Cloudera Runtime 7.1.3

Managing Apache HBase

Date published: 2020-02-29
Date modified: 2020-08-07

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Starting and stopping HBase using Cloudera Managerccccceeeeevveeccveeeennenn, 5
S = R =T SO RTRST 5

SEOP HBBSE.......eeecteet ettt et e R R R R R R R R e e n e e 5
Graceful HBaSE SNULAOWN.......ccueiieieieieieeiet ettt sttt sbesbe s b stesbestesee e et e e e e eneeneeneesensesnesrenes 6
Gracefully shut down an HBase REJIONSEIVEScociiiiriiireiriesiesei e 6

Gracefully shut down the HBESE SEIVICE. ..ottt 6
Importing data into HBASE...........cocieiie et 7
Choose the right import MELNO.............cooiiii e re e sre e eesrenen 7

LS IR 7= 101 0= 7

(0SS @0 o)V 1= o S 9

USE BUIKL OB, ...ttt ettt ettt b et bt a e bt e st st e s e b ene b e e nsenennan 10

USE CASES FOF BUIKLOAH.ceeviieiiieiiie ettt e 11

OSSN o L0 = = o [0 o S 12

LSS [0 o PSS 12

LS IS 07 S 13

Use a custom MaPREAUCE JOD.........cci ittt st e e e s se e e resaesneseenteneesnenean 14

Use HashTable and SynCTable TOOL.........ccciiiieieieeieeeeee ettt sne s renpe s 14
HashTable/SyncTable tool CONfiQUIAtioN..........ccceiiieie e s s 14

Synchronize table data using HashTable/SyncTable tool...........cccovveieveiereseecccecee e 15

Writing data t0 HBASE.......coo it 16
VAITALIONS ON PUL......eieiee ettt ettt b bt e bt e b e s bese e b e bese e e e m e e e et eneeseeseebesbesbesbesbesbeseens 16

RV £ o LSS 16

D= L= [o] o OO URTPROTPPI 17
= 10 0] 0 1=V RTPROTRPPI 17
Reading data from HBASE..........coceiiiiiee et 18
Perform scans USING HBESE ShElL........coiiiiice e 19
HBASE fILEI ING.....ee ettt e re e snee e 20
Dynamically 10ading @ CUSIOM fIlLEN.........cociiicece ettt s e e e e enens 20
Logical operators, comparison operators and COMPAILOIS.........cuevreeerereseneseseessessessessesessessessessessessessessenes 20
COMPOUNGT OPEIBEOIS. ... euveueeueeueeeeseeseseeestesessessesteseessessessessessessaseeseesessesseasessesesssessessessensensessesessessensessensessessenses 21

T 0= Y 0= RO 21
HBASE ShEll EXAMPIE....c.eoeceeeeee ettt et et et et e e e neesenseeneerenteseenretn 24

Oz Y B A = 0] o] =S 24
HBASE ONIINE MEIMQE......iiieieeee et r e e 28

Move HBase Master Role to another NOSt..........eeeeeeeeeeeeeeeeeeeeee e 28

Expose HBase metricsto a Ganglia SErVErc.cocevveeeveesieesee e 29

Using the HBase-Spark CONNECLON........ccoocieiieiieccee e 29

Example: Using the HBase-Spark connector

Cloudera Runtime Starting and stopping HBase using Cloudera Manager

Y ou can start and stop your HBase cluster using Cloudera Manager.

Y ou can start HBase clusters or individual hosts following these instructions.

1. In Cloudera Manager, select the HBase service.
2. Click the Actions button.
3. Select Start.
If you want to restart a running cluster, do the following:
4. Click the Actions button.
5. Select Restart or Rolling Restart.
A rolling restart restarts each RegionServer, on at atime, after aa grace period.
If you want to restart the Thrift service, do the following:
6. Click Instances.
7. Select the HBase Thrift Server instance.
8. Select Actionsfor Selected.
9. Select Restart.

Configure the graceful shutdown timeout property

Y ou can stop HBase clusters or individual hosts following these instructions.

If you want to stop a single RegionServer, do the following:

1. In Cloudera Manager, select the HBase service.

Click the Instance tab.

From thelist of Role Instances, select the RegionServer or RegionServers you want to stop.
Select Actions for Selected.

Select Stop.
Stop happens immediately and does not redistribute the regions. It issues a SIGTERM (kill -5) signal.

If you want to stop asingle HMaster, do the following:

6. In Cloudera Manager, select the HBase service.

7. Click the Instance tab.

8. From thelist of Role Instances, select the HMaster or HMasters you want to stop.
9. Select Actionsfor Selected.

10. Select Stop.
Stop happens immediately and does not redistribute the regions. It issues a SIGTERM (kill -5) signal.

If you want to stop the entire cluster, do the following:

o > wDd

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/configuring-hbase/topics/hbase-configure-graceful-shutdown.html

Cloudera Runtime Starting and stopping HBase using Cloudera Manager

11. In Cloudera Manager, select the HBase service.
12. Click the Actions button.
13. Select Stop.

Configure the graceful shutdown timeout property

Graceful Shutdown causes the regions to be redistributed to other RegionServers, increasing availability during the
RegionServer outage.

A graceful shutdown of an HBase RegionServer alows the regions hosted by that RegionServer to be moved to
other RegionServers before stopping the RegionServer. Y ou can perform a graceful shutdown of either an HBase
RegionServer or the entire service.

Cloudera Manager waits for an interval determined by the Graceful Shutdown timeout interval, which defaultsto
three minutes. If the graceful stop does not succeed within thisinterval, the RegionServer is stopped with a SIGKILL
(kill -9) signal. Recovery will beinitiated on affected regions.

To increase the speed of arolling restart of the HBase service, set the Region Mover Threads property to a higher
value. Thisincreases the number of regions that can be moved in parallel, but places additional strain on the HMaster.
In most cases, Region Mover Threads should be set to 5 or lower.

Configure the graceful shutdown timeout property

Y ou can gracefully shut down an HBase RegionServer using Cloudera Manager.

In Cloudera Manager, select the HBase service.

Click the Instance tab.

From the list of Role Instances, select the RegionServer or RegionServers you want to shut down gracefully.
Click Actions for Selected.

Select Decommission (Graceful Stop).

If you cancel the graceful shutdown before the Graceful Shutdown Timeout expires, you can still manually stop a
RegionServer by selecting Actions for Selected > Stop, which sendsa SIGTERM (kill -5) signal.

g s DN

Configure the graceful shutdown timeout property

Y ou can gracefully shut down the HBase Service using Cloudera Manager.

1. In Clouder Manager, select the HBase service.

2. Click the Actions button.

3. Select Stop.
Cloudera Manager tries to perform an HBase Master-driven graceful shutdown for the length of the configured
Graceful Shutdown Timeout, after which it abruptly shuts down the whole service. The default value of Graceful
Shutdown Timeout is three minutes.

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/configuring-hbase/topics/hbase-configure-graceful-shutdown.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/configuring-hbase/topics/hbase-configure-graceful-shutdown.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/configuring-hbase/topics/hbase-configure-graceful-shutdown.html

Cloudera Runtime Importing datainto HBase

In different scenarios different methods can be used to import datainto HBase.

Learn about how to choose the right data import method.
The method you use for importing data into HBase depends on several factors:

e Thelocation, size, and format of your existing data

* Whether you need to import data once or periodically over time

* Whether you want to import the datain bulk or stream it into HBase regularly
* How fresh the HBase data needs to be

This topic helps you choose the correct method or composite of methods and provides example workflows for each
method.

Always run HBase administrative commands as the HBase user (typically hbase).

If the datais already in an HBase table:

« To move the data from one HBase cluster to another, use snapshot and either the clone_snapshot or ExportSnapsh
ot utility; or, use the CopyTable utility.

¢ To move the datafrom one HBase cluster to another without downtime on either cluster, use replication.
If the data currently exists outside HBase:

« If possible, write the data to HFile format, and use a BulkL oad to import it into HBase. The dataisimmediately
available to HBase and you can bypass the normal write path, increasing efficiency.

« |If you prefer not to use bulk loads, and you are using atool such as Pig, you can use it to import your data.
If you need to stream live datato HBase instead of import in bulk:

* WriteaJavaclient using the Java API, or use the Apache Thrift Proxy API to write aclient in alanguage
supported by Thrift.

e Stream data directly into HBase using the REST Proxy API in conjunction with an HTTP client such as wget or
curl.

e UseFlume or Spark.

Most likely, at least one of these methods works in your situation. If not, you can use MapReduce directly. Test the
most feasible methods with a subset of your data to determine which oneis optimal.

A snapshot captures the state of atable at the time the snapshot was taken.

Cloudera recommends snapshots instead of Copy Table where possible. Because no data is copied when a snapshot is
taken, the processis very quick. Aslong as the snapshot exists, cells in the snapshot are never deleted from HBase,
even if they are explicitly deleted by the API. Instead, they are archived so that the snapshot can restore the table to its
state at the time of the snapshot.

Y ou can export snapshots from CDH 5 to CDP Private Cloud Base , and from CDP Private Cloud Base to CDH 5, if
the the version of CDP Private Cloud Baseis 7.1 or higher.

After taking a snapshot, use the clone_snapshot command to copy the datato a new (immediately enabled) table in
the same cluster, or the Export utility to create a new table based on the snapshot, in the same cluster. Thisis a copy-
on-write operation. The new table shares HFiles with the original table until writes occur in the new table but not the

7

Cloudera Runtime Importing datainto HBase

old table, or until acompaction or split occursin either of the tables. This can improve performance in the short term
compared to CopyTable.

To export the snapshot to a new cluster, use the ExportSnapshot utility, which uses MapReduce to copy the snapshot
to the new cluster. Run the ExportSnapshot utility on the source cluster, as a user with HBase and HDFS write
permission on the destination cluster, and HDFS read permission on the source cluster. This creates the expected
amount of 10 load on the destination cluster. Optionally, you can limit bandwidth consumption, which affects 1O on
the destination cluster. After the ExportSnapshot operation completes, you can see the snapshot in the new cluster
using the list_snapshot command, and you can use the clone_snapshot command to create the table in the new cluster
from the snapshot.

For full instructions for the snapshot and clone_snapshot HBase Shell commands, run the HBase Shell and type help
snapshot. The following example takes a snapshot of atable, usesit to clone the table to a new table in the same
cluster, and then uses the ExportSnapshot utility to copy the table to a different cluster, with 16 mappers and limited
to 200 Mb/sec bandwidth.

$ bi n/ hbase shel |
hbase(rmai n): 005: 0> snapshot ' Test Tabl e', ' Test Tabl eSnhapshot'
0 row(s) in 2.3290 seconds

hbase(rmai n): 006: 0> cl one_snapshot ' Test Tabl eSnapshot', ' NewTest Tabl e’
0 rowm(s) in 1.3270 seconds

hbase(mai n): 007: 0> descri be ' NewTest Tabl e’

DESCRI PTI ON ENABLED
' NewTest Tabl e', {NAME => 'cf1l', DATA BLOCK ENCODI NG true
=> 'NONE', BLOOWFILTER => ' ROW, REPLI CATI ON_SCOPE
=>"'0", VERSIONS => '1', COWRESSION => 'NONE', M

N VERSIONS => '0', TTL => ' FOREVER , KEEP DELETED C
ELLS => 'fal se', BLOCKSIZE => '65536', |N_MEMORY =>
'false', BLOCKCACHE => 'true'}, {NAME => 'cf2', DA

TA BLOCK_ENCODI NG => ' NONE', BLOOWFI LTER => ' ROW,

REPLI CATI ON_SCOPE => '0', VERSIONS => '1', COVPRESS

ION => "NONE', MN_VERSIONS => '0', TTL => ' FOREVER

', KEEP_DELETED CELLS => 'fal se', BLOCKSIZE => ' 655

36', I N MEMORY => 'false', BLOCKCACHE => 'true'}

1 rowms) in 0.1280 seconds

hbase(nai n): 008: 0> qui t

$ hbase org. apache. hadoop. hbase. snapshot . Export Snapshot -snapshot Test Ta
bl eSnapshot -copy-to file:///tnp/ hbase -mappers 16 -bandw dth 200

14/ 10/ 28 21:48:16 | NFO snapshot . Export Snapshot: Copy Snhapshot Mani fest

14/ 10/ 28 21:48:17 INFO client. RMProxy: Connecting to ResourceManager at a
1221. exanpl e. com 192. 0. 2. 121: 8032

14/ 10/ 28 21:48:19 | NFO snapshot . Export Snapshot: Loadi ng Snapshot ' TestT
abl eSnapshot' hfile Iist

14/ 10/ 28 21:48:19 | NFO Confi gurati on. deprecation: hadoop.native.lib is d
eprecated. Instead, use io.native.lib.available

14/ 10/ 28 21:48:19 INFO util.FSVisitor: No |l ogs under directory: hdfs://al2
21. exanpl e. com 8020/ hbase/ . hbase- snapshot / Test Tabl eSnapshot / WALs

14/ 10/ 28 21:48:20 | NFO mapreduce. JobSubmi tter: nunmber of splits:0

14/ 10/ 28 21:48: 20 | NFO mapreduce. JobSubmitter: Subnitting tokens for job:
job_1414556809048_0001

14/ 10/ 28 21:48:20 INFO inpl.YarnCientlnpl: Submitted application appl
cation_1414556809048 0001

14/ 10/ 28 21:48:20 | NFO mapreduce. Job: The url to track the job: http://
al221. exanpl e. com 8088/ proxy/ appl i cati on_1414556809048 0001/

14/ 10/ 28 21:48: 20 | NFO mapr educe. Job: Runni ng job: job_ 1414556809048 0001

14/ 10/ 28 21:48: 36 | NFO mapr educe. Job: Job job_ 1414556809048 0001 runni ng

in uber node : false

14/ 10/ 28 21:48: 36 | NFO napreduce. Job: nap 0% reduce 0%

14/ 10/ 28 21:48: 37 | NFO nmapreduce. Job: Job job 1414556809048 0001 conpl e
ted successfully

Cloudera Runtime Importing datainto HBase

14/ 10/ 28 21:48: 37 | NFO nmapr educe. Job: Counters: 2

Job Counters

Total tine spent by all naps in occupied slots (ns)=0

Total tine spent by all reduces in occupied slots (ns)=0

14/ 10/ 28 21: 48: 37 | NFO snapshot . Export Snapshot: Finalize the Snapshot
Export

14/ 10/ 28 21: 48: 37 | NFO snapshot . Export Snapshot: Verify snapshot integrity

14/ 10/ 28 21:48: 37 | NFO Configuration.deprecation: fs.default.name is depr
ecated. Instead, use fs.defaul tFS

14/ 10/ 28 21: 48: 37 | NFO snapshot . Export Snapshot: Export Conpleted: TestT
abl eSnapshot

The url to track the job: contains the URL from which you can track the ExportSnapshot job. When it finishes, a new
set of HFiles, comprising all of the HFiles that were part of the table when the snapshot was taken, is created at the
HDFS location you specified.

Y ou can use the Snapshotlnfo command-line utility included with HBase to verify or debug snapshots.

CopyTable uses HBase read and write paths to copy part or all of atable to anew tablein either the same cluster or a
different cluster.

CopyTable causes read |oad when reading from the source, and write load when writing to the destination. Region
splits occur on the destination table in real time as needed. To avoid these issues, use snapshot and export commands
instead of CopyTable. Alternatively, you can pre-split the destination table to avoid excessive splits. The destination
table can be partitioned differently from the source table. See this section of the Apache HBase documentation for
more information.

Using CopyTable, you can copy apart or all of atablein a CDH 5 cluster to agiven table in a cluster where the CDP
Private Cloud Base versionis 7.1 or higher. However, you have to pass the Dhbase.meta.replicas.use=true command
in the command line to make it work. For example:

hbase org. apache. hadoop. hbase. mapr educe. CopyTabl e - Dhbase. net a. repl i cas. use=
true ... <other options>

Using CopyTableto copy apart or all of atable from a CDP Private Cloud Base cluster to a CDH 5 cluster does not
work.

Edits to the source table after the CopyTable starts are not copied, so you may need to do an additional CopyTable
operation to copy new data into the destination table. Run CopyTable as follows, using --help to see details about
possible parameters.

$./bin/hbase org. apache. hadoop. hbase. mapr educe. CopyTabl e --hel p
Usage: CopyTabl e [general options] [--starttinme=X] [--endtinme=Y] [--new
. name=NEW [--peer.adr=ADR] <t abl enane>

The starttime/endtime and startrow/endrow pairs function in asimilar way: if you leave out the first of the pair, the
first timestamp or row in the table is the starting point. Similarly, if you leave out the second of the pair, the operation
continues until the end of the table. To copy the table to a new table in the same cluster, you must specify --new.na
me, unless you want to write the copy back to the same table, which would add a new version of each cell (with the
same data), or just overwrite the cell with the same value if the maximum number of versionsis set to 1. To copy the
tableto anew table in adifferent cluster, specify --peer.adr and optionally, specify a new table name.

The following example creates a new table using HBase Shell in non-interactive mode, and then copies datain two
ColumnFamiliesin rows starting with timestamp 1265875194289 and including the last row before the CopyTable
started, to the new table.

echo create 'NewTest Table', 'cfl', 'cf2', 'cf3" | bin/hbase shell --non-inte
ractive

http://hbase.apache.org/book/regions.arch.html#manual_region_splitting_decisions

Cloudera Runtime Importing datainto HBase

bi n/ hbase org. apache. hadoop. hbase. mapr educe. CopyTabl e --startti me=126587
5194289 --fanilies=cfl, cf2,cf3 --new nane=NewTest Tabl e Test Tabl e

Snapshots are recommended instead of CopyTable for most situations.

In many situations, writing HFiles programmatically with your data, and bulk-loading that datainto HBase on the
RegionServer, has advantages over other data ingest mechanisms.

HBase uses an internal file format called HFile to store its data on disk. BulkL oad operations bypass the write path
completely, providing the following benefits:

* Thedataisavailable to HBase immediately but does cause additional load or latency on the cluster when it
appesars.

« BulkLoad operations do not use the write-ahead log (WAL) and do not cause flushes or split storms.

« BulkLoad operations do not cause excessive garbage collection.

If you use BulkL oads with HBase, your workflow is similar to the following:

1. Extract your datafrom its existing source. For instance, if your dataisin a MySQL database, you might run
the mysgldump command. The process you use depends on your data. If your dataisaready in TSV or CSV
format, skip this step and use the included ImportTsv utility to process your datainto HFiles. See the ImportTsv
documentation for details.

2. Process your datainto HFile format. See http://hbase.apache.org/book.html# _hfile format_2 for details
about HFile format. Usually you use a MapReduce job for the conversion, and you often need to write
the Mapper yourself because your data is unique. The job must to emit the row key as the Key, and
either aKeyValue, aPut, or a Delete asthe Value. The Reducer is handled by HBase; configure it using
HFileOutputFormat.configurel ncrementalLoad() and it does the following:

* Inspectsthe table to configure atotal order partitioner

« Uploadsthe partitions file to the cluster and addsiit to the DistributedCache

» Setsthe number of reduce tasks to match the current number of regions

« Setsthe output key/value class to match HFileOutputFormat requirements

» Setsthe Reducer to perform the appropriate sorting (either KeyValueSortReducer or PutSortReducer)

3. OneHFileis created per region in the output folder. Input datais almost completely re-written, so you need
available disk space at least twice the size of the original data set. For example, for a100 GB output from mysq
Idump, you should have at least 200 GB of available disk spacein HDFS. Y ou can delete the origina input file at
the end of the process.

4. Load thefilesinto HBase. Use the L oadlncremental HFiles command (more commonly known as the
completebulkload tool), passing it a URL that locates the filesin HDFS. Each fileisloaded into the relevant
region on the RegionServer for the region. Y ou can limit the number of versions that are loaded by passing the
--versions= N option, where N isthe maximum number of versionsto include, from newest to oldest (largest
timestamp to smallest timestamp).

If aregion was split after the files were created, the tool automatically splits the HFile according to the new
boundaries. This processisinefficient, soif your table is being written to by other processes, you should load as
soon as the transform step is done.

The following illustration shows the full BulkLoad process.

10

http://hbase.apache.org/book/ops_mgt.html#importtsv
http://hbase.apache.org/book/ops_mgt.html#importtsv
http://hbase.apache.org/book/hfile_format.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/HFileOutputFormat2.html
http://hbase.apache.org/book.html#completebulkload

Cloudera Runtime

Importing datainto HBase

Extract Transform Load

Mapper1 Move files

Reducer2
Load 3 files

Upload

Complete
BulkLoad

Mapper2 Reducer3

Load 2 files
Reducer4

Mapper3 ReducerS

For an explanation of how secure BulkL oad works, see Bulk Loading .

When using BulkLoad to import datainto HBase in the a cluster using encryption zones, the following information is
important.

Both the staging directory and the directory into which you place your generated HFiles need to be within
HBase's encryption zone (generally under the /hbase directory). Before you can do this, you need to change the
permissions of /hbase to be world-executable but not world-readable (rwx--x--x, or numeric mode 711).

Y ou also need to configure the HMaster to set the permissions of the HBase root directory correctly. If you use
Cloudera Manager, edit the Master Advanced Configuration Snippet (Safety Valve) for hbase-site.xml. Otherwise,
edit hbase-site.xml on the HMaster. Add the following:

<property>
<nanme>hbase. r oot di r . per ns</ name>
<val ue>711</ val ue>
</ property>

If you skip this step, a previously-working BulkLoad setup will start to fail with permission errors when you
restart the HMaster.

There are three typical use cases when using BulkL oad can be advantageous.

Loading your original dataset into HBase for the first time - Your initial dataset might be quite large, and
bypassing the HBase write path can speed up the process considerably.

Incremental Load - To load new data periodically, use BulkLoad to import it in batches at your preferred intervals.
This alleviates latency problems and helps you to achieve service-level agreements (SLAS). However, one trigger
for compaction is the number of HFiles on a RegionServer. Therefore, importing a large number of HFiles at
frequent intervals can cause major compactions to happen more often than they otherwise would, negatively
impacting performance. Y ou can mitigate this by tuning the compaction settings such that the maximum number
of HFilesthat can be present without triggering a compaction is very high, and relying on other factors, such as
the size of the Memstore, to trigger compactions.

Data needs to originate elsewhere - If an existing system is capturing the data you want to have in HBase and
needs to remain active for business reasons, you can periodically BulkLoad data from the system into HBase so
that you can perform operations on it without impacting the system.

11

https://hbase.apache.org/book.html#arch.bulk.load

Cloudera Runtime Importing datainto HBase

If your datais aready in an HBase cluster, replication is useful for getting the data into additional HBase clusters.

In HBase, cluster replication refers to keeping one cluster state synchronized with that of another cluster, using the
write-ahead log (WAL) of the source cluster to propagate the changes. Replication is enabled at column family
granularity. Before enabling replication for a column family, create the table and all column families to be replicated,
on the destination cluster.

Cluster replication uses an active-push methodology. An HBase cluster can be a source (also called active, meaning
that it writes new data), a destination (also called passive, meaning that it receives data using replication), or can
fulfill both roles at once. Replication is asynchronous, and the goal of replication is consistency.

When datais replicated from one cluster to another, the original source of the data is tracked with acluster 1D, which
is part of the metadata. All clusters that have already consumed the data are also tracked. This prevents replication
loops.

Using HBase Replication

Sqgoop can import recordsinto atable in HBase. It has an out-of-the-box support for HBase

There are two mandatory options you must specify when using the sqgoop import command to import datainto
HBase using Sgoop:

» --hbase-table: Specifies the name of the table in HBase to which you want to import your data.

o --column-family: Specifies into which column family Sgoop imports the data of your tables.

For example, you can import the table citiesinto an already existing HBase table with the same name and use the
column family name world:

sqoop i nport --connect jdbc:mysql://mysqgl.exanpl e.com sqoop --username sqoop
--password sqoop --table cities --hbase-table cities --colum-fanily world

If the target table and column family do not exist, the Sqoop job will exit with an error. Y ou must create the target
table and column family before running an import. If you specify --hbase-create-table, Sqoop creates the target table
and column family if they do not exist, using the default parameters from your HBase configuration.

Sqgoop needs to identify which RDBMS column is used as row key column in the HBase table. There are three ways
to do this:

« By default, with the column name specified in the --split-by option
« With the primary key of thetable, if it isavailable
» With the --hbase-row-key parameter, which overrides both the --split-by option and the primary key of the table

For more information on data insertion into HBase, see Sqoop User Guide.

Y ou can specify how Sqoop handles RDBM S table column updated to NULL during incremental import.

There are two modes for this, ignore and delete. Y ou can specify the mode using the --hbase-null-incrementel-mode
option:
e -ignore: Thisisthe default value. If the source table's column is updated to NULL, the target HBase table will still

show the previous value for that column.

* -delete: If the source table's column is updated to NULL, all previous versions of the column will be deleted from
HBase. When checking the column in HBase using the Java API, anull value will be displayed.

12

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/hbase-backup-dr/topics/hbase-replication.html
http://sqoop.apache.org/docs/1.4.7/SqoopUserGuide.html#_importing_data_into_hbase

Cloudera Runtime Importing datainto HBase

Examples:

Execute an incremental import to an HBase table and ignore the columns which were updated to NULL in the
relational database:

sqoop inport --connect $CONN --usernane $USER --password $PASS --t

abl e "hbase test" --hbase-table hbase test --colum-fanily data -m1 --incr
enental |astnodified --check-colunm date nodified --1ast-value "2017-12-15
10: 58:44. 0" --nmerge-key id --hbase-null-increnental-node ignore

Execute an incremental import to an HBase table and delete all the versions of the columns which were updated to
NULL inthe relational database:

sqoop i mport --connect $CONN --username $USER - - passw

ord $PASS --table "hbase test" --hbase-table hbase test --colum-fanmily data
-m1 --increnental |astnodified --check-colum date nodified --1ast-valu

e "2017-12-15 10:58:44.0" --nmerge-key id --hbase-null-increnental -node d

elete

Y ou can write data to HBase from Apache Spark using def saveAsHadoopDataset(conf: JobConf): Unit.

This example is adapted from a post on the spark-users mailing list.

/1 Note: mapred package is used, instead of the
/'l mapreduce package whi ch contai ns new hadoop APIs.

i mport org. apache. hadoop. hbase. mapr ed. Tabl eCut put For mat
i mport org. apache. hadoop. hbase. cli ent
/1 ... some other settings

val conf = HBaseConfi guration.create()

/'l general hbase settings

conf . set ("hbase.rootdir",

"hdfs://" + naneNodeURL + ":" + hdfsPort + "/hbase")
conf . set Bool ean(" hbase. cl uster. di stri buted", true)
conf . set ("hbase. zookeeper . quorunt, host nane)
conf.setlnt("hbase. client.scanner.caching”, 10000)
/1 ... sone other settings

val jobConfig: JobConf = new JobConf(conf, this.getd ass

/1 Note: TableQutputFormat is used as deprecated code

/' because JobConf is an old hadoop API

j obConfi g. set Qut put For mat (cl assOf [Tabl eQut put For mat])

j obConfi g. set (Tabl eQut put For mat . OQUTPUT_TABLE, out put Tabl
e)

Next, provide the mapping between how the data looks in Spark and how it should look in HBase. The following
example assumes that your HBase table has two column families, col_1 and col_2, and that your datais formatted in
sets of three in Spark, like (row_key, col_1, col_2).

def convert(triple: (Int, Int, Int)) = {
val p = new Put (Bytes.toBytes(triple._1))
p. add(Bytes. toBytes("cf"),
Byt es.toBytes("col _1"),

13

http://mail-archives.apache.org/mod_mbox/spark-user/201311.mbox/%3CCACyZca3ASKwD-tuJHQi1805BN7ScTguAoRuHd5xTxCSUL1aNvQ@mail.gmail.com%3E

Cloudera Runtime Importing datainto HBase

Bytes.toBytes(triple._2))

p. add(Bytes. toBytes("cf"),

Byt es. t oBytes("col _2"),
Bytes.toBytes(triple. 3))

(new | rmut abl eByt esWitable, p)

}

To write the data from Spark to HBase, you might use:

new Pai r RDDFunct i ons(| ocal Dat a. map(convert)) . saveAsHadoopDat aset (j obConfi g)

Many of the methods to import data into HBase use MapReduce implicitly. If none of those approaches fit your
needs, you can use MapReduce directly to convert datato a series of HFiles or API calls for import into HBase

In thisway, you can import data from Avro, Parquet, or another format into HBase, or export data from HBase into
another format, using API calls such as TableOutputFormat, HFileOutputFormat, and Tablel nputFormat.

HashTable/SyncTable is atwo steps tool for synchronizing table data without copying all cellsin a specified row key/
time period range.

The HashTable/SyncTable tool can be used for partia or entire table data synchronization, under the same or remote
cluster. Both the HashTable and the SyncTable step are implemented as a MapReduce job.

Thefirst step, HashTable, creates hashed indexes for batch of cells on the source table and output those as results. The
source table is the table whose state is copied to its counterpart.

The second step, SyncTable, scans the target table and cal culates hash indexes for table cells. Then these hashes are
compared to the HashTable step outputs. So, SyncTable scans and compares cells for diverging hashes and updating
only the mismatching cells.

Thisresultsin less network traffic or data transfers than other methods, for example CopyTable, which can impact
performance when large tables are synchronized on remote clusters.

Remote clusters are often deployed on different Kerberos Realms. SyncTable support cross realm authentication,
alowing a SyncTable process running on the target cluster to connect to the source cluster and read both the
HashTable output files and the given HBase table when performing the required comparisons.

Y ou can configure the HashTable/SyncTable tool for your specific needs.

Y ou can define the amount of cell datafor a given region that is hashed together in a single hash value using the
batchsi ze option, which sets the batchsize property. Sizing this property has adirect impact on the synchronization
efficiency. If the batch size isincreased, larger chunks are hashed.

If only afew differences are expected between the two tables, using a bit larger batch size can be beneficial, asless
scans are executed by mapper tasks of SyncTable.

However, if relatively frequent differences are expected between the tables, using alarge batch size can cause
frequent mismatches of hash values, as the probability of finding at least one mismatch in abatch isincreased.

14

Cloudera Runtime Importing datainto HBase

The following is an example of sizing this property:

$ hbase org. apache. hadoop. hbase. mapr educe. HashTabl e --bat chsi ze=32000 - - nunh
ashfiles=50 --startti me=1265875194289 --endti ne=1265878794289 --fam |ies=cf2
, cf3 Test Tabl eA / hashes/t est Tabl e

Y ou can use the dryrun option in the second, SyncTable, step to create aread only report. It produces only
COUNTERS indicating the differences between the two tables, but does not perform any actual changes. It can be
used as an aternative of the VerifyReplication tool.

The following is an example of using this option:

$ hbase org. apache. hadoop. hbase. mapr educe. SyncTabl e --dryrun=true --sourcezk
cl ust er=zkl. exanpl e. com zk2. exanpl e. com zk3. exanpl e. com 2181: / hbase hdfs://
nn: 8020/ hashes/ t est Tabl e t est Tabl eA t est Tabl eB

By default, SyncTable changes the target table to make it an exact copy of the source table, at least for the specified
startrow-stoprow or starttime-endtime.

Setting doDeletes to fal se modifies the default behaviour to not delete target cells that are missing on the source table.
Similarly, setting doPuts to false modifies the default behaviour to not add missing cellsto target table. If you set both
doDeletes and doPuts to false, the result will be the same as setting dryrun to true.

In the case of two-way replication or other scenarios where both source and target clusters can have data ingested,
Cloudera recommends to set doDel etes to false. Otherwise any additional cellsinserted on the SyncTable target
cluster and not yet replicated to the source cluster would be deleted, and potentially lost permanently.

The HashTable/SyncTable tool can be used for partial or entire table data synchronization, under the same or remote
cluster.

« Ensurethat all RegionServers/DataNodes on the source cluster is accessible by the NodeM anagers on the target
cluster where SyncTable job tasks will be running.

* Inthe case of secured clusters, the user on the target cluster who executes the SyncTable job must be able to do
the following on the HDFS and HBase services of the source cluster:

« Authenticate: for example, using centralized authentication or cross-realm setup.
» Beauthorized: having at |east read permission.

1. Run HashTable on the source table cluster: HashTable [options] <tablename> <outputpath>
Thefollowing is an example to hash the TesTablein 32kB batches for a 1 hour window into 50 files:
$ hbase org. apache. hadoop. hbase. mapr educe. HashTabl e --bat chsi ze=32000 --n

umhashfil es=50 --startti ne=1265875194289 --endti ne=1265878794289 --fani |
i es=cf 2, cf3 Test Tabl eA / hashes/t est Tabl e

15

Cloudera Runtime Writing datato HBase

2. Run SyncTable on the target cluster: SyncTable [options] <sourcehashdir> <sourcetable> <targettable>

Thefollowing is an example for adry run SyncTable of tableA from aremote source cluster to alocal tableB on
the target cluster:

$ hbase org. apache. hadoop. hbase. mapr educe. SyncTabl e --dryrun=true --sour
cezkcl ust er=zk1. exanpl e. com zk2. exanpl e. com zk3. exanpl e. com 2181: / hbase
hdf s: // nn: 8020/ hashes/ t est Tabl e t est Tabl eA t est Tabl eB

Note:
B For more detailed information regarding HashTable/SynTable tool options, use hbase org.apache.hadoop.
hbase.mapreduce.SyncTable --help.

To write datato HBase, you use methods of the Table class.

Y ou can use the Java API directly, or use the HBase Shell, the REST API, the Thrift AP, , or another client
which uses the Java API indirectly. When you issue a Put, the coordinates of the data are the row, the column, and
the timestamp. The timestamp is unique per version of the cell, and can be generated automatically or specified
programmatically by your application, and must be along integer.

There are several different ways to write datainto HBase.

« A Put operation writes datainto HBase.

« A Delete operation deletes data from HBase. What actually happens during a Delete depends upon several factors.

* A CheckAndPut operation performs a Scan before attempting the Put, and only does the Put if a value matches
what is expected, and provides row-level atomicity.

* A CheckAndDelete operation performs a Scan before attempting the Delete, and only does the Delete if avalue
matches what is expected.

« An Increment operation increments values of one or more columns within asingle row, and provides row-level
atomicity.

Refer to the APl documentation for afull list of methods provided for writing data to HBase.Different methods
require different access levels and have other differences.

When you put datainto HBase, atimestamp is required.

The timestamp can be generated automatically by the RegionServer or can be supplied by you. The timestamp must
be unique per version of a given cell, because the timestamp identifies the version. To modify a previous version of a
cell, for instance, you would issue a Put with a different value for the dataitself, but the same timestamp.

HBase's behavior regarding versions is highly configurable. The maximum number of versions defaultsto 1. You
can change the default value for HBase by configuring hbase.column.max.version in hbase-site.xml, either using an
advanced configuration snippet if you use Cloudera Manager, or by editing the file directly otherwise.

Y ou can aso configure the maximum and minimum number of versions to keep for a given column, or specify a
default time-to-live (TTL), which is the number of seconds before aversion is deleted. The following examples all
use ater statements in HBase Shell to create new column families with the given characteristics, but you can use the

16

Cloudera Runtime Writing datato HBase

same syntax when creating a new table or to alter an existing column family. Thisis only afraction of the options you
can specify for a given column family.

hbase> alter ‘t1#, NAME => ‘f1#, VERSIONS => 5
hbase> alter ‘t1#, NAME => ‘f1#, M N_VERSIONS => 2
hbase> alter ‘t1#, NAME => ‘f1#, TTL => 15

HBase sorts the versions of a cell from newest to oldest, by sorting the timestamps lexicographically. When aversion
needs to be deleted because a threshold has been reached, HBase aways chooses the "oldest" version, evenif itisin
fact the most recent version to be inserted. Keep thisin mind when designing your timestamps. Consider using the
default generated timestamps and storing other version-specific data el sewhere in the row, such asin the row key. If
MIN_VERSIONS and TTL conflict, MIN_VERSIONS takes precedence.

When you request for HBase to delete data, either explicitly using a Delete method or implicitly using a threshold
such as the maximum number of versions or the TTL, HBase does not delete the dataimmediately

Instead, it writes a deletion marker, called atombstone, to the HFile, which isthe physical file where agiven
RegionServer stores its region of a column family. The tombstone markers are processed during major compaction
operations, when HFiles are rewritten without the deleted data included.

Even after mgjor compactions, "deleted" data may not actually be deleted. Y ou can specify the
KEEP_DELETED_CELLS option for agiven column family, and the tombstones will be preserved in the HFile even
after mgjor compaction. One scenario where this approach might be useful is for data retention policies.

Another reason deleted data may not actually be deleted isif the data would be required to restore atable from a
snapshot which has not been deleted. In this case, the datais moved to an archive during a major compaction, and
only deleted when the snapshot is deleted. Thisis agood reason to monitor the number of snapshots saved in HBase.

These abbreviated example writes data to an HBase table.
This abbreviated example writes data to an HBase table using HBase Shell and then scans the table to show the result

hbase> put 'test', 'rowl', 'cf:a', 'valuel

0 row(s) in 0.1770 seconds

hbase> put "test', 'row2', 'cf:b', 'value2

0O rowm(s) in 0.0160 seconds

hbase> put '"test', 'row3', 'cf:c', 'value3

0 row(s) in 0.0260 seconds

hbase> scan 'test

ROW COLUMNH+CELL
r owl col um=cf:a, timestanp=1403759475114, val ue=val uel
r ow2 col um=cf: b, timestanp=1403759492807, val ue=val ue2
r ow3 col um=cf:c, timestanp=1403759503155, val ue=val ue3

3 row(s) in 0.0440 seconds

This abbreviated example uses the HBase API to write data to an HBase table, using the automatic timestamp created
by the Region Server.

publicstaticfinal byte[] CF = "cf".getBytes();
publicstaticfinal byte[] ATTR = "attr". getBytes();

Put put = new Put (Bytes.toBytes(row));
put.add(CF, ATTR, Bytes.toBytes(data));

17

Cloudera Runtime Reading data from HBase

ht abl e. put (put) ;
This example uses the HBase API to write data to an HBase table, specifying the timestamp.

publicstaticfinal byte[] CF = "cf".getBytes();
publicstaticfinal byte[] ATTR = "attr". getBytes();

Put put = new Put(Bytes.toBytes(row));

long explicitTinelnMs = 555; // just an exanpl e
put.add(CF, ATTR, explicitTinelnMs, Bytes.toBytes(data));
ht abl e. put (put);

The Get and Scan are the two ways to read data from HBase, aside from manually parsing HFiles.

A Get issimply a Scan limited by the API to one row. A Scan fetches zero or more rows of atable. By default, a Scan
reads the entire table from start to end. Y ou can limit your Scan resultsin several different ways, which affect the
Scan'sload in terms of 10, network, or both, as well as processing load on the client side. Thistopic is provided asa
quick reference. Refer to the APl documentation for Scan for more in-depth information. Y ou can also perform Get
and Scan using the HBase Shell, the REST API, or the Thrift API.

« Specify astartrow or stoprow or both. Neither startrow nor stoprow need to exist. Because HBase sorts rows
lexicographically, it will return the first row after startrow would have occurred, and will stop returning rows after
stoprow would have occurred.The goal isto reduce 10 and network.

e The startrow isinclusive and the stoprow is exclusive. Given atable with rows a, b, ¢, d, e, f, and startrow of ¢
and stoprow of f, rows c-e are returned.

e |f you omit startrow, the first row of the table is the startrow.

« If you omit the stoprow, all results after startrow (including startrow) are returned.

« |f startrow is lexicographically after stoprow, and you set Scan setReversed(boolean reversed) to true, the
results are returned in reverse order. Given the same table above, with rows af, if you specify c as the stoprow
and f as the startrow, rowsf, e, and d are returned.

Scan()
Scan(byte[] startRow)
Scan(byte[] startRow, byte[] stopRow)

» Specify ascanner cache that will be filled before the Scan result is returned, setting setCaching to the number
of rowsto cache before returning the result. By default, the caching setting on the table is used. The goal isto
balance 10 and network load.

public Scan set Cachi ng(int cachi ng)

e Tolimit the number of columnsif your table has very wide rows (rows with alarge number of columns), use
setBatch(int batch) and set it to the number of columns you want to return in one batch. A large number of
columns is not arecommended design pattern.

public Scan setBatch(int batch)

» To specify amaximum result size, use setMaxResultSize(long), with the number of bytes. The goal isto reduce
10 and network.

public Scan set MaxResult Si ze(l ong maxResul t Si ze)

* When you use setCaching and setMaxResultSize together, single server requests are limited by either number of
rows or maximum result size, whichever limit comesfirst.

18

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

Cloudera Runtime Reading data from HBase

* You can limit the scan to specific column families or columns by using addFamily or addColumn. The goal
isto reduce |10 and network. 10 is reduced because each column family is represented by a Store on each
RegionServer, and only the Stores representing the specific column families in question need to be accessed.

public Scan addCol um(byte[] famly,
byte[] qualifier)

public Scan addFam |l y(byte[] fanily)
* You can specify arange of timestamps or a single timestamp by specifying setTimeRange or setTimestamp.

public Scan set Ti neRange(l ong m nSt anp,
| ong maxSt anp)
throws | OException

public Scan setTi neStanp(long ti nestanp)
throws | OException

* You can retrieve a maximum number of versions by using setMaxVersions.

public Scan set MaxVersions(int nmaxVersions)

e You can use afilter by using setFilter. .

public Scan setFilter(Filter filter)

* You can disable the server-side block cache for a specific scan using the API setCacheBlocks(boolean). Thisisan
expert setting and should only be used if you know what you are doing.

HBase filtering

Y ou can perform scans using HBase Shell, for testing or quick queries.

Use the following guidelines or issue the scan command in HBase Shell with no parameters for more usage
information. This represents only a subset of possibilities.

Di splay usage information

hbase> scan

Scan all rows of table '"t1'

hbase> scan 't1'

Specify a startrow, limt the result to 10 rows, and only return sel ected
col ums

hbase> scan 't1', {COLUWNS => ['c1', 'c2'], LIMT => 10, STARTROW => 'xyz'}

Specify a tinerange
hbase> scan 't1', {TI MERANGE => [1303668804, 1303668904]}

Specify a customfilter
hbase> scan 't1', {FILTER => org. apache. hadoop. hbase. filter. Col umPagi nati o
nFilter.new(1, 0)}

Specify a row prefix filter and another customfilter
hbase> scan 't1', {ROAPREFI XFILTER => 'row2',
FILTER => (QualifierFilter (>=, 'binary:xyz')) AND
(TimestanmpsFilter (123, 456))}

Di sabl e the bl ock cache for a specific scan (experts only)
hbase> scan '"t1', {COLUWNS => ['cl', 'c2'], CACHE BLOCKS => fal se}

19

Cloudera Runtime HBase filtering

When reading data from HBase using Get or Scan operations, you can use custom filtersto return a subset of results
to the client.

While this does not reduce server-side 1O, it does reduce network bandwidth and reduces the amount of data the client
needs to process. Filters are generally used using the Java API, but can be used from HBase Shell for testing and
debugging purposes.

HBase filters take zero or more arguments, in parentheses. Where the argument is a string, it is surrounded by single
quotes ('string’).

Reading data from HBase

Cloudera Runtime by default has the ability to dynamically load a custom filter.

It adds a JAR with your filter to the directory specified by the hbase.dynamic.jars.dir property (which defaultsto the
lib/ directory under the HBase root directory).

To disable automatic loading of dynamic JARS, set hbase.use.dynamic.jarsto false in the advanced configuration
snippet for hbase-sitexml if you use Cloudera Manager, or to hbase-site.xmlotherwise.

Filters can be combined together with logical operators.

Some filters take a combination of comparison operators and comparators. Following isthe list of each.

* AND - the key-value must pass both the filters to be included in the results.
¢ OR - thekey-value must pass at least one of the filtersto be included in the results.
« SKIP - for aparticular row, if any of the key-values do not pass the filter condition, the entire row is skipped.

e WHILE - For aparticular row, it continues to emit key-values until a key-value is reached that fails the filter
condition.

e Compound Filters - Using these operators, a hierarchy of filters can be created. For example:

(Filterl AND Filter2)OR(Filter3 AND Filter4)

« LESS(<)
« LESS OR EQUAL (<=)
« EQUAL (=)

« NOT_EQUAL (=)

« GREATER _OR_EQUAL (>=)
« GREATER (>)

* NO_OP (no operation)

20

Cloudera Runtime HBase filtering

» BinaryComparator - lexicographically compares against the specified byte array using the Bytes.compareTo(byte
[1, byte[]) method.

« BinaryPrefixComparator - lexicographically compares against a specified byte array. It only compares up to the
length of this byte array.

« RegexStringComparator - compares against the specified byte array using the given regular expression. Only
EQUAL and NOT_EQUAL comparisons are valid with this comparator.

e SubStringComparator - tests whether or not the given substring appears in a specified byte array. The comparison
iscaseinsensitive. Only EQUAL and NOT_EQUAL comparisons are valid with this comparator.

Exanpl el: >, 'binary:abc' will match everything that is |exicographically gr
eater than "abc"

Exanpl e2: =, 'binaryprefix:abc' will match everything whose first 3 char
acters are | exicographically equal to "abc"

Exanpl e3: !=, 'regexstring:ab*yz' wll match everything that doesn't begi
n with "ab" and ends with "yz"

Exanpl e4: =, 'substring:abcl23" will match everything that begins wth

the substring "abc123"

Within an expression, parentheses can be used to group clauses together, and parentheses have the highest order of
precedence.

SKIP and WHILE operators are next, and have the same precedence.
The AND operator is next.
The OR operator is next.

Examples

Afilter string of the form “Filterl AND Filter2 OR Filter3” will be eval ua
ted as: “(Filterl AND Filter2) OR Filter3d”

A filter string of the form “Filterl AND SKIP Filter2 OR Filter3” wll
be evaluated as: “(Filterl AND (SKIP Filter2)) OR Filter3”

HBase includes severa filter types, as well as the ability to group filters together and create your own custom filters.

» KeyOnlyFilter - takes no arguments. Returns the key portion of each key-value pair.

Syntax: KeyOnlyFilter ()
« FirstKeyOnlyFilter - takes no arguments. Returns the key portion of the first key-value pair.

Syntax: FirstKeyOnlyFilter ()

» PrefixFilter - takes asingle argument, a prefix of arow key. It returns only those key-values present in arow that
start with the specified row prefix

Syntax: PrefixFilter (‘<row prefix>")

21

Cloudera Runtime HBase filtering

Exanpl e: PrefixFilter (‘Row)

* ColumnPrefixFilter - takes a single argument, a column prefix. It returns only those key-values present in a
column that starts with the specified column prefix.

Syntax: ColummPrefixFilter (‘<colum_prefix>")

Exanpl e: Col umPrefixFilter (‘Col’)

» MultipleColumnPrefixFilter - takes alist of column prefixes. It returns key-valuesthat are present in a column that
starts with any of the specified column prefixes.

Syntax: MiltipleColumPrefixFilter ('<colum_prefix>", ‘<colum_prefix>,
.., ~<columm_prefix>")

Exanpl e: Mul tipl eCol umPrefixFilter (‘Coll, ‘Col2)
e ColumnCountGetFilter - takes one argument, alimit. It returns the first limit number of columnsin the table.
Syntax: ColumCountGetFilter (‘<limt>")
Exanpl e: Col umCount GetFilter (4)
» PageFilter - takes one argument, apage size. It returns page size number of rows from the table.
Syntax: PageFilter ('<page_size>")
Exanpl e: PageFilter (2)

e ColumnPaginationFilter - takes two arguments, alimit and offset. It returns limit number of columns after offset
number of columns. It doesthis for all the rows.

Syntax: ColumPagi nationFilter (‘<limt>, ‘<offset>")

Exanpl e: Col umPagi nati onFilter (3, 5)

« InclusiveStopFilter - takes one argument, arow key on which to stop scanning. It returns all key-values present in
rows up to and including the specified row.

Syntax: InclusiveStopFilter (‘<stop_row key>")

Exanpl e: 1 nclusiveStopFilter (‘Row2)

« TimeStampsFilter - takes alist of timestamps. It returns those key-values whose timestamps matches any of the
specified timestamps.

Syntax: TinmeStanpsFilter (<tinmestanp>, <tinmestanp>, ... ,<tinestanp>)

Exanpl e: Ti meStanpsFilter (5985489, 48895495, 58489845945)

¢ RowkFilter - takes a compare operator and a comparator. It compares each row key with the comparator using the
compare operator and if the comparison returnstrue, it returns all the key-values in that row.

Syntax: RowFilter (<compareQp>, ‘<row_conparator>")
Exanpl e: RowFilter (<=, ‘binary:xyz)

e FamilyFilter - takes a compare operator and a comparator. It compares each family name with the comparator
using the compare operator and if the comparison returns true, it returns al the key-values in that family.

Syntax: FamilyFilter (<conpareQp>, ‘<famly_ conparator>')

22

Cloudera Runtime HBase filtering

Exanpl e: FamilyFilter (>=, ‘binaryprefix:FamlyB)

« QudifierFilter - takes a compare operator and a comparator. It compares each qualifier name with the comparator
using the compare operator and if the comparison returns true, it returns al the key-values in that column.

Syntax: QualifierFilter (<conpareQp>, ‘<qualifier_conparator>")

Exanpl e: QualifierFilter (=, ‘substring:Columl’)

» ValueFilter - takes a compare operator and a comparator. It compares each value with the comparator using the
compare operator and if the comparison returns true, it returns that key-value.

Syntax: ValueFilter (<conpareQp>, ‘<val ue_conparator>')
Exanpl e: ValueFilter (!'=, ‘binary: Value')

* DependentColumnFilter - takes two arguments required arguments, afamily and a qualifier. It tries to locate
this column in each row and returns all key-valuesin that row that have the same timestamp. If the row does not
contain the specified column, none of the key-valuesin that row will be returned.

Thefilter can also take an optional boolean argument, dropDependentColumn. If set to true, the column used for
the filter does not get returned.

Thefilter can also take two more additional optional arguments, a compare operator and a value comparator,
which are further checks in addition to the family and qualifier. If the dependent column is found, its value should
also pass the value check. If it does pass the value check, only then isits timestamp taken into consideration.

Synt ax: Dependent ColumFilter (‘<famly>', ‘<qualifier>", <boolean> <c
onpare operator>, ‘<value conparator’)
Dependent ColumFilter (‘<famly>", ‘<qualifier>, <boolean>)
Dependent Col umFilter (‘<famly>, ‘<qualifier>")
Exanpl e: Dependent ColumFilter (‘conf’, ‘blacklist’, false, >=,
zebra’)
Dependent Col umFilter (‘conf’, ‘blacklist’, true)
Dependent Col umFilter (‘conf’, ‘blacklist’)

e SingleColumnValueFilter - takes a column family, a qualifier, a compare operator and a comparator. If the
specified column is not found, all the columns of that row will be emitted. If the column is found and the
comparison with the comparator returns true, al the columns of the row will be emitted. If the condition fails, the
row will not be emitted.

Thisfilter also takes two additional optional boolean arguments, filterlfColumnMissing and setLatestVersion
Only.

If the filterlfColumnMissing flag is set to true, the columns of the row will not be emitted if the specified column
to check is not found in the row. The default valueis fase.

If the setLatestVersionOnly flag is set to false, it will test previous versions (timestamps) in addition to the most
recent. The default value istrue.

These flags are optional and dependent on each other. Y ou must set neither or both of them together.

Syntax: SingleColumVal ueFilter (‘<famly>", ‘<qualifier>, <conpare op
erator>, ‘<conparator>', <filterlfColunmM ssing bool ean>, <l atest_versio
n_bool ean>)

Syntax: SingleColumVal ueFilter (‘<family>", ‘<qualifier>, <
conpar e operator>, ‘<conparator>')

Exanpl e: Si ngl eCol umVal ueFilter (‘Fam|yA, ‘Columl , <=, ‘abc
, true, false)
Exanpl e: Si ngl eCol umVal ueFilter ('Fam|IyA, ‘Columl , <=, ‘a

bc’)

23

Cloudera Runtime HBase filtering

« SingleColumnValueExcludeFilter - takes the same arguments and behaves same as SingleColumnV alueFilter.
However, if the column is found and the condition passes, al the columns of the row will be emitted except for
the tested column value.

Synt ax: Singl eCol umVal ueExcl udeFilter (<fami|ly>, <qualifier> <conpare
operators>, <conparator>, <l|latest version_bool ean> <filterlfColumM ss
i ng_bool ean>)

Synt ax: Si ngl eCol umVal ueExcl udeFilter (<famly>, <qualifier> <com
par e oper at or> <conpar at or >)

Exanpl e: Si ngl eCol umVal ueExcl udeFilter (‘FamlyA , ‘Columl’, ‘<=,
abc’, ‘false’, ‘true’)
Exanpl e: Si ngl eCol umVal ueExcl udeFilter (‘FamlyA , ‘Columl’, ‘<=,

“abc’)

* ColumnRangeFilter - takes either minColumn, maxColumn, or both. Returns only those keys with columns that
are between minColumn and maxColumn. It aso takes two boolean variables to indicate whether to include the
minColumn and maxColumn or not. If you don’t want to set the minColumn or the maxColumn, you can passin
an empty argument.

Syntax: Col umRangeFilter (‘<m nColumm >', <mi nCol uml ncl usive_bool >, *
<maxCol utm>’ , <maxCol umml ncl usi ve_bool >)

Exanpl e: Col umRangeFilter (‘abc’, true, ‘xyz’', false)

e Custom Filter - You can create a custom filter by implementing the Filter class. The JAR must be available on all
RegionServers.

This example scans the 'users' table for rows where the contents of the cf:name column equals the string "abc'.

hbase>
scan 'users', { FILTER =>
Si ngl eCol unmVal ueFi | t er. new Byt es. t oBytes(' cf'),
Bytes.toBytes(' nane'), ConpareFilter:: ConpareQp.val ueO (' EQUAL'),
Bi nar yConpar at or. new Byt es. t oBytes('abc')))}

This example shows how to use the Java API to implement several different filters.

This example is taken from the HBase unit test found in hbase-server/src/test/javalorg/apache/hadoop/hbase/filter/
TestSingleColumnV alueFilter.java.

/**

Li censed to the Apache Software Foundati on (ASF) under one
or nore contributor |icense agreenents. See the NOTICE file
distributed with this work for additional information
regardi ng copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in conpliance
with the License. You nmay obtain a copy of the License at

L I S I R

htt p: // ww. apache. org/ |l i censes/ LI CENSE- 2. 0

24

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.html

Cloudera Runtime HBase filtering

*

* Unl ess required by applicable |aw or agreed to in witing, software

* distributed under the License is distributed on an "AS | S" BASI S,

* W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or im
pli ed.

*

See the License for the specific | anguage governing perm ssions and
* |imtations under the License.

*/

package org. apache. hadoop. hbase.filter;

import static org.junit.Assert.assertFal se;
import static org.junit.Assert.assertTrue;

i mport java.util.regex. Pattern;

i mport org. apache. hadoop. hbase. KeyVal ue;

i mport org. apache. hadoop. hbase. Snal | Test s;

i mport org. apache. hadoop. hbase. filter. ConpareFilter. ConpareQp;
i nport org. apache. hadoop. hbase. util . Byt es;

i mport org.junit.Before;

import org.junit. Test;

import org.junit.experinental.categories. Category;

/**

* Tests the value filter

*/

@cat egor y(Snal | Test s. cl ass)

public class Test Si ngl eCol umVal ueFilter {

private static final byte[] ROWN= Bytes.toBytes("test");

private static final byte[] COLUMN FAMLY = Bytes.toBytes("test");

private static final byte [] COLUWN QUALI FIER = Bytes.toBytes("fo0");

private static final byte[] VAL 1 Byt es.toBytes("a");

private static final byte[] VAL 2 Byt es. t oByt es("ab");

private static final byte[] VAL 3 Byt es. t oByt es("abc");

private static final byte[] VAL_4 Byt es. t oByt es("abcd");

private static final byte[] FULLSTRING 1 =

Byt es. t oByt es(" The qui ck brown fox junps over the |lazy dog.");

private static final byte[] FULLSTRING 2 =

Byt es. t oBytes("The slow grey fox trips over the |lazy dog.");

private static final String QU CK SUBSTR = "qui ck";

private static final String QU CK_REGEX = ".+qui ck. +";

private static final Pattern QU CK PATTERN = Pattern.conpile("QlcK",
Patt ern. CASE_I NSENSI TI VE | Pattern. DOTALL) ;

OO0OO0O0O0OO0

Filter basicFilter;
Filter nullFilter;

Filter substrFilter;
Filter regexFilter;
Filter regexPatternFilter;

@ef or e

public void setUp() throws Exception {

basi cFilter = basicFilterNew);

nullFilter = null FilterNew();

substrFilter = substrFilterNew();

regexFilter = regexFilterNew();

regexPatternFilter = regexFilter New QU CK PATTERN) ;

}

private Filter basicFilterNew()
return new Si ngl eCol umVal ueFilter (COLUMW_FAM LY, COLUWN _QUALI FI ER,
Conpar eOp. GREATER_OR _EQUAL, VAL_2);

25

Cloudera Runtime HBase filtering

private Filter null FilterNew)

return new Singl eCol utmVal ueFi |l ter (COLUVN_FAM LY, COLUMN_QUALI FI ER,
Conpar eOp. NOT_EQUAL,

new Nul | Conparator());

}

private Filter substrFilterNew() {

return new Singl eCol utmVal ueFi |l ter (COLUVN_FAM LY, COLUMN_QUALI FI ER,
Conpar eOp. EQUAL,

new Subst ri ngConpar at or (QUI CK_SUBSTR)) ;

}

private Filter regexFilterNew() {

return new Singl eCol utmVal ueFi |l ter (COLUVN_FAM LY, COLUMN_QUALI FI ER,
Conpar eOp. EQUAL,

new RegexSt ri ngConpar at or (QUI CK_REGEX)) ;

}

private Filter regexFilterNew Pattern pattern) {

return new Singl eCol utmVal ueFi |l ter (COLUVN_FAM LY, COLUMN_QUALI FI ER,
Conpar eOp. EQUAL,

new RegexStri ngConparator(pattern.pattern(), pattern.flags()));

}

private void basicFilterTests(SingleColumVal ueFilter filter)
t hrows Exception {
KeyVal ue kv = new KeyVal ue(ROW COLUWN FAM LY, COLUWN QUALIFI ER, VAL _

2);

assert True("basicFilter1l", filter.filterKeyVal ue(kv) == Filter.ReturnC
ode. | NCLUDE) ;

kv = new KeyVal ue(RON COLUWMN_FAM LY, COLUMN_QUALI FI ER, VAL_3);

assertTrue("basicFilter2", filter.filterKeyValue(kv) == Filter.ReturnC
ode. | NCLUDE) ;

kv = new KeyVal ue(RON COLUWN_FAM LY, COLUWN _QUALI FI ER, VAL_4);

assert True("basicFilter3", filter.filterKeyVal ue(kv) == Filter.ReturnC
ode. | NCLUDE) ;

assertFal se("basicFilterNotNull", filter.filterRow());

filter.reset();

kv = new KeyVal ue(RON COLUW FAM LY, COLUWN QUALI FIER, VAL _1);

assertTrue("basicFilter4", filter.filterKeyValue(kv) == Filter.Retu
rnCode. NEXT_ROW ;

kv = new KeyVal ue(RONW COLUWN_FAM LY, COLUWN _QUALI FI ER, VAL _2);

assertTrue("basicFilter4", filter.filterKeyValue(kv) == Filter.ReturnC
ode. NEXT_ROW ;

assert Fal se("basicFilterAl'l Remai ning", filter.filterAl Renaining());

assert True("basicFilterNotNulI", filter.filterRow());

filter.reset();

filter.setlLatestVersionOnly(false);

kv = new KeyVal ue(RON COLUWN FAM LY, COLUWN_QUALI FI ER, VAL_1);

assertTrue("basicFilter5", filter.filterKeyValue(kv) == Filter.ReturnC
ode. | NCLUDE) ;

kv = new KeyVal ue(RON COLUWN _FAM LY, COLUWN_QUALI FI ER, VAL_2);

assert True("basicFilter5", filter.filterKeyVal ue(kv) == Filter.ReturnC
ode. | NCLUDE) ;

assertFal se("basicFilterNotNull", filter.filterRow());

}

private void nullFilterTests(Filter filter) throws Exception {

((Si ngl eCol umVal ueFilter) filter).setFilterlfM ssing(true);

KeyVal ue kv = new KeyVal ue(ROW COLUWN _FAM LY, COLUMN QUALI FI ER, FUL
LSTRI NG 1);

assertTrue("null 1", filter.filterKeyValue(kv) == Filter.ReturnCode. | NC
LUDE) ;

assertFal se("null 1FilterRow', filter.filterRow());

26

Cloudera Runtime HBase filtering

filter.reset();

kv = new KeyVal ue(RON COLUW FAM LY, Bytes.toBytes("qual 2"), FULLST
RI NG 2);

assertTrue("null 2", filter.filterKeyValue(kv) == Filter.ReturnCode.IN
CLUDE) ;

éissertTrue("nuII2Fi|terRoW', filter.filterRow));

private void substrFilterTests(Filter filter)

throws Exception {

KeyVal ue kv = new KeyVal ue(RON COLUWN_FAM LY, COLUWMN_QUALI FI ER,
FULLSTRI NG 1) ;

assert True("substr True",

filter.filterKeyVal ue(kv) == Filter.ReturnCode.| NCLUDE);

kv = new KeyVal ue(RON COLUW FAM LY, COLUWMN QUALI FI ER,

FULLSTRI NG_2) ;

assert True("substrFal se", filter.filterKeyValue(kv) == Filter.ReturnC
ode. | NCLUDE) ;

assertFal se("substrFilterAll Remai ning”, filter.filter Al Remaining());

assert Fal se("substrFilterNotNulI", filter.filterRow());

}

private void regexFilterTests(Filter filter)

throws Exception {

KeyVal ue kv = new KeyVal ue(RONW COLUWN FAM LY, COLUWN_QUALI FI ER,

FULLSTRI NG 1) ;

assert True("regexTrue",

filter.filterKeyVal ue(kv) == Filter.ReturnCode. | NCLUDE);

kv = new KeyVal ue(RON COLUWN_FAM LY, COLUWN_QUALI FI ER,

FULLSTRI NG _2) ;

assert True("regexFal se", filter.filterKeyValue(kv) == Filter.Return
Code. | NCLUDE) ;

assert Fal se("regexFilter Al'l Remai ning", filter.filterAl Renaining());

assertFal se("regexFilterNotNulI", filter.filterRow));

}

private void regexPatternFilterTests(Filter filter)

t hrows Exception {

KeyVal ue kv = new KeyVal ue(ROW COLUWN FAM LY, COLUWN_QUALI FI ER,
FULLSTRI NG_1) ;

assert True("regexTrue",

filter.filterKeyVal ue(kv) == Filter.ReturnCode. | NCLUDE);

assert Fal se("regexFilter Al | Remai ning", filter.filter Al Renaining());
assertFal se("regexFilterNotNull", filter.filterRow));

}

private Filter serializationTest(Filter filter)
throws Exception {

/| Deconpose filter to bytes.

byte[] buffer = filter.toByteArray();

/1 Reconpose filter.
Filter newFilter = SingleColummVal ueFilter. parseFron(buffer);
return newrilter;

}
/**

* Tests identification of the stop row

* @hrows Exception

*/

@est

public void testStop() throws Exception {

basi cFi |l ter Test s((Si ngl eCol umVal ueFilter) basicFilter);
nul Il FilterTests(nullFilter);

27

Cloudera Runtime HBase online merge

substrFilterTests(substrFilter);
regexFilterTests(regexFilter);
regexPatternFilterTests(regexPatternFilter);

}
/**

* Tests serialization

* @hrows Exception

*/

@rest

public void testSerialization() throws Exception {
Filter newFilter = serializationTest(basicFilter);
basi cFi |l ter Test s((Si ngl eCol unmVal ueFi |l ter)newFilter);
newFilter = serializationTest(nullFilter);

nul I FilterTests(newrilter);

newrilter = serializationTest(substrFilter);
substrFilterTests(newrilter);

newrilter = serializationTest(regexFilter);
regexFilterTests(newFilter);

newFilter = serializationTest(regexPatternFilter);
regexPatternFilterTests(newFilter);

}
}

Cloudera Runtime supports online merging of regions.

HBase splits big regions automatically but does not support merging small regions automatically. To complete an
online merge of two regions of atable, use the HBase shell to issue the online merge command. By default, both
regions to be merged should be neighbors; that is, one end key of aregion should be the start key of the other region.
Although you can "force merge" any two regions of the same table, this can create overlaps and is not recommended.

The Master and RegionServer both participate in online merges. When the request to merge is sent to the Master, the
Master moves the regions to be merged to the same RegionServer, usually the one where the region with the higher
load resides. The Master then requests the RegionServer to merge the two regions. The RegionServer processes this
reguest locally. Once the two regions are merged, the new region will be online and available for server requests, and
the old regions are taken offline.

For merging two consecutive regions use the foll owing command:
hbase> nerge_regi on ' ENCODED REG ONNAME' , ' ENCODED REG ONNANME'
For merging regions that are not adjacent, passing true as the third parameter forces the merge.
hbase> nerge_regi on ' ENCODED REG ONNAME', ' ENCODED_REG ONNAME' , true
Note: Thiscommand is dightly different from other region operations. Y ou must pass the encoded region
B name (ENCODED_REGIONNAME), not the full region name . The encoded region name is the hash suffix

on region names. For example, if the region name is TestTable,0094429456,1289497600452.527db22f95c8a
9e0116f0cc13c680396, the encoded region name portion is 527db22f95¢8a9e0116f0cc13c680396.

Y ou can move the HBase Master Role from one host to another using Cloudera Manager.

28

Cloudera Runtime Expose HBase metrics to a Ganglia server

In Cloudera Manager, select the HBase service.

Click the Instances tab.

Click Add Role Instances and add role instances to HBase.
Choose the new host under Master.

Click Continue.

Start the newly added HBase Master role.
The state of the role becomes Started.

Wait until the type of the newly added HBase Master role bacomes Master (Backup).
Stop any other non-active HBase Master role instances.

This step does not impact HBase. It isrequired to ensure that the newly created HBase Master role backup will be
chosen to be the new active HBase Master role.

9. Stop the remaining active HBase Master role.
The type of the newly added HBase Master role automatically bacomes Master (Active).

10. Delete the old HBase Master role instances on hosts that are not wanted.

o 0k~ wbdPE

© N

Y ou can expose HBase metrics to Gangliainstance so that Ganglia, an open-source monitoring framework, can detect
potential problems with your HBase cluster.

1. In Cloudera Manager, select the HBase service.

2. Click the Configuration tab.

3. Select the HBase Master or RegionServer role.

Configure each role to monitor both:

4. Search for metrics2.

5. Find the Hadoop Metrics2 Advanced Configuration Snippet (Safety Valve) property.

6. Add the following snippet to the property, substituting the server information with your own:

hbase. si nk. gangl i a. cl ass=or g. apache. hadoop. netri cs2. si nk. gangli a. Gangl i a
Si nk31
hbase. si nk. gangl i a. server s=<Gangl i a server >: <port>
hbase. si nk. gangl i a. peri 0od=10
7. To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
8. Click Save Changes.
9. Restart therole.
10. Restart the HBase service.

The HBase-Spark Connector bridges the gap between the simple HBase Key Value store and complex relational SQL
gueries and enables users to perform complex data analytics on top of HBase using Spark.

29

Cloudera Runtime

Using the HBase-Spark connector

An HBase DataFrame is a standard Spark DataFrame, and is able to interact with any other data sources such as Hive,
ORC, Parquet, JSON, etc.

1. Edit the HBase RegionServer configuration for running Spark Filter.
Spark Filter is used when Spark SQL Where clauses arein use.

a)
b)
<)
d)
€)

f)
9)
h)

In Cloudera Manager, select the HBase service.

Click the Configuration tab.

Search for regionserver environment.

Find the RegionServer Environment Advanced Configuration Snippet (Safety Valve).
Click the plusicon to add the following property:

Key: HBASE_CLASSPATH

Value: /opt/cloudera/parcel SCDH/lib/hbase connectorg/lib/[*** HBASE-SPARK JAR NAME***] .jar:/opt/cl
oudera/parcel CDH/lib/hbase_connectorg/lib/[*** HBASE-SPARK PROTOCOL JAR NAME***] jar:/opt/cl
oudera/parcel/CDH/jarg/scala-library-2.11.12.jar

Ensure that the listed jars have the correct version number in their name.
Click Save Changes.
Restart Region Server.

2. Invoke Spark shell with some addition jars using the following snippet:

par k-shell --jars /opt/clouderal/parcels/CDH I|ib/hbase connectors/

I'i b/[***HBASE- SPARK JAR NAME***] . jar,/opt/cloudera/parcel s/CDH | i b/ hbase
_connectors/lib/[***HBASE- SPARK PROTOCOL JAR NAME***] . jar --files /etc/hb
ase/ conf/ hbase-site.xm --conf spark.driver.extraC assPat h=/ et c/ hbase/ conf

Ensure that the listed jars have the correct version number in their name.

Learn how to use the HBase-Spark connector by following an example scenario.

In this example we want to store personal datain an HBase table. We want to store name, email address, birth date
and height as a floating point number. The contact information (email) is stored in the ¢ column family and personal
information (birth date, height) is stored in the p column family. The key in HBase table will be the name attribute.

Type/Table Person person
Name name: String key

Email address email: String c:email
Birth date birthDate: Date p:birthDate
Height height: Float p:height

Use the following command to create the HBase table:

shel | > create 'person',

p, ¢

30

Cloudera Runtime Using the HBase-Spark connector

Use the following spark code in spark-shell to insert data into our HBase table:

val sql = spark. sql Cont ext
i mport java.sql.Date

case cl ass Person(nane: String,
email: String,
birthDate: Date,
hei ght: Fl oat)
var personDS = Seq(

Person("alice", "alice@lice.con, Date.val ued("2000-01-01"), 4.5f),
Person("bob", "bob@ob. cont, Date.valueO ("2001-10-17"), 5.1f)

). toDS

personDS. write.format ("org. apache. hadoop. hbase. spar k")
.option("hbase. col ums. mappi ng",

"name STRING : key, email STRING c:email, " +
"birthDat e DATE p: birthDate, hei ght FLOAT p: hei ght")
.option("hbase.table", "person")
.option("hbase. spark. use. hbasecontext", false)
. save()
The previoudly inserted data can be tested with a simple scan:

shel | > scan ‘ person’

ROW COLUMNHCELL
alice colum=c:ennil, tinestanp=1568723598292, val ue=alice@lice.com
alice colum=p:birthDate, tinmestanp=1568723598292, val ue=\x00\ x00\ x00\ xDd

\ x87 \ x00

alice colum=p: height, tinestanp=1568723598292, val ue=@ x90\ x00\ x00

bob colum=c:emil, tinestanp=1568723598521, val ue=bob@ob. com

bob col um=p: birthDate, timestanp=1568723598521, val ue=\x00\ x00\ x00\ xE9\
x99u\ x95\ x80

bob col um=p: hei ght, tinmestanp=1568723598521, val ue=@ xA333

2 rowms)

Use the following snippet in spark-shell to read the data back:

val sql = spark. sql Cont ext

val df = sql.read.format("org. apache. hadoop. hbase. spar k")
.option("hbase. col ums. mappi ng"
"name STRI NG : key, email STRING c:email, " +
"birthDat e DATE p: bi rt hDate, hei ght FLOAT p: height")
.option("hbase.table", "person")
.option("hbase. spark. use. hbasecontext", false)
.1 oad()
df . creat eOr Repl aceTenpVi ew(" per sonVi ew")

val results = sql.sqgl ("SELECT * FROM personVi ew WVHERE nane = 'alice'")
resul ts. show()

31

Cloudera Runtime Using the HBase-Spark connector

The result of this snippet is the following Data Frame:

feoooc feoocooc feccoccocooooooc feccococooc +
| nane| hei ght | emai | | birthDat e|
fooooc foccooc foccoccocoooooac foccococooc +
| alice| 4.5| alice@lice.conf2000-01-01]
occoe occooc fococococcooccoooos feoococooccoac +

In some cases the default HBase configuration can be insufficient. For example, when the dataset is located on a
different cluster.

HBase configuration can be altered in these cases:

i mport org. apache. hadoop. hbase. spar k. HBaseCont ext

i mport org. apache. hadoop. hbase. HBaseConfi gurati on

val conf = new HBaseConfi guration()

conf . set ("hbase. zookeeper . quorunt, "hbase-1. exanpl e. cont')

/1 the | atest HBaseContext will be used afterwards
new HBaseCont ext (spar k. spar kCont ext, conf)

val df = sql.read.format("org.apache. hadoop. hbase. spar k")
.option("hbase. col ums. mappi ng",

"name STRI NG : key, email STRING c:email, " +
"birt hDat e DATE p: birthDate, hei ght FLOAT p: hei ght")
.option("hbase.table", "person")
.1 oad()

df . creat eOr Repl aceTenpVi ew(" per sonVi ew")

val results = sql.sqgl ("SELECT * FROM personVi ew WVHERE nane = 'alice'")
results. show()

32

	Contents
	Starting and stopping HBase using Cloudera Manager
	Start HBase
	Stop HBase
	Graceful HBase shutdown
	Gracefully shut down an HBase RegionServer
	Gracefully shut down the HBase service

	Importing data into HBase
	Choose the right import method
	Use snapshots
	Use CopyTable
	Use BulkLoad
	Use cases for BulkLoad

	Use cluster replication
	Use Sqoop
	Use Spark
	Use a custom MapReduce job
	Use HashTable and SyncTable Tool
	HashTable/SyncTable tool configuration
	Synchronize table data using HashTable/SyncTable tool

	Writing data to HBase
	Variations on Put
	Versions
	Deletion
	Examples

	Reading data from HBase
	Perform scans using HBase Shell

	HBase filtering
	Dynamically loading a custom filter
	Logical operators, comparison operators and comparators
	Compound operators
	Filter types
	HBase Shell example
	Java API example

	HBase online merge
	Move HBase Master Role to another host
	Expose HBase metrics to a Ganglia server
	Using the HBase-Spark connector
	Example: Using the HBase-Spark connector

