1.1/man3/EVP_BytesToKey.html
* https://lwww.openssl.org/docs/manl.1.1/man3/PKCS5_PBKDF2_HMAC.html
» http://security.stackexchange.com/a/29139/16485

Initially, the EncryptContent processor had a single method of deriving the encryption key from a user-provided
password. Thisis now referred to as NiFiLegacy mode, effectively MD5 digest, 1000 iterations. In v0.4.0, another
method of deriving the key, OpenSSL PKCS#5 v1.5 EVP_BytesToKey was added for compatibility with content
encrypted outside of NiFi using the openssl command-line tool. Both of these Key Derivation Functions on page

54 (KDF) had hard-coded digest functions and iteration counts, and the salt format was also hard-coded. With
v0.5.0, additional KDFs are introduced with variable iteration counts, work factors, and salt formats. In addition, raw
keyed encryption was also introduced. This required the capacity to encode arbitrary salts and Initialization Vectors
(V) into the cipher stream in order to be recovered by NiFi or afollow-on system to decrypt these messages.

For the existing KDFs, the salt format has not changed.

Thefirst 8 or 16 bytes of the input are the salt. The salt length is determined based on the selected algorithm's cipher
block length. If the cipher block size cannot be determined (such as with a stream cipher like RC4), the default value
of 8 bytesisused. On decryption, the salt isread in and combined with the password to derive the encryption key and
V.

@ @ M nifi_legacy.enc

@ | AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAAILL
16| 2AA22CBB 29AQC504 9BC293D7 BOSCICCD|(*.,.).. \ .
32| FOD3AA87 F321D639 628E9305 94126FB5||.....!.9b.. . o.
48||

Signed Int big (select some data) - |+
48 out of 48 bytes

OpenSSL alows for salted or unsalted key derivation. * Unsalted key derivation is a security risk and is not
recommended.* If asalt is present, the first 8 bytes of the input are the ASCII string "Salted " (0x53 61 6C 74 65
64 5F 5F) and the next 8 bytes are the ASCII-encoded salt. On decryption, the salt isread in and combined with the

57

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet#Work_Factor
http://security.stackexchange.com/a/3993/16485
http://blog.ircmaxell.com/2014/03/why-i-dont-recommend-scrypt.html
http://security.stackexchange.com/a/26253/16485
http://security.stackexchange.com/a/6415/16485
http://wildlyinaccurate.com/bcrypt-choosing-a-work-factor/
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCrypt.html
https://docs.spring.io/spring-security/site/docs/current/api/org/springframework/security/crypto/bcrypt/BCrypt.html
https://www.openssl.org/docs/man1.1.1/man3/EVP_BytesToKey.html
https://www.openssl.org/docs/man1.1.1/man3/PKCS5_PBKDF2_HMAC.html
http://security.stackexchange.com/a/29139/16485

Encryption Configuration

password to derive the encryption key and IV. If there is no salt header, the entire input is considered to be the cipher

text.

| JON

B openssl_evp.enc

0|53616C74 ©5645F5F AABBCCDD EEFF0@11||Salted__......
16| 47972607 296F80B9 9816D205 9BF899F4||G.&)o...

32| 8EBEB8DF F37DACZ8 37@0DA3A6 05865894

48
Signed Int

big

(select some data)

16 out of 48 bytes

For new KDFs, each of which allow for non-deterministic Vs, the IV must be stored alongside the cipher text. This
isnot avulnerability, asthe IV is not required to be secret, but simply to be unique for messages encrypted using the
same key to reduce the success of cryptographic attacks. For these KDFs, the output consists of the salt, followed

by the salt delimiter, UTF-8 string "NiFiSALT" (Ox4E 69 46 69 53 41 4C 54) and then the 1V, followed by the IV
delimiter, UTF-8 string "NiFi V" (Ox4E 69 46 69 49 56), followed by the cipher text.

| JON

0| 24326124 31322442 ©6B475249 6465614D
16|6657394B 75596E4E 4(C695759 654E6946
32|6953414C 54753778 8CD949@D FAF430C8
48|4B751230 A24E0946 69495617 258B8C6C
64 | OFAFCA83 34EC13F6 5E4@CC59 0610746C

B berypt.enc

80| F1E@D5C1 A8601284 547889

Signed Int

big

(select some data)

91 out of 91 bytes

$2a$12$BkGRIdeaM
fWOKuYnNLiWYeNiF
1SALTu?7x..I ..0.
Ku @.NiFiIV %..1
LA LAYt
..... TOLTX.

58

Encryption Configuration

[

0
16
32
48
o4
80

SignedInt <

@ M scrypt.enc

24733024 65303830 31246E33 57743566
6C67776B 5961394A 586A4A41 67695A77
4E6946609 53414(C54 C@3A7A62 065CDC19
0726787A AEF3A9BC 4E694669 49561636
FCCD26F5 49AQ4E43 559ED7AD A@92A118
FEF2D480 ©215A7F6 @C64B182 3FE4

Z 1l big </ (select some data)

94 out of 94 bytes

$s0$e0801$n3Wt5f
1gwkYa9JXjJAgiZw
NiFiSALT.:zb \.

&xz....NiFiIV 6

[

0
16
32
48
o4

Signed Int

@ H pbkdf2.enc

B5B1AABC FBZBCEA1 EF81034A 493D9217
4E694669 53414(54 CoEE4F31 (C34FEA86
1F44B34F CEC9CACY 4E694669 495678A3
28ES5D8FB F81800D5 4BF995A4 35136B53
(3DA8329 @D@SBDI@ AED1320F 97E4

big | (select some data)

78 out of 78 bytes

..... +.... JI=.

NiFiSALT..01.0..
D.0....NiFiIVx.
C.... .K...5KkS

L) 2 ..

=) (+

59

Encryption Configuration

[NN _ argon2.enc

- 0 24617267 6F6E3269 6424763D 3139246D || $argon2id$v=19%m
16 3D343039 362C743D 332C703D 31246938 ||=4096,t=3,p=1%$i8
32 43497553 6A727764 53755234 32706231 || CIuSjrwdSuR42pbl
48 35416F51 4E694669 53414C54 E9DOD@14 | |SAoQNiFiSALT...
64 E235ADA4 401CE70C B6408489 4E694669(|.5..@ . .@..NiFi
80 4956CC6D 8DBBB3E7 05C99810 54CA6835||IV.m.... .. T.h5
96 F55C3676 90DDDB3B ©@FBB512 @1BZ2B7FZ2||.\b6v...;

112 |5E21 Al

[iigned int <)(le, hex) [9

0x72 out of 0x72 bytes

Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies

Because of US export regulations, default JVMs have http://docs.oracle.com/javase/ 7/docs/technotes/gui des/security/
SunProviders.html#i mportlimits avail able to them. For example, AES operations are limited to 128 bit keys by
default. While AES-128 is cryptographically safe, this can have unintended consequences, specifically on Password-
based Encryption (PBE).

PBE is the process of deriving a cryptographic key for encryption or decryption from user-provided secret material,
usually a password. Rather than a human remembering a (random-appearing) 32 or 64 character hexadecimal string, a
password or passphrase is used.

A number of PBE agorithms provided by NiFi impose strict limits on the length of the password due to the
underlying key length checks. Below is atable listing the maximum password length on a VM with limited
cryptographic strength.

Algorithm Max Password Length

PBEWITHMD5AND128BITAES-CBC-OPENSSL 16
PBEWITHMDSAND192BITAES-CBC-OPENSSL 16
PBEWITHMD5AND256BI TAES-CBC-OPENSSL 16
PBEWITHMDS5ANDDES 16
PBEWITHMD5ANDRC?2 16
PBEWITHSHA1ANDRC2 16
PBEWITHSHA1ANDDES 16
PBEWITHSHAAND128BITAES-CBC-BC 7

60

http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits
http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#importlimits

Encryption Configuration

Algorithm Max Password L ength

PBEWITHSHAAND192BITAES-CBC-BC

7

PBEWITHSHAAND256BITAES-CBC-BC

7

PBEWITHSHAANDA40BITRC2-CBC

PBEWITHSHAAND128BITRC2-CBC

PBEWITHSHAAND40BITRC4

PBEWITHSHAAND128BITRC4

PBEWITHSHA256AND128BITAES-CBC-BC

PBEWITHSHA256AND192BITAES-CBC-BC

PBEWITHSHA256AND256BITAES-CBC-BC

PBEWITHSHAAND2-KEY TRIPLEDES-CBC

PBEWITHSHAAND3-KEY TRIPLEDES-CBC

PBEWITHSHAANDTWOFISH-CBC

Allow Insecure Cryptographic Modes

By default, the Allow Insecure Cryptographic Modes property in EncryptContent processor settingsis set to not-
allowed. Thismeansthat if a password of fewer than 10 charactersis provided, a validation error will occur. 10
charactersis a conservative estimate and does not take into consideration full entropy calculations, patterns, etc.

61

Encrypted Passwords in Flows

Configure Processor

SETTINGS SCHEDULING PROPERTIES COMMENTS
Required field +
Property Value
Mode @ Encrypt
Key Derivation Function ©@ NiFi Legacy KDF
Encryption Algorithm @ MD5_12BAES
Allow insecure cryptographic modes @ Not Allowed
Password 17]
Raw Key (hexadecimal) (7]
Public Keyring File Q
Public Key User Id 7]
Private Keyring File 7]
Private Keyring Passphrase Q

On aJvM with limited strength cryptography, some PBE algorithms limit the maximum password length to 7, and in
this caseit will not be possible to provide a"safe" password. It is recommended to install the JCE Unlimited Strength
Jurisdiction Policy filesfor the VM to mitigate thisissue.

* http://www.oracle.com/technetwork/javaljavase/downl oads/jce8-downl oad-2133166.html

If on a system where the unlimited strength policies cannot be installed, it is recommended to switch to an algorithm
that supports longer passwords (see table above).

Warning: Allowing Weak Cryptolf it is not possible to install the unlimited strength jurisdiction policies, the
Allow Weak Crypto setting can be changed to alowed, but thisis not recommended. Changing this setting
explicitly acknowledges the inherent risk in using weak cryptographic configurations.

Itis preferable to request upstream/downstream systems to switch to https://cwiki.apache.org/confluence/display/
NIFI/Encryption+Information or use a"strong" Key Derivation Functions on page 54.

Encrypted Passwords in Flows

NiFi always stores all sensitive values (passwords, tokens, and other credentials) populated into aflow in an
encrypted format on disk. The encryption algorithm used is specified by nifi.sensitive.props.algorithm and the
password from which the encryption key is derived is specified by nifi.sensitive.props.key in nifi.properties (see
Security Configuration on page 10 for additional information). Prior to version 1.12.0, the list of available
algorithms was all password-based encryption (PBE) algorithms supported by the EncryptionMethod enum in that
version. Unfortunately many of these algorithms are provided for legacy compatibility, and use weak key derivation
functions and block cipher algorithms & modes of operation. In 1.12.0, a pair of custom algorithms was introduced
for security-conscious users looking for more robust protection of the flow sensitive values.

62

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information
https://cwiki.apache.org/confluence/display/NIFI/Encryption+Information

Encrypted Passwords in Configuration Files

NiFi supports several configuration options to provide authenticated encryption with associated data (AEAD) using
AES Galois/Counter Mode (AES-GCM). These agorithms use a strong Key Derivation Function to derive a secret
key of specified length based on the sensitive properties key configured. Each Key Derivation Function uses a static
salt in order to support flow configuration comparison across cluster nodes. Each Key Derivation Function also uses
default iteration and cost parameters as defined in the associated secure hashing implementation class.

The following strong encryption methods can be configured in the nifi.sensitive.props.algorithm property:

 NIFI_ARGON2_AES GCM_128
« NIFI_ARGON2_AES GCM_256
« NIFI_BCRYPT_AES GCM_128
 NIFI_BCRYPT_AES GCM_256
« NIFI_PBKDF2_AES GCM_128
 NIFI_PBKDF2_AES GCM_256
« NIFI_SCRYPT_AES GCM_128
 NIFI_SCRYPT_AES GCM_256

Each Key Derivation Function uses the following default parameters:
e Argon2

e |terations: 5
* Memory: 65536 KB
e Pardldism: 8

« Bcrypt

* Cost: 12

« Derived Key Digest Algorithm: SHA-512
» PBKDF2

e lterations: 160,000

» Pseudorandom Function Family: SHA-512
e Scrypt

e Cost Factor (N): 16384

» Block Size Factor (r): 8

» Parallelization Factor (p): 1

All options require a password (nifi.sensitive.props.key value) of at least 12 characters. This means the "default”
value (if left empty, a hard-coded default is used) will not be sufficient.

In order to facilitate the secure setup of NiFi, you can use the encrypt-config command line utility to encrypt raw
configuration values that NiFi decryptsin memory on startup. This extensible protection scheme transparently allows
NiFi to use raw values in operation, while protecting them at rest.

Thisisachangein behavior; prior to 1.0, al configuration values were stored in plaintext on the file system. POSIX
file permissions were recommended to limit unauthorized access to these files.

If no administrator action is taken, the configuration values remain unencrypted.

Configuring each Sensitive Property Provider requires including the appropriate file reference property in bootstra
p.conf. The default bootstrap.conf includes commented file reference properties for available providers.

63

Encrypted Passwords in Configuration Files

Two encryption providers are currently configurable in the bootstrap-hashicorp-vault.conf file:

Provider

HashiCorp Vault Transit provider

Provider |dentifier

hashicorp/vault/kv/{ vault.transit.path}

Description

Uses HashiCorp Vault's Transit Secrets
Engine to decrypt sensitive properties.

HashiCorp Vault Key/Value provider

hashi corp/vault/kv/{ vault kv.path}

Retrieves sensitive values from Secrets
stored in a HashiCorp Vault Key/Vaue
(unversioned) Secrets Engine.

Note that al HashiCorp Vault encryption providers require arunning Vault instance in order to decrypt these values

at NiFi's startup.

Following are the configuration properties available inside the bootstrap-hashicorp-vault.conf file:

Required properties

Property Name Description

vault.uri

The HashiCorp Vault URI (e.g., https://vault-

server:8200). If not set, all HashiCorp Vault
providers will be disabled.

Default

none

vault.authentication.properties.file

Filename of a propertiesfile containing

Vault authentication properties. See the Auth
entication-specific property keys section of
https://docs.spring.io/spring-vault/docs/2.3.x/
reference/htmi/#vault.core.environment-vault-
configuration for al authentication property
keys. If not set, all Spring Vault authentication
properties must be configured directly in
bootstrap-hashicorp-vault.conf.

none

vault.transit.path

If set, enables the HashiCorp Vault Transit
provider. The value should be the Vault path
of aTransit Secrets Engine (e.g., nifi-transit).
Valid characters include a phanumeric, dash,
and underscore.

none

vault.kv.path

If set, enables the HashiCorp Vault Key/Vaue
provider. The value should be the Vault path
of aK/V (v1) Secrets Engine (e.g., nifi-kv).
Valid characters include a phanumeric, dash,
and underscore.

none

Optional properties

Property Name Description

Default

Required if the Vault server is TLS-enabled

vault.connection.timeout The connection timeout of the Vault client 5 secs

vault.read.timeout The read timeout of the Vault client 15 secs

vault.ssl.enabledCipherSuites A commarseparated list of the enabled TLS none
cipher suites

vault.ssl.enabledProtocols A commarseparated list of the enabled TLS none
protocols

vault.ssl.key-store Path to akeystore. Required if the Vault server | none
isTLS-enabled

vault.ss .key-store-type Keystore type (JKS, BCFKS or PKCS12). none

64

https://docs.spring.io/spring-vault/docs/2.3.x/reference/html/#vault.core.environment-vault-configuration
https://docs.spring.io/spring-vault/docs/2.3.x/reference/html/#vault.core.environment-vault-configuration
https://docs.spring.io/spring-vault/docs/2.3.x/reference/html/#vault.core.environment-vault-configuration

Encrypted Passwords in Configuration Files

Property Name Description Default

vault.ssl .key-store-password Keystore password. Required if the Vault none
server is TLS-enabled

vault.ssl.trust-store Path to atruststore. Required if the Vault none
server is TLS-enabled

vault.ssl.trust-store-type Truststore type (JKS, BCFKS or PKCS12). none
Required if the Vault server is TLS-enabled

vault.ssl.trust-store-password Truststore password. Required if the Vault none
server is TLS-enabled

AWS KMS provider

This provider uses https://aws.amazon.com/kmg/ for decryption. AWS KM S configuration properties can be stored
in the bootstrap-aws.conf file, as referenced in bootstrap.conf. If the configuration properties are not specified in boot
strap-aws.conf, then the provider will attempt to use the AWS default credentials provider, which checks standard
environment variables and system properties.

Required properties

Property Name Description Default

aws.kms.key.id Theidentifier or ARN that the AWSKMS none
client uses for encryption and decryption.

Optional properties

All of the following must be configured, or will be ignored entirely.

Property Name Description Default

aws.region The AWS region used to configurethe AWS | none
KMS Client.

aws.access.key.id The access key ID credential used to access none
AWSKMS.

aws.secret.access.key The secret access key used to access AWS none
KMS.

AWS Secrets Manager provider

This provider uses https://aws.amazon.com/secrets-manager/ to store and retrieve AWS Secrets. AWS Secrets
Manager configuration properties can be stored in the bootstrap-aws.conf file, as referenced in bootstrap.conf. If
the configuration properties are not specified in bootstrap-aws.conf, then the provider will attempt to use the AWS
default credentials provider, which checks standard environment variables and system properties.

Optional properties

All of the following must be configured, or will be ignored entirely.

Property Name Description Default

aws.region The AWS region used to configure the AWS | none
Secrets Manager Client.

65

https://aws.amazon.com/kms/
https://aws.amazon.com/secrets-manager/

Encrypted Passwords in Configuration Files

Property Name Description Default

aws.access.key.id The access key ID credential used to access none
AWS Secrets Manager.

aws.secret.access.key The secret access key used to access AWS none
Secrets Manager.

Azure Key Vault Key Provider

This protection scheme uses keys managed by https.//docs.microsoft.com/en-us/azure/key-vault/keys/about-keys for
encryption and decryption.

Azure Key Vault configuration properties can be stored in the bootstrap-azure.conf file, as referenced in the
bootstrap.conf of NiFi or NiFi Registry. The provider will use the https.//docs.microsoft.com/en-us/javalapi/
com.azure.identity.defaultazurecredential for authentication. The https.//docs.microsoft.com/en-us/javalapi/overview/
azure/identity-readmettkey-concepts client library describes the process for credential s resolution, which leverages
environment variables, system properties, and falls back to https://docs.microsoft.com/en-us/javalapi/overview/azure/
identity-readme#managed-i dentity-support authentication.

Required properties

Property Name Description Default

azure.keyvault.key.id The identifier of the key that the Azure none
Key Vault client uses for encryption and
decryption.

azure.keyvault.encryption.algorithm The encryption algorithm that the Azure none
Key Vault client uses for encryption and
decryption.

Azure Key Vault Secret Provider

This protection scheme uses secrets managed by https://docs.microsoft.com/en-us/azure/key-vault/secrets/about-
secrets for storing and retrieving protected properties.

Azure Key Vault configuration properties can be stored in the bootstrap-azure.conf file, as referenced in the
bootstrap.conf of NiFi or NiFi Registry. The provider will use the https://docs.microsoft.com/en-us/javalapi/
com.azure.identity.defaultazurecredential for authentication. The https://docs.microsoft.com/en-us/javalapi/overview/
azurelidentity-readmettkey-concepts client library describes the process for credentials resolution, which leverages
environment variables, system properties, and falls back to https://docs.mi crosoft.com/en-us/javalapi/overview/azure/
identity-readmetfmanaged-identity-support authentication.

Names of secrets stored in Azure Key Vault support a phanumeric and dash characters, but do not support characters
such as/ or .. For thisreason, NiFi replaces these characters with - when storing and retrieving secrets. The following
table provides an example property name mapping:

Property Context Property Name Secret Name

default nifi.security.keystorePasswd default-nifi-security-keystorePasswd

Required properties

Property Name Description

azure.keyvault.uri URI for the Azure Key Vault servicesuchas | none
https://{ value-name} .vault.azure.net/

66

https://docs.microsoft.com/en-us/azure/key-vault/keys/about-keys
https://docs.microsoft.com/en-us/java/api/com.azure.identity.defaultazurecredential
https://docs.microsoft.com/en-us/java/api/com.azure.identity.defaultazurecredential
https://docs.microsoft.com/en-us/java/api/overview/azure/identity-readme#key-concepts
https://docs.microsoft.com/en-us/java/api/overview/azure/identity-readme#key-concepts
https://docs.microsoft.com/en-us/java/api/overview/azure/identity-readme#managed-identity-support
https://docs.microsoft.com/en-us/java/api/overview/azure/identity-readme#managed-identity-support
https://docs.microsoft.com/en-us/azure/key-vault/secrets/about-secrets
https://docs.microsoft.com/en-us/azure/key-vault/secrets/about-secrets
https://docs.microsoft.com/en-us/java/api/com.azure.identity.defaultazurecredential
https://docs.microsoft.com/en-us/java/api/com.azure.identity.defaultazurecredential
https://docs.microsoft.com/en-us/java/api/overview/azure/identity-readme#key-concepts
https://docs.microsoft.com/en-us/java/api/overview/azure/identity-readme#key-concepts
https://docs.microsoft.com/en-us/java/api/overview/azure/identity-readme#managed-identity-support
https://docs.microsoft.com/en-us/java/api/overview/azure/identity-readme#managed-identity-support

Encrypted Passwords in Configuration Files

Google Cloud KMS provider

This protection scheme uses Google Cloud Key Management Service (https://cloud.google.com/security-key-
management) for encryption and decryption. Google Cloud KM S configuration properties are to be stored in the boot
strap-gep.conf file, as referenced in the bootstrap.conf of NiFi or NiFi Registry. Credentials must be configured as per
the following documentation: https://cloud.google.com/kms/docs/referencel/libraries

Required properties

Property Name Description Default

gcp.kms.project The project containing the key that the Google | none
Cloud KMS client uses for encryption and
decryption.

gep.kms.location The geographic region of the project none

containing the key that the Google Cloud
KMS client uses for encryption and
decryption.

gep.kms.keyring The keyring containing the key that the none
Google Cloud KMS client uses for encryption
and decryption.

gecp.kms.key The key identifier that the Google Cloud KMS | none
client uses for encryption and decryption.

Property Context Mapping

Some encryption providers store protected valuesin an external service instead of persisting the encrypted values
directly in the configuration file. To support this use case, a property context is defined for each protected property in
NiFi's configuration files, in the format: { context-name} /{ property-name}

e context-name - represents a namespace for properties in order to disambiguate properties with the same name.
Without additional configuration, all protected properties are assigned the default context.

e property-name - contains the name of the property.

In order to support logical context names, mapping properties may be provided in bootstrap.conf, as follows:

ni fi.bootstrap. protection.context. mappi ng. <cont ext - name>=<i dent i
fier matching regex>

Here, context-name would determine the context name above, and <identifier matching regex> would map any
property whose group identifier matched the provided Regular Expression. Group identifiers are defined per
configuration file type, and are described as follows:

Configuration File Group ldentifier Description Assigned Context

nifi.properties Thereis no concept of agroup identifier here, | default
since all property names should be unique.

authorizers.xml The <identifier> value of the XML block The mapped context name if RegEx matches
surrounding the property. the identifier, otherwise default

login-identity-providers.xml The <identifier> value of the XML block The mapped context name if RegEx matches
surrounding the property. the identifier, otherwise default

67

https://cloud.google.com/security-key-management
https://cloud.google.com/security-key-management
https://cloud.google.com/kms/docs/reference/libraries

NiFi Toolkit Administrative Tools

In the NiFi binary distribution, the login-identity-providers.xml file comes with a provider with the identifier Idap-pro
vider and a property called Manager Password:

<pr ovi der >
<identi fier>l dap-provider</identifier>
<cl ass>or g. apache. ni fi .| dap. LdapProvi der </ cl ass>
.<b.roperty name="Manager Password"/>

</ pr.oili der >

Similarly, the authorizers.xml file comes with aldap-user-group-provider and a property also called Manager Pass
word:

<user Gr oupPr ovi der >
<identifier>l dap-user-group-provider</identifier>
<cl ass>org. apache. ni fi .| dap.tenants. LdapUser Gr oupPr ovi der </ cl ass>
'<b'roperty nane="Manager Password"/>

</ user Gr oupPr ovi der >

If the Manager Password is desired to reference the same exact property (e.g., the same Secret in the HashiCorp Vault
K/V provider) but still be distinguished from any other Manager Password property unrelated to LDAP, the following
mapping could be added:

ni fi.bootstrap. protection.context.mpping. | dap=I dap-.*

Thiswould cause both of the above to be assigned a context of "ldap/Manager Password” instead of "default/Manager
Password".

In addition to tIs-toolkit and encrypt-config, the NiFi Toolkit aso contains command line utilities for administrators
to support NiFi maintenance in standalone and clustered environments. These utilities include:

CLI - Thecli tool enables administrators to interact with NiFi and NiFi Registry instances to automate tasks such
as deploying versioned flows and managing process groups and cluster nodes.

File Manager - The file-manager tool enables administrators to backup, install or restore a NiFi installation from
backup.

Flow Analyzer - The flow-analyzer tool produces areport that hel ps administrators understand the max amount of
data which can be stored in backpressure for a given flow.

Node Manager - The node-manager tool enables administrators to perform status checks on nodes as well as the
ability to connect, disconnect, or remove nodes from the cluster.

Notify - The notify tool enables administrators to send bulletins to the NiFi UI.

S2S- The s2stool enables administrators to send datainto or out of NiFi flows over site-to-site.

For more information about each utility, see the Toolkit Guide.

68

Clustering Configuration

Clustering Configuration

This section provides a quick overview of NiFi Clustering and instructions on how to set up abasic cluster. In the
future, we hope to provide supplemental documentation that covers the NiFi Cluster Architecturein depth.

2 & * lu O
HTTP Client

@ APl interaction can go to any node

ZooKeeper Server)

l @ Web Server I
& Flow Controller

Processor 1 Extension N ’ Cluster Coordinator
- - .

4% Primary Node
() ZooKeeper Client

Provenance
Repositary

Content
Repositary

FlowFile
Repository

Zero-Leader Clustering

NiFi employs a Zero-Leader Clustering paradigm. Each node in the cluster has an identical flow and performsthe
same tasks on the data, but each operates on a different set of data. The cluster automatically distributes the data
throughout al the active nodes.

One of the nodesis automatically elected (via Apache ZooK eeper) as the Cluster Coordinator. All nodesin the cluster
will then send heartbeat/status information to this node, and this node is responsible for disconnecting nodes that do
not report any heartbeat status for some amount of time. Additionally, when a new node elects to join the cluster,

the new node must first connect to the currently-elected Cluster Coordinator in order to obtain the most up-to-date
flow. If the Cluster Coordinator determines that the node is allowed to join (based on its configured Cluster Firewall
Configuration on page 75 file), the current flow is provided to that node, and that node is able to join the cluster,
assuming that the node's copy of the flow matches the copy provided by the Cluster Coordinator. If the node's version
of the flow configuration differs from that of the Cluster Coordinator's, the node will not join the cluster.

Why Cluster?

NiFi Administrators or DataFlow Managers (DFMs) may find that using one instance of NiFi on asingle server is not
enough to process the amount of datathey have. So, one solution is to run the same dataflow on multiple NiFi servers.
However, this creates a management problem, because each time DFMs want to change or update the dataflow, they
must make those changes on each server and then monitor each server individually. By clustering the NiFi servers,
it's possible to have that increased processing capability along with a single interface through which to make dataflow

69

Clustering Configuration

changes and monitor the dataflow. Clustering allows the DFM to make each change only once, and that changeis
then replicated to all the nodes of the cluster. Through the single interface, the DFM may also monitor the health and
status of al the nodes.

NiFi Clustering is unique and has its own terminology. It's important to understand the following terms before setting
up acluster:

NiFi Cluster Coordinator: A NiFi Cluster Coordinator isthe node in aNiFi cluster that is responsible for carrying
out tasks to manage which nodes are allowed in the cluster and providing the most up-to-date flow to newly joining
nodes. When a DataFlow Manager manages a dataflow in a cluster, they are able to do so through the User Interface
of any node in the cluster. Any change made is then replicated to all nodesin the cluster.

Nodes: Each cluster is made up of one or more nodes. The nodes do the actual data processing.

Primary Node: Every cluster has one Primary Node. On this node, it is possible to run "I solated Processors" (see
below). ZooK eeper is used to automatically elect a Primary Node. If that node disconnects from the cluster for any
reason, anew Primary Node will automatically be elected. Users can determine which nodeis currently elected as the
Primary Node by looking at the Cluster Management page of the User Interface.

L A =1 —_ — g—B 8—B ~0D~ . =, —
| :
x
d NiFi [
€ NiFi Cluster
() NODES SYSTEM VM FLOWFILESTORAGE ~ CONTENT STORAGE PROVENANCE STORAGE VERSIONS
! D
isplaying 2 of 2
ilte by address v
Node Address Active Thread Count Queue / Size Status Started At Last Heartbeat
L Li] localhost:9443 0 10/ 0 bytes CONNECTED, PRIMARY, COORDINATOR 10/09/2018 14:36:31 EDT ~ 10/09/2018 15:06:24 EDT U]
o localhost:9444 0 10/ 0 bytes CONNECTED 10/09/2018 14:38:00 EDT = 10/09/2018 15:06:23 EDT U]
£ Last updated: 15:06:27 EDT
NiFi Flow

Isolated Processors: In aNiFi cluster, the same dataflow runs on all the nodes. As aresult, every component in the
flow runs on every node. However, there may be cases when the DFM would not want every processor to run on
every node. The most common case is when using a processor that communicates with an external service using a
protocol that does not scale well. For example, the GetSFTP processor pulls from aremote directory. If the GetSFTP
Processor runs on every nodein the cluster and tries simultaneously to pull from the same remote directory, there
could be race conditions. Therefore, the DFM could configure the GetSFTP on the Primary Node to run in isolation,
meaning that it only runs on that node. With the proper dataflow configuration, it could pull in data and load-balance
it acrossthe rest of the nodes in the cluster. Note that while this feature exists, it is aso very common to simply use a
standalone NiFi instance to pull data and feed it to the cluster. It just depends on the resources available and how the
Administrator decides to configure the cluster.

Heartbeats: The nodes communicate their health and status to the currently elected Cluster Coordinator via
"heartbeats’, which let the Coordinator know they are still connected to the cluster and working properly. By default,
the nodes emit heartbeats every 5 seconds, and if the Cluster Coordinator does not receive a heartbeat from a node
within 40 seconds (= 5 seconds * 8), it disconnects the node due to "lack of heartbeat". The 5-second and 8 times
settings are configurable in the nifi.properties file (see the Cluster Common Properties on page 119 section for

more information). The reason that the Cluster Coordinator disconnects the node is because the Coordinator needs

to ensure that every node in the cluster isin sync, and if anode is not heard from regularly, the Coordinator cannot
be sureitis gtill in sync with the rest of the cluster. If, after 40 seconds, the node does send a new heartbest, the
Coordinator will automatically request that the node re-join the cluster, to include the re-validation of the node's flow.

70

Clustering Configuration

Both the disconnection due to lack of heartbeat and the reconnection once a heartbeat is received are reported to the
DFM in the User Interface.

As noted, the nodes communicate with the Cluster Coordinator via heartbeats. When a Cluster Coordinator is elected,
it updates awell-known ZNode in Apache ZooK eeper with its connection information so that nodes understand where
to send heartbeats. If one of the nodes goes down, the other nodes in the cluster will not automatically pick up the
load of the missing node. It is possible for the DFM to configure the dataflow for failover contingencies; however,
thisis dependent on the dataflow design and does not happen automatically.

When the DFM makes changes to the dataflow, the node that receives the request to change the flow communicates
those changesto all nodes and waits for each node to respond, indicating that it has made the change on itslocal flow.

A DFM may manually disconnect a node from the cluster. A node may also become disconnected for other reasons,
such as dueto alack of heartbeat. The Cluster Coordinator will show a bulletin on the User Interface when anodeis
disconnected. The DFM will not be able to make any changes to the dataflow until the issue of the disconnected node
isresolved. The DFM or the Administrator will need to troubleshoot the issue with the node and resolve it before

any new changes can be made to the dataflow. However, it is worth noting that just because a node is disconnected
does not mean that it is not working. This may happen for afew reasons, for example when the node is unable to
communicate with the Cluster Coordinator due to network problems.

To manually disconnect a node, select the "Disconnect” icon (
O

) from the node's row.

L FN et — — Q=0 g=D MOOn . - —
{ :
x
€ NiFi Cluster a
() NODES SYSTEM JVM FLOWFILESTORAGE = CONTENT STORAGE PROVENANCE STORAGE VERSIONS
! D
isplaying 2 of 2
ilter by address ~
Node Address Active Thread Count Queue / Size Status Started At Last Heartbeat
L i} localhost:9443 0 10/ 0 bytes CONNECTED, PRIMARY, COORDINATOR 10/09/2018 14:36:31 EDT ~ 10/09/2018 15:07:20EDT &
Li] localhost:9444 DISCONNECTED s
¥ Last updated: 15:07:20 EDT
NiFi Flow

A disconnected node can be connected (

4

), offloaded (

od

71

Clustering Configuration

) or deleted (

i

).

Note: Not al nodesin a"Disconnected” state can be offloaded. If the node is disconnected and unreachable,
E the offload request can not be received by the node to start the offloading. Additionally, offloading may be
interrupted or prevented due to firewall rules.

Offload Nodes

Flowfiles that remain on a disconnected node can be rebalanced to other active nodesin the cluster via offloading. In
the Cluster Management dialog, select the "Offload" icon (

od

) for a Disconnected node. Thiswill stop all processors, terminate all processors, stop transmitting on all remote
process groups and rebalance flowfiles to the other connected nodes in the cluster.

! .
¢ NiFi Cluster -

@ NODES SYSTEM Jvm FLOWFILE STORAGE CONTENT STORAGE PROVENANCE STORAGE VERSIONS

(

L] A — —_ — a—a @—b 00~ = e —

Displaying 2 of 2

Filter by address v

Node Address Active Thread Count Queue / Size Status Started At Last Heartbeat
o localhost:9443 0 10/ 0 bytes CONNECTED, PRIMARY, COORDINATOR 10/09/2018 14:36:31 EDT ~ 10/09/2018 15:07:20EDT O
(i] localhost:9444 OFFLOADING

& Last updated: 15:07:20 EDT

NiFi Flow

Nodes that remain in "Offloading" state due to errors encountered (out of memory, no network connection, etc.) can
be reconnected to the cluster by restarting NiFi on the node. Offloaded nodes can be either reconnected to the cluster
(by selecting Connect or restarting NiFi on the node) or deleted from the cluster.

[_! A — —_ — e—8 @—b 0On = = —

x
¢ NiFi Cluster -

(©) NODES SYSTEM JVMm FLOWFILE STORAGE CONTENT STORAGE PROVENANCE STORAGE VERSIONS

(

Displaying 2 of 2

Filter by address v

Node Address Active Thread Count Queue / Size Status Started At Last Heartbeat
o localhost:9443 0 20/ 0 bytes CONNECTED, PRIMARY, COORDINATOR 10/09/2018 14:36:31 EDT ~ 10/09/2018 15:08:45EDT O
Li] localhost:9444 OFFLOADED £

& Last updated: 15:08:48 EDT

NiFi Flow

Delete Nodes

72

Clustering Configuration

There are cases where a DFM may wish to continue making changes to the flow, even though a node is not connected
to the cluster. In this case, the DFM may elect to delete the node from the cluster entirely. In the Cluster Management
dialog, select the "Delete" icon (

i

) for a Disconnected or Offloaded node. Once deleted, the node cannot be rejoined to the cluster until it has been
restarted.

The steps to decommission anode and remove it from a cluster are as follows:

1. Disconnect the node.

Once disconnect completes, offload the node.

Once offload compl etes, delete the node.

Once the delete request has finished, stop/remove the NiFi service on the host.

AwD

Asan dternative to the Ul, the following NiFi CLI commands can be used for retrieving a single node, retrieving a
list of nodes, and connecting/disconnecting/offloading/del eting nodes:

 nifi get-node

« nifi get-nodes

« nifi connect-node

« nifi disconnect-node
 nifi offload-node

« nifi delete-node

When acluster first starts up, NiF must determine which of the nodes have the "correct” version of the flow. This

is done by voting on the flows that each of the nodes has. When a node attempts to connect to a cluster, it provides a
copy of itslocal flow and (if the policy provider allows for configuration via NiFi) its users, groups, and policies, to
the Cluster Coordinator. If no flow has yet been elected the "correct” flow, the node's flow is compared to each of the
other Nodes' flows. If another Node's flow matches this one, avote is cast for thisflow. If no other Node has reported
the same flow yet, this flow will be added to the pool of possibly elected flows with one vote. After some amount

of time has elapsed (configured by setting the nifi.cluster.flow.el ection.max.wait.time property) or some number of
Nodes have cast votes (configured by setting the nifi.cluster.flow.election.max.candidates property), aflow is elected
to be the "correct” copy of the flow.

Any node whose dataflow, users, groups, and policies conflict with those elected will backup any conflicting
resources and replace the local resources with those from the cluster. How the backup is performed depends on the
configured Access Policy Provider and User Group Provider. For file-based access policy providers, the backup will
be written to the same directory as the existing file (e.g., $NIFI_HOME/conf) and bear the same name but with a
suffix of "." and atimestamp. For example, if the flow itself conflicts with the cluster's flow at 12:05:03 on January 1,
2020, the node's flow.xml.gz file will be copied to flow.xml.gz.2020-01-01-12-05-03 and the cluster's flow will then
be written to flow.xml.gz. Similarly, thiswill happen for the users.xml and authorizations.xml file. Thisis done so

that the flow can be manually reverted if necessary by renaming the backup file back to flow.xml.gz, for example.

It isimportant to note that before inheriting the elected flow, NiFi will first read through the FlowFile repository and
any swap filesto determine which queuesin the dataflow currently hold data. If there exists any queue in the dataflow
that contains a FlowFile, that queue must also exist in the elected dataflow. If that queue does not exist in the elected
dataflow, the node will not inherit the dataflow, users, groups, and policies. Instead, NiF will log errorsto that effect
and will fail to startup. This ensures that even if the node has data stored in a connection, and the cluster's dataflow is
different, restarting the node will not result in data loss.

73

Clustering Configuration

Election is performed according to the "popular vote" with the caveat that the winner will never be an "empty flow"
unless all flows are empty. This allows an administrator to remove a node's flow.xml.gz file and restart the node,
knowing that the node's flow will not be voted to be the "correct” flow unless no other flow isfound. If there are two
non-empty flows that receive the same number of votes, one of those flows will be chosen. The methodology used to
determine which of those flows is undefined and may change at any time without notice.

This section describes the setup for a simple three-node, non-secure cluster comprised of three instances of NiFi.

For each instance, certain propertiesin the nifi.properties file will need to be updated. In particular, the Web and
Clustering properties should be evaluated for your situation and adjusted accordingly. All the properties are described
in the System Properties on page 93 section of this guide; however, in this section, we will focus on the minimum
properties that must be set for a simple cluster.

For al three instances, the Cluster Common Properties on page 119 can be left with the default settings. Note,
however, that if you change these settings, they must be set the same on every instance in the cluster.

For each Node, the minimum properties to configure are as follows:

¢ Under the Web Properties section, set either the HTTP or HTTPS port that you want the Node to run on. Also,
consider whether you need to set the HTTP or HTTPS host property. All nodes in the cluster should use the same
protocol setting.

« Under the State Management section, set the nifi.state.management.provider.cluster property to the identifier
of the Cluster State Provider. Ensure that the Cluster State Provider has been configured in the state-
management.xml file. See Configuring State Providers on page 76 for more information.

* Under Cluster Node Properties, set the following:

» nifi.cluster.is.node - Set thisto true.

« nifi.cluster.node.address - Set this to the fully qualified hostname of the node. If left blank, it defaults to loca
Ihost.

 nifi.cluster.node.protocol.port - Set this to an open port that is higher than 1024 (anything lower requires root).

« nifi.cluster.node.protocol.max.threads - The maximum number of threads that should be used to communicate
with other nodes in the cluster. This property defaultsto 50. A thread pool is used for replicating requeststo all
nodes. The thread pool will increase the number of active threads to the limit set by this property. It istypically
recommended that this property be set to 4-8 times the number of nodesin your cluster.

 nifi.zookeeper.connect.string - The Connect String that is needed to connect to Apache ZooK eeper. Thisisa
comma-separated list of hosthame:port pairs. For example, localhost:2181,localhost:2182,1ocalhost:2183. This
should contain alist of al ZooK eeper instances in the ZooK eeper quorum.

« nifi.zookeeper.root.node - The root ZNode that should be used in ZooK eeper. ZooK eeper provides a directory-
like structure for storing data. Each 'directory’ in this structure is referred to as a ZNode. This denotes the root
ZNode, or ‘directory', that should be used for storing data. The default value is/root. Thisisimportant to set
correctly, as which cluster the NiFi instance attempts to join is determined by which ZooK eeper instance it
connects to and the ZooK eeper Root Node that is specified.

« nifi.cluster.flow.election.max.wait.time - Specifies the amount of time to wait before electing a Flow as the
"correct” Flow. If the number of Nodes that have voted is equal to the number specified by the nifi.cluster.flo
w.€l ection.max.candidates property, the cluster will not wait this long. The default value is 5 mins. Note that
the time starts as soon as the first vote is cast.

 nifi.cluster.flow.election.max.candidates - Specifies the number of Nodes required in the cluster to cause early
election of Flows. This allows the Nodes in the cluster to avoid having to wait along time before starting
processing if we reach at least this number of nodesin the cluster.

Now, it is possible to start up the cluster. It does not matter which order the instances start up. Navigate to the URL
for one of the nodes, and the User Interface should look similar to the following:

74

State Management

ni ¢ @ & = E B

o 3/3 0 i= 738 (253.32 KB)
@ Shows the
v} number of nodes
connected

Indicates this
is a cluster

T T

&l

11 1 3 0

B8 Summary
< 12:03:24 EST I

(23 Counters

[J Bulletin Board
¥ Data Provenance

Controller Settings

—]

‘D Flow Configuration History

Cluster Management
within Global Menu

Tr Templates

@ Help

@ About

NiFi clustering supports network access restrictions using a custom firewall configuration. The nifi.cluster.firewall fi
le property can be configured with a path to afile containing hostnames, |P addresses, or subnets of permitted nodes.
The Cluster Coordinator uses the configuration to determine whether to accept or reject heartbeats and connection

requests from potential cluster members.

The configuration file format expects one entry per line and ignores lines beginning with the # character. NiFi

uses standard Java host name resolution to convert names to | P addresses. Java host name resolution leverages a
combination of local machine configuration and network services, such as DNS. The configuration file supports | Pv4
addresses or subnet ranges using CIDR notation. The following example cluster firewall configuration includes a

combination of supported entries:

Cl uster Node Hostnanes
ni fi 0. exanpl e. com

ni fi 1. exanpl e. com

ni fi 3. exanpl e. com

Cl uster Node Addresses
192.168.0.1

192.168.0. 2

192.168.0. 3

Cluster Subnet Address

192. 168. 0.0/ 29 # Address Range from 192.168.0.1 to 192. 168.0.6

If you encounter issues and your cluster does not work as described, investigate the nifi-app.log and nifi-user.log
files on the nodes. If needed, you can change the logging level to DEBUG by editing the conf/logback.xml file.
Specifically, set the level="DEBUG" in the following line (instead of "INFQO"):

<l ogger name="or g. apache. ni fi.web. api . config"

fal se">
<appender - r ef
</l ogger >

| evel ="I NFO' additivity="

ref ="USER_FI LE"/ >

75

State Management

NiFi provides a mechanism for Processors, Reporting Tasks, Controller Services, and the framework itself to

persist state. This alows a Processor, for example, to resume from the place where it left off after NiFi is restarted.
Additionally, it allows for a Processor to store some piece of information so that the Processor can access that
information from all of the different nodes in the cluster. This allows one node to pick up where another node left off,
or to coordinate across al of the nodesin acluster.

When a component decides to store or retrieve state, it does so by providing a " Scope" - either Node-local or Cluster-
wide. The mechanism that is used to store and retrieve this state is then determined based on this Scope, as well asthe
configured State Providers. The nifi.properties file contains three different properties that are relevant to configuring
these State Providers.

Property Description

nifi.state.management.configuration.file Thefirst isthe property that specifies an external XML file that is used
for configuring the local and/or cluster-wide State Providers. This
XML file may contain configurations for multiple providers

nifi.state.management.provider.local The property that provides the identifier of the local State Provider
configured in this XML file

nifi.state.management.provider.cluster Similarly, the property provides the identifier of the cluster-wide State
Provider configured in this XML file.

This XML file consists of atop-level state-management element, which has one or more local-provider and zero

or more cluster-provider elements. Each of these elements then contains an id element that is used to specify the
identifier that can be referenced in the nifi.propertiesfile, aswell as a class element that specifies the fully-qualified
class name to use in order to instantiate the State Provider. Finally, each of these elements may have zero or more
property elements. Each property element has an attribute, name that is the name of the property that the State
Provider supports. The textual content of the property element is the value of the property.

Once these State Providers have been configured in the state-management.xml file (or whatever fileis configured),
those Providers may be referenced by their identifiers.

By default, the Local State Provider is configured to be a WriteAheadL ocal StateProvider that persists the datato the
$NIFI_HOME/state/local directory. The default Cluster State Provider is configured to be a ZooK eeperStateProvid
er. The default ZooK eeper-based provider must have its Connect String property populated before it can be used. It
is also advisable, if multiple NiFi instances will use the same ZooK eeper instance, that the value of the Root Node
property be changed. For instance, one might set the value to /nifi/<team name>/production. A Connect String takes
the form of comma separated <host>:<port> tuples, such as my-zk-server1:2181,my-zk-server2:2181,my-zk-server3:
2181. Inthe event aport is not specified for any of the hosts, the ZooK eeper default of 2181 is assumed.

When adding data to ZooK eeper, there are two options for Access Control: Open and CreatorOnly. If the Access
Control property is set to Open, then anyoneis allowed to log into ZooK eeper and have full permissions to see,
change, delete, or administer the data. If CreatorOnly is specified, then only the user that created the datais alowed
to read, change, delete, or administer the data. In order to use the CreatorOnly option, NiFi must provide some form
of authentication. See the ZooK eeper Access Control on page 78 section below for more information on how to

configure authentication.

If NiFi is configured to run in a standalone mode, the cluster-provider element need not be populated in the state-
management.xml file and will actually beignored if they are populated. However, the local-provider element must
always be present and populated. Additionaly, if NiFi isrun in acluster, each node must aso have the cluster-prov
ider element present and properly configured. Otherwise, NiFi will fail to startup.

While there are not many properties that need to be configured for these providers, they were externalized into a
Separate state-management.xml file, rather than being configured viathe nifi.properties file, simply because different
implementations may require different properties, and it is easier to maintain and understand the configuration in

76

State Management

an XML-based file such as this, than to mix the properties of the Provider in with all of the other NiFi framework-
specific properties.

It should be noted that if Processors and other components save state using the Clustered scope, the Local State
Provider will be used if the instance is a standalone instance (not in a cluster) or is disconnected from the cluster. This
also meansthat if a standalone instance is migrated to become a cluster, then that state will no longer be available, as
the component will begin using the Clustered State Provider instead of the Local State Provider.

As mentioned above, the default State Provider for cluster-wide state is the ZooK eeperStateProvider. At the time of
thiswriting, thisis the only State Provider that exists for handling cluster-wide state. What this meansisthat NiFi has
dependencies on ZooK eeper in order to behave as a cluster. However, there are many environmentsin which NiFi is
deployed where there is no existing ZooK eeper ensemble being maintained. In order to avoid the burden of forcing
administrators to also maintain a separate ZooK eeper instance, NiFi provides the option of starting an embedded
ZooK eeper server.

Property Description

nifi.state.management.embedded.zookeeper.start Specifies whether or not this instance of NiFi should run an embedded
ZooK eeper server

nifi.state.management.embedded.zookeeper.properties Propertiesfile that provides the ZooK eeper propertiesto use if nifi.sta
te.management.embedded.zookeeper.start is set to true

This can be accomplished by setting the nifi.state.management.embedded.zookeeper.start property in nifi.properties
to true on those nodes that should run the embedded ZooK eeper server. Generally, it is advisable to run ZooK eeper
on either 3 or 5 nodes. Running on fewer than 3 nodes provides less durability in the face of failure. Running on
more than 5 nodes generally produces more network traffic than is necessary. Additionally, running ZooKeeper on 4
nodes provides no more benefit than running on 3 nodes, ZooK eeper requires a majority of nodes be active in order
to function. However, it is up to the administrator to determine the number of nodes most appropriate to the particular
deployment of NiFi.

If the nifi.state.management.embedded.zookeeper.start property is set to true, the nifi.state.management.embedded.z
ookeeper.properties property in nifi.properties also becomes relevant. This specifies the ZooK eeper propertiesfile
to use. At aminimum, this properties file needs to be populated with the list of ZooKeeper servers. The servers are
specified as propertiesin the form of server.1, server.2, to server.n. As of NiFi 1.10.x, ZooK eeper has been upgraded
to 3.5.5 and servers are now defined with the client port appended at the end as per the https://zookeeper.apache.org/
doc/r3.5.2-al pha/zookeeperReconfig.html#sc_reconfig_clientport. As such, each of these serversis configured

as <hostname>:<quorum port>[:<leader election port>][:role];[<client port address>:]<client port>. Asasimple
example thiswould be server.1 = myhost:2888:3888;2181. Thislist of nodes should be the same nodes in the NiFi
cluster that have the nifi.state.management.embedded.zookeeper.start property set to true. Also note that because
ZooK eeper will be listening on these ports, the firewall may need to be configured to open these ports for incoming
traffic, at least between nodes in the cluster.

When using an embedded ZooK eeper, the ./conf/zookeeper.properties file has a property named dataDir. By defaullt,
thisvalue is set to ./state/zookeeper. If more than one NiFi node is running an embedded ZooK eeper, it isimportant to
tell the server which oneit is. Thisis accomplished by creating a file named myid and placing it in ZooK eeper's data
directory. The contents of this file should be the index of the server as specific by the server.<number>. So for one of
the ZooK eeper servers, we will accomplish this by performing the following commands:

cd $N FI _HOVE
nkdir state
nkdi r st ate/zookeeper
echo 1 > state/zookeeper/nyid

77

https://zookeeper.apache.org/doc/r3.5.2-alpha/zookeeperReconfig.html#sc_reconfig_clientport
https://zookeeper.apache.org/doc/r3.5.2-alpha/zookeeperReconfig.html#sc_reconfig_clientport

State Management

For the next NiFi Node that will run ZooK eeper, we can accomplish this by performing the following commands:

cd $N FI _HOVE
nkdir state
nkdi r st ate/zookeeper
echo 2 > state/zookeeper/nyid

And so on.

For more information on the properties used to administer ZooK eeper, see the https://zookeeper.apache.org/doc/
current/zookeeperAdmin.html.

For information on securing the embedded ZooK eeper Server, see the Securing ZooK eeper with Kerberos on page
78 section below.

ZooK eeper provides Access Control to its data via an Access Control List (ACL) mechanism. When datais written
to ZooKeeper, NiFi will provide an ACL that indicates that any user is allowed to have full permissions to the data,
or an ACL that indicates that only the user that created the datais allowed to access the data. Which ACL is used
depends on the value of the Access Control property for the ZooK eeperStateProvider (see the Configuring State
Providers on page 76 section for more information).

In order to use an ACL that indicates that only the Creator is allowed to access the data, we need to tell ZooK eeper
who the Creator is. There are three mechanisms for accomplishing this. The first mechanism isto provide
authentication using Kerberos. See Kerberizing NiFi's ZooK eegper Client on page 80 for more information.

The second option, which additionally ensures that network communication is encrypted, is to authenticate using an
X.509 certificate on a TL S-enabled ZooK eeper server. See Securing ZooK eeper with TL S on page 82 for more
information.

The third option isto use a username and password. Thisis configured by specifying a value for the Username and
avaue for the Password properties for the ZooK eeperStateProvider (see the Configuring State Providers on page
76 section for more information). The important thing to keep in mind here, though, is that ZooK eeper will

pass around the password in plain text. This means that using a username and password should not be used unless
ZooK eeper is running on localhost as a one-instance cluster, or if communications with ZooK eeper occur only over
encrypted communications, such asa VPN or an SSL connection.

When NiFi communicates with ZooK eeper, all communications, by default, are non-secure, and anyone who logs into
ZooK eeper is able to view and manipulate all of the NiFi state that is stored in ZooK eeper. To prevent this, one option
isto use Kerberos to manage authentication.

In order to secure the communications with Kerberos, we need to ensure that both the client and the server support the
same configuration. Instructions for configuring the NiFi ZooK eeper client and embedded ZooK eeper server to use
Kerberos are provided below.

If Kerberosis not already setup in your environment, you can find information on installing and setting up
aKerberos Server at https.//access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/
Managing_Smart_Cards/Configuring_a Kerberos 5 Server.html. This guide assumes that K erberos already has been
installed in the environment in which NiFi is running.

78

https://zookeeper.apache.org/doc/current/zookeeperAdmin.html
https://zookeeper.apache.org/doc/current/zookeeperAdmin.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Configuring_a_Kerberos_5_Server.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Managing_Smart_Cards/Configuring_a_Kerberos_5_Server.html

State Management

Note, the following procedures for kerberizing an Embedded ZooK eeper server in your NiFi Node and kerberizing a
ZooKeeper NiFi client will require that Kerberos client libraries be installed. Thisis accomplished in Fedora-based
Linux distributions via:

yum install krb5-workstation

Once thisis complete, the /etc/krb5.conf will need to be configured appropriately for your organization's Kerberos
environment.

The krb5.conf file on the systems with the embedded zookeeper servers should be identical to the one on the system
where the krb5kdc service is running. When using the embedded ZooK eeper server, we may choose to secure the
server by using Kerberos. All nodes configured to launch an embedded ZooK eeper and using Kerberos should follow
these steps. When using the embedded ZooK eeper server, we may choose to secure the server by using Kerberos. All
nodes configured to launch an embedded ZooK eeper and using Kerberos should follow these steps.

In order to use Kerberos, we first need to generate a Kerberos Principal for our ZooK egper servers. The following
command is run on the server where the krb5kdc service is running. This is accomplished via the kadmin tool:

kadmi n: addprinc "zookeeper/nyHost . exanpl e. com@XAMPLE. COM'

Here, we are creating a Principal with the primary zookeeper/myHost.example.com, using the relm EXAMPLE.
COM. We need to use a Principal whose name is <service name>/<instance name>. In this case, the service is zook
eeper and the instance name is myHost.example.com (the fully qualified name of our host).

Next, we will need to create a KeyTab for this Principal, this command is run on the server with the NiFi instance
with an embedded zookeeper server:

kadm n: xst -k zookeeper-server. keytab zookeeper/ nyHost . exanpl e.
COMAEXAVPLE. COM

Thiswill create afilein the current directory named zookeeper-server.keytab. We can now copy that file into the
$NIFI_HOME/conf/ directory. We should ensure that only the user that will be running NiFi is alowed to read this
file.

We will need to repeat the above steps for each of the instances of NiFi that will be running the embedded ZooK eeper
server, being sure to replace myHost.example.com with myHost2.example.com, or whatever fully qualified hostname
the ZooK eeper server will be run on.

Now that we have our KeyTab for each of the servers that will be running NiFi, we will need to configure NiFi's
embedded ZooK eeper server to use this configuration. ZooK eeper uses the Java Authentication and Authorization
Service (JAAS), so we need to create a JAAS-compatible file In the $NIFI_HOME/conf/ directory, create afile
named zookeeper-jaas.conf (thisfilewill already exist if the Client has already been configured to authenticate via
Kerberos. That's okay, just add to the file). We will add to thisfile, the following snippet:

Server {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e requi red
useKeyTab=t rue
keyTab="./conf/zookeeper-server. keyt ab"
st or eKey=t rue
useTi cket Cache=f al se
princi pal =" zookeeper/ myHost . exanpl e. com@XAMPLE. COM';

79

State Management

b

Be sureto replace the value of principal above with the appropriate Principal, including the fully qualified domain
name of the server.

Next, we need to tell NiFi to use thisas our JAAS configuration. Thisis done by setting aJVM System Property,
so we will edit the conf/bootstrap.conf file. If the Client has already been configured to use Kerberos, thisis not
necessary, as it was done above. Otherwise, we will add the following line to our bootstrap.conf file:

j ava. arg. 15=-D ava. securi ty. aut h. | ogi n. confi g=./ conf/ zookeeper - j
aas. conf

Note: Thisadditional line in the file doesn't have to be number 15, it just has to be added to the
bootstrap.conf file. Use whatever number is appropriate for your configuration.

We will want to initialize our Kerberos ticket by running the following command:

kinit -kt zookeeper-server.keytab "zookeeper/ nmyHost.exanpl e. com@
EXAMPLE. COM'

Again, be sure to replace the Principal with the appropriate value, including your realm and your fully qualified
hostname.

Finally, we need to tell the Kerberos server to use the SASL Authentication Provider. To do this, we edit the
$NIFI_HOME/conf/zookeeper.properties file and add the following lines:

aut hProvi der. 1=or g. apache. zookeeper. server. aut h. SASLAut henti cat i
onPr ovi der
ker ber os. renoveHost FronPri nci pal =t r ue
ker ber os. renoveReal nFr onPri nci pal =t rue
j aasLogi nRenew=3600000
requi red i ent Aut hSchene=sasl

The kerberos.removeHostFromPrincipal and the kerberos.removeRea mFromPrincipal properties are used to
normalize the user principal name before comparing an identity to acls applied on aZnode. By default the full
principal is used however setting the kerberos.removeHostFromPrincipal and the kerberos.removeReal mFromPrin
cipal propertiesto true will instruct ZooK eeper to remove the host and the realm from the logged in user's identity for
comparison. In cases where NiFi nodes (within the same cluster) use principals that have different host(s)/realm(s)
values, these kerberos properties can be configured to ensure that the nodes' identity will be normalized and that the
nodes will have appropriate access to shared Znodesin ZooK eeper.

Thelast lineis optional but specifies that clients MUST use Kerberos to communicate with our ZooK eeper instance.

Now, we can start NiFi, and the embedded ZooK eeper server will use Kerberos as the authentication mechanism.

Note: The NiFi nodes running the embedded zookeeper server will aso need to follow the below procedure
E since they will also be acting as a client at the same time.

The preferred mechanism for authenticating users with ZooK eeper isto use Kerberos. In order to use Kerberos to
authenticate, we must configure afew system properties, so that the ZooK eeper client knows who the user is and

80

State Management

where the KeyTab fileis. All nodes configured to store cluster-wide state using ZooK eeperStateProvider and using
Kerberos should follow these steps.

First, we must create the Principal that we will use when communicating with ZooK eeper. Thisis generally done via
the kadmin tool:

kadmi n: addprinc "nifi @GEXAMPLE. COM'

A Kerberos Principal is made up of three parts: the primary, the instance, and the realm. Here, we are creating a
Principal with the primary nifi, no instance, and the reAlm EXAMPLE.COM. The primary (nifi, in this case) isthe
identifier that will be used to identify the user when authenticating via Kerberos.

After we have created our Principal, we will need to create a KeyTab for the Principal:

kadm n: xst -k nifi.keytab nifi @GEXAMPLE. COM

This keytab file can be copied to the other NiFi nodes with embedded zookeeper servers.

Thiswill create afilein the current directory named nifi.keytab. We can now copy that file into the $NIFI_HOME/c
onf/ directory. We should ensure that only the user that will be running NiFi is allowed to read thisfile.

Next, we need to configure NiFi to use this KeyTab for authentication. Since ZooK eeper uses the Java Authentication
and Authorization Service (JAAS), we need to create a JAAS-compatible file. In the $NIFI_HOME/conf/ directory,
create a file named zookeeper-jaas.conf and add to it the following snippet:

dient {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e requi red
useKeyTab=t rue
keyTab="./conf/nifi.keytab"
st or eKey=t rue
useTi cket Cache=f al se
princi pal ="ni fi @GEXAMPLE. COM';
s

We then need to tell NiFi to use this as our JAAS configuration. Thisis done by setting aJVM System Property, so
we will edit the conf/bootstrap.conf file. We add the following line anywhere in thisfile in order to tell the NiF VM
to use this configuration:;

j ava. arg. 15=-Dj ava. securi ty. aut h. | ogi n. confi g=./ conf/ zookeeper - j
aas. conf

Finally we need to update nifi.properties to ensure that NiFi knows to apply SASL specific ACLsfor the Znodes it
will create in ZooK eeper for cluster management. To enable this, in the $NIFI_HOME/conf/nifi.properties file and
edit the following properties as shown below:

ni fi.zookeeper. aut h.type=sasl
ni fi.zookeeper. kerberos. renoveHost FronPri nci pal =true
ni fi.zookeeper. ker beros. renoveReal nFronPri nci pal =true

81

State Management

Note: The kerberos.removeHostFromPrincipal and kerberos.removeRealmFromPrincipal should be
E consistent with what is set in ZooK eeper configuration.

We can initialize our Kerberos ticket by running the following command:
kinit -kt nifi.keytab nifi @EXAMPLE. COM

Now, when we start NiFi, it will use Kerberos to authentication as the nifi user when communicating with
ZooK eeper.

When using Kerberos, it isimport to use fully-qualified domain names and not use localhost. Please ensure that the
fully qualified hostname of each server is used in the following locations:

 conf/zookeeper.properties file should use FQDN for server.1, server.2, ..., server.N values.
» The Connect String property of the ZooK eeperStateProvider
e The/etc/hosts file should also resolve the FQDN to an IP address that is not 127.0.0.1.

Failure to do so, may result in errors similar to the following:

2016-01-08 16: 08: 57,888 ERROR [pool - 26-t hr ead- 1- SendThr ead(| ocal
host: 2181)] 0. a.zookeeper.client.ZooKeeperSasl Cient An error: (java.securit
y. Privil egedActi onException: javax.security.sasl.Sasl Exception: GSS initiate

fail ed [Caused by GSSException: No valid credentials provided (Mechanismle
vel: Server not found in Kerberos database (7) - LOOKI NG UP_SERVER)]) occurr
ed when eval uati ng ZooKeeper Quorum Menber's received SASL token. ZooKeeper
Client will go to AUTH FAILED state.

If there are problems communicating or authenticating with Kerberos, this http://docs.oracle.com/javase/7/docs/
technotes/guides/security/jgss/tutorial s/ Troubl eshooting.html may be of value.

One of the most important notes in the above Troubleshooting guide is the mechanism for turning on Debug output
for Kerberos. Thisis done by setting the sun.security.krb5.debug environment variable. In NiFi, thisis accomplished
by adding the following line to the $NIFI_HOM E/conf/bootstrap.conf file:

j ava. arg. 16=- Dsun. security. kr b5. debug=tr ue

Thiswill cause the debug output to be written to the NiFi Bootstrap log file. By default, thisis located at
$NIFI_HOME/logs/nifi-bootstrap.log. This output can be rather verbose but provides extremely valuable information
for troubleshooting Kerberos failures.

As discussed above, communications with ZooK eeper are insecure by default. The second option for
securely authenticating to and communicating with ZooK eeper is to use certificate-based authentication
with a TLS-enabled ZooK eeper server (available since ZooK eeper's 3.5.x releases). Instructions for enabling
TLS on an external ZooK eeper ensemble can be found in the https://zookeeper.apache.org/doc/r3.5.5/
zookeeperAdmin.html#sc_authOptions.

Once you have a TL S-enabled instance of ZooK eeper, TL S can be enabled for the NiFi client by setting nifi.zoo
keeper.client.secure=true. By default, the ZooK eeper client will use the existing nifi.security.* propertiesfor the

82

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/Troubleshooting.html
https://zookeeper.apache.org/doc/r3.5.5/zookeeperAdmin.html#sc_authOptions
https://zookeeper.apache.org/doc/r3.5.5/zookeeperAdmin.html#sc_authOptions

State Management

keystore and truststore. If you require separate TL S configuration for ZooK eeper, you can create a separate keystore
and truststore and configure the following properties in the $NIFI_HOME/conf/nifi.properties file:

nifi.zookeeper.client.secure Whether to acccess ZooK eeper using client fase
TLS.

nifi.zookeeper.security.keystore Filename of the Keystore containing the none
private key to use when communicating with
ZooK eeper.

nifi.zookeeper.security.keystoreType Optional. The type of the Keystore. Must be none

PKCS12, S, or PEM. If not specified the
type will be determined from the file extension

(.p12, jks, .pem).
nifi.zookeeper.security.keystorePasswd The password for the Keystore. none
nifi.zookeeper.security.truststore Filename of the Truststore that will beused to | none

verify the ZooK eeper server(s).
nifi.zookeeper.security.truststoreType Optional. The type of the Truststore. Must be | none

PKCS12, XS, or PEM. If not specified the
type will be determined from the file extension
(.p12, .jks, .pem).

nifi.zookeeper.security.truststorePasswd The password for the Truststore. none

Whether using the default security properties or the ZooKeeper specific properties, the keystore and truststores must
contain the appropriate keys and certificates for use with ZooKeeper (i.e., the keys and certificates need to align with
the ZooK eeper configuration either way). NiFi's TLS Toolkit can be used to help generate the keystore and truststore
used for ZooK eeper client/server access.

After updating the above properties and starting NiFi, network communication with ZooK eeper will be secure and
ZooKeeper will now use the NiFi node's certificate principal when authenticating access. Thiswill be reflected in log
messages like the following on the ZooK eeper server:

2020- 02- 24 23:37:52,671 [nyid:2] - INFO [nioEventLoopG oup-4-1:
X509Aut henti cati onProvi der @72] - Authenticated Id ' CN=nifi-nodel, O=NIFI"' f
or Schene ' x509'

ZooK eeper uses Netty to support network encryption and certificate-based authentication. When TLSis enabled,
both the ZooK eeper server and its clients must be configured to use Netty-based connections instead of the default
NIO implementations. Thisis configured automatically for NiFi when nifi.zookeeper.client.secure is set to true. Once
Netty is enabled, you should see log messages like the following in $NIFI_ HOME/logs/nifi-app.log:

2020- 02- 24 23: 37: 54,082 | NFO [ni oEvent LoopG oup- 3-1] 0. apache. zo
okeeper. d i ent CnxnSocket Netty SSL handl er added for channel: [id: Oxa831f9c3

]

2020- 02- 24 23: 37: 54,104 | NFO [ni oEvent LoopG oup- 3-1] 0. apache. zookeeper. C

i ent ChxnSocket Netty channel is connected: [id: O0xa831f9c3, L:/172.17.0.4:565
10 - R 8e38869cdldl/172.17.0. 3: 2281]

83

State Management

A NiFi cluster can be deployed using a ZooK eeper instance(s) embedded in NiFi itself which all nodes can
communicate with. As of NiFi 1.13.0, communication between nodes and this embedded ZooK eeper can now be
secured with TLS. Versions of NiFi prior to 1.13 did not use secure client access with embedded ZooK eeper(s). The
configuration for the client side of the connection will operate in the same way as an external ZooKeeper. That is, it
will use the nifi.security.* properties from the nifi.properties file by default, unless you specifiy explicit ZooK eeper
keystore/truststore properties with nifi.zookeeper.security.* as described above.

The server configuration will operate in the same way as an insecure embedded server, but with the secureClientPort
set (typically port 2281).

Example $NIFI_HOME/conf/zookeeper.properties file:

secured i ent Port =2281
initLimt=10
aut opur ge. pur gel nt erval =24
syncLi m t=5
ti ckTi nre=2000
dat abDi r=./ st at e/ zookeeper
aut opur ge. snapRet ai nCount =30
server. 1=nifi 1. exanpl e. com 2888: 3888
server. 2=ni fi 2. exanpl e. com 2888: 3888
server. 3=ni fi 3. exanpl e. com 2888: 3888

When used with athree node NiFi cluster, the above configuration file would establish a three node ZooK eeper
quorum with each node listening on secure port 2281 for client connections with NiFi, 2888 for quorum
communication and 3888 for leader election.

Note: When using a secure server, the secure embedded ZooK eeper server ignores any clientPort or

E clientPortAddress specified in $NIFI_HOM E/conf/zookeeper.properties. |.e., if the NiFi-embedded
ZooK eeper exposes a secureClientPort it will not expose an insecure clientPort regardless of configuration.
Thisisabehavioral difference between the embedded server and an external ZooK eeper server and ensures
the embedded ZooK eeper will either run securely, or insecurely, but not a mixture of both.

The following is an example of the relevant properties to set in $NIFI_HOME/conf/nifi.properties to run and connect
to this quorum:

nifi.security. keystore=./conf/keystore.jks
nifi.security. keystoreType=j ks
nifi.security. keyst orePasswd=password
nifi.security. keyPasswd=password
nifi.security.truststore=./conf/truststore.jks
nifi.security.truststoreType=jks
nifi.security.truststorePasswd=password
nifi.security.user.authorizer=managed- aut hori zer

ni fi.zookeeper.connect.string=nifil. exanple.com 2281, ni fi 2. exanpl e. com 22
81, nifi 3. exanpl e. com 2281

ni fi.zookeeper. connect.tinmeout=10 secs

ni fi.zookeeper. session.tinmeout=10 secs

ni fi.zookeeper.root.node=/nifi

ni fi.zookeeper.client.secure=true

nifi.state. managenent. enbedded. zookeeper. start =t rue

nifi.state. managenent. enbedded. zookeeper. properti es=./conf/zookeeper. prope
rties

nifi.state.managenent. configuration.file=./conf/state-nmnagenent. xmn

ni fi.state. managenent. provi der. cl ust er =zk- provi der

Bootstrap Properties

Y ou can use the zk-migrator tool to perform the following tasks:

¢ Moving ZooK eeper information from one ZooK eeper cluster to another
» Migrating ZooK eeper node ownership

For example, you may want to use the ZooK eeper Migrator when you are:

» Upgrading from NiFi 0.x to NiF 1.x in which embedded ZooK eepers are used

» Migrating from an embedded ZooK eeper in NiFi 0.x or 1.x to an external ZooK eeper

« Upgrading from NiFi 0.x with an external ZooK eeper to NiFi 1.x with the same external ZooK eeper
« Migrating from an external ZooK eeper to an embedded ZooKeeper in NiFi 1.x

The bootstrap.conf file in the conf directory allows usersto configure settings for how NiFi should be started. This
includes parameters, such as the size of the Java Heap, what Java command to run, and Java System Properties.

Here, we will address the different properties that are made available in the file. Any changes to thisfile will take
effect only after NiFi has been stopped and restarted.

Property Description

java Specifiesthe fully qualified java command to run. By default, it is
simply java but could be changed to an absolute path or areference an
environment variable, such as $JAVA_HOME/bin/java

run.as The usernameto run NiFi as. For instance, if NiFi should be run as the
nifi user, setting this value to nifi will cause the NiFi Processto be run
asthe nifi user. This property isignored on Windows. For Linux, the
specified user may require sudo permissions.

preserve.environment Whether or not to preserve shell environment while using run.as (see
"sudo -E" man page). By default, thisis set to false.

lib.dir Thelib directory to use for NiFi. By default, thisis set to ./lib
conf.dir The conf directory to use for NiFi. By default, thisis set to ./conf
graceful .shutdown.seconds When NiFi isinstructed to shutdown, the Bootstrap will wait this

number of seconds for the process to shutdown cleanly. At this amount
of time, if the serviceis still running, the Bootstrap will kill the
process, or terminate it abruptly.

javaarg.N Any number of VM arguments can be passed to the NiFi VM
when the process is started. These arguments are defined by adding
properties to bootstrap.conf that begin with java.arg.. The rest of the
property name is not relevant, other than to differentiate property
names, and will beignored. The default includes properties for
minimum and maximum Java Heap size, the garbage collector to use,
Java |O temporary directory, etc.

85

Notification Services

nifi.bootstrap.sensitive.key The root key (in hexadecimal format) for encrypted sensitive
configuration values. When NiFi is started, this root key is used to
decrypt sensitive values from the nifi.properties file into memory for
|ater use.

The Encrypt-Config Tool can be used to specify the root key, encrypt
sensitive valuesin nifi.properties and update bootstrap.conf. See the
Encrypted Passwords in Configuration Files on page 63 for an
example.

notification.servicesfile When NiFi is started, or stopped, or when the Bootstrap detects that
NiFi has died, the Bootstrap is able to send notifications of these events
to interested parties. Thisis configured by specifying an XML file that
defines which notification services can be used. More about thisfile
can be found in the Notification Services on page 86 section.

notification.max.attempts If anotification serviceis configured but is unable to perform its
function, it will try again up to a maximum number of attempts. This
property configures what that maximum number of attemptsis. The
default valueis5.

nifi.start.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the
notification.services.file property. The services with the specified
identifiers will be used to notify their configured recipients whenever
NiFi is started.

nifi.stop.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the
notification.servicesfile property. The services with the specified
identifiers will be used to notify their configured recipients whenever
NiFi is stopped.

nifi.died.notification.services This property is a comma-separated list of Notification Service
identifiers that correspond to the Notification Services defined in the
notification.servicesfile property. The services with the specified
identifiers will be used to notify their configured recipientsif the
bootstrap determines that NiFi has unexpectedly died.

nifi.diagnostics.on.shutdown.enabled (true or false) This property decides whether to run NiFi diagnostics
before shutting down.

nifi.diagnostics.on.shutdown.verbose (true or false) This property decides whether to run NiFi diagnosticsin
verbose mode.

nifi.diagnostics.on.shutdown.directory This property specifies the location of the NiFi diagnostics directory.

nifi.diagnostics.on.shutdown.max.filecount This property specifies the maximum permitted number of diagnostic

files. If the limit is exceeded, the oldest files are deleted.

nifi.diagnostics.on.shutdown.max.directory.size This property specifies the maximum permitted size of the diagnostics
directory. If the limit is exceeded, the oldest files are del eted.

When the NiFi bootstrap starts or stops NiFi, or detects that it has died unexpectedly, it is able to notify configured
recipients. Currently, the only mechanisms supplied are to send an e-mail or HTTP POST notification. The
notification services configuration fileis an XML file where the notification capabilities are configured.

The default location of the XML file is conf/bootstrap-notification-services.xml, but this value can be changed in the
conf/bootstrap.conf file.

86

Notification Services

The syntax of the XML fileisasfollows:

<servi ces>

<l-- any nunber of service elenents can be defined. -->
<servi ce>
<i d>sone-identifier</id>
<l-- The fully-qualified class nane of the Notification Service. -->

<cl ass>org. apache. ni fi.bootstrap. notification.enail.Emil Notificatio
nServi ce</cl ass>

<l-- Any nunber of properties can be set using this syntax.
The properties avail abl e depend on the Notification Service. --

<property name="Property Name 1">Property Val ue</property>
<property name="Anot her Property Name">Property Val ue 2</property>
</ servi ce>
</ servi ces>

Once the desired services have been configured, they can then be referenced in the bootstrap.conf file.

Thefirst Notifier isto send emails and the implementation is org.apache.nifi.bootstrap.notification.email. EmailNotifi
cationService. It has the following properties available:

Property Required Description

SMTP Hostname true The hostname of the SMTP Server that is used
to send Email Notifications

SMTP Port true The Port used for SMTP communications

SMTP Username true Username for the SMTP account

SMTP Password Password for the SMTP account

SMTP Auth Flag indicating whether authentication should
be used

SMTPTLS Flag indicating whether TLS should be
enabled

SMTP Socket Factory javax.net.ssl.SSL SocketFactory

SMTP X-Mailer Header X-Mailer used in the header of the outgoing
email

Content Type Mime Type used to interpret the contents of

the email, such as text/plain or text/html

From true Specifies the Email address to use as the
sender. Otherwise, a"friendly name" can be
used as the From address, but the value must
be enclosed in double-quotes.

To The recipients to include in the To-Line of the
email

CcC Therecipientsto include in the CC-Line of the
email

87

Notification Services

BCC

The recipients to include in the BCC-Line of
the email

In addition to the properties above that are marked as required, at least one of the To, CC, or BCC properties must be

Set.

A complete example of configuring the Email service would look like the following:

<servi ce>
<id>enmail -notification</id>

<cl ass>org. apache. ni fi.bootstrap.notification.enail.Email Notificatio

nSer vi ce</ cl ass>

<property nane="SMIP Host nane">snt p. gnai | . conx/ property>

<property name="SMIP Port">587</ property>

<property name="SMIP User nane" >user name@mai | . conx/ pr operty>
<property nane="SMIP Passwor d">super - secr et - passwor d</ property>

<property nane="SMIP TLS">true</property>

<property nane="From'>"Ni Fi Service Notifier"</property>
<property nane="To" >user name@nui | . conx/ property>

</ service>

The second Notifier isto send HTTP POST requests and the implementation is org.apache.nifi.bootstrap.notificati

on.http.HttpNotificationService. It has the following properties avail able:

Property Required

URL true

Connection timeout

Write timeout

Truststore Filename

Truststore Type

Truststore Password
Keystore Filename

Keystore Type

Keystore Password

Key Password

SSL Protocol

Description

The URL to send the notification to.
Expression language is supported.

Max wait time for connection to remote
service. Expression language is supported.
This defaults to 10s.

Max wait time for remote service to read

the request sent. Expression language is
supported. This defaultsto 10s.

The fully-qualified filename of the Truststore

The Type of the Truststore. Either JKS or
PKCS12

The password for the Truststore
The fully-qualified filename of the Keystore

The Type of the Keystore. Either JKS or
PKCS12

The password for the Keystore

The password for the key. If thisis not
specified, but the Keystore Filename,
Password, and Type are specified, then the
Key Password will be assumed to be the same
as the Keystore Password.

The algorithm to use for this SSL context.
This can either be SSL or TLS.

88

Proxy Configuration

In addition to the properties above, dynamic properties can be added. They will be added as headersto the HTTP
reguest. Expression language is supported.

The notification message isin the body of the POST request. The type of notification isin the header
"notification.type" and the subject uses the header "notification.subject".

A complete example of configuring the HTTP service could look like the following:

<servi ce>
<id>http-notification</id>
<cl ass>org. apache. ni fi.bootstrap. notification.http. HtpNotificati

onSer vi ce</ cl ass>

<property nanme="URL">https://testServer.com 8080/ </ property>
<property name="Truststore Fil enanme">| ocal host-ts.jks</property>
<property nane="Truststore Type">JKS</ property>
<property nane="Truststore Password">l| ocal t est <property>
<property nane="Keystore Fil enanme" >l ocal host-ts.jks</property>
<property nane="Keystore Type">JKS</property>
<property nane="Keystore Password">| ocal t est </ property>
<property nane="notification.tinmestanp">${now()}</property>

</ service>

When running Apache NiFi behind a proxy there are a couple of key itemsto be aware of during deployment.

» NiFi iscomprised of a number of web applications (web Ul, web API, documentation, custom Uls, data viewers,
etc), so the mapping needs to be configured for the root path. That way all context paths are passed through
accordingly. For instance, if only the /nifi context path was mapped, the custom Ul for UpdateAttribute will not
work, since it is available at /Jupdate-attribute-ui-<version>.

« NiFi'sREST API will generate URIsfor each component on the graph. Since requests are coming through a
proxy, certain elements of the URIs being generated need to be overridden. Without overriding, the users will
be able to view the dataflow on the canvas but will be unable to modify existing components. Requests will be
attempting to call back directly to NiFi, not through the proxy. The elements of the URI can be overridden by
adding the following HTTP headers when the proxy generates the HT TP request to the NiFi instance:

X- ProxyScheme - the schenme to use to connect to the proxy

X- ProxyHost - the host of the proxy

X-ProxyPort - the port the proxy is listening on

X- ProxyContextPath - the path configured to map to the Ni Fi instance

» If NiFi isrunning securely, any proxy needs to be authorized to proxy user requests. These can be configured
in the NiFi Ul through the Global Menu. Once these permissions arein place, proxies can begin proxying user
reguests. The end user identity must be relayed in aHT TP header. For example, if the end user sent a request
to the proxy, the proxy must authenticate the user. Following this the proxy can send the request to NiFi. In this
reguest an HTTP header should be added as follows.

X- Proxi edEntiti esChai n: <end-user-identity>
If the proxy is configured to send to another proxy, the request to NiFi from the second proxy should contain a header

asfollows.

X- Proxi edEntiti esChai n: <end-user-identity><proxy-1-identity>

89

Kerberos Service

An example Apache proxy configuration that sets the required properties may look like the following. Complete
proxy configuration is outside of the scope of this document. Please refer the documentation of the proxy for guidance
for your deployment environment and use case.

.<i_.ocati on "/ny-nifi">

SSLEngi ne On

SSLCertificateFile /path/to/proxy/certificate.crt
SSLCertificateKeyFile /path/to/proxy/key. key
SSLCACertificateFile /path/to/calcertificate.crt
SSLVerifydient require

Request Header add X- ProxySchenme "htt ps"

Request Header add X- ProxyHost "proxy-host"
Request Header add X-ProxyPort "443"

Request Header add X- ProxyContextPath "/my-nifi"
Request Header add X-Proxi edEntitiesChain "<%SSL CLI ENT_S DN}>"
ProxyPass https://nifi-host: 8443

Pr oxyPassReverse https://nifi-host: 8443

</ Locati on>

» Additional NiFi proxy configuration must be updated to allow expected Host and context paths HT TP headers.

» By default, if NiFi isrunning securely it will only accept HTTP requests with a Host header matching the
host[:port] that it is bound to. If NiFi isto accept requests directed to a different host[:port] the expected values
need to be configured. This may be required when running behind a proxy or in a containerized environment.
Thisis configured in a comma separated list in nifi.properties using the nifi.web.proxy.host property (e.g.
localhost: 18443, proxyhost:443). |Pv6 addresses are accepted. Please refer to RFC 5952 Sections https://
tools.ietf.org/html/rfc5952#section-4 and https://tools.ietf.org/html/rfc5952#section-6 for additional details.

» NiFi will only accept HTTP requests with a X-ProxyContextPath, X-Forwarded-Context, or X-Forwarded-
Prefix header if the value is alowed in the nifi.web.proxy.context.path property in nifi.properties. This
property accepts a comma separated list of expected values. In the event an incoming request has an X-
ProxyContextPath, X-Forwarded-Context, or X-Forwarded-Prefix header value that is not present in the allow
list, the "An unexpected error has occurred” page will be shown and an error will be written to the nifi-app.log.

« Additional configurations at both proxy server and NiFi cluster are required to make NiFi Site-to-Site work behind
reverse proxies. See Site to Site Routing Properties for Reverse Proxies on page 110 for details.

« Inorder to transfer data via Site-to-Site protocol through reverse proxies, both proxy and Site-to-Site client
NiFi users need to have following palicies, 'retrieve site-to-site details, 'receive data via site-to-site' for input
ports, and 'send data via site-to-site' for output ports.

NiFi can be configured to use Kerberos SPNEGO (or "Kerberos Service'") for authentication. In this scenario, users
will hit the REST endpoint /access/kerberos and the server will respond with a 401 status code and the challenge
response header WWW-A uthenticate: Negotiate. This communicates to the browser to use the GSS-API and |load

the user's Kerberos ticket and provide it as a Base64-encoded header value in the subsequent request. It will be of the
form Authorization: Negotiate YII.... NiFi will attempt to validate this ticket with the KDC. If it is successful, the
user's principal will be returned as the identity, and the flow will follow login/credential authentication, in that a JWT
will beissued in the response to prevent the unnecessary overhead of Kerberos authentication on every subsequent
request. If the ticket cannot be validated, it will return with the appropriate error response code. The user will then be
able to provide their Kerberos credentials to the login form if the KerberosL oginldentityProvider has been configured.
See Kerberos on page 15 login identity provider for more details.

90

https://tools.ietf.org/html/rfc5952#section-4
https://tools.ietf.org/html/rfc5952#section-4
https://tools.ietf.org/html/rfc5952#section-6

Kerberos Service

NiFi will only respond to Kerberos SPNEGO negotiation over an HTTPS connection, as unsecured requests are never
authenticated.

The following properties must be set in nifi.properties to enable Kerberos service authentication.
Property Required Description

Service Principal true The service principal used by NiFi to
communicate with the KDC

Keytab Location true Thefile path to the keytab containing the
service principal

See Kerberos Properties on page 121 for complete documentation.

» Kerberosis case-sensitive in many places and the error messages (or lack thereof) may not be sufficiently
explanatory. Check the case sensitivity of the service principal in your configuration files. Convention isHTTF/
fully.qualified.domain@REALM.

« Browsers have varying levels of restriction when dealing with SPNEGO negotiations. Some will provide the
local Kerberos ticket to any domain that requests it, while others explicitly specify the trusted domains in advance
viaan allow list. See http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/
reference/htmlsingle/#browserspnegoconfig for common browsers.

« Some browsers (legacy |E) do not support recent encryption algorithms such as AES, and are restricted to legacy
algorithms (DES). This should be noted when generating keytabs.

« The KDC must be configured and a service principal defined for NiFi and a keytab exported. Comprehensive
instructions for Kerberos server configuration and administration are beyond the scope of this document (see
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html), but an example is below:

Adding a service principal for aserver at nifi.nifi.apache.org and exporting the keytab from the KDC:

root @dc: / et c/ kr bSkdc# kadmi n. | ocal

Aut henti cating as principal adni n/adm n@l Fl . APACHE. ORG wi t h passwor d.
kadmi n.local: [listprincs

K/ M@\l FI . APACHE. ORG

adm n/ adm n@Nl FI . APACHE. ORG

kadmi n. |l ocal : addprinc -randkey HTTP/nifi.nifi.apache.org

WARNI NG no policy specified for HTTP/ nifi.nifi.apache. org@l Fl . APACHE. ORG,
defaulting to no policy

Principal "HTTP/nifi.nifi.apache.org@l Fl. APACHE. ORG' cr eat ed.

kadm n.local: ktadd -k /http-nifi.keytab HTTP/nifi.nifi.apache.org

Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type d

es3-cbc-shal added to keytab WRFILE:/http-nifi.keytab.

Entry for principal HTTP/nifi.nifi.apache.org with kvno 2, encryption type
des-cbc-crc added to keytab WRFILE:/http-nifi.keytab.

kadmi n.local: |istprincs

HTTP/ ni fi.nifi.apache. org@\l Fl . APACHE. ORG

K/ MaNl FI . APACHE. ORG

adm n/ adm n@\l Fl . APACHE. ORG

kadmi n. |l ocal : q

root @dc: ~# || /http*

STW------ 1 root root 162 Mar 14 21:43 /http-nifi.keytab
r oot @xdc: ~#

91

http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://docs.spring.io/autorepo/docs/spring-security-kerberos/1.0.2.BUILD-SNAPSHOT/reference/htmlsingle/#browserspnegoconfig
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html

Analytics Framework

NiFi has an internal analytics framework which can be enabled to predict back pressure occurrence, given the
configured settings for threshold on a queue. The model used by default for prediction is an ordinary least squares
(OLS) linear regression. It uses recent observations from a queue (either number of objects or content size over time)
and calculates aregression line for that data. The line's equation is then used to determine the next value that will be
reached within a given time interval (e.g. number of objectsin queue in the next 5 minutes). Below is an example
graph of the linear regression model for Queue/Object Count over time which is used for predictions:

Queue Count Over Time

® Queue Count Trendline for Queue CountR*=0.92

25

20]

15

Queue Count

10 ®

Time

In order to generate predictions, local status snapshot history is queried to obtain enough data to generate a model. By
default, component status snapshots are captured every minute. Internal models need at least 2 or more observations
to generate a prediction, therefore it may take up to 2 or more minutes for predictions to be available by default. If
predictions are needed sooner than what is provided by default, the timing of snapshots can be adjusted using the nifi
.components.status.snapshot.frequency value in nifi.properties.

NiFi evaluates the model's effectiveness before sending prediction information by using the model's R-Squared score
by default. One important note: R-Square is a measure of how close the regression line fits the observation data vs.
how accurate the prediction will be; therefore there may be some measure of error. If the R-Squared score for the
calculated model meets the configured threshold (as defined by nifi.analytics.connection.model.score.threshold) then
the model will be used for prediction. Otherwise the model will not be used and predictions will not be available until
amodel is generated with a score that exceeds the threshold. Default R-Squared threshold value is .90 however this
can be tuned based on prediction requirements.

The prediction interval nifi.analytics.predict.interval can be configured to project out further when back pressure will
occur. The prediction query interval nifi.analytics.query.interval can also be configured to determine how far back in
time past observations should be queried in order to generate the model. Adjustments to these settings may require
tuning of the model's scoring threshold value to select a score that can offer reasonable predictions.

See Analytics Properties on page 122 for complete information on configuring analytic properties.

92

System Properties

The nifi.propertiesfile in the conf directory isthe main configuration file for controlling how NiFi runs. This section
provides an overview of the propertiesin this file and their setting options.

Note: Valuesfor periods of time and data sizes must include the unit of measure, for example 10 secs" or
IE "10 MB", not simply "10".

f Warning: After making changesto nifi.properties, restart NiFi in order for the changes to take effect.

The contents of the nifi.properties file are relatively stable but can change from version to version. It is aways a good
idea to review this file when upgrading and pay attention to any changes.

Consider configuring items below marked with an asterisk (*) in such away that upgrading will be easier. For
example, change the default directory configurations to locations outside the main root installation. In thisway,
these items can remain in their configured location through an upgrade, allowing NiFi to find all the repositories and
configuration files and pick up where it left off as soon as the old version is stopped and the new version is started.
Furthermore, the administrator may reuse this nifi.properties file and any other configuration files without having to
re-configure them each time an upgrade takes place. See Upgrading NiFi on page 123 for more details.

Thefirst section of the nifi.propertiesfileis for the Core Properties. These properties apply to the core framework as a
whole.

Property Description

nifi.flow.configuration.file* The location of the flow configuration file (i.e., the file that contains
what is currently displayed on the NiFi graph). The default valueis ./co
nf/flow.xml.gz.

nifi.flow.configuration.archive.enabled* Specifies whether NiFi creates a backup copy of the flow automatically
when the flow is updated. The default valueistrue.

nifi.flow.configuration.archive.dir* The location of the archive directory where backup copies of the
flow.xml are saved. The default valueis ./conf/archive. NiFi removes
old archive filesto limit disk usage based on archived file lifespan,
total size, and number of files, as specified with nifi.flow.config
uration.archive.max.time, max.storage and max.count properties
respectively. If none of these limitation for archiving is specified,
NiFi uses default conditions, that is 30 days for max.time and 500
MB for max.storage. This cleanup mechanism takes into account
only automatically created archived flow.xml files. If there are other
files or directoriesin this archive directory, NiFi will ignore them.
Automatically created archives have filename with 1SO 8601 format
timestamp prefix followed by <original-filename>. That is <year><m
onth><day>T<hour><minute><second>+<timezone offset>_<origina
| filename>. For example, 20160706 T160719+0900_flow.xml.gz. NiFi
checks filenames when it cleans archive directory. If you would like
to keep a particular archive in this directory without worrying about
NiFi deleting it, you can do so by copying it with a different filename
pattern.

93

System Properties

nifi.flow.configuration.archive.max.time*

nifi.flow.configuration.archive.max.storage*

nifi.flow.configuration.archive.max.count*

nifi.flowcontroller.autoResumeState

nifi.flowcontroller.graceful .shutdown.period

nifi.flowservice.writedel ay.interval

nifi.administrative.yield.duration

nifi.bored.yield.duration

nifi.queue.backpressure.count

nifi.queue.backpressure.size

nifi.authorizer.configuration.file*

nifi.login.identity.provider.configuration.file*

nifi.templates.directory*

nifi.ui.banner.text

nifi.ui.autorefresh.interval

The lifespan of archived flow.xml files. NiFi will delete expired
archive files when it updates flow.xml if this property is specified.
Expiration is determined based on current system time and the last
modified timestamp of an archived flow.xml. If no archive limitation is
specified in nifi.properties, NiFi removes archives older than 30 days.

Thetotal data size allowed for the archived flow.xml files. NiFi will
delete the oldest archive files until the total archived file size becomes
less than this configuration value, if this property is specified. If no
archive limitation is specified in nifi.properties, NiFi uses 500 MB for
this.

The number of archive files allowed. NiFi will delete the oldest archive
files so that only N latest archives can be kept, if this property is
specified.

Indicates whether -upon restart- the components on the NiFi graph
should return to their |ast state. The default value is true.

Indicates the shutdown period. The default valueis 10 secs.

When many changes are made to the flow.xml, this property specifies
how long to wait before writing out the changes, so as to batch the
changes into asingle write. The default value is 500 ms.

If a component allows an unexpected exception to escape, it

is considered abug. As aresult, the framework will pause (or
administratively yield) the component for this amount of time. Thisis
done so that the component does not use up massive amounts of system
resources, sinceit is known to have problems in the existing state. The
default value is 30 secs.

When a component has no work to do (i.e., is "bored"), thisisthe
amount of time it will wait before checking to seeiif it has new datato
work on. Thisway, it does not use up CPU resources by checking for
new work too often. When setting this property, be aware that it could
add extra latency for components that do not constantly have work to
do, asonce they go into this"bored" state, they will wait this amount of
time before checking for more work. The default valueis 10 ms.

When drawing a new connection between two components, thisisthe
default value for that connection's back pressure object threshold. The
default is 10000 and the value must be an integer.

When drawing a new connection between two components, thisisthe
default value for that connection's back pressure data size threshold.
The default is 1 GB and the value must be a data size including the unit
of measure.

Thisisthe location of the file that specifies how authorizers are
defined. The default valueis ./conf/authorizers.xml.

Thisisthe location of the file that specifies how username/password
authentication is performed. Thisfileisonly considered if nifi.securit
y.user.login.identity.provider is configured with a provider identifier.
The default value is ./conf/login-identity-providers.xml.

Thisisthe location of the directory where flow templates are saved (for
backward compatibility only). Templates are stored in the flow.xml.gz
starting with NiFi 1.0. The template directory can be used to (bulk)
import templates into the flow.xml.gz automatically on NiFi startup.
The default value is ./conf/templates.

Thisis banner text that may be configured to display at the top of the
User Interface. It is blank by default.

Theinterval at which the User Interface auto-refreshes. The default
valueis 30 secs.

94

System Properties

nifi.nar.library.directory The location of the nar library. The default valueis ./lib and probably
should beleft asis.

nifi.restore.directory The location that certain providers (e.g. UserGroupProviders) will
look for previous configurations to restore from. There is no default
value.NOTE: Additional library directories can be specified by
using the nifi.nar.library.directory. prefix with unique suffixes and
separate paths as values. For example, to provide two additional library
locations, a user could also specify additional properties with keys
of:nifi.nar.library.directory.libl=/nars/libl nifi.nar.library.directory.|
ib2=/narg/lib2 Providing three total locations, including nifi.nar.library
.directory.

nifi.nar.working.directory The location of the nar working directory. The default valueis ./work/n
ar and probably should be left asis.

nifi.documentation.working.directory The documentation working directory. The default valueis ./work/d
ocs/components and probably should be left asis.

nifi.processor.scheduling.timeout Timeto wait for a Processor's life-cycle operation (@OnScheduled
and @OnUnscheduled) to finish before other life-cycle operation (e.g.,
stop) could be invoked. The default valueis 1 min.

The State Management section of the Properties file provides a mechanism for configuring local and cluster-wide
mechanisms for components to persist state. See the State Management on page 95 section for more information
on how thisis used.

Property Description

nifi.state.management.configuration.file The XML file that contains configuration for the local and cluster-wide
State Providers. The default value is ./conf/state-management.xml.

nifi.state.management.provider.local The ID of the Local State Provider to use. This value must match the
value of theid element of one of the local-provider elementsin the
state-management.xml file.

nifi.state.management.provider.cluster The ID of the Cluster State Provider to use. This value must match the
value of theid element of one of the cluster-provider elementsin the
state-management.xml file. Thisvalueisignored if not clustered but is
required for nodes in a cluster.

nifi.state.management.embedded.zookeeper .start Specifies whether or not thisinstance of NiFi should start an
embedded ZooK eeper Server. Thisis used in conjunction with the
ZooK eeperStateProvider.

nifi.state.management.embedded.zookeeper. properties Specifies a properties file that contains the configuration for the

embedded ZooK eeper Server that is started (if the nifi.state. manag
ement.embedded.zookeeper.start property is set to true)

The H2 Settings section defines the settings for the H2 database, which keeps track of user access and flow controller
history.

Property Description
nifi.database.directory* The location of the H2 database directory. The default value is ./databa
Se_repository.

95

System Properties

nifi.h2.url.append

This property specifies additional arguments to add to the connection
string for the H2 database. The default value should be used and should
not be changed. It is: ;LOCK_TIMEOUT=25000;WRITE_DELAY=
0;AUTO_SERVER=FALSE.

Repository encryption provides a layer of security for information persisted to the filesystem during processing.
Enabling encryption and configuring a Key Provider using these properties appliesto all repositories.

Property

nifi.repository.encryption.protocol.version

nifi.repository.encryption.key.id

nifi.repository.encryption.key.provider

Description

The encryption protocol version applied to all repository
implementations. Absence of this property value disables repository
encryption. Configuring a supported protocol enables encryption for all
repositories. Supported protocol versionsinclude: 1.

The key identifier that repository implementations will use for new
encryption operations. The key identifier must match the alias value for
aKey Entry when using the KEY STORE provider.

The Key Provider implementation that repository implementations
will use for retrieving keys necessary for encryption and decryption.
Supported providers include: KEY STORE.

nifi.repository.encryption.key.provider.keystore.location Path to the KeyStore resource required for the KEY STORE provider

to read available keys. The KeyStore must contain one or more Secret
Key entries. File paths must end with a known extension. Supported
KeyStore typesinclude: PK CS12 and BCFKS. Supported extensions
include: .p12 and .bcfks

nifi.repository.encryption.key.provider.keystore.password Password for the configured KeyStore resource required for the KEY S

TORE provider to decrypt available keys. The configured KeyStore
must use the same password for both the KeyStore and individual Key
Entries.

Configuring repository encryption properties overrides the following repository implementation class properties, as
well as associated Key Provider properties:

« nifi.content.repository.implementation
 nifi.flowfile.repository.wal.implementation
 nifi.provenance.repository.implementation

 nifi.swap.manager.implementation

The following provides an example set of configuration properties using a PK CS12 KeyStore as the Key Provider:

nifi.repository.encryption.
nifi.repository.encryption.
nifi.repository.encryption.
nifi.repository.encryption.

pl2

nifi.repository.encryption.

pr ot ocol . ver si on=1

key. i d=pri mary-key

key. provi der =KEYSTCRE

key. provi der. keystore. | ocati on=conf/repository.

key. provi der. keyst or e. passwor d=2f RKmwDy MYnmrl'7P5L

The FlowFile repository keeps track of the attributes and current state of each FlowFilein the system. By default, this
repository isinstalled in the same root installation directory as all the other repositories; however, it is advisable to
configure it on a separate drive if available.

96

System Properties

There are currently three implementations of the FlowFile Repository, which are detailed below.
Property Description

nifi.flowfile.repository.implementation The FlowFile Repository implementation. The default value is org.apac
he.nifi.controller.repository.WriteA headFlowFileRepository. The other
current options are org.apache.nifi.controller.repository.V ol atileFlowFi
leRepository and org.apache.nifi.controller.repository.RocksDBFlo
wFileRepository.

Note: Switching repository implementations should only be done on an instance with zero queued FlowFiles,
and should only be done with caution.

WriteAheadFlowFileRepository is the default implementation. It persists FlowFilesto disk, and can optionally be
configured to synchronize all changesto disk. Thisisvery expensive and can significantly reduce NiFi performance.
However, if it isfalse, there could be the potential for datalossif either there is a sudden power loss or the operating
system crashes. The default valueis false.

Property Description

nifi.flowfile.repository.wal.implementation If the repository implementation is configured to use the WriteAhe
adFlowFileRepository, this property can be used to specify which
implementation of the Write-Ahead L og should be used. The default
valueis org.apache.nifi.wali.Sequential AccessWriteAheadL og.
This version of the write-ahead log was added in version 1.6.0 of
Apache NiFi and was developed in order to address an issue that
existsin the older implementation. In the event of power loss or an
operating system crash, the old implementation was susceptible to
recovering FlowFiles incorrectly. This could potentially lead to the
wrong attributes or content being assigned to a FlowFile upon restart,
following the power loss or OS crash. However, one can still choose
to opt into using the previous implementation and accept that risk, if
desired (for example, if the new implementation were to exhibit some
unexpected error). To do so, set the value of this property to org.wali
.MinimalLockingWriteAheadL og. Another available implementation is
org.apache.nifi.wali.EncryptedSequential AccessWriteAheadL og. If the
value of this property is changed, upon restart, NiFi will still recover
the records written using the previously configured repository and
delete the files written by the previously configured implementation.

nifi.flowfile.repository.directory* The location of the FlowFile Repository. The default value is ./flowfi
le_repository.

nifi.flowfile.repository.checkpoint.interval The FlowFile Repository checkpoint interval. The default value is 2 mi
ns.

nifi.flowfile.repository.always.sync If set to true, any change to the repository will be synchronized to the

disk, meaning that NiFi will ask the operating system not to cache the
information. Thisis very expensive and can significantly reduce NiFi
performance. However, if it isfalse, there could be the potential for
datalossif either thereis a sudden power loss or the operating system
crashes. The default value isfalse.

f Warning: Thefollowing properties are deprecated in favor of Repository Encryption properties.

97

System Properties

All of the properties defined above (see Write Ahead FlowFile Repository on page 97) still apply. Only
encryption-specific properties are listed here. See Encrypted Write Ahead FlowFile Repository Properties on page
97 for more information.

Note: Unlike the encrypted content and provenance repositories, the repository implementation does not

E change here, only the underlying write-ahead |og implementation. This allows for cleaner separation and
more flexibility in implementation selection. The property that should be changed to enable encryption is
nifi.flowfile.repository.wal.implementation.

Property Description

nifi.flowfile.repository.encryption.key.provider.implementation Thisisthe fully-qualified class name of the key provider. A key
provider isthe datastore interface for accessing the encryption key to
protect the content claims. There are currently three implementations:
StaticK eyProvider which reads a key directly from nifi.properties, File
BasedK eyProvider which reads keys from an encrypted file, and KeyS
toreKeyProvider which reads keys from a standard java.security.Ke
yStore.

nifi.flowfile.repository.encryption.key.provider.location The path to the key definition resource (empty for StaticKeyProvider,
Jkeys.nkp or similar path for FileBasedK eyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.flowfile.repository.encryption.key.provider.password The password used for decrypting the key definition resource, such as
the keystore for KeyStoreKeyProvider.

nifi.flowfile.repository.encryption.key.id The active key ID to use for encryption (e.g. Keyl).

nifi.flowfile.repository.encryption.key The key to use for StaticKeyProvider. The key format is hex-encoded

(0123456789A BCDEFFEDCBA 98765432100123456789ABCDEF
FEDCBA9876543210) but can also be encrypted using the ./encrypt-co
nfig.sh tool in NiFi Toolkit.

nifi.flowfile.repository.encryption.key.id.* Allows for additional keys to be specified for the StaticKeyProvider.
For example, the line nifi.flowfile.repository.encryption.key.id.Key2=
012...210 would provide an available key Key?2.

Thisimplementation stores FlowFiles in memory instead of on disk. It will result in dataloss in the event of power/
machine failure or arestart of NiFi. To use thisimplementation, set nifi.flowfile.repository.implementation to org.
apache.nifi.controller.repository.V ol atileF owFileRepository.

Thisimplementation makes use of the RocksDB key-value store. It uses periodic synchronization to ensure that no
created or received dataislost (as long as nifi.flowfile.repository.rocksdb.accept.datalossis set false). In the event of
afailure (e.g. power loss), work done on FlowFiles through the system (i.e. routing and transformation) may still be
lost. Specifically, the record of these actions may be lost, reverting the affected FlowFilesto a previous, valid state.
From there, they will resume their path through the flow as normal. This guarantee comes at the expense of a delay
on operations that add new data to the system. This delay is configurable (as nifi.flowfile.repository.rocksdb.sync.pe
riod), and can be tuned to the individual system.

The configuration parameters for this repository fall in to two categories, "NiFi-centric" and "RocksDB-centric". The
NiFi-centric settings have to do with the operations of the FlowFile Repository and its interaction with NiFi. The
RocksDB-centric settings directly correlate to settings on the underlying RocksDB repo. More information on these
settings can be found in the RocksDB documentation: https://github.com/facebook/rocksdb/wiki/RocksJava-Basics.

98

https://github.com/facebook/rocksdb/wiki/RocksJava-Basics

System Properties

K

RocksJava-Basi csttmaven-windows.

Note: Windows userswill need to ensure "Microsoft Visual C++ 2015 Redistributable” isinstalled for
this repository to work. See the following link for more details: https://github.com/facebook/rocksdb/wiki/

To use thisimplementation, set nifi.flowfile.repository.implementation to org.apache.nifi.controller.repository.Ro

cksDBFlowFileRepository.

NiFi-centric Configuration Properties:
Property

nifi.flowfilerepository.directory

nifi.flowfile.repository.rocksdb.sync.warning.period

nifi.flowfile.repository.rocksdb.claim.cleanup.period

nifi.flowfile.repository.rocksdb.deserialization.threads

nifi.flowfile.repository.rocksdb.deserialization.buffer.size

nifi.flowfile.repository.rocksdb.sync.period

nifi.flowfile.repository.rocksdb.accept.data.loss

nifi.flowfile.repository.rocksdb.enable.stall.stop

nifi.flowfile.repository.rocksdb.stall.period

nifi.flowfile.repository.rocksdb.stall.flowfile.count

nifi.flowfile.repository.rocksdb.stall.heap.usage.percent

nifi.flowfile.repository.rocksdb.stop.flowfile.count

nifi.flowfile.repository.rocksdb.stop.heap.usage.percent

nifi.flowfile.repository.rocksdb.remove.orphaned.flowfiles.on.startup

Description

The location of the FlowFile Repository. The default valueis'./
flowfile_repository.

How often to log warnings if unable to sync. The default value is 30
seconds.

How often to mark content claims destructible (so they can be removed
from the content repo). The default value is 30 seconds.

How many threads to use on startup restoring the FlowFile state. The
default valueis 16.

Size of the buffer to use on startup restoring the FlowFile state. The
default value is 1000.

Frequency at which to force a sync to disk. Thisis the maximum period
a data creation operation may block if nifi.flowfile.repository.rocksdb
.accept.datalossisfalse. The default valueis 10 milliseconds.

Whether to accept the loss of received / created data. Setting this true
increases throughput if loss of data is acceptable. The default valueis
false.

Whether to enable the stall / stop of writes to the repository based on
configured limits. Enabling this feature allows the system to protect
itself by restricting (delaying or denying) operations that increase the
total FlowFile count on the node to prevent the system from being
overwhelmed. The default valueisfalse.

The period of time to stall when the specified criteria are encountered.
The default value is 100 milliseconds.

The FlowFile count at which to begin stalling writes to the repo. The
default value is 800000.

The heap usage at which to begin stalling writes to the repo. The
default value is 95%.

The FlowFile count at which to begin stopping the creation of new
FlowFiles. The default value is 1100000.

The heap usage at which to begin stopping the creation of new
FlowFiles. The default value is 99.9%.

Whether to allow the repository to remove FlowFilesit cannot
identify on startup. Asthisis often the result of a configuration or
synchronization error, it is disabled by default. This should only be
enabled if you are absolutely certain you want to lose the datain
question. The default valueisfalse.

99

System Properties

nifi.flowfile.repository.rocksdb.enable.recovery.mode Whether to enable "recovery mode". This limits the number of
FlowFiles loaded into the graph at atime, while not actually removing
any FlowFiles (or content) from the system. This alows for the
recovery of a system that is encountering OutOfMemory errors or
similar on startup. This should not be enabled unless necessary to
recover a system, and should be disabled as soon as that has been
accomplished.

WARNING: While in recovery mode, do not make modifications to
the graph. Changes to the graph may result in the inability to restore
further FlowFiles from the repository. The default valueis false.

nifi.flowfile.repository.rocksdb.recovery.mode.flowfile.count The number of FlowFilesto load into the graph when in "recovery
mode". As FlowFiles leave the system, additional FlowFileswill be
loaded up to thislimit. This setting does not prevent FlowFiles from
coming into the system via normal means. The default value is 5000.

RocksDB-centric Configuration Properties:
Property Description

nifi.flowfile.repository.rocksdb.parallel.threads The number of threads to use for flush and compaction. A good value
is the number of cores. See RockDB DBOptions.setIncreaseParallelism
() for more information. The default valueis 8.

nifi.flowfile.repository.rocksdb.max.write.buffer.number The maximum number of write buffers that are built up in memory.
See RockDB ColumnFamilyOptions.setM axWriteBufferNumber() /
max_write_buffer_number for more information. The default valueis
4,

nifi.flowfile.repository.rocksdb.write.buffer.size The amount of data to build up in memory before converting to a
sorted on disk file. Larger values increase performance, especially
during bulk loads. Up to max_write_buffer_number write buffers may
be held in memory at the same time, so you may wish to adjust this
parameter to control memory usage. See RockDB ColumnFamilyOpti
ons.setWriteBufferSize() / write_buffer_size for more information. The
default valueis 256 MB.

nifi.flowfile.repository.rocksdb.level.0.slowdown.writes.trigger A soft limit on number of level-0 files. Writes are slowed at this point.
A values less than 0 means no write slow down will be triggered by the
number of filesin level-0. See RocksDB ColumnFamilyOptions.setL
evel 0SlowdownWritesTrigger() / levelO_slowdown_writes_trigger for
more information. The default valueis 20.

nifi.flowfile.repository.rocksdb.level.0.stop.writes.trigger The maximum number of level-0 files. Writes will be stopped at this
point. See RocksDB ColumnFamilyOptions.setL evel 0StopWritesT
rigger() / level0_stop_writes_trigger for more information. The default
vaueis40.

nifi.flowfile.repository.rocksdb.delayed.write.bytes.per.second The limited write rate to the DB if slowdown istriggered. RocksDB
may decide to slow down more if the compaction gets behind
further. See RocksDB DBOptions.setDelayedWriteRate() for more
information. The default value is 16 MB.

nifi.flowfile.repository.rocksdb.max.background.flushes Specifies the maximum number of concurrent background flush jobs.
See RocksDB DBOptions.setMaxBackgroundFlushes() / max_back
ground_flushes for more information. The default valueis 1.

nifi.flowfile.repository.rocksdb.max.background.compactions Specifies the maximum number of concurrent background compaction
jobs. See RocksDB DBOptions.setMaxBackgroundCompactions() /
max_background_compactions for more information. The default value
isl.

nifi.flowfile.repository.rocksdb.min.write.buffer.number.to.merge The minimum number of write buffers to merge together before writing
to storage. See RocksDB ColumnFamilyOptions.setMinWriteBuffe
rNumberToMerge() / min_write_buffer_number_to_merge for more
information. The default valueis 1.

100

System Properties

nifi.flowfile.repository.rocksdb.stat.dump.period The period at which to dump rocksdb.stats to the log. See RocksDB
DBOptions.setStatsDumpPeriodSec() / stats dump_period_sec for
more information. The default value is 600 sec.

NiFi keeps FlowFile information in memory (the VM) but during surges of incoming data, the FlowFile information
can start to take up so much of the VM that system performance suffers. To counteract this effect, NiFi "swaps' the
FlowFile information to disk temporarily until more VM space becomes available again. These properties govern
how that process occurs.

Property Description

nifi.swap.manager.implementation The Swap Manager implementation. The default valueis org.apac
he.nifi.controller.FileSystemSwapManager. Thereis an alternate
implementation, EncryptedFileSystemSwapManager, that encrypts
the swap file content on disk. The encryption key configured for the
FlowFile repository is used to perform the encryption, using the AES-
GCM dgorithm.

nifi.queue.swap.threshold The queue threshold at which NiFi starts to swap FlowFile information
to disk. The default value is 20000.

The Content Repository holds the content for all the FlowFiles in the system. By default, it isinstalled in the same
root installation directory as al the other repositories; however, administrators will likely want to configure it on a
separate driveif available. If nothing else, it isbest if the Content Repository is not on the same drive as the FlowFile
Repository. In dataflows that handle alarge amount of data, the Content Repository could fill up adisk and the
FlowFile Repository, if also on that disk, could become corrupt. To avoid this situation, configure these repositories
on different drives.

Property Description

nifi.content.repository.implementation The Content Repository implementation. The default value is org.apac
he.nifi.controller.repository.FileSystemRepository and should only be
changed with caution. To store flowfile content in memory instead of
on disk (at therisk of datalossin the event of power/machine failure),
set this property to org.apache.nifi.controller.repository.VolatileConten

tRepository.
Property Description
nifi.content.repository.implementation The Content Repository implementation. The default value is org.apac

he.nifi.controller.repository.FileSystemRepository and should only be
changed with caution. To store flowfile content in memory instead of
on disk (at therisk of datalossin the event of power/machine failure),
set this property to org.apache.nifi.controller.repository.VolatileConten

tRepository.
nifi.content.claim.max.appendable.size The maximum size for a content claim. The default valueis 1 MB.
nifi.content.claim.max.flow.files The max amount of claims to keep open for writing. The default value
is 100

101

System Properties

nifi.content.repository.directory.default* The location of the Content Repository. The default valueis ./conten
t_repository. + NOTE: Multiple content repositories can be specified
by using the nifi.content.repository.directory. prefix with unique
suffixes and separate paths as values. + For example, to provide two
additional locations to act as part of the content repository, a user could
also specify additional properties with keys of: + nifi.content.reposit
ory.directory.content1=/repos/content1 nifi.content.repository.director
y.content2=/repos/content2 + Providing three total locations, including
nifi.content.repository.directory.default.

nifi.content.repository.archive.max.retention.period If archiving is enabled (see nifi.content.repository.archive.enabled
below), then this property specifies the maximum amount of time to
keep the archived data. The default value is 12 hours.

nifi.content.repository.archive.max.usage.percentage If archiving is enabled (see nifi.content.repository.archive.enabled
below), then this property must have a value that indicates the content
repository disk usage percentage at which archived data begins to be
removed. If the archive is empty and content repository disk usage
is above this percentage, then archiving is temporarily disabled.
Archiving will resume when disk usage is below this percentage. The
default value is 50%.

nifi.content.repository.archive.backpressure.percentage This property is used to control the content repository disk usage
percentage at which backpressure is applied to the processes writing
to the content repository. Once this percentage is reached, the content
repository will refuse any additional writes. Writes will be refused until
the archive delete process has brought the content repository disk usage
percentage below nifi.content.repository.archive.max.usage.percentage.
The value must be avalid percentage e.g. 60% For example, if nifi.con
tent.repository.archive.max.usage.percentage is 50% and nifi.content
.repository.archive.backpressure.percentage is 60%, then if the content
repository reaches 60% utilisation of storage capacity, al further writes
are blocked until utilisation is brought back down to 50%. When not
set, the default value is derived as 2% greater than nifi.content.reposit
ory.archive.max.usage.percentage. For example, if nifi.content.reposit
ory.archive.max.usage.percentage is 50% and nifi.content.repository.
archive.backpressure.percentage is not set, the effective value of nifi
.content.repository.archive.backpressure.percentage will be 52%.

nifi.content.repository.archive.enabled To enable content archiving, set thisto true and specify avalue for the
nifi.content.repository.archive.max.usage.percentage property above.
Content archiving enables the provenance Ul to view or replay content
that is no longer in a dataflow queue. By default, archiving is enabled.

nifi.content.repository.aways.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. Thisis very expensive and can significantly reduce NiFi
performance. However, if it isfalse, there could be the potential for
datalossif either thereis a sudden power loss or the operating system
crashes. The default value isfalse.

nifi.content.viewer.url The URL for aweb-based content viewer if oneisavailable. It is blank
by default.

nifi.content.repository.archive.cleanup.frequency The frequency with which to schedule the content archive clean up
task. The default valueis 1 Second. A value lower than 1 Second is not
alowed.

f Warning: The following properties are deprecated in favor of Repository Encryption properties.

All of the properties defined above (see File System Content Repository Properties on page 101) still apply. Only
encryption-specific properties are listed here. See Encryption Configuration on page 54 for more information.

102

System Properties

Property Description

nifi.content.repository.encryption.key.provider.implementation Thisisthe fully-qualified class name of the key provider. A key
provider isthe datastore interface for accessing the encryption key to
protect the content claims. There are currently three implementations:
StaticK eyProvider which reads a key directly from nifi.properties, File
BasedK eyProvider which reads keys from an encrypted file, and KeyS
toreKeyProvider which reads keys from a standard java.security.Ke
yStore.

nifi.content.repository.encryption.key.provider.location The path to the key definition resource (empty for StaticKeyProvider,
Jkeys.nkp or similar path for FileBasedK eyProvider). For future
providers like an HSM, this may be a connection string or URL.

nifi.content.repository.encryption.key.provider.password The password used for decrypting the key definition resource, such as
the keystore for KeyStoreKeyProvider.

nifi.content.repository.encryption.key.id The active key 1D to use for encryption (e.g. Key1).

nifi.content.repository.encryption.key The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789A BCDEFFEDCBA 98765432100123456789ABCDEF
FEDCBA9876543210) but can also be encrypted using the ./encrypt-co
nfig.sh tool in NiFi Toolkit.

nifi.content.repository.encryption.key.id.* Allows for additional keysto be specified for the StaticKeyProvider.
For example, the line nifi.content.repository.encryption.key.id.Key2=0
12...210 would provide an available key Key2.

Volatile Content Repository Properties

Property Description

nifi.volatile.content.repository.max.size The Content Repository maximum size in memory. The default value
is100 MB.

nifi.volatile.content.repository.block.size The Content Repository block size. The default valueis 32 KB.

Provenance Repository

The Provenance Repository contains the information related to Data Provenance. The next four sections are for
Provenance Repository properties.

Property Description

103

System Properties

nifi.provenance.repository.implementation

nifi.provenance.repository.rollover.events

Property

nifi.provenance.repository.directory.defaul t*

The Provenance Repository implementation. The default valueis org.
apache.nifi.provenance.WriteA headProvenanceRepository. Three
additional repositories are available as well. To store provenance
eventsin memory instead of on disk (in which case al events will be
lost on restart, and events will be evicted in afirst-in-first-out order),
set this property to org.apache.nifi.provenance.V ol atileProvenanceRep
ository. Thisleaves a configurable number of Provenance Eventsin the
Java heap, so the number of eventsthat can be retained is very limited.

A third and fourth option are available: org.apache.nifi.provenance.P
ersistentProvenanceRepository and org.apache.nifi.provenance.Encry
ptedWriteAheadProvenanceRepository. The PersistentProvenance
Repository was originally written with the smple goal of persisting
Provenance Events as they are generated and providing the ability to
iterate over those events sequentially. Later, it was desired to be able
to compress the data so that more data could be stored. After that, the
ability to index and query the data was added. As requirements evolved
over time, the repository kept changing without any major redesigns.
When used in aNiFi instance that is responsible for processing large
volumes of small FlowFiles, the PersistentProvenanceRepository can
quickly become a bottleneck. The WriteAheadProvenanceReposito

ry was then written to provide the same capabilities as the Persiste
ntProvenanceRepository while providing far better performance. The
WriteAheadProvenanceRepository was added in version 1.2.0 of NiFi.
Since then, it has proven to be very stable and robust and as such was
made the default implementation. The PersistentProvenanceRepo
sitory is now considered deprecated and should no longer be used. If
administering an instance of NiFi that is currently using the Persiste
ntProvenanceRepository, it is highly recommended to upgrade to the
WriteAheadProvenanceRepository. Doing so is as simple as changing
the implementation property value from org.apache.nifi.provenance.P
ersistentProvenanceRepository to org.apache.nifi.provenance.Write
AheadProvenanceRepository. Because the Provenance Repository is
backward compatible, there will be no loss of data or functionality.

The EncryptedWriteA headProvenanceRepository builds upon the Writ
eAheadProvenanceRepository and ensures that datais encrypted at
rest.

NOTE: The WriteAheadProvenanceRepository will make use of

the Provenance data stored by the PersistentProvenanceRepository.
However, the PersistentProvenanceRepository may not be able to read
the data written by the WriteAheadProvenanceRepository. Therefore,
once the Provenance Repository is changed to use the WriteAheadPr
ovenanceRepository, it cannot be changed back to the PersistentProven
anceRepository without deleting the data in the Provenance Repository.

The maximum number of events that should be written to asingle
event file before the fileisrolled over. The default value is Integer.
MAX_VALUE

Description

The location of the Provenance Repository. The default valueis ./pr
ovenance_repository. + NOTE: Multiple provenance repositories can
be specified by using the nifi.provenance.repository.directory. prefix
with unique suffixes and separate paths as values. + For example,

to provide two additional locations to act as part of the provenance
repository, auser could also specify additional properties with keys of:
+ nifi.provenance.repository.directory.provenancel=/repos/provenan
cel nifi.provenance.repository.directory.provenance2=/repos/provenan
ce2 + Providing three total locations, including nifi.provenance.repo
sitory.directory.default.

104

System Properties

nifi.provenance.repository.max.storage.time

nifi.provenance.repository.max.storage.size

nifi.provenance.repository.rollover.size

nifi.provenance.repository.query.threads

nifi.provenance.repository.index.threads

nifi.provenance.repository.compress.on.rollover

nifi.provenance.repository.aways.sync

nifi.provenance.repository.indexed.fields

nifi.provenance.repository.indexed.attributes

The maximum amount of time to keep data provenance information.
The default value is 24 hours.

The maximum amount of data provenance information to store at a
time. The default value is 10 GB. The Data Provenance capability
can consume a great deal of storage space because so much datais
kept. For production environments, values of 1-2 TB or more is not
uncommon. The repository will write to asingle "event file" (or set
of "event files" if multiple storage locations are defined, as described
above) until the event file reaches the size defined in the nifi.provena
nce.repository.rollover.size property. It will then "roll over" and begin
writing new events to anew file. Datais always aged off onefile at
atime, so it is not advisable to write a tremendous amount of data
toasingle"event file," asit will prevent old data from aging off as
smoothly.

The amount of datato writeto asingle "event file." The default value
is 100 MB. For production environments where a very large amount of
Data Provenanceis generated, avalue of 1 GB is also very reasonable.

The number of threads to use for Provenance Repository queries. The
default valueis 2.

The number of threads to use for indexing Provenance events so that
they are searchable. The default valueis 2. For flows that operate on
avery high number of FlowFiles, the indexing of Provenance events
could become a bottleneck. If this happens, increasing the value of this
property may increase the rate at which the Provenance Repository is
able to process these records, resulting in better overall throughput. It
isadvisableto use at least 1 thread per storage location (i.e., if there
are 3 storage locations, at least 3 threads should be used). For high
throughput environments, where more CPU and disk 1/0 is available,
it may make sense to increase this value significantly. Typically going
beyond 2-4 threads per storage location is not valuable. However, this
can be tuned depending on the CPU resources available compared to
the /O resources.

Indicates whether to compress the provenance information when an
"event file" isrolled over. The default value istrue.

If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. Thisis very expensive and can significantly reduce NiFi
performance. However, if it isfalse, there could be the potential for
datalossif either thereis a sudden power loss or the operating system
crashes. The default value isfalse.

Thisisacomma-separated list of the fields that should be indexed and
made searchable. Fields that are not indexed will not be searchable.
Valid fields are: EventType, FlowFileUUID, Filename, TransitURI,
ProcessorI D, Alternatel dentifierURI, Relationship, Details. The default
valueis: EventType, FlowFileUUID, Filename, ProcessorID.

Thisis acomma-separated list of FlowFile Attributes that should
be indexed and made searchable. It is blank by default. But some
good examples to consider are filename and mime.type as well as any
custom attributes you might use which are valuable for your use case.

105

System Properties

nifi.provenance.repository.index.shard.size The repository uses Apache Lucene to performing indexing and
searching capabilities. This value indicates how large a Lucene Index
should become before the Repository starts writing to a new Index.
Large values for the shard size will result in more Java heap usage
when searching the Provenance Repository but should provide better
performance. The default value is 500 MB. However, thisis due to the
fact that defaults are tuned for very small environments where most
users begin to use NiFi. For production environments, it is advisable
to change thisvalue to 4 to 8 GB. Once all Provenance Eventsin the
index have been aged off from the "event files," the index will be
destroyed as well.

NOTE: This value should be smaller than (no more than half of) the
nifi.provenance.repository.max.storage.size property.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute can be when
retrieving a Provenance Event from the repository. If the length of
any attribute exceeds this value, it will be truncated when the event is
retrieved. The default value is 65536.

nifi.provenance.repository.concurrent.merge.threads Apache Lucene creates several "segments" in an Index. These
segments are periodically merged together in order to provide faster
querying. This property specifies the maximum number of threads that
are allowed to be used for each of the storage directories. The default
vaueis 2. For high throughput environments, it is advisable to set the
number of index threads larger than the number of merge threads *
the number of storage locations. For example, if there are 2 storage
locations and the number of index threads is set to 8, then the number
of merge threads should likely be less than 4. While it is not critical
that this be done, setting the number of merge threads larger than
this can result in all index threads being used to merge, which would
cause the NiFi flow to periodically pause while indexing is happening,
resulting in some data being processed with much higher latency than
other data

nifi.provenance.repository.warm.cache.frequency Each time that a Provenance query is run, the query must first search
the Apache Luceneindices (at least, in most cases - there are some
queries that are run often and the results are cached to avoid searching
the Lucene indices). When a Lucene index is opened for the first time,
it can be very expensive and take several seconds. Thisis compounded
by having many different indices, and can result in a Provenance query
taking much longer. After the index has been opened, the Operating
System's disk cache will typically hold onto enough data to make re-
opening the index much faster - at least for a period of time, until the
disk cache evictsthis data. If thisvalueis set, NiFi will periodically
open each Lucene index and then closeit, in order to "warm" the cache.
Thiswill result in far faster queries when the Provenance Repository is
large. Aswith al great things, though, it comes with a cost. Warming
the cache does take some CPU resources, but more importantly it will
evict other data from the Operating System disk cache and will result
in reading (potentially a great deal of) data from the disk. This can
result in lower NiFi performance. However, if NiFi isrunningin an
environment where CPU and disk are not fully utilized, this feature
can result in far faster Provenance queries. The default value for this
property is blank (i.e. disabled).

f Warning: The following properties are deprecated in favor of Repository Encryption properties.

All of the properties defined above (see Write Ahead Provenance Repository Properties on page 104) still apply.
Only encryption-specific properties are listed here.

Property Description

106

System Properties

nifi.provenance.repository.encryption.key.provider.implementation

nifi.provenance.repository.encryption.key.provider.location

nifi.provenance.repository.encryption.key.provider.password

nifi.provenance.repository.encryption.key.id

nifi.provenance.repository.encryption.key

nifi.provenance.repository.encryption.key.id.*

Property

nifi.provenance.repository.directory.default*

nifi.provenance.repository.max.storage.time

nifi.provenance.repository.max.storage.size

nifi.provenance.repository.rollover.time

nifi.provenance.repository.rollover.size

nifi.provenance.repository.query.threads

Thisisthe fully-qualified class name of the key provider. A key
provider isthe datastore interface for accessing the encryption

key to protect the provenance events. There are currently three
implementations: StaticK eyProvider which reads a key directly from
nifi.properties, FileBasedK eyProvider which reads keys from an
encrypted file, and KeyStoreK eyProvider which reads keys from a
standard java.security.KeyStore.

The path to the key definition resource (empty for StaticKeyProvider,
Jkeys.nkp or similar path for FileBasedK eyProvider). For future
providers like an HSM, this may be a connection string or URL.

The password used for decrypting the key definition resource, such as
the keystore for KeyStoreK eyProvider.

The active key 1D to use for encryption (e.g. Key1).

The key to use for StaticKeyProvider. The key format is hex-encoded
(0123456789A BCDEFFEDCBA 98765432100123456789ABCDEF
FEDCBA9876543210) but can also be encrypted using the ./encrypt-co
nfig.sh tool in NiFi Toolkit (see Encrypted Passwords in Configuration
Files on page 63 for more information).

Allows for additional keys to be specified for the StaticKeyProvider.
For example, the line nifi.provenance.repository.encryption.key.id.Key
2=012...210 would provide an available key Key2.

Description

The location of the Provenance Repository. The default valueis ./pr
ovenance_repository. + NOTE: Multiple provenance repositories can
be specified by using the nifi.provenance.repository.directory. prefix
with unique suffixes and separate paths as values. + For example,

to provide two additional locations to act as part of the provenance
repository, a user could also specify additional properties with keys of:
+ nifi.provenance.repository.directory.provenancel=/repos/provenan
cel nifi.provenance.repository.directory.provenance2=/repos/provenan
ce2 + Providing three total locations, including nifi.provenance.repo
sitory.directory.default.

The maximum amount of time to keep data provenance information.
The default value is 24 hours.

The maximum amount of data provenance information to store at a
time. The default valueis 10 GB.

The amount of time to wait before rolling over the latest data
provenance information so that it is available in the User Interface. The
default value is 30 secs.

The amount of information to roll over at atime. The default valueis
100 MB.

The number of threads to use for Provenance Repository queries. The
default valueis 2.

107

System Properties

nifi.provenance.repository.index.threads The number of threads to use for indexing Provenance events so that
they are searchable. The default valueis 2. For flows that operate on
avery high number of FlowFiles, the indexing of Provenance events
could become a bottleneck. If thisis the case, a bulletin will appear,
indicating that "The rate of the dataflow is exceeding the provenance
recording rate. Slowing down flow to accommodate." If this happens,
increasing the value of this property may increase the rate at which the
Provenance Repository is able to process these records, resulting in
better overall throughput.

nifi.provenance.repository.compress.on.rollover Indicates whether to compress the provenance information when
rolling it over. The default valueistrue.

nifi.provenance.repository.aways.sync If set to true, any change to the repository will be synchronized to the
disk, meaning that NiFi will ask the operating system not to cache the
information. Thisis very expensive and can significantly reduce NiFi
performance. However, if it isfalse, there could be the potential for
datalossif either thereis a sudden power loss or the operating system
crashes. The default valueisfalse.

nifi.provenance.repository.journal .count The number of journal files that should be used to serialize
Provenance Event data. Increasing this value will allow more tasks to
simultaneously update the repository but will result in more expensive
merging of the journal files later. This value should ideally be equal
to the number of threads that are expected to update the repository
simultaneously, but 16 tends to work well in must environments. The
default valueis 16.

nifi.provenance.repository.indexed.fields Thisisacomma-separated list of the fields that should be indexed and
made searchable. Fields that are not indexed will not be searchable.
Valid fields are: EventType, FlowFileUUID, Filename, TransitURI,
ProcessorI D, Alternatel dentifierURI, Relationship, Details. The default
valueis: EventType, FlowFileUUID, Filename, ProcessorID.

nifi.provenance.repository.indexed.attributes Thisisacomma-separated list of FlowFile Attributes that should be
indexed and made searchable. It is blank by default. But some good
examplesto consider are filename, uuid, and mime.type as well as any
custom attritubes you might use which are valuable for your use case.

nifi.provenance.repository.index.shard.size Large values for the shard size will result in more Java heap usage
when searching the Provenance Repository but should provide better
performance. The default value is 500 MB.

nifi.provenance.repository.max.attribute.length Indicates the maximum length that a FlowFile attribute can be when
retrieving a Provenance Event from the repository. If the length of
any attribute exceeds this value, it will be truncated when the event is
retrieved. The default value is 65536.

Property Description
nifi.provenance.repository.buffer.size The Provenance Repository buffer size. The default value is 2700000
provenance events.

The Status History Repository contains the information for the Component Status History and the Node Status
History toolsin the User Interface. The following properties govern how these tools work.

Property Description

108

System Properties

nifi.components.status.repository.implementation The Status History Repository implementation. The default valueis
org.apache.nifi.controller.status.history.V ol atileComponent StatusRep
ository, which stores status history in memory. org.apache.nifi.controll
er.status.history. EmbeddedQuestDbStatusHistoryRepository is also
supported and stores status history information on disk so that it is
available across restarts and can be stored for much longer periods of
time.

nifi.components.status.snapshot.frequency This value indicates how often to capture a snapshot of the
components' status history. The default valueis 1 min.

If the value of the property nifi.components.status.repository.implementation is Vol atileComponentStatusRepository,
the status history data will be stored in memory. If the application stops, al gathered information will be lost.

The buffer.size and snapshot.frequency work together to determine the amount of historical datato retain. Asan
example, to configure two days worth of historical data with a data point snapshot occurring every 5 minutes you
would configure snapshot.frequency to be "5 mins' and the buffer.size to be "576". To further explain this example,
for every 60 minutes there are 12 (60 / 5) snapshot windows for that time period. To keep that data for 48 hours (12 *
48) you end up with a buffer size of 576.

Property Description
nifi.components.status.repository.buffer.size Specifies the buffer size for the Status History Repository. The default
vaueis 1440.

If the value of the property nifi.components.status.repository.implementation is EmbeddedQuestDbStatusHistory
Repository, the status history datawill be stored to the disk in a persistent manner. Data will be kept between restarts.

Property Description

nifi.status.repository.questdb.persist.node.days The number of days the node status data (such as Repository disk space
free, garbage collection information, etc.) will be kept. The default
valuesis 14.

nifi.status.repository.questdb. persist.component.days The number of days the component status data (i.e., stats for each

Processor, Connection, etc.) will be kept. The default valueis 3.

nifi.status.repository.questdb.persist.location The location of the persistent Status History Repository. The default
valueis /status_repository.

These properties govern how this instance of NiFi communicates with remote instances of NiFi when Remote Process
Groups are configured in the dataflow. Remote Process Groups can choose transport protocol from RAW and HTTP.
Properties named with nifi.remote.input.socket.* are RAW transport protocol specific. Similarly, nifi.remote.input.ht
tp.* are HTTP transport protocol specific properties.

Property Description

nifi.remote.input.host The host name that will be given out to clients to connect to this NiFi
instance for Site-to-Site communication. By default, it isthe value from
InetAddress.getl ocalHost().getHostName(). On UNIX-like operating
systems, thisistypically the output from the hosthame command.

109

System Properties

nifi.remote.input.secure

nifi.remote.input.socket.port

nifi.remote.input.http.enabled

nifi.remote.input.http.transaction.ttl

nifi.remote.contents.cache.expiration

This indicates whether communication between this instance of
NiFi and remote NiFi instances should be secure. By default, it is
set to false. In order for secure site-to-site to work, set the property
to true. Many other Security Properties on page 117 must also be
configured.

The remote input socket port for Site-to-Site communication. By
default, it is blank, but it must have avalue in order to use RAW socket
as transport protocol for Site-to-Site.

Specifies whether HTTP Site-to-Site should be enabled on this host.
By default, it is set to true. Whether a Site-to-Site client usesHTTP or
HTTPS is determined by nifi.remote.input.secure. If it is set to true,
then requests are sent as HTTPS to nifi.web.https.port. If set to false,
HTTP reguests are sent to nifi.web.http.port.

Specifies how long a transaction can stay alive on the server. By
default, it is set to 30 secs. If a Site-to-Site client hasn't proceeded to
the next action after this period of time, the transaction is discarded
from the remote NiFi instance. For example, when a client creates a
transaction but doesn't send or receive flow files, or when aclient sends
or receives flow files but doesn't confirm that transaction.

Specifies how long NiFi should cache information about a remote NiFi
instance when communicating via Site-to-Site. By default, NiFi will
cache the responses from the remote system for 30 secs. This alows
NiFi to avoid constantly making HT TP requests to the remote system,
which is particularly important when this instance of NiFi has many
instances of Remote Process Groups.

Site-to-Site requires peer-to-peer communication between a client and aremote NiFi node. E.g. if aremote NiFi
cluster has 3 nodes (nifi0, nifil and nifi2) then client requests have to be reachable to each of those remote nodes.

If aNiFi cluster is planned to receive/transfer data from/to Site-to-Site clients over the internet or a company firewall,
areverse proxy server can be deployed in front of the NiFi cluster nodes as a gateway to route client requests to
upstream NiFi nodes, to reduce number of servers and ports those have to be exposed.

In such environment, the same NiFi cluster would also be expected to be accessed by Site-to-Site clients within the
same network. Sending FlowFilesto itself for load distribution among NiFi cluster nodes can be atypical example. In
this case, client requests should be routed directly to a node without going through the reverse proxy.

In order to support such deployments, remote NiFi clusters need to expose its Site-to-Site endpoints dynamically
based on client request contexts. Following properties configure how peers should be exposed to clients. A routing
definition consists of 4 properties, when, hostname, port, and secure, grouped by protocol and name. Multiple routing
definitions can be configured. protocol represents Site-to-Site transport protocol, i.e. RAW or HTTP.

Property

nifi.remote.route.{ protocol} .{ name} .when

nifi.remote.route.{ protocol} .{ name} .hostname

nifi.remote.route.{ protocol} .{ name} .port

nifi.remote.route.{ protocol} .{ name} .secure

Description

Boolean value, true or false. Controls whether the routing definition for
this name should be used.

Specify hostname that will be introduced to Site-to-Site clients for
further communications.

Specify port number that will be introduced to Site-to-Site clients for
further communications.

Boolean value, true or false. Specify whether the remote peer should be
accessed via secure protocol. Defaults to false.

System Properties

All of above routing properties can use NiFi Expression Language to compute target peer description from request
context. Available variables are;

Variable name Description

s2s.{ sourceltarget} .hostname Hostname of the source where the request came from, and the original
target.

s2s.{ sourceltarget} .port Same as above, for ports. Source port may not be useful asitisjust a

client side TCP port.

s2s.{ sourceltarget} .secure Same as above, for secure or not.
s2s.protocol The name of Site-to-Site protocol being used, RAW or HTTP.
s2s.request The name of current request type, SiteToSiteDetail or Peers. See Site-

to-Site protocol sequence below for detail.

HTTP request headers HTTP reguest header values can be referred by its name.

Configuring these properties correctly would require some understandings on Site-to-Site protocol sequence.

1. A clientinitiates Site-to-Site protocol by sending aHTTP(S) request to the specified remote URL to get remote
cluster Site-to-Site information. Specificaly, to '/nifi-api/site-to-site’. Thisrequest is called SiteToSiteDetail.

2. A remote NiFi node responds with its input and output ports, and TCP port numbers for RAW and TCP transport
protocols.

3. The client sends another request to get remote peers using the TCP port number returned at #2. From this request,
raw socket communication is used for RAW transport protocol, while HTTP keeps using HTTP(S). Thisrequest is
called Peers.

4. A remote NiFi node responds with list of available remote peers containing hosthame, port, secure and workload
such as the number of queued FlowFiles. From this point, further communication is done between the client and
the remote NiFi node.

The client decides which peer to transfer data from/to, based on workload information.
The client sends a request to create a transaction to a remote NiFi node.

The remote NiF node accepts the transaction.

Datais sent to the target peer. Multiple Data packets can be sent in batch manner.

When there is no more data to send, or reached to batch limit, the transaction is confirmed on both end by
calculating CRC32 hash of sent data.

10. The transaction is committed on both end.

© o N U

Most reverse proxy software implement HTTP and TCP proxy mode. For NiFi RAW Site-to-Site protocol, both
HTTP and TCP proxy configurations are required, and at least 2 ports needed to be opened. NiFi HTTP Site-to-Site
protocol can minimize the required number of open ports at the reverse proxy to 1.

Setting correct HTTP headers at reverse proxies are crucial for NiFi to work correctly, not only routing requests but
also authorize client requests. See also Proxy Configuration on page 89 for details.

There are two types of requests-to-NiFi-node mapping techniques those can be applied at reverse proxy servers. One
is'Server name to Node' and the other is 'Port number to Node'.

With 'Server name to Node', the same port can be used to route requests to different upstream NiFi nodes based on the
reguested server name (e.g. nifi0.example.com, nifil.example.com). Host name resol ution should be configured to
map different host names to the same reverse proxy address, that can be done by adding /etc/hosts file or DNS server
entries. Also, if clientsto reverse proxy uses HTTPS, reverse proxy server certificate should have wildcard common
name or SAN to be accessed by different host names.

111

System Properties

Some reverse proxy technologies do not support server name routing rules, in such case, use 'Port number to Node'
technique. 'Port number to Node' mapping requires N open port at areverse proxy for aNiFi cluster consists of N
nodes.

Refer to the following examples for actual configurations.

Here are some example reverse proxy and NiFi setupsto illustrate what configuration files ook like.

Clientl in the following diagrams represents a client that does not have direct accessto NiFi nodes, and it accesses
through the reverse proxy, while Client2 has direct access.

In this example, Nginx is used as areverse proxy.

1. Clientl initiates Site-to-Site protocol, the request is routed to one of upstream NiFi nodes. The NiFi node
computes Site-to-Site port for RAW. By the routing rule examplel in nifi.properties shown below, port 10443 is
returned.

2. Clientl asks peersto nifi.example.com: 10443, the request is routed to nifi0:8081. The NiFi node computes
available peers, by examplel routing rule, nifi0:8081 is converted to nifi0.example.com: 10443, so are nifil and
nifi2. Asaresult, nifi0.example.com:10443, nifil.example.com:10443 and nifi2.example.com: 10443 are returned.

3. Clientl decidesto use nifi2.example.com: 10443 for further communication.

4. On the other hand, Client2 has two URIsfor Site-to-Site bootstrap URIs, and initiates the protocol using one of
them. The examplel routing does not match this for this request, and port 8081 is returned.

5. Client2 asks peers from nifi1:8081. The examplel does not match, so the original nifi0:8081, nifi1:8081 and nifi
2:8081 are returned asthey are.

6. Client2 decides to use nifi2:8081 for further communication.

Routing rule examplel defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for RAW using server nane to node

nifi.renote.route.raw exanpl el. when=\

${ X- ProxyHost : equal s(' ni fi.exanpl e.conm): or(\

${s2s. source. host nane: equal s(' ni fi.exanpl e.conm): or(\

${s2s. sour ce. host nane: equal s(' 192. 168. 99.100')})})}

nifi.renote.route.raw exanpl el. host nane=${s2s. t ar get . host nane}. exanpl e. com
ni fi.renote. route.raw exanpl el. port=10443

nifi.renote.route.raw exanpl el. secure=true

nginx.conf :

http {
upstreamnifi {
server nifi 0:8443;
server nifil:8443;
server nifi2:8443;

112

System Properties

Use dnsmasq so that hostnanes such as 'nifi0'" can be resolved by /etc/
host s
resol ver 127.0.0. 1;

server {
listen 443 ssli
server_nane nifi.exanple.com
ssl _certificate /etc/nginx/nginx.crt;
ssl _certificate_key /etc/nginx/nginx.key;

proxy_ssl _certificate /etc/nginx/nginx.crt;
proxy_ssl _certificate_key /etc/nginx/nginx.key;
proxy_ssl _trusted certificate /etc/nginx/nifi-cert.pem
| ocation / {
proxy_pass https://nifi;
proxy_set header X-ProxySchene https
proxy_set header X-ProxyHost ngi nx. exanpl e. com
proxy_set header X-ProxyPort 17590;
proxy_set _header X-ProxyContextPath /;
proxy_set header X-ProxiedEntitiesChain <$ssl _client_s_dn>;

}

stream {
map $ssl _preread_server _nanme $nifi {
nifi0.exanple.comnifiO
nifil. exanple.comnifilil;
nifi2. exanple.comnifi?2
default nifiO;

}
resol ver 127.0.0.1;

server {
listen 10443;
proxy_pass $nifi:8081;

The example2 routing maps original host names (nifiO, nifil and nifi2) to different proxy ports (10443, 10444 and
10445) using equals and ifElse expressions.

Routing rule example2 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for RAW using port nunber to node
nifi.renote.route.raw exanpl e2. when=\

${ X- ProxyHost : equal s(' ni fi.exanpl e.conm): or(\

${s2s. source. host nane: equal s(' ni fi.exanpl e.conm): or(\
${s2s. sour ce. host nane: equal s(' 192. 168.99. 100')})})}

113

System Properties

nifi.renote.route.raw exanpl e2. host nanme=ni fi . exanpl e. com
nifi.renote.route.raw exanpl e2. port =\

${s2s.target. host nane: equal s(' nifi0'):ifEl se(' 10443 ,\
${s2s.target. hostnane: equal s('nifil"):ifEl se(' 10444 ,\
${s2s.target. hostnane: equal s('nifi2'):ifEl se(' 10445 ,\
"undefined)})})}

ni fi.renote.route.raw exanpl e2. secure=true

nginx.conf :
http {
Sane as exanple 1
}
stream {
map $ssl _preread _server _nane $nifi {
nifi0.exanple.comnifiO
nifil. exanple.comnifil;
nifi?2. exanple.comnifi?2
default nifiO;
}
resol ver 127.0.0. 1;
server {
listen 10443;
proxy_pass nifi0:8081;
server {
listen 10444,
proxy_pass nifi1:8081;
server {
li sten 10445;
proxy_pass nifi2:8081;
}

Routing rule example3 defined in nifi.properties (all nodes have the same routing configuration):

S2S Routing for HITP

nifi.renote.route. http. exanpl e3. when=${ X- ProxyHost : cont ai ns(' . exanpl e. com)}
nifi.renote.route. http. exanpl e3. host name=${s2s. t ar get . host nane}. exanpl e. com
nifi.renote.route. http. exanpl e3. port =443
nifi.renote.route. http. exanpl e3. secure=true

114

System Properties

nginx.conf :

http {
upstream nifi _cluster {
server nifi 0:8443;
server nifil:8443;
server nifi2:8443;

}

|If target node is not specified,
map $http_host $nifi {
ni fi 0. exanple.
nifil. exanple.
ni fi?2. exanple.

default "nifi_cluster";

}
resol ver 127.0.0. 1;

server {
listen 443 ssl;

use one fromcluster.

com 443 "ni fi 0: 8443";
com 443 "nifi 1: 8443";
com 443 "nifi 2: 8443";

server _name ~"(.+\.exanple\.com $;

ssl _certificate /etc/nginx/nginx.crt;

ssl _certificate_key /etc/nginx/nginx.key;

proxy_ssl _certificate /etc/nginx/nginx.crt;

proxy_ssl _certificate_key /etc/nginx/nginx.key;
proxy_ssl _trusted certificate /etc/nginx/nifi-cert.pem

| ocation / {
proxy_pass https://$nifi;
proxy_set header
proxy_set header
proxy_set header
proxy_set header
proxy_set header

These properties pertain to the web-based User Interface.
Property
nifi.web.http.host
nifi.web.http.port

nifi.web.http.port.forwarding

X- ProxySchene https;

X- ProxyHost $1;

X- ProxyPort 443;

X- ProxyCont ext Path /;

X- Proxi edEntitiesChain <$ssl _client_s_dn>;

Description
The HTTP host. The default value is blank.
The HTTP port. The default value is blank.

The port which forwards incoming HT TP requests to nifi.web.http.ho
st. This property is designed to be used with 'port forwarding', when
NiFi has to be started by anon-root user for better security, yet it needs
to be accessed vialow port to go through afirewall. For example, to
expose NiFi viaHTTP protocol on port 80, but actually listening on
port 8080, you need to configure OS level port forwarding such asipta
bles (Linux/Unix) or pfctl (macOS) that redirects requests from 80 to
8080. Then set nifi.web.http.port as 8080, and nifi.web.http.port.forwa
rding as 80. It is blank by default.

115

System Properties

nifi.web.http.network.interface

nifi.web.https.host
nifi.web.https.port

nifi.web.https.port.forwarding

nifi.web.https.ciphersuites.include

nifi.web.https.ciphersuites.exclude

nifi.web.max.access.token.requests.per.second

nifi.web.should.send.server.version

nifi.web.https.network.interface*

nifi.web.jetty.working.directory

nifi.web.jetty.threads

nifi.web.max.header.size

nifi.web.proxy.host

nifi.web.proxy.context.path

The name of the network interface to which NiFi should bind for HTTP
requests. It isblank by default. + NOTE: Multiple network interfaces
can be specified by using the nifi.web.http.network.interface. prefix
with unique suffixes and separate network interface names as values.

+ For example, to provide two additional network interfaces, a user
could also specify additional properties with keys of: + nifi.web.http.ne
twork.interface.ethO=ethO nifi.web.http.network.interface.ethl=ethl +
Providing three total network interfaces, including nifi.web.http.networ
k.interface.default.

The HTTPS host. The default valueis 127.0.0.1.
The HTTPS port. The default value is 8443.

Same as nifi.web.http.port.forwarding, but with HTTPS for secure
communication. It is blank by default.

Cipher suites used to initialize the SSL Context of the Jetty HTTPS
port. If unspecified, the runtime SSL Context defaults are used.

Cipher suites that may not be used by an SSL client to establish a
connection to Jetty. If unspecified, the runtime SSL Context defaults are
used.

Maximum amount of requests per second the token endpoints will
accept before filtering requests. The default valueis 25

Whether the Server header should be included in HTTP responses. The
default valueistrue

In Chrome, the SSL cipher negotiated with Jetty may be examined

in the '‘Developer Tools plugin, in the 'Security' tab. In Firefox, the
SSL cipher negotiated with Jetty may be examined in the 'Secure
Connection' widget found to the left of the URL in the browser address
bar.

The name of the network interface to which NiFi should bind for
HTTPS requests. It is blank by default. + NOTE: Multiple network
interfaces can be specified by using the nifi.web.https.network.inter
face. prefix with unique suffixes and separate network interface names
as values. + For example, to provide two additional network interfaces,
auser could also specify additional properties with keys of: + nifi.web
.https.network.interface.ethO=ethO nifi.web.https.network.interface.eth
1=ethl + Providing three total network interfaces, including nifi.web
.https.network.interface.default.

The location of the Jetty working directory. The default valueis ./work/
jetty.

The number of Jetty threads. The default value is 200.

The maximum size allowed for request and response headers. The
default value is 16 KB.

A comma separated list of allowed HTTP Host header valuesto
consider when NiFi is running securely and will be receiving requests
to adifferent host[:port] than it is bound to. For example, when
running in a Docker container or behind a proxy (e.g. localhost: 18443,
proxyhost:443). By default, this value is blank meaning NiFi should
only allow requests sent to the host[:port] that NiFi is bound to.

A comma separated list of allowed HTTP X-ProxyContextPath, X-
Forwarded-Context, or X-Forwarded-Prefix header values to consider.
By default, this value is blank meaning all requests containing a proxy
context path are rejected. Configuring this property would allow
requests where the proxy path is contained in thislisting.

116

System Properties

nifi.web.max.content.size

nifi.web.max.requests.per.second

nifi.web.max.access.token.requests.per.second

nifi.web.request.ip.whitelist

nifi.web.request.timeout

The maximum size (HTTP Content-Length) for PUT and POST
requests. No default valueis set for backward compatibility.
Providing avalue for this property enables the Content-Length
filter on all incoming API reguests (except Site-to-Site and cluster
communications). A suggested valueis 20 MB.

The maximum number of requests from a connection per second.
Requestsin excess of this are first delayed, then throttled.

The maximum number of requests for login Access Tokens from a
connection per second. Requestsin excess of this are rejected with
HTTP 429.

A comma separated list of |P addresses. Used to specify the IP
addresses of clients which can exceed the maximum requests per
second (nifi.web.max.requests.per.second). Does not apply to web
request timeout.

The request timeout for web requests. Requests running longer than
thistime will be forced to end with aHTTP 503 Service Unavailable
response. Default value is 60 secs.

These properties pertain to various security featuresin NiFi. Many of these properties are covered in more detail in
the Security Configuration on page 10 section of this Administrator's Guide.

Property

nifi.sensitive.props.key

nifi.sensitive.props.algorithm

nifi.sensitive.props.additional .keys

nifi.security.autorel oad.enabled

nifi.security.autorel oad.interval

nifi.security.keystore*
nifi.security keystoreType
nifi.security.keystorePasswd
nifi.security.keyPasswd
nifi.security.truststore*

nifi.security.truststoreType

Description

Thisisthe password used to encrypt any sensitive property values that
are configured in processors. By default, it is blank, but the system
administrator should provide avaluefor it. It can be astring of any
length, although the recommended minimum length is 10 characters.
Be aware that once this password is set and one or more sensitive
processor properties have been configured, this password should not be
changed.

The algorithm used to encrypt sensitive properties. The default valueis
NIFI_PBKDF2_AES GCM_256.

The comma separated list of propertiesin nifi.propertiesto encrypt in
addition to the default sensitive properties (see Encrypted Passwordsin
Configuration Files on page 63).

Specifies whether the SSL context factory should be automatically
reloaded if updates to the keystore and truststore are detected. By
default, it is set to false.

Specifies the interval at which the keystore and truststore are checked
for updates. Only appliesif nifi.security.autoreload.enabled is set to
true. The default valueis 10 secs.

The full path and name of the keystore. It is blank by default.

The keystore type. It is blank by default.

The keystore password. It is blank by default.

The key password. It is blank by default.

The full path and name of the truststore. It is blank by default.

The truststore type. It is blank by default.

117

System Properties

nifi.security.truststorePasswd The truststore password. It is blank by default.

nifi.security.user.authorizer Specifies which of the configured Authorizersin the authorizers.xml
fileto use. By defaullt, it is set to file-provider.

nifi.security.allow.anonymous.authentication Whether anonymous authentication is allowed when running over
HTTPS. If set to true, client certificates are not required to connect via
TLS.

nifi.security.user.login.identity.provider This indicates what type of login identity provider to use. The

default value is blank, can be set to the identifier from aprovider in
thefile specified in nifi.login.identity.provider.configuration.file.
Setting this property will trigger NiFi to support username/password
authentication.

nifi.security.ocsp.responder.url Thisisthe URL for the Online Certificate Status Protocol (OCSP)
responder if oneisbeing used. It is blank by default.

nifi.security.ocsp.responder.certificate Thisisthe location of the OCSP responder certificate if oneis being
used. It is blank by default.

These properties can be utilized to normalize user identities. When implemented, identities authenticated by different
identity providers (certificates, LDAP, Kerberos) are treated the sameinternally in NiFi. As aresult, duplicate users
are avoided and user-specific configurations such as authorizations only need to be setup once per user.

The following examples demonstrate normalizing DNs from certificates and principals from Kerberos:

nifi.security.identity.mapping.pattern.dn="CN=(.*?), Ok(.*?), O=(.*?), L=(
.*?), ST=(.*?), C=(.*?)$

nifi.security.identity.mpping. val ue. dn=$1@2
nifi.security.identity.mapping.transform dn=NONE
nifi.security.identity.mapping.pattern.kerb="(.*?)/instance@.*?)$
nifi.security.identity.mpping. val ue. ker b=$1@2
nifi.security.identity.mapping.transform ker b=NONE

The last segment of each property is an identifier used to associate the pattern with the replacement value. When a
user makes arequest to NiFi, their identity is checked to see if it matches each of those patternsin lexicographical
order. For the first one that matches, the replacement specified in the nifi.security.identity.mapping.val ue.xxxx
property is used. So alogin with CN=localhost, OU=Apache NiFi, O=Apache, L=Santa Monica, ST=CA, C=US
matches the DN mapping pattern above and the DN mapping value $1@$2 is applied. The user is normalized to loca
Ihost@A pache NiFi.

In addition to mapping, a transform may be applied. The supported versions are NONE (no transform applied),
LOWER (identity lowercased), and UPPER (identity uppercased). If not specified, the default value is NONE.

Note: These mappings are also applied to the "Initial Admin Identity”, "Cluster Node Identity”, and any
B legacy usersin the authorizersxml file as well as users imported from LDAP (See Authorizers.xml Setup).

Group names can also be mapped. The following example will accept the existing group name but will lowercase it.
This may be helpful when used in conjunction with an external authorizer.

ni fi.security.group. mappi ng. pattern. anygroup="(.*)$
ni fi.security.group. mappi ng. val ue. anygr oup=$1
nifi.security.group. mappi ng.transform anygr oup=LONER

118

System Properties

Note: These mappings are applied to any legacy groups referenced in the authorizers.xml as well as groups
E imported from LDAP.

When setting up aNiFi cluster, these properties should be configured the same way on all nodes.
Property Description

nifi.cluster.protocol.heartbeat.interval The interval at which nodes should emit heartbeats to the Cluster
Coordinator. The default valueis 5 sec.

nifi.cluster.protocol.heartbeat. missable.max Maximum number of heartbeats a Cluster Coordinator can miss for
anode in the cluster before the Cluster Coordinator updates the node
status to Disconnected. The default valueis 8.

nifi.cluster.protocol.is.secure Thisindicates whether cluster communications are secure. The default
vaueisfalse.

Configure these properties for cluster nodes.

Property Description

nifi.cluster.is.node Set thisto true if theinstanceisanode in a cluster. The default valueis
false.

nifi.cluster.node.address Thefully qualified address of the node. It is blank by default.

nifi.cluster.node.protocol .port The node's protocol port. It isblank by default.

nifi.cluster.node.protocol.max.threads The maximum number of threads that should be used to communicate

with other nodesin the cluster. This property defaultsto 50.

nifi.cluster.node.event.history.size When the state of anode in the cluster is changed, an event is
generated and can be viewed in the Cluster page. This value indicates
how many events to keep in memory for each node. The default value
is 25.

nifi.cluster.node.connection.timeout When connecting to another node in the cluster, specifies how long
this node should wait before considering the connection afailure. The
default value is 5 secs.

nifi.cluster.node.read.timeout When communicating with another node in the cluster, specifies how
long this node should wait to receive information from the remote node
before considering the communication with the node afailure. The
default value is 5 secs.

nifi.cluster.node.max.concurrent.requests The maximum number of outstanding web requests that can be
replicated to nodes in the cluster. If this number of requestsis
exceeded, the embedded Jetty server will return a"409: Conflict"
response. This property defaults to 100.

nifi.cluster.firewall file The location of the node firewall file. Thisis afile that may be used to
list all the nodes that are alowed to connect to the cluster. It provides
an additional layer of security. Thisvalueis blank by default, meaning
that no firewall fileisto be used. See Cluster Firewall Configuration on
page 75 for file format details.

119

System Properties

nifi.cluster.flow.election.max.wait.time Specifies the amount of time to wait before electing a Flow as the
"correct" Flow. If the number of Nodes that have voted is equal to
the number specified by the nifi.cluster.flow.election.max.candidates
property, the cluster will not wait thislong. The default valueis 5 mins.
Note that the time starts as soon as the first vote is cast.

nifi.cluster.flow.el ection.max.candidates Specifies the number of Nodes required in the cluster to cause early
election of Flows. This allows the Nodesin the cluster to avoid having
to wait along time before starting processing if we reach at least this
number of nodesin the cluster.

nifi.cluster.load.balance.port Specifies the port to listen on for incoming connections for load
balancing data across the cluster. The default value is 6342.

nifi.cluster.load.balance.host Specifies the hostname to listen on for incoming connections for load
balancing data across the cluster. If not specified, will default to the
vaue used by the nifi.cluster.node.address property. The value set here
does not have to be a hostname/IP address that is addressable outside
of the cluster. However, al nodes within the cluster must be able to
connect to the node using this hostname/I P address.

nifi.cluster.load.balance.connections.per.node The maximum number of connections to create between this node
and each other node in the cluster. For example, if there are 5 nodes
in the cluster and this value is set to 4, there will be up to 20 socket
connections established for |oad-balancing purposes (5 x 4 = 20). The
default valueis 1.

nifi.cluster.load.balance.max.thread.count The maximum number of threads to use for transferring data from
this node to other nodes in the cluster. While a given thread can only
write to asingle socket at atime, asingle thread is capable of servicing
multiple connections simultaneously because a given connection may
not be available for reading/writing at any given time. The default
valueis 8-i.e., up to 8 threads will be responsible for transferring data
to other nodes, regardless of how many nodes are in the cluster.

NOTE: Increasing this value will allow additional threadsto be

used for communicating with other nodes in the cluster and writing

the data to the Content and FlowFile Repositories. However, if this
property is set to avalue greater than the number of nodes in the cluster
multiplied by the number of connections per node (nifi.cluster.load.ba
lance.connections.per.node), then no further benefit will be gained and
resources will be wasted.

nifi.cluster.load.balance.comms.timeout When communicating with another node, if this amount of time elapses
without making any progress when reading from or writing to a socket,
then a TimeoutException will be thrown. Thiswill then result in
the data either being retried or sent to another node in the cluster,
depending on the configured Load Balancing Strategy. The default
vaueis 30 sec.

NiFi depends on Apache ZooKeeper for determining which node in the cluster should play the role of Primary Node
and which node should play the role of Cluster Coordinator. These properties must be configured in order for NiFi to
join acluster.

Property Description

nifi.zookeeper.connect.string The Connect String that is needed to connect to Apache ZooK eeper.
Thisisacomma-separated list of hostname:port pairs. For example,
localhost:2181,localhost:2182,localhost:2183. This should contain alist
of al ZooKeeper instances in the ZooK eeper quorum. This property
must be specified to join acluster and has no default value.

120

System Properties

nifi.zookeeper.connect.timeout

nifi.zookeeper.session.timeout

nifi.zookeeper.root.node

nifi.zookeeper.client.secure

nifi.zookeeper.security.keystore

nifi.zookeeper.security.keystoreType

nifi.zookeeper.security.keystorePasswd

nifi.zookeeper.security.truststore

nifi.zookeeper.security.truststoreType

nifi.zookeeper.security.truststorePasswd

nifi.zookeeper.jute.maxbuffer

Property

nifi.kerberos.krb5.file*

nifi.kerberos.service.principal*

nifi.kerberos.service.keytab.location*

How long to wait when connecting to ZooK eeper before considering
the connection afailure. The default valueis 3 secs.

How long to wait after losing a connection to ZooK eeper before the
session is expired. The default value is 3 secs.

The root ZNode that should be used in ZooK eeper. ZooK eeper
provides adirectory-like structure for storing data. Each 'directory’ in
this structure is referred to as a ZNode. This denotes the root ZNode,
or 'directory’, that should be used for storing data. The default value
is/root. Thisisimportant to set correctly, as which cluster the NiFi
instance attemptsto join is determined by which ZooK eeper instance it
connects to and the ZooK eeper Root Node that is specified.

Whether to acccess ZooK eeper using client TLS.

Filename of the Keystore containing the private key to use when
communicating with ZooK eeper.

Optional. The type of the Keystore. Must be PKCS12, JKS, or PEM. If
not specified the type will be determined from the file extension (.p12,
Jks, .pem).

The password for the Keystore.

Filename of the Truststore that will be used to verify the ZooK eeper
server(s).

Optional. The type of the Truststore. Must be PKCS12, JKS, or PEM.
If not specified the type will be determined from the file extension
(.p12, jks, .pem).

The password for the Truststore.

Maximum buffer sizein bytes for packets sent to and received from
ZooKeeper. Defaults to 1048575 bytes (Oxfffff in hexadecimal)
following ZooK eeper default jute.maxbuffer property.

The http://zookeeper.apache.org/doc/current/
zookeeperAdmin.html#Unsafe+Options categorizes this property as an
unsafe option. Changing this property requires setting jute.maxbuffer
on ZooK eeper servers.

Description

The location of the krb5file, if used. It is blank by default. At thistime,
only asingle krb5 file is allowed to be specified per NiFi instance,

so this property is configured here to support SPNEGO and service
principals rather than in individual Processors. If necessary the krb5
file can support multiple realms. Example: /etc/krb5.conf

The name of the NiFi Kerberos service principal, if used. It is blank

by default. Note that this property isfor NiFi to authenticate asaclient
other systems. Example: nifi/nifi.example.com or nifi/nifi.example.co
M@EXAMPLE.COM

Thefile path of the NiFi Kerberos keytab, if used. It is blank by
default. Note that this property isfor NiFi to authenticate as a client
other systems. Example: /etc/nifi.keytab

121

http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#Unsafe+Options
http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#Unsafe+Options

System Properties

nifi.kerberos.spnego.principa*

nifi.kerberos.spnego.keytab.location*

nifi.kerberos.spengo.authentication.expiration*

The name of the NiFi Kerberos service principa, if used. It is blank
by default. Note that this property is used to authenticate NiFi users.
Example: HTTP/nifi.example.com or HTTP/nifi.example.com@EX
AMPLE.COM

Thefile path of the NiFi Kerberos keytab, if used. It is blank by
default. Note that this property is used to authenticate NiFi users.
Example: /etc/http-nifi.keytab

The expiration duration of a successful Kerberos user authentication, if
used. The default valueis 12 hours.

These properties determine the behavior of the internal NiFi predictive analytics capability, such as backpressure
prediction, and should be configured the same way on all nodes.

Property

nifi.analytics.predict.enabled

nifi.analytics.predict.interval

nifi.analytics.query.interval

nifi.analytics.connection.model .implementation

nifi.analytics.connection.model .score.name

nifi.analytics.connection.model .score.threshold

Description

This indicates whether prediction should be enabled for the cluster. The
default isfalse.

Thetime interval for which analytical predictions (e.g. queue
saturation) should be made. The default valueis 3 mins.

Thetime interval to query for past observations (e.g. the last 3 minutes
of snapshots). The default value is 5 mins. NOTE: This value should be
at least 3 times greater than nifi.components.status.snapshot.frequency
to ensure enough observations are retrieved for predictions.

The implementation class for the status analytics model used to make
connection predictions. The default value is org.apache.nifi.controller.s
tatus.analytics.model s.OrdinaryL eastSquares.

The name of the scoring type that should be used to evaluate the model.
The default value is rSquared.

The threshold for the scoring value (where model score should be
above given threshold). The default value is .90.

Long-Running Task Monitor periodically checks the NiFi processor executor threads and produces warning logs
and bulletin messages for those that have been running for alonger period of time. It can be used to detect possibly
stuck / hanging processor tasks. Please note the performance impact of the task monitor: it creates athread dump for
every run that may affect the normal flow execution. The Long-Running Task Monitor can be disabled via defining
no values for its properties, and it is disabled by default. To enable it, both nifi.monitor.long.running.task.schedule
and nifi.monitor.long.running.task.threshold properties need to be configured with valid time periods.

Property

nifi.monitor.long.running.task.schedule

nifi.monitor.long.running.task.threshold

Description

The time period between successive executions of the Long-Running
Task Monitor (e.g. 1 min).

The time period beyond which atask is considered long-running, i.e.
stuck / hanging (e.g. 5 mins).

122

Upgrading NiFi

To configure custom properties for use with NiFi's Expression Language:
e Create the custom property. Ensure that:

« Each custom property contains adistinct property value, so that it is not overridden by existing environment
properties, system properties, or FlowFile attributes.

« Each nodein aclustered environment is configured with the same custom properties.
» Update nifi.variable.registry.properties with the location of the custom property file(s):

Property Description
nifi.variable.registry.properties Thisis acomma-separated list of file location paths for one or more
custom property files.
* Restart your NiFi instance(s) for the updates to be picked up.

Custom properties can aso be configured in the NiFi Ul.

Theinstructions below are general steps to follow when upgrading from a 1.x.0 release to another.

Prior to upgrade you should review the https://cwiki.apache.org/confluence/display/NIFI/Rel ease+Notes carefully
to ensure that you understand the changes made in the new version and the impact they may have on your existing
dataflows and/or environment. Additionally, check the https://cwiki.apache.org/confluence/display/NIFl/Migration
+Guidance page for items that you should be aware of when moving between specific NiFi versions.

Warning: All nodesin acluster must be upgraded to the same NiFi version as nodes with different NiFi
versions are not supported in the same cluster.

If you have any custom NARs, preserve them during upgrade by storing them in a centralized location as follows:

1. Create asecond library directory called custom_lib.
2. Moveyour custom NARs to this new lib directory.
3. Add anew lineto the nifi.propertiesfile to specify this new lib directory:

nifi.nar.library.directory=./1ib
nifi.nar.library.directory.custonm=/ opt/configuration_resources/customlib

If you have modified any of the default NAR files, an upgrade will overwrite these changes. Preserve your
customizations as follows:

1. Identify and save the changes you made to the default NAR files.
2. Perform your NiFi upgrade.
3. Implement the same NAR file changes in your new NiFi instance.

123

https://cwiki.apache.org/confluence/display/NIFI/Release+Notes
https://cwiki.apache.org/confluence/display/NIFI/Migration+Guidance
https://cwiki.apache.org/confluence/display/NIFI/Migration+Guidance

Upgrading NiFi

On your existing NiFi installation:

1. Stop all the source processors to prevent the ingestion of new data.
2. Allow NiFi to run until thereis no active datain any of the queues in the dataflow(s).
3. Shutdown your existing NiFi instance(s).

Install the new NiFi into adirectory parallel to the existing NiFi installation.

1. Download the https://nifi.apache.org/download.html of Apache NiFi.

2. Uncompress the NiFi .tar file (tar -xvzf file-name) into adirectory parallel to your existing NiFi directory. For
example, if your existing NiFi installation is installed in /opt/nifi/existing-nifi/, install your new NiFi versionin/
opt/nifi/new-nifi/.

3. If you are upgrading a NiFi cluster, repeat these steps on each node in the cluster.

Host Machi ne - Node 1
| --> opt/
| --> existing-nifi
| --> newnifi

Host Machi ne - Node 2
| --> opt/
| --> existing-nifi
| --> newnifi

Host Machi ne - Node 3
| --> opt/
| --> existing-nifi
| --> newnifi

Note: Make surethat al file and directory ownerships for your new NiFi directories match what you set on
B the existing directories.

Use the configuration files from your existing NiFi installation to manually update the corresponding propertiesin
your new NiFi deployment.

Warning: Ingeneral, do not copy configuration files from your existing NiFi version to the new NiFi
version. The newer configuration files may introduce new properties that would be lost if you copy and paste
configuration files.

Use the following table to guide the update of configuration files located in <installation-directory>/conf.

124

https://nifi.apache.org/download.html

Upgrading NiFi

Configuration file Necessary changes

authorizers.xml Copy the <authorizer>...</authorizer> configured in the existing authorizers.xml to the new
NiFi file.

If you are using the file-provider authorizer, ensure that you copy the users.xml and
authorizations.xml files from the existing to the new NiFi.

Configuration best practices recommend creating a separate location outside of the NiFi base
directory for storing such configuration files, for example: /opt/nifi/configuration-resources/. If
you are storing these filesin a separate directory, you do not need to move them. Instead, ensure
that the new NiFi is pointing to the same files.

bootstrap-notification-services.xml Use the existing NiFi bootstrap-notification-services.xml file to update properties in the new
NiFi.

bootstrap.conf Use the existing NiFi bootstrap.conf file to update propertiesin the new NiFi.

flow.xml.gz If you retained the default location for storing flows (<instal | ation-directory>/conf/), copy

flow.xml.gz from the existing to the new NiFi base install conf directory. If you stored flows to
an external location via nifi.properties, update the property nifi.flow.configuration.file to point
there.

If you are encrypting sensitive component propertiesin your dataflow viathe sensitive
properties key in nifi.properties, make sure the same key is used when copying over your
flow.xml.gz. If you need to change the key, see the Migrating a Flow with Sensitive Properties
on page 126 section below.

nifi.properties Use the existing nifi.properties to popul ate the same properties in the new NiFi file.

Note: Thisfile contains the majority of NiFi configuration settings, so ensure that you have
copied the values correctly.

If you followed NiFi best practices, the following properties should be pointing to external
directories outside of the base NiFi installation path.

If the below properties point to directoriesinside the NiFi base installation path, you must copy
the target directories to the new NiFi. Stop your existing NiFi installation before you do this.

nifi.flow.configuration.file=

If you have retained the default value (./conf/flow.xml.gz), copy flow.xml.gz from the existing
to the new NiFi base install conf directory.

If you stored flows to an external location, update the property value to point there.

nifi.flow.configuration.archive.dir=

Same applies as above if you want to retain archived copies of the flow.xml.gz.

nifi.database.directory=

Best practices recommends that you use an external location for each repository. Point the new
NiFi at the same external database repository location.

nifi.flowfile.repository.directory=

Best practices recommends that you use an external location for each repository. Point the new
NiFi at the same external flowfile repository location.

Warning: Y ou may experience data loss if flowfile repositories are not accessible to the new
NiFi.

nifi.provenance.repository.directory.default=

Best practices recommends that you use an external location for each repository. Point the new
NiFi at the same external provenance repository location.

Your existing NiFi may have multiple content repos defined. Make sure the exact same property
names are used and point to the appropriate matching provenance repo locations. For example:

nifi.provenance.repository.directory.provenancel= nifi.provenance.repository.directory.provena
nce2=

Note: Y ou may not be able to query old events if provenance repos are not moved correctly or
properties are not updated correctly.

125

Upgrading NiFi

state-management.xml For the local-provider state provider, verify the location of the local directory.

If you have retained the default location (./state/local), copy the complete directory tree to the
new NiFi. The existing NiFi should be stopped if you are copying this directory because it may
be constantly writing to this directory while running.

Configuration best practices recommend that you move the state to an external directory like/
opt/nifi/configuration-resources/ to facilitate easier upgrading later.

For aNiFi cluster, the cluster-provider ZooK eeper "Connect String" property should be set to
the same external ZooK eeper as the existing NiFi installation.

For aNiFi cluster, make sure the cluster-provider ZooK eeper "Root Node" property matches
exactly the value used in the existing NiFi.

If you are also setting up a new external ZooK eeper, see the ZooK eeper Migrator on page
85 section for instructions on how to move ZooK eeper information from one cluster to
another and migrate ZooK eeper node ownership.

f Warning: Double check all configured properties for typos.

When avalueis set for nifi.sensitive.props.key in nifi.properties, the specified key is used to encrypt sensitive
propertiesin the flow (e.g. password fields in components). If the key needs to change, the Encrypt-Config tool in the
NiFi Toolkit can migrate the sensitive properties key and update the flow.xml.gz. Specifically, Encrypt-Config:

1. Readsthe existing flow.xml.gz and decrypts the sensitive values using the current key.
2. Encryptsall the sensitive values with a specified new key.
3. Updates the nifi.properties and flow.xml.gz files or creates new versions of them.

Asan example, assume version 1.9.2 isthe existing NiFi instance and the sensitive properties key is set to password.
The goal isto move the 1.9.2 flow.xml.gz to a 1.10.0 instance with a new sensitive properties key: new_password.
Running the following Encrypt-Config command would read in the flow.xml.gz and nifi.properties files from 1.9.2
using the original sensitive properties key and write out new versionsin 1.10.0 with the sensitive properties encrypted
with the new password:

$./nifi-toolkit-1.10.0/bin/encrypt-config.sh -f /path/to/nifi/n
ifi-1.9.2/conf/flow. xm .gz -g /path/to/nifi/nifi-1.10.0/conf/flow xm.gz -s
new password -n /path/to/nifi/nifi-1.9.2/conf/nifi.properties -o /path/tolni
fi/nifi-1.10.0/conf/nifi.properties -x

where:

» -f gpecifies the source flow.xml.gz (nifi-1.9.2)

* -g specifies the destination flow.xml.gz (nifi-1.10.0)

» -sgpecifies the new sensitive properties key (new_password)

« -n specifies the source nifi.properties (nifi-1.9.2)

» -0 specifies the destination nifi.properties (nifi-1.10.0)

» -x tells Encrypt-Config to only process the sensitive properties

Starting with version 1.14.0, NiFi requires a value for 'nifi.sensitive.props.key' in nifi.properties.

126

Processor Locations

The following command can be used to read an existing flow.xml.gz configuration and set a new sensitive properties
key in nifi.properties:

$./bin/nifi.sh set-sensitive-properties-key <sensitivePropertie
sKey>

The minimum required length for a new sensitive properties key is 12 characters.

In your new NiFi installation:

1. Start each of your new NiFi instances.
2. Veify that:

« All your dataflows have returned to arunning state. Some processors may have new properties that need to be
configured, in which case they will be stopped and marked Invalid (

).
« All your expected controller services and reporting tasks are running again. Address any controller services or
reporting tasks that are marked Invalid (

).

3. After confirming your new NiFi instances are stable and working as expected, the old installation can be removed.

Note: If the original NiFi was setup to run as a service, update any symlinks or service scripts to point to the
E new NiFi version executables.

NiFi provides 3 configuration options for processor locations. Namely:

nifi.nar.library.directory
nifi.nar.library.directory. <custon»
nifi.nar.library. autol oad.directory

Note: Paths set using these options are relative to the NiFi Home Directory. For example, if the NiFi Home
Directory is/var/lib/nifi, and the Library Directory is /lib, then the final path is /var/lib/nifi/lib.

The nifi.nar.library.directory is used for the default location for provided NiFi processors. It is not recommended to
use this for custom processors as these could be lost during a NiFi upgrade. For example:

nifi.nar.library.directory=./lib

127

Processor Locations

The nifi.nar.library.directory.<custom> allows the admin to provide multiple arbritary paths for NiFi to locate custom
processors. A unique property identifier must append the property for each unique path. For example:

nifi.nar.library.directory.nyCustonLi bs=./ny-customnars/lib
nifi.nar.library.directory. otherCustonlLi bs=./other-customnars/lib

The nifi.nar.library.autol oad.directory is used by the autoload feature, where NiFi can automatically load new
processors added to the configured path without requiring arestart. For example:

nifi.nar.library.autol oad. directory=./autoload/lib

This section describes the original process for installing custom processors that requires arestart to NiFi. To use the
Autoloading feature, see the below Autoloading Custom Processors on page 128 section.

Firstly, we will configure a directory for the custom processors. See Available Configuration Options on page 127
for more about these configuration options.

nifi.nar.library.directory. myCustonli bs=./nmy-customnars/lib

Ensure that this directory exists and has appropriate permissions for the nifi user and group.

Now, we must place our custom processor nar in the configured directory. The configured directory isrelative to
the NiFi Home directory; for example, let us say that our NiFi Home Dir is /var/lib/nifi, we would place our custom
processor nar in /var/lib/nifi/my-custom-narg/lib.

Ensure that the file has appropriate permissions for the nifi user and group.

Restart NiFi and the custom processor should now be available when adding a new Processor to your flow.

This section describes the process to use the Autoloading feature for custom processors.

To use the autoloading feature, the nifi.nar.library.autoload.directory property must be configured to point at the
desired directory. By default, this points at ./extensions.

For example:

nifi.nar.library. autol oad. directory=./extensions

Ensure that this directory exists and has appropriate permissions for the nifi user and group.

Now, we must place our custom processor nar in the configured directory. The configured directory isrelative to
the NiFi Home directory; for example, let us say that our NiFi Home Dir is/var/lib/nifi, we would place our custom
processor nar in /var/lib/nifi/extensions.

Ensure that the file has appropriate permissions for the nifi user and group.

Refresh the browser page and the custom processor should now be available when adding a new Processor to your
flow.

128

NiFi diagnostics

NiFi supports fetching NAR files for the autol oading feature from external sources. This can be achieved by using
NAR Providers. A NAR Provider serves as a connector between an external data store and NiFi.

When configured, aNAR Provider pollsthe external source for available NAR files and offers them to the
framework. The framework then fetches new NAR files and copies them to the nifi.nar.library.autoload.directory for
autoloading.

NAR Provider can be configured by adding the nifi.nar.library.provider.<providerName>.implementation property
with value containing the proper implementation class. Some implementations might need further properties. These
are defined by the implementation and must be prefixed with nifi.nar.library.provider.<providerName>..

The <providerName> is arbitrary and serves to correlate multiple properties together for asingle provider. Multiple
providers might be set, with different <providerName>. Currently NiFi supports HDFS based NAR provider.

Thisimplementation is capable of downloading NAR files from an HDFS file system.

The value of the nifi.nar.library.provider.<providerName>.implementation must be org.apache.nifi.nar.hadoop.H
DFSNarProvider. The following further properties are defined by the provider:

resources List of HDFS resources, separated by comma.

source.directory The source directory of NAR files within HDFS. Note: the provider
does not check for files recursively.

storage.location Optional. If set the storage location defined in the core-site.xml will be
overwritten by thisvalue.

kerberos.principal Optional. Kerberos principal to authenticate as.
kerberos.keytab Optional. Kerberos keytab associated with the principal.
kerberos.password Optional. Kerberos password associated with the principal.

Example configuration:

nifi.nar.library.provider.hdfsl.inplenentation=org.apache. nifi.nar.hadoop.H
DFSNar Pr ovi der

nifi.nar.library. provider. hdfsl.resources=/etc/hadoop/core-site.xnl
nifi.nar.library. provider.hdfsl.source.directory=/customNars

nifi.nar.library. provider.hdfs2.inplenentation=org.apache. nifi.nar.hadoop.H
DFSNar Pr ovi der

nifi.nar.library. provider.hdfs2.resources=/etc/hadoop/core-site.xnl
nifi.nar.library. provider. hdfs2.source.directory=/other/dir/for/custonmNars

129

NiFi diagnostics

It is possible to run diagnostics on NiFi with
$./bin/nifi.sh --diagnostics --verbose <dunpfil ePat h>

During the diagnostic, NiFi sends arequest to an already running NiFi instance, which collects information about
clusters, components, part of the configuration, memory usage, etc., and writes it to the specified file or, failing that,
to thelogs.

The verbose switch is optional and can be used to control the level of diagnostic detail. In case of a missing dump file
path, NiFi writes the diagnostics information to the bootstrap.log file.

NiFi supports automatic diagnostics in the event of a shutdown. The feature is disabled by default. The settings can be
found in the nifi.properties file and the feature can be enabled there also. In the case of alengthy diagnostic, NiFi may
terminate before the diagnostics are completed. In this case, the graceful .shutdown.seconds property should be set to a
higher value in the bootstrap.conf.

130

	Contents
	System Requirements
	How to install and start NiFi
	Port Configuration
	NiFi
	Embedded ZooKeeper

	Configuration Best Practices
	Recommended Antivirus Exclusions
	Security Configuration
	TLS Generation Toolkit
	TLS Cipher Suites

	User Authentication
	Single User
	Lightweight Directory Access Protocol (LDAP)
	Kerberos
	OpenId Connect
	SAML
	Apache Knox
	JSON Web Tokens

	Multi-Tenant Authorization
	Authorizer Configuration
	Authorizers.xml Setup
	FileUserGroupProvider
	LdapUserGroupProvider
	ShellUserGroupProvider
	AzureGraphUserGroupProvider
	Composite Implementations
	FileAccessPolicyProvider
	StandardManagedAuthorizer
	FileAuthorizer
	Initial Admin Identity (New NiFi Instance)
	File-based (LDAP Authentication)
	File-based (Kerberos Authentication)
	LDAP-based Users/Groups Referencing User DN
	LDAP-based Users/Groups Referencing User Attribute
	Composite - File and LDAP-based Users/Groups

	Legacy Authorized Users (NiFi Instance Upgrade)
	Global Access Policies
	Component Access Policies on the Root Process Group

	Cluster Node Identities

	Configuring Users & Access Policies
	Creating Users and Groups
	Access Policies
	Global Access Policies
	Component Level Access Policies
	Access Policy Inheritance

	Viewing Policies on Users
	Access Policy Configuration Examples
	Moving a Processor
	Editing a Processor
	Creating a Connection
	Editing a Connection

	Encryption Configuration
	Key Derivation Functions
	NiFi Legacy KDF
	OpenSSL PKCS#5 v1.5 EVP_BytesToKey
	Bcrypt
	Scrypt
	PBKDF2
	None
	Argon2
	Additional Resources

	Salt and IV Encoding
	NiFi Legacy
	OpenSSL PKCS#5 v1.5 EVP_BytesToKey
	Bcrypt, Scrypt, PBKDF2, Argon2

	Java Cryptography Extension (JCE) Limited Strength Jurisdiction Policies
	Allow Insecure Cryptographic Modes

	Encrypted Passwords in Flows
	Encrypted Passwords in Configuration Files
	HashiCorp Vault providers
	Required properties
	Optional properties

	AWS KMS provider
	Required properties
	Optional properties
	All of the following must be configured, or will be ignored entirely.

	AWS Secrets Manager provider
	Optional properties
	All of the following must be configured, or will be ignored entirely.

	Azure Key Vault Key Provider
	Required properties

	Azure Key Vault Secret Provider
	Required properties

	Google Cloud KMS provider
	Required properties

	Property Context Mapping
	Example

	NiFi Toolkit Administrative Tools
	Clustering Configuration
	Zero-Leader Clustering
	Why Cluster?
	Terminology
	Communication within the Cluster
	Managing Nodes
	Disconnect Nodes
	Offload Nodes
	Delete Nodes
	Decommission Nodes
	NiFi CLI Node Commands

	Flow Election
	Basic Cluster Setup
	Cluster Firewall Configuration
	Troubleshooting

	State Management
	Configuring State Providers
	Embedded ZooKeeper Server
	ZooKeeper Access Control
	Securing ZooKeeper with Kerberos
	Kerberizing Embedded ZooKeeper Server
	Kerberizing NiFi's ZooKeeper Client
	Troubleshooting Kerberos Configuration

	Securing ZooKeeper with TLS
	Embedded ZooKeeper with TLS
	ZooKeeper Migrator

	Bootstrap Properties
	Notification Services
	Email Notification Service
	HTTP Notification Service

	Proxy Configuration
	Kerberos Service
	Notes

	Analytics Framework
	System Properties
	Upgrade Recommendations
	Core Properties
	State Management
	H2 Settings
	Repository Encryption
	FlowFile Repository
	Write Ahead FlowFile Repository
	Encrypted Write Ahead FlowFile Repository Properties
	Volatile FlowFile Repository
	RocksDB FlowFile Repository
	Swap Management
	Content Repository
	File System Content Repository Properties
	Encrypted File System Content Repository Properties
	Volatile Content Repository Properties
	Provenance Repository
	Write Ahead Provenance Repository Properties
	Encrypted Write Ahead Provenance Repository Properties
	Persistent Provenance Repository Properties
	Volatile Provenance Repository Properties
	Status History Repository
	In memory repository
	Persistent repository

	Site to Site Properties
	Site to Site Routing Properties for Reverse Proxies
	Site to Site protocol sequence
	Reverse Proxy Configurations
	Site to Site and Reverse Proxy Examples
	Example 1: RAW - Server name to Node mapping
	Example 2: RAW - Port number to Node mapping
	Example 3: HTTP - Server name to Node mapping

	Web Properties
	Security Properties
	Identity Mapping Properties
	Cluster Common Properties
	Cluster Node Properties
	ZooKeeper Properties
	Kerberos Properties
	Analytics Properties
	Runtime Monitoring Properties
	Custom Properties

	Upgrading NiFi
	Preserve Custom Processors
	Preserve Modified NARs
	Clear Activity and Shutdown Existing NiFi
	Install the new NiFi Version
	Update the Configuration Files for Your New NiFi Installation
	Migrating a Flow with Sensitive Properties
	Updating the Sensitive Properties Key

	Start New NiFi

	Processor Locations
	Available Configuration Options
	Installing Custom Processors
	Autoloading Custom Processors
	NAR Providers
	HDFS NAR Provider

	NiFi diagnostics
	Automatic diagnostics on restart and shutdown

