Cloudera Runtime 7.1.3

Cloudera Search ETL Using Morphlines

Date published: 2019-11-19
Date modified:

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Extracting, Transforming, and L oading Data With Cloudera
1Yo 0] L= 4

Example Morphling USAgE........ccceeiieiieiiie ettt 6

Cloudera Runtime Extracting, Transforming, and Loading Data With Cloudera
Morphlines

Cloudera Morphlinesis an open-source framework that reduces the time and skills required to build or change
Search indexing applications. A morphline is arich configuration file that simplifies defining an ETL transformation
chain. Use these chains to consume any kind of datafrom any data source, process the data, and load the results into
Cloudera Search. Executing in a small, embeddable Java runtime system, morphlines can be used for near real-time
applications as well as batch processing applications. The following diagram shows the process flow:

Morphline
—event— —record—»“—record—»m—record—» Cmd document-»
e.g.: syslog e.g.: readLine e.g.: grok e.g.: loadSolr

Morphlines can be seen as an evolution of Unix pipelines, where the data model is generalized to work with streams
of generic records, including arbitrary binary payloads. Morphlines can be embedded into Hadoop components such
as Search, MapReduce, Hive, and Sqoop.

The framework ships with a set of frequently used high-level transformation and 1/O commands that can be combined
in application-specific ways. The plug-in system allows you to add new transformations and 1/0O commands and
integrates existing functionality and third-party systems.

This integration enables the following:

» Rapid Hadoop ETL application prototyping

e Complex stream and event processing in real time

* Fexiblelogfile anaysis

* Integration of multiple heterogeneous input schemas and file formats
» Reuseof ETL logic building blocks across Search applications

The high-performance Cloudera runtime compiles a morphline, processing all commands for a morphline in the same
thread and adding no artificial overhead. For high scalability, you can deploy many morphline instances on a cluster
in many MapReduce tasks.

The following components execute morphlines:

» MapReducel ndexerTool
e Lily HBase Indexer

Cloudera also provides a corresponding Cloudera Search Tutorial.

Morphlines manipulate continuous or arbitrarily large streams of records. The data model can be described as follows:
A record is a set of named fields where each field has an ordered list of one or more values. A value can be any Java
Object. That is, arecord is essentially a hash table where each hash table entry contains a String key and alist of

Java Objects as values. (The implementation uses Guava's ArrayListMultimap, which isaListMultimap). Note that
afield can have multiple values and any two records need not use common field names. This flexible data model
corresponds exactly to the characteristics of the Solr/L ucene data model, meaning a record can be seen as a Solrinpu
tDocument. A field with zero values is removed from the record - fields with zero values effectively do not exist.

Not only structured data, but also arbitrary binary data can be passed into and processed by a morphline. By
convention, arecord can contain an optional field named _attachment_body, which can be a Javajava.io.lnputStream
or Java byte][]. Optionally, such binary input data can be characterized in more detail by setting the fields named _att

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/search-indexing/topics/search-mapreduce-batch-index-ref.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/search-indexing/topics/search-config-hbase-indexer-for-search.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/search-tutorial/topics/search-tutorial.html

Cloudera Runtime Extracting, Transforming, and Loading Data With Cloudera
Morphlines

achment_mimetype (such as application/pdf) and _attachment_charset (such as UTF-8) and _attachment_name (such
as cars.pdf), which assists in detecting and parsing the data type.

This generic data model is useful to support awide range of applications.

2 Important: Cloudera Search does not support contrib modules, such as DatalmportHandler.

A command transforms arecord into zero or more records. Commands can access all record fields. For example,
commands can parse fields, set fields, remove fields, rename fields, find and replace values, split afield into multiple
fields, split afield into multiple values, or drop records. Often, regular expression based pattern matching is used as
part of the process of acting on fields. The output records of a command are passed to the next command in the chain.
A command has a Boolean return code, indicating success or failure.

For example, consider the case of a multi-line input record: A command could take this multi-line input record and
divide the single record into multiple output records, one for each line. This output could then later be further divided
using regular expression commands, splitting each single line record out into multiple fields in application specific
ways.

A command can extract, clean, transform, join, integrate, enrich and decorate records in many other ways. For
example, acommand can join records with external data sources such as relational databases, key-value stores,

local files or IP Geo lookup tables. It can also perform tasks such as DNS resol ution, expand shortened URLSs, fetch
linked metadata from socia networks, perform sentiment analysis and annotate the record accordingly, continuously
maintain statistics for analytics over sliding windows, compute exact or approximate distinct values and quantiles.

A command can also consume records and pass them to external systems. For example, acommand can load records
into Solr or write them to a MapReduce Reducer or pass them into an online dashboard. The following diagram
illustrates some pathways along which data might flow with the help of morphlines:

Log Formats

T’
Query

Social Media l

HdfsSink—- HDFS HBase - R E—— (L% g Custom Ul

Custom APP
OoLTP

B
I

A command can contain nested commands. Thus, amorphlineis atree of commands, akin to a push-based data flow
engine or operator treein DBMS query execution engines.

A morphline has no notion of persistence, durability, distributed computing, or host failover. A morphline is basically
just a chain of in-memory transformations in the current thread. There is no need for a morphline to manage multiple

5

Cloudera Runtime Example Morphline Usage

processes, hosts, or threads because thisis already addressed by host systems such as MapReduce or Storm. However,
amorphline does support passing notifications on the control plane to command subtrees. Such notifications include
BEGIN_TRANSACTION, COMMIT_TRANSACTION, ROLLBACK_TRANSACTION, SHUTDOWN.

The morphline configuration file isimplemented using the HOCON format (Human-Optimized Config Object
Notation). HOCON is basically JSON dlightly adjusted for configuration file use cases. HOCON syntax is defined at
HOCON github page and is also used by Akka and Play.

Cloudera Search includes several maven modules that contain morphline commands for integration with Apache Solr
including SolrCloud, flexible log file analysis, single-line records, multi-line records, CSV files, regular expression
based pattern matching and extraction, operations on record fields for assignment and comparison, operations on
record fields with list and set semantics, if-then-else conditionals, string and timestamp conversions, scripting support
for dynamic Java code, a small rules engine, logging, metrics and counters, integration with Avro, integration with
Apache Tika parsers, integration with Apache Hadoop Sequence Files, auto-detection of MIME types from binary
data using Apache Tika, and decompression and unpacking of arbitrarily nested container file formats, among others.

The following examples show how you can use morphlines.

This exampleillustrates using a morphline to index an Avro file with a schema.

1. View the content of the Avro file to understand the data:

$ wget http://archive. apache. org/dist/avro/avro-1.7.4/javal avro-tools-1
7.4.jar

$ java -jar avro-tools-1.7.4.jar tojson \

[usr/ shar e/ doc/ sear ch*/ exanpl es/ t est - docunent s/ sanpl e- st at uses-20120906- 14
1433. avro

2. Inspect the schema of the Avro file:

$ java -jar avro-tools-1.7.4.jar getschema /usr/share/doc/search*/exanpl
es/ t est - docunent s/ sanpl e- st at uses-20120906- 141433. avr o

"type" : "record",
"nanme" : "Doc",
"doc" : "adoc",
"fields" : |
"nanme" : "id",
"type" : "string"
}!
"name" . "user_statuses_count",
"type" : ["int", "null"]
R S)
nane" : "user_screen_nane
"type" : ["string", "null"]
}!
"name" : "created_at",
"type" : ["string", "null"]
}1
"nane" . "text",
"type" : ["string", "null"]
}

https://github.com/typesafehub/config/blob/master/HOCON.md
http://akka.io
http://www.playframework.com/

Cloudera Runtime Example Morphline Usage

]
}

3. Extract theid, user_screen name, created_at, and text fields from the Avro records, and then store and index them
in Solr, using the following Solr schema definition in schema.xml:

<fields>
<field nane="id" type="string" indexed="true" stored="true" required=
"true" multiVal ued="fal se" />
<fi el d nane="usernane" type="text_en" indexed="true" stored="true" />
<field nane="created at" type="tdate" indexed="true" stored="true" />
<field nane="text" type="text_en" indexed="true" stored="true" />
<field nane="_version_" type="long" indexed="true" stored="true"/>
<dynani cFi el d name="i gnored_*" type="ignored"/>
</fields>

The Solr output schema omits some Avro input fields, such asuser_statuses count. If your dataincludes Avro
input fields that are not included in the Solr output schema, you may want to make changesto dataasitis
ingested. For example, suppose you need to rename the input field user_screen_name to the output field username.
Also suppose that the time format for the created at field is yyyy-MM-dd'T'HH:mm:ssZ'. Finally, suppose any
unknown fields present are to be removed. Recall that Solr throws an exception on any attempt to |oad a document
that contains afield that is not specified in schemaxml.

4. These transformation rules that make it possible to modify data so it fits your particular schema can be expressed
with morphline commands called r eadAvr oCont ai ner, ext ract Avr oPat hs, convert Ti nest anp,
sani ti zeUnknownSol r Fi el ds and| oadSol r, by editing a morphline.conf file.

Specify server locations in a SOLR LOCATOR vari abl e; used later in
variabl e substitutions:
SOLR_LOCATOR : {

Name of solr collection

col lection : collectionl

ZooKeeper ensenbl e
zkHost : "127.0.0.1:2181/solr"

}

Specify an array of one or nore norphlines, each of which defines an ETL
transformati on chain. A norphline consists of one or nore potentially

nested conmands. A norphline is a way to consune records such as Flune e
vent s,

HDFS files or blocks, turn theminto a stream of records, and pipe the
stream

of records through a set of easily configurable transformations on its
way to

Solr.

nor phlines : [

Name used to identify a norphline. For exanple, used if there are nu
Itiple

nmorphlines in a norphline config file.

id: norphlinel

Inport all norphline commands in these java packages and their su

bpackages.
Other commuands that nmay be present on the classpath are not visible
to this
nor phli ne.
i mport Commands : ["org. kitesdk.**", "org.apache.solr.**"]
conmands : [
{

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readAvroContainer
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#extractAvroPaths
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#convertTimestamp
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#sanitizeUnknownSolrFields
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#loadSolr

Cloudera Runtime

Example Morphline Usage

Parse Avro container file and enit a record for each Avro object
readAvr oCont ai ner {

Optionally, require the input to nmatch one of these MME ty

pes:
supportedM nmeTypes : [avro/ binary]
Optionally, use a custom Avro scherma in JSON format inline:
reader SchemaString : """<json can go here>"""
Optionally, use a custom Avro schena file in JSON fornmat:
reader SchenmaFil e : /path/to/syslog.avsc
}
%
Consume the output record of the previous command and pi pe an
ot her
record downstream
#
extract AvroPaths is a command that uses zero or nore Avro path
excodebl ockssions to extract values froman Avro object. Each ex

codebl ockssi on

consists of a record output field name, which appears to the |le
ft of the

colon ':' and zero or nore path steps, which appear to the right

Each path step is separated by a '/' slash. Avro arrays are

traversed with the '[]' notation

#

The result of a path excodebl ockssion is a |ist of objects, each
of which

is added to the given record output field.

#

The path | anguage supports all Avro concepts, including nested

structures, records, arrays, maps, unions, and others, as well a

s a flatten
option that collects the primtives in a subtree into a flat
ist. In the
paths specification, entries on the left of the colon are the
target Solr
field and entries on the right specify the Avro source paths.
Pat hs are read
fromthe source that is named to the right of the colon and wri
tten to the
field that is named on the left.
extract AvroPat hs {
flatten : false
paths : {
id: /id
username : /user_screen_nane
created_at : /created_at
text : /text
}
}

Consune the output record of the previous conmand and pi pe anot her
record downstream

convert tinmestanp field to native Solr tinmestanp fornat
such as 2012-09-06T07: 14: 34Z to 2012-09-06T07: 14: 34. 000Z

HHFHHFH

convert Ti nest anp {
field : created_at
i nput Formats : ["yyyy-MMdd' T'"HH: nmss'Z'", "yyyy- Mt dd"]
i nput Ti nezone : Anerical/ Los_Angel es

8

Cloudera Runtime Example Morphline Usage

out put Format : "yyyy-Mvtdd' T' HH: mm ss. SSS' Z' "
out put Ti mezone : UTC

}
}
Consune the output record of the previous command and pi pe anot her
record downstream
#
This command del etes record fields that are unknown to Solr
schema. xn .
#
Recall that Solr throws an exception on any attenpt to |load a do
cument
that contains a field that is not specified in schema. xnm .
{
sani ti zeUnknownSol r Fi el ds {
Location fromwhich to fetch Solr schema
sol rLocator : ${SOLR LOCATOR}
}
}
log the record at DEBUG | evel to SLF4J
{ logbDebug { format : "output record: {}", args : ["@&}"] } }
load the record into a Solr server or MapReduce Reducer
{
| cadSol r {
sol rLocator : ${SO.R_LOCATOR}
}
}
]
}

The following example illustrates using a morphline to extract information from a syslog file. A syslog file contains
semi-structured lines of the following form:

<164>Feb 4 10:46: 14 syslog sshd[607]: listening on 0.0.0.0 port 22.
The program extracts the following record from the log line and loads it into Solr:

sysl og_pri: 164

syslog_tinestanp: Feb 4 10:46: 14

sysl og_host nane: sysl og

sysl og_pr ogram sshd

sysl og_pi d: 607

sysl og_nessage:listening on 0.0.0.0 port 22.

Use the following rulesto create a chain of transformation commands, which are expressed with the readLine, grok,
and logDebug morphline commands, by editing a morphline.conf file.

Specify server locations in a SOLR LOCATOR vari abl e; used later in
variabl e substitutions:
SOLR LOCATOR : {

Nanme of solr collection

collection : collectionl

ZooKeeper ensenbl e
zkHost : "127.0.0.1:2181/solr"

}

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readLine
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#grok
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#logTrace_logDebug_logInfo_logWarn_logError

Cloudera Runtime

Specify an array of one or nore norphlines, each of which defines an ETL
transformati on chain. A norphline consists of one or nore potentially

nested conmmands. A norphline is a way to consune records such as Flune e
vents,

HDFS files or blocks, turn theminto a stream of records, and pipe the
stream

of records through a set of easily configurable transfornmations on the
way to

a target application such as Solr.

nmor phlines : [

id: norphlinel
i mport Conmands : ["org.Kitesdk. **"]

commands : |

readLi ne {
charset : UTF-8
}
}
{
grok {
a grok-dictionary is a config file that contains prefabricated r
egul ar expressi ons
that can be referred to by nane.
grok patterns specify such a regex name, plus an optional output
field nane.
The syntax is 9% REGEX_ NAVE: OUTPUT_FI ELD_NAME}
The input line is expected in the "nessage" input field.
dictionaryFiles : [target/test-classes/grok-dictionaries]
expressions : {
message : """<U POSI NT: sysl og_pri }>% SYSLOGTI MESTAMP: sysl og_t
mest anp} % SYSLOGHOST: sysl og_host nane} 9% DATA: sysl og_progran} (?:\[9% POSI NT: s
ysl og_pid}\])?: 9% GREEDYDATA: sysl og_nessage}"""
}

}
}
Consune the output record of the previous conmand and pi pe anot her
record downstream
#
This command del etes record fields that are unknown to Solr
schema. xm .
#
Recall that Solr throws an exception on any attenpt to |oad a docum
ent
that contains a field that is not specified in schema. xm .
{
sani ti zeUnknownSol r Fi el ds {
Location fromwhich to fetch Solr schema
sol rLocator : ${SO.R_LOCATOR}
}
}
log the record at DEBUG | evel to SLF4J
{ logDebug { format : "output record: {}", args : ["@}"] } }
load the record into a Solr server or MapReduce Reducer
{
| oadSol r {
sol rLocator : ${SO.R_LOCATOR}
}
}

10

Example Morphline Usage

Cloudera Runtime Example Morphline Usage

Learn more about morphlines. For more information, see:

¢ Morphlines Reference Guide

11

http://kitesdk.org/docs/0.13.0/kite-morphlines/morphlinesReferenceGuide.html

	Contents
	Extracting, Transforming, and Loading Data With Cloudera Morphlines
	Example Morphline Usage

