Cloudera Runtime 7.1.3

Tuning Cloudera Search

Date published: 2019-11-19
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Solr Server TuNING Cat@gOriS......cuveieeiieeieeeieesee e e see e e see e e sreeenreesseeenseesneeas 4
Setting Java System Properties for SOIr......coovvicieiie e 5
SEING LUCENE VO SION.....oiiiiiieeciie ettt sttt nne s sneeennes 6
Enable multi-threaded faceting.........cccccvevieieiri i 6
Tuning Garbage COllECION.........ccccieiieiie e 7
Enable Garbage Collector LOgging.......cccviviiririiieninsiiesie e 7
Solr and HDFS - the BIOCK CaChe..........ccoiiiiiiiieeeeee s 8
TUNING REPIICALION.......eoitiiiiecie et et e e e nne e 10

Adjust the Solr replication factor for index files stored in HDFS...........cocooioeiciieve s 11

Cloudera Runtime Solr Server Tuning Categories

Solr Server Tuning Categories

Solr performance tuning is a complex task. Thisis an overview of available tuning options that may be performed
either during deployment or at alater stage.

Tuning to Complete During Setup

Some tuning is best completed during the setup of your system as it may require re-indexing.

Table 1: Tuning to complete during initial setup

Tuning option Description

Configure Lucene version

Y ou can configure Solr to use a specific version of Lucene. This can help ensure that the Lucene version
that Search usesincludes the | atest features and bug fixes.

Design a schema

When constructing a schema, use data types that most accurately describe the data that the fields will
contain. For more information on schemaless and non-schemal ess mode, see Deployment Planning for
Cloudera Search.

Configure the Java heap size

Set the Java heap size for the Solr Server to at least 16 GB for production environments. For more
information on memory requirements, see Deployment Planning for Cloudera Search.

General Tuning

The following tuning categories can be completed either during deployment or at alater stage. It islessimportant to
implement these changes before taking your system into use.

Table 2: General tuning steps

Tuning option \Emcription—[

Enable multi-threaded faceting

Enabling multi-threaded faceting can provide better performance for field faceting. It has no effect on query
faceting.

Consider changing batchSize
setting if you work with large
documents

In most cases, do not change the default batchSize setting of 1000. If you are working with especially large
documents, you may consider decreasing the batch size.

Enable garbage collector (GC)
logging

To help identify any garbage collector (GC) issues, enable GC logging in production. The overhead is low
and the VM supports GC log rolling as of 1.6.0_34.

Configure garbage collection

Select the garbage collection option that offers best performance in your environment.

Configureindex caching

Cloudera Search enables Solr to store indexes in an HDFS filesystem. To maintain performance, an HDFS
block cache has been implemented using Least Recently Used (LRU) semantics. This enables Solr to cache
HDFS index files on read and write, storing the portions of the filein VM direct memory (off heap) by
default, or optionally in the VM heap.

Tune commit values

Changing commit values may improve performance in certain situations. These changes result in tradeoffs
and may not be beneficial in al cases.

« For hard commit values, the default value of 60000 (60 seconds) is typically effective, though changing
this value to 120 seconds may improve performance in some cases. Note, that setting this value to
higher values, such as 600 seconds may result in undesirable performance tradeoffs.

¢ Consider increasing the auto-soft-commit value from 15000 (15 seconds) to 120000 (120 seconds). Y ou
may increase this to the largest value that still meets your requirements.

« If your environment does not require Near Real Time (NRT), turn off soft auto-commit in solrconfig.x
ml by setting the auto-soft commit frequency to -1.

Cloudera Runtime Setting Java System Properties for Solr

Tuning option Description

Tune sharding In some cases, oversharding can help improve performance including intake speed. If your environment
includes massively parallel hardware and you want to use these available resources, consider oversharding.
Y ou might increase the number of replicas per host from 1 to 2 or 3. Making such changes creates complex
interactions, so you should continue to monitor your system's performance to ensure that the benefits of
oversharding outweigh the costs.

Minimize swappiness For better performance, Cloudera recommends setting the Linux swap space on al Solr server hosts as
shown below:

sudo sysctl vm swappi ness=1

Consider collection aliasing to If you need to index and near real time query huge amounts of timestamped datain Solr, such aslogs or 10T
deal with massive amounts of sensor data, you may consider aliasing as a massively scalable solution. This approach alows for indefinite
timestamped data in streaming- indexing of data without degradation of performance otherwise experienced due to the continuous growth of
style applications asingleindex.

Additional Tuning Resources
Practical tuning tips outside the Cloudera Search documentation:

 For information on memory tuning, see Part 1 and Part 2 of Apache Solr Memory Tuning for Production on
ClouderaBlog.

* Genera information on Solr caching is available under Query Settings in SolrConfig in the Apache Solr Reference
Guide.

« Information on issues that influence performance is available on the SolrPerformanceFactors page on the Solr
Wiki.

» Resource Management describes how to use Cloudera Manager to manage resources, for example with Linux
cgroups.

 For information on improving querying performance, see How to make searching faster.

» For information on improving indexing performance, see How to make indexing faster.

» For information on aliasing, see Collection Aliasing: Near Real-Time Search for Really Big Data on Cloudera
Blog and Time Routed Aliasesin the Apache Solr Reference Guide.

Related Concepts

Tuning Garbage Collection

Solr and HDFS - the Block Cache
Tuning Replication

Related Tasks

Setting Lucene Version

Enable multi-threaded faceting
Enable Garbage Collector Logging
Related Information
Deployment Planning for Cloudera Search
Resource Management

Setting Java System Properties for Solr

Several tuning steps require adding or modifying Java system properties. Thisis how you do it in Cloudera Manager.

Procedure

1. In ClouderaManager, select the Solr service.
2. Click the Configuration tab.

https://blog.cloudera.com/apache-solr-memory-tuning-for-production/
https://blog.cloudera.com/solr-memory-tuning-for-production-part-2/
https://blog.cloudera.com/
https://lucene.apache.org/solr/guide/8_4/query-settings-in-solrconfig.html
http://wiki.apache.org/solr/SolrPerformanceFactors
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/managing-clusters/topics/cm-resource-management.html
http://wiki.apache.org/lucene-java/ImproveSearchingSpeed
http://wiki.apache.org/lucene-java/ImproveIndexingSpeed
https://blog.cloudera.com/collection-aliasing-near-real-time-search-for-really-big-data/
https://lucene.apache.org/solr/guide/7_4/time-routed-aliases.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/search-deployment-planning/topics/search-prepare-install-search.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/managing-clusters/topics/cm-resource-management.html

Cloudera Runtime Setting Lucene Version

3. Inthe Search box, type Java Configuration Options for Solr Server.

4. Add the property to Java Configuration Options for Solr Server using the format -D<property_name>=<value>.
Garbage collection options, such as -XX:+PrintGCTimeStamps, can also be set here. Use spacesto separate
multiple parameters.

5. Click Save Changes.

6. Restart the Solr service (Solr service Actions Restart).

Y ou can configure Solr to use a specific version of Lucene. This can help ensure that the Lucene version that Search
usesincludesthe latest features and bug fixes.

At the time that a version of Solr ships, Solr istypically configured to use the appropriate Lucene version, in which
case there is no need to change this setting. If a subsequent L ucene update occurs, you can configure the Lucene
version requirements by directly editing the solrconfig.xml file.

To change the configured L ucene version, edit the luceneMatchV ersion element in the solrconfig.xmil file.
Versions are typically of the form x.y, such as 7.4.
For example, to specify version 7.4, you would ensure the following setting exists in solrconfig.xml:

<l uceneMat chVer si on>7. 4</ | uceneMat chVer si on>

Enabling multi-threaded faceting can provide better performance for field faceting.

* When multi-threaded faceting is enabled, field faceting tasks are completed in parallel with athread working on
every field faceting task simultaneously. Performance improvements do not occur in al cases, but improvements
arelikely when all of the following are true:

* The system uses highly concurrent hardware.

« Faceting operations apply to large data sets over multiple fields.

e Thereisnot an unusually high number of queries occurring simultaneously on the system. Systems that
are lightly loaded or that are mainly engaged with ingestion and indexing may be helped by multi-threaded
faceting; for example, a system ingesting articles and being queried by aresearcher. Systems heavily loaded

Cloudera Runtime Tuning Garbage Collection

by user queries are less likely to be helped by multi-threaded faceting; for example, an e-commerce site with
heavy user-traffic.

E Note: Multi-threaded faceting only appliesto field faceting and not to query faceting.

» Field faceting identifies the number of unique entries for afield. For example, multi-threaded faceting
could be used to simultaneously facet for the number of unique entries for the fields, "color" and
"size". In such a case, there would be two threads, and each thread would work on faceting one of the
two fields.

e Query faceting identifies the number of unique entries that match a query for afield. For example,
query faceting could be used to find the number of unique entriesin the "size" field that are between 1

and 5. Multi-threaded faceting does not apply to these operations.

To enable multi-threaded faceting, add facet-threads to queries.

If facet-threads is omitted or set to 0, faceting is single-threaded. If facet-threads is set to a negative value, such as
-1, multi-threaded faceting will use as many threads as there are fields to facet up to the maximum number of threads
possible on the system.

For example, to use up to 1000 threads, use asimilar query:

http://1 ocal host: 8983/ solr/coll ectionl/sel ect ?2q=*: *&f acet =t rue&f | =i d&f acet . f
i el d=f 0_ws&f acet .t hreads=1000

Choose different garbage collection options for best performance in different environments.
Some garbage collection options typically chosen include:

» Concurrent low pause collector: Use this collector in most cases. This collector attempts to minimize " Stop the
World" events. Avoiding these events can reduce connection timeouts, such as with ZooK eeper, and may improve
user experience. This collector is enabled using the Java system property -XX:+UseConcMarkSweepGC.

« Throughput collector: Consider this collector if raw throughput is more important than user experience. This
collector typically uses more " Stop the World" events so this may negatively affect user experience and
connection timeouts such as ZooK eeper heartbeats. This collector is enabled using the Java system property -
XX:+UseParallelGC. If UseParallel GC "Stop the World" events create problems, such as ZooK eeper timeouts,
consider using the UseParNewGC collector as an alternative collector with similar throughput benefits.

Y ou can also affect garbage collection behavior by increasing the Eden space to accommodate new objects. With
additional Eden space, garbage collection does not need to run as frequently on new objects.

Setting Java System Properties for Solr

To help identify any garbage collector (GC) issues, enable GC logging in production.

1. In Cloudera Manager, select the Solr service.
2. Click the Configuration tab.

Cloudera Runtime

3. Inthe Search box, type Java Configuration Options for Solr Server.
4. Add arguments controlling GC logging behavior.

* Theminimum recommended GC logging flags are: -X X:+PrintGCTimeStamps -X X:+PrintGCDateStamps
-XX:+PrintGCDetails.

« Torotate the GC logs: -Xloggc: -XX:+UseGCL ogFileRotation -XX:NumberOf GCLogFiles= -XX:G
CLogFileSize=.

f Warning: Do not enable the Solr HDFS write cache, because it can lead to index corruption.

Cloudera Search enables Solr to store indexesin an HDFS filesystem. To maintain performance, an HDFS block
cache has been implemented using Least Recently Used (LRU) semantics. This enables Solr to cache HDFS index
files on read and write, storing the portions of the filein VM direct memory (off heap) by default, or optionally in
the VM heap.

Batch jobs typically do not use the cache, while Solr servers (when serving queries or indexing documents) should.
When running indexing using MapReduce (MR), the MR jobs themselves do not use the block cache. Block write
caching isturned off by default and should be left disabled.

Tuning of this cache is complex and best practices are continually being refined. In general, alocate a cache that is
about 10-20% of the amount of memory available on the system. For example, when running HDFS and Solr on a
host with 96 GB of memory, allocate 10-20 GB of memory using solr.hdfs.blockcache.slab.count. Asindex sizes
grow you may need to tune this parameter to maintain optimal performance.

Ij Note: Block cache metrics are currently unavailable.

The following parameters control caching. They can be configured at the Solr process level by setting the respective
Java system property or by editing solrconfig.xml directly.

If the parameters are set at the collection level (using solrconfig.xml), the first collection loaded by the Solr server
takes precedence, and block cache settingsin all other collections are ignored. Because you cannot control the order
in which collections are loaded, you must make sure to set identical block cache settingsin every collection solrconf
ig.xml. Block cache parameters set at the collection level in solrconfig.xml also take precedence over parameters at
the process level.

solr.hdfs.blockcache.global Not directly true If enabled, one HDFS block cacheis used
configurable. for each collection on ahost. If blockcache.g
Cloudera Manager lobal is disabled, each SolrCore on a host
automatically enables createsits own private HDFS block cache.
the global block Enabling this parameter simplifies managing
cache. To override HDFS block cache memory.

this setting, you

must use the Solr
Service Environment
Advanced
Configuration Snippet
(Safety Valve).

solr.hdfs.blockcache.enabled HDFSBlock Cache | true Enable the block cache.

Solr and HDFS - the Block Cache

Cloudera Runtime

Solr and HDFS - the Block Cache

solr.hdfs.blockcache.read.enabled

ClouderaManager | Default | Description
Setting

Not directly
configurable.

If the block

cacheis enabled,
Cloudera Manager
automatically enables
the read cache. To
override this setting,
you must use the Solr
Service Environment
Advanced
Configuration Snippet
(Sefety Valve).

true

Enable the read cache.

solr.hdfs.blockcache.write.enabled

Not directly
configurable.

If the block

cacheis enabled,
Cloudera Manager
automatically disables
the write cache.

A

Warning:
Do not
enable the
Solr HDFS
write
cache,
because it
can lead

to index
corruption.

false

Enable the write cache.

solr.hdfs.blockcache.direct.memory.all ocation

HDFS Block Cache

true

Enable direct memory allocation. If thisis

Number of Slabs

Off-Heap Memory false, heap is used.
solr.hdfs.blockcache.bl ocksperbank HDFS Block Cache | 16384 Number of blocks per cache slab. The size of
Blocks per Slab the cacheis 8 KB (the block size) timesthe
number of blocks per slab times the number
of slabs.
solr.hdfs.blockcache.slab.count HDFSBlock Cache |1 Number of slabs per block cache. The size of

the cache is 8 KB (the block size) times the
number of blocks per slab times the number
of dabs.

K

Note:

Increasing the direct memory cache size may make it necessary to increase the maximum direct memory

size allowed by the VM. Each Solr dlab allocates memory, which is 128 MB by default, aswell as

alocating some additional direct memory overhead. Therefore, ensure that the MaxDirectMemorySize is

set comfortably above the value expected for slabs aone. The amount of additional memory required varies
according to multiple factors, but for most cases, setting MaxDirectMemorySize to at least 20-30% more than
the total memory configured for slabs is sufficient. Setting MaxDirectMemorySize to the number of slabs
multiplied by the slab size does not provide enough memory.

To set MaxDirectMemorySize using Cloudera Manager:

Go to the Solr service.
Click the Configuration tab.

AwDdE

Set the new direct memory value.

5. Restart Solr servers after editing the parameter.

In the Search box, type Java Direct Memory Size of Solr Server in Bytes.

Solr HDFS optimizes caching when performing NRT indexing using L ucene's NRTCachingDirectory.

9

Cloudera Runtime Tuning Replication

Lucene caches anewly created segment if both of the following conditions are true:

» The segment isthe result of aflush or a merge and the estimated size of the merged segment is <= solr.hdfs.nrtcac
hingdirectory.maxmergesizemb.
« Thetota cached bytesis <= solr.hdfs.nrtcachingdirectory.maxcachedmb.

The following parameters control NRT caching behavior:

solr.hdfs.nrtcachingdirectory.enable true Whether to enable the NRTCachingDirectory.
solr.hdfs.nrtcachingdirectory.maxcachedmb 192 Size of the cache in megabytes.
solr.hdfs.nrtcachingdirectory.maxmergesizemb 16 Maximum segment size to cache.

Thisis an example solrconfig.xml file with defaults:

<di rectoryFactory nane="DirectoryFactory">

<bool nane="sol r. hdfs. bl ockcache. enabl ed" >${sol r. hdf s. bl ockcache. enabl ed
:true}</bool >

<int nanme="sol r. hdf s. bl ockcache. sl ab. count ">%${sol r. hdf s. bl ockcache. sl a
b. count: 1} </int>

<bool nanme="sol r. hdfs. bl ockcache. direct.nmenory. al | ocati on">${sol r. hdf s.
bl ockcache. direct. nenory. al | ocati on: true} </ bool >

<int nanme="sol r. hdf s. bl ockcache. bl ocksper bank" >${sol r. hdf s. bl ockcache. b
| ocksper bank: 16384} </i nt >

<bool name="sol r. hdfs. bl ockcache. r ead. enabl ed">${sol r. hdf s. bl ockcache.
read. enabl ed: t rue} </ bool >

<bool name="solr. hdfs. nrtcachi ngdi rectory. enabl e">%${solr. hdfs. nrtcach
ngdi rect ory. enabl e: true} </ bool >

<int name="sol r. hdfs. nrtcachi ngdi rect ory. maxner gesi zenb" >${sol r. hdf s. nrt
cachi ngdi rect ory. maxner gesi zenb: 16} </ i nt >

<int name="solr. hdfs. nrtcachi ngdi rectory. maxcachednb" >${sol r. hdfs.nrtc
achi ngdi rect ory. maxcachednb: 192} </ i nt >
</ directoryFactory>

Setting Java System Properties for Solr
Apache Solr Reference Guide
Query Settings in SolrConfig gives general information on Solr caching.

If you have sufficient additional hardware, you may add more replicas for alinear boost of query throughput.

B Note: Do not adjust HDFS replication settings for Solr in most cases.

Note, that adding replicas may slow write performance on the first replica, but otherwise this should have minimal
negative consequences.

Cloudera Search supports configurable transaction log replication levels for replication logs stored in HDFS.
Clouderarecommends leaving the value unchanged at 3 or, barring that, setting it to at least 2.

10

https://lucene.apache.org/solr/guide/7_4/query-settings-in-solrconfig.html

Cloudera Runtime Tuning Replication

Configure the transaction log replication factor for a collection by modifying the tlogDfsReplication setting in solr
config.xml. The tlogDfsReplication is a setting in the updatel og settings area. An excerpt of the solrconfig.xml file
where the transaction log replication factor is set is as follows:

<updat eHandl er cl ass="sol r. Di rect Updat eHandl er 2" >

<l-- Enables a transaction |og, used for real-tine get, durability, and
solr cloud replica recovery. The |log can grow as big as
uncommi tted changes to the index, so use of a hard autoConmit
i s reconmrended (see bel ow).
"dir" - the target directory for transaction |logs, defaults to the
solr data directory. -->
<updat eLog>
<str nanme="dir">${solr.ulog.dir:}</str>
<int name="t| ogDf sReplicati on">${solr.ul og.tl ogDf sReplication:3}</int>
<i nt name="nunVer si onBucket s">${sol r. ul og. numVer si onBucket s: 65536} </
i nt>
</ updat eLog>

The default replication level is 3. For clusters with fewer than three DataNodes (such as proof-of-concept clusters),
reduce this number to the amount of DataNodes in the cluster. Changing the replication level only applies to new
transaction logs.

Initial testing shows no significant performance regression for common use cases.

Adjust the Solr replication factor for index files stored in HDFS

Y ou can adjust the degree to which different datais replicated.

1. Goto Solr service Configuration Category Advanced .

2. Click the plus sign next to Solr Service Advanced Configuration Snippet (Safety Valve) for hdfs-sitexml to add a
new property with the following values:
Name: dfs.replication

Value: 2
3. Click Save Changes.
4. Restart the Solr service (Solr service Actions Restart).

11

	Contents
	Solr Server Tuning Categories
	Setting Java System Properties for Solr
	Setting Lucene Version
	Enable multi-threaded faceting
	Tuning Garbage Collection
	Enable Garbage Collector Logging
	Solr and HDFS - the Block Cache
	Tuning Replication
	Adjust the Solr replication factor for index files stored in HDFS

