
Cloudera Runtime 7.1.3

Managing Apache Kafka
Date published: 2019-12-18
Date modified: 2020-08-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Management basics...4
Broker log management... 4
Record management..4
Broker garbage log collection and log rotation... 5

Client and broker compatibility across Kafka versions....................................... 5

Managing topics across multiple Kafka clusters...6
Set up MirrorMaker in Cloudera Manager.. 7
Settings to avoid data loss..8

Broker migration.. 8
Migrate brokers by modifying broker IDs in meta.properties...8
Use rsync to copy files from one broker to another..9

Disk management..10
Monitoring...10
Handling disk failures...10

Disk Replacement... 10
Disk Removal... 11

Reassigning replicas between log directories.. 11
Retrieving log directory replica assignment information.. 12

Metrics..12
Building Cloudera Manager charts with Kafka metrics.. 13
Essential metrics to monitor...14

Command Line Tools... 16
Unsupported command line tools...16
kafka-topics... 17
kafka-configs... 18
kafka-console-producer... 18
kafka-console-consumer..19
kafka-consumer-groups... 20
kafka-reassign-partitions... 22

Tool usage...23
Reassignment examples.. 25

kafka-log-dirs.. 26
zookeeper-security-migration..27
kafka-delegation-tokens.. 27
kafka-*-perf-test.. 28
Configuring log levels for command line tools... 29
Understanding the kafka-run-class Bash Script... 29

Cloudera Runtime Management basics

Management basics

Broker log management
Learn more about the configuration properties related to broker log management.

Kafka brokers save their data as log segments in a directory. The logs are rotated depending on the size and time
settings.

The most common log retention settings to adjust for your cluster are shown below. These are accessible in Cloudera
Manager via the Kafka Configuration tab.

• log.dirs: The location for the Kafka data (that is, topic directories and log segments).
• log.retention.{ms|minutes|hours}: The retention period for the entire log. Any older log segments are removed.
• log.retention.bytes: The retention size for the entire log.

In addition, there are many more configuration properties available for fine-tuning broker log management. For
more information look for the following properties in theBroker Configs section in the upstream Apache Kafka
documentation.

• log.dirs
• log.flush.*
• log.retention.*
• log.roll.*
• log.segment.*

Related Information
Broker Configs

Record management
Learn how you can manage records.

There are two pieces to record management, log segments and log cleaner.

As part of the general data storage, Kafka rolls logs periodically based on size or time limits. Once either limit is hit,
a new log segment is created with the all new data being placed there, while older log segments should generally no
longer change. This helps limit the risk of data loss or corruption to a single segment instead of the entire log.

• log.roll.{ms|hours}: The time period for each log segment. Once the current segment is older than this value, it
goes through log segment rotation.

• log.segment.bytes: The maximum size for a single log segment.

There is an alternative to simply removing log segments for a partition. There is another feature based on the log
cleaner. When the log cleaner is enabled, individual records in older log segments can be managed differently:

• log.cleaner.enable: This is a global setting in Kafka to enable the log cleaner.
• cleanup.policy: This is a per-topic property that is usually set at topic creation time. There are two valid values for

this property, delete and compact.
• log.cleaner.min.compaction.lag.ms: This is the retention period for the “head” of the log. Only records outside of

this retention period will be compacted by the log cleaner.

The compact policy, also called log compaction, assumes that the "most recent Kafka record is important." Some
examples include tracking a current email address or tracking a current mailing address. With log compaction, older
records with the same key are removed from a log segment and the latest one is kept. This effectively removes some
offsets from the partition.

4

https://kafka.apache.org/documentation/#brokerconfigs

Cloudera Runtime Client and broker compatibility across Kafka versions

Broker garbage log collection and log rotation
Learn more about broker garbage collection and how garbage log rotation can be configured.

About this task

Both broker JVM garbage collection and JVM garbage log rotation is enabled by default in the Kafka version
delivered with Runtime. Garbage collection logs are written in the agent process directory by default.

Example path:

/run/cloudera-scm-agent/process/99-kafka-KAFKA_BROKER/kafkaServer-gc.log

Changing the default directory of garbage collection logs is currently not supported. However, you can configure
properties related garbage log rotation.

Garbage log rotation properties can be configured with the Kafka Broker Environment Advanced Configuration
Snippet (Safety Valve) property.

Procedure

1. In Cloudera Manager, go to the Kafka service and click Configuration.

2. Find the Kafka Broker Environment Advanced Configuration Snippet (Safety Valve) property.

3. Add the following line to the property:

Modify the values of as required.

KAFKA_GC_LOG_OPTS="-XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX
:GCLogFileSize=100M"

The flags used are as follows:

• +UseGCLogFileRotation: Enables garbage log rotation.
• -XX:NumberOfGCLogFiles: Specifies the number of files to use when rotating logs.
• -XX:GCLogFileSize: Specifies the size when the log will be rotated.

4. Click on Save Changes.

5. Restart the Kafka service to apply the changes.

Results
Kafka garbage log rotation is configured.

Client and broker compatibility across Kafka versions

An overview on client and broker version compatibility.

Maintaining compatibility across different Kafka clients and brokers is a common issue. Mismatches among client
and broker versions can occur as part of any of the following scenarios:

• Upgrading your Kafka cluster without upgrading your Kafka clients.
• Using a third-party application that produces to or consumes from your Kafka cluster.
• Having a client program communicating with two or more Kafka clusters (such as consuming from one cluster

and producing to a different cluster).
• Using Flume or Spark as a Kafka consumer.

In these cases, it is important to understand client/broker compatibility across Kafka versions. Here are general rules
that apply:

5

Cloudera Runtime Managing topics across multiple Kafka clusters

• Newer Kafka brokers can talk to older Kafka clients. The reverse is not true: older Kafka brokers cannot talk to
newer Kafka clients.

• Changes in either the major part or the minor part of the upstream version major.minor determines whether
the client and broker are compatible. Differences among the maintenance versions are not considered when
determining compatibility.

As a result, the general pattern for upgrading Kafka from version A to version B is:

1. Change Kafka server.properties to refer to version A.
2. Upgrade the brokers to version B and restart the cluster.
3. Upgrade the clients to version B.
4. After all the clients are upgraded, change the properties from the first step to version B and restart the cluster.

Managing topics across multiple Kafka clusters

You may have more than one Kafka cluster to support:

• Geographic distribution
• Disaster recovery
• Organizational requirements

You can distribute messages across multiple clusters. It can be handy to have a copy of one or more topics from other
Kafka clusters available to a client on one cluster. Mirror Maker is a tool that comes bundled with Kafka to help
automate the process of mirroring or publishing messages from one cluster to another. "Mirroring" occurs between
clusters where "replication" distributes message within a cluster.

Figure 1: Mirror Maker Makes Topics Available on Multiple Clusters

While the diagram shows copying to one topic, Mirror Maker’s main mode of operation is running continuously,
copying one or more topics from the source cluster to the destination cluster.

Keep in mind the following design notes when configuring Mirror Maker:

• Mirror Maker runs as a single process.
• Mirror Maker can run with multiple consumers that read from multiple partitions in the source cluster.

6

Cloudera Runtime Managing topics across multiple Kafka clusters

• Mirror Maker uses a single producer to copy messages to the matching topic in the destination cluster.

Set up MirrorMaker in Cloudera Manager
Learn how to set up MirrorMaker in Cloudera Manager

Before you begin
Consider the following before setting up MirrorMaker for Kafka:
Consumer/Producer Compatibility

The Mirror Maker consumer needs to be client compatible with the source cluster. The Mirror
Maker producer needs to be client compatible with the destination cluster. See Client and Broker
Compatibility Across Kafka Versions for further details on compatibility.

Topic Differences between Clusters

Because messages are copied from the source cluster to the destination cluster—potentially through
many consumers funneling into a single producer—there is no guarantee of having identical offsets
or timestamps between the two clusters. In addition, as these copies occur over the network, there
can be some mismatching due to retries or dropped messages.

Optimize Mirror Maker Producer Location

Because Mirror Maker uses a single producer and since producers typically have more difficulty
with high latency and/or unreliable connections, it is better to have the producer run “closer” to the
destination cluster, meaning in the same data center or on the same rack.

Destination Cluster Configuration

Before starting Mirror Maker, make sure that the destination cluster is configured correctly:

• Make sure there is sufficient disk space to copy the topic from the source cluster to the
destination cluster.

• Make sure the topic exists in the destination cluster or enable topic auto creation by setting the
auto.create.topics.enable property to true. The latter can be done in Cloudera Manager by going
to KafkaConfiguration.

Kerberos and Mirror Maker

As mentioned earlier, Mirror Maker runs as a single process. The resulting consumers and
producers rely on a single configuration setup. Mirror Maker requires that the source cluster and the
destination cluster belong to the same Kerberos realm.

Procedure

1. In Cloudera Manager, select the Kafka service.

2. Choose Action Add Role Instances.

3. Under Kafka Mirror Maker, click Select hosts.

4. Select the host where Mirror Maker will run and click Continue.

5. Fill in the Destination Broker List and Source Broker List with your source and destination Kafka clusters.

Use host name, IP address, or fully qualified domain name.

6. Fill out the Topic Whitelist.

The allowlist (whitelist) is required.

7. Fill out the TLS/SSL sections if security needs to be enabled.

8. Start the Mirror Maker instance.

Results
MirrorMaker is configured and started.

7

Cloudera Runtime Broker migration

Related Information
Client and broker compatibility across Kafka versions

Settings to avoid data loss
An overview of default configuration properties to avoid data loss.

If for some reason the producer cannot deliver messages that have been consumed and committed by the consumer, it
is possible for a MirrorMaker process to lose data. The following collection of properties are set by default and help
with preventing data loss when replicating data. In addition, note that MirrorMaker starts correctly if you enter the
numeric values in the configuration snippet (rather than using "max integer" for retries and "max long" for max.bloc
k.ms).

Producer settings

• acks=all
• retries=2147483647
• max.block.ms=9223372036854775807

Consumer setting

• auto.commit.enable=false

MirrorMaker setting

• abort.on.send.failure=true

Broker migration

Learn more about the options you have when migrating brokers and copying data between brokers.

In case of catastrophic hardware failure brokers can be moved to a new host in a Kafka cluster. There multiple
methods with which you can move brokers between clusters:
Using kafka-reassign-partitions tool

This method involves more manual work to modify JSON, but does not require manual edits to
configuration files.

Modify the broker IDs in meta.properties

This method involves less manual work, but requires modifying an internal configuration file.

Using rsync

You can use rsync to copy over all data from an old broker to a new broker, preserving modification
times and permissions.

Continue reading for instructions on how to move brokers by modifying broker IDs or using rsync. For instructions
on how to migrate brokers with kafka-reassign-partitions, see the kafka-reassign-partitions tool description. For
specific instructions on how to migrate existing Kafka partitions to JBOD configured disks, see JBOD disk migration.

Related Information
kafka-reassign-partitions

JBOD disk migration

Migrate brokers by modifying broker IDs in meta.properties
Learn how to migrate brokers between hosts in a Kafka cluster by modifying broker IDs in meta.properties.

8

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/kafka-configuring/topics/kafka-config-jbod-migration.html

Cloudera Runtime Broker migration

About this task

In case of catastrophic hardware failure brokers can be moved to a new host in a Kafka cluster. The following steps
walk you through broker migration by modifying broker IDs in meta.properties. Compared to migration with the
help of the kafka-reassign-partitions tool, this method involves less manual work, but requires modifying an internal
configuration file.

Important: Data intensive administration operations such as rebalancing partitions, adding a broker,
removing a broker, or bootstrapping a new machine can cause significant additional load on the cluster.
Therefore, Cloudera highly recommends that you migrate one broker at a time and migrate brokers when
there is minimal load on the cluster

Before you begin

• Verify that the cluster is healthy.
• Verify that all replicas are in sync.

Procedure

1. Start up the new broker as a member of the old cluster.

This creates files in the data directory.

2. Stop both the new broker and the old broker that it is replacing.

3. Change broker.id of the new broker to the broker.id of the old one both in Cloudera Manager and in data
directory/meta.properties.

4. Optional: Run rsync to copy files from one broker to another.

5. Start up the new broker.

When started the new broker re-replicates data from the other nodes.

Results
The Kafka broker is migrated to a new host.

Use rsync to copy files from one broker to another
Learn how to use rsync to copy over all data from an old broker to a new broker.

About this task

You can run rsync command to copy over all data from an old broker to a new broker, preserving modification times
and permissions. Using rsync allows you to avoid having to re-replicate the data from the leader.

Before you begin

• Ensure that the disk structures match between the two brokers, or verify the meta.properties file between the
source and destination brokers (because there is one meta.properties file for each data directory).

Procedure

Run the following command on destination broker:

rsync -avz
 src_broker:src_data_dir
 dest_data_dir

If you plan to change the broker ID, edit dest_data_dir/meta.properties.

9

Cloudera Runtime Disk management

Results
Data from the source broker is copied over to the destination broker.

Disk management

Monitoring
Recommendations on what to monitor on clusters.

Cloudera recommends that administrators continuously monitor the following on a cluster:
Replication Status

Monitor replication status using Cloudera Manager Health Tests. Cloudera Manager automatically
and continuously monitors both the OfflineLogDirectoryCount and OfflineReplicaCount metrics.
Alters are raised when failures are detected.

Disk Capacity

Monitor free space on mounted disks and open file descriptors. Reassign partitions or move log files
around if necessary. For more information, see the kafka-reassign-partitions tool description.

Related Information
Cloudera Manager Health Tests

kafka-reassign-partitions

Handling disk failures
An overview on how to handle disk failures.

Cloudera Manager has built in monitoring functionalities that automatically trigger alerts when disk failures are
detected. When a log directory fails, Kafka also detects the failure and takes the partitions stored in that directory
offline.

Important: If there are no healthy log directories present in the system, the broker stops working.

The cause of disk failures can be analyzed with the help of the kafka-log-dirs tool, or by reviewing the error messages
of KafkaStorageException entries in the Kafka broker log file. To access the log file go to InstancesLog FilesRole
Log File.

In case of a disk failure, a Kafka administrator can carry out either of the following actions. The action taken depends
on the failure type and system environment:

• Replace the faulty disk with a new one.
• Remove the disk and redistribute data across remaining disks to restore the desired replication factor.

Note: Disk replacement and disk removal both require stopping the broker. Therefore, Cloudera recommends
that you perform these actions during a maintenance window.

Related Information
kafka-log-dirs

Disk Replacement
Learn how to replace a disk.

10

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/monitoring-and-diagnostics/topics/cm-health-tests.html

Cloudera Runtime Disk management

About this task
In case of a disk failure, a Kafka administrator can replace the faulty disk with a new one.

Procedure

1. Stop the broker that has a faulty disk:

a) In Cloudera Manager, go to the Kafka service, select Instances and select the broker.
b) Go to ActionsGracefully stop this Kafka Broker.

2. Replace the disk.

3. Mount the disk.

4. Set up the directory structure on the new disk the same way as it was set up on the previous disk.

Note: You can find the directory paths for the old disk in the Data Directories property of the broker.

5. Start the broker:

a) In Cloudera Manager go to the Kafka service, selectInstances and select the broker.
b) Go to ActionsStart this Kafka Broker.

Results
The disk is replaced. The Kafka broker re-creates topic partitions in the same directory by replicating data from other
brokers.

Disk Removal
Learn how to remove a disk from the configuration.

About this task
In case of a disk failure, a Kafka administrator can remove the disk and redistribute data across remaining disks to
restore the desired replication factor.

Procedure

1. Stop the broker that has a faulty disk:

a) In Cloudera Manager, go to the Kafka service, select Instances and select the broker.
b) Go to ActionsGracefully stop this Kafka Broker.

2. Remove the log directories on the faulty disk from the broker:

a) Go to Configuration and find the Data Directories property.
b) Remove the affected log directories with the Remove button.
c) Enter a Reason for change, and then click Save Changes to commit the changes.

3. Start the broker:

a) In Cloudera Manager, go to the Kafka service, select Instances and select the broker.
b) Go to ActionsStart this Kafka Broker.

Results
The disk is removed from the configuration. The Kafka broker redistributes data across the cluster.

Reassigning replicas between log directories
Learn about replica reassignment between log directories.

Reassigning replicas between log directories can prove useful when you have multiple disks available, but one or
more of them is nearing capacity. Moving a replica from one disk to another ensures that the service will not go down
due to disks reaching capacity. To balance storage loads, the Kafka administrator has to continuously monitor the

11

Cloudera Runtime Metrics

system and reassign replicas between log directories on the same broker or across different brokers. These actions can
be carried out with the kafka-reassign-partitions tool.

For more information on tool usage, see the kafka-reassign-paritions tool description.

Related Information
kafka-reassign-partitions

Retrieving log directory replica assignment information
Learn how log directory replica assignment information can be retrieved.

To optimize replica assignment across log directories, the list of partitions per log directory and the size of each
partition is required. This information can be exposed with the kafka-log-dirs tool.

For more information on tool usage, see the kafka-log-dirs tool description.

Related Information
kafka-log-dirs

Metrics

Learn about Kafka metrics and how to view them.

Kafka uses Yammer metrics to record internal performance measurements. The metrics are exposed via Java
Management Extensions (JMX) and can be read with a JMX console.

Metrics Categories

There are metrics available in the various components of Kafka. In addition, there are some metrics specific to how
Cloudera Manager and Kafka interact. This table has pointers to both the Apache Kafka metrics names and the
Cloudera Manager metric names.

Table 1: Metrics by Category

Category Cloudera Manager Metrics Doc Apache Kafka Metrics Doc

Cloudera Manager

Kafka Service

Base Metrics

Broker Broker Metrics, Broker Topic Metrics, Replica
Metrics, Broker Topic Partition Metrics

Broker

Common

Producer/Consumer

Client

Client-to-Broker

Producer Producer Metrics Producer

Producer Sender

Consumer Consumer Metrics,Consumer Group Metrics Consumer Group

Consumer Fetch

Mirror Maker Mirror Maker Metrics Same as Producer or Consumer tables

Note the following about Cloudera Manager metrics:
Broker Topic Partitions Metrics:

Required for Streams Messaging Manager. These metrics have to be specifically enabled within the
host's configuration.

12

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_broker.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_broker_topic.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_replica.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_replica.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_broker_topic_partition.html
https://kafka.apache.org/documentation/#monitoring
https://kafka.apache.org/documentation/#selector_monitoring
https://kafka.apache.org/documentation/#common_node_monitoring
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_producer.html
https://kafka.apache.org/documentation/#producer_monitoring
https://kafka.apache.org/documentation/#producer_sender_monitoring
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_consumer.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_consumer_group.html
https://kafka.apache.org/documentation/#new_consumer_group_monitoring
https://kafka.apache.org/documentation/#new_consumer_fetch_monitoring
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm_metrics_kafka_mirrormaker.html

Cloudera Runtime Metrics

Producer Metrics:

Required for Streams Messaging Manager. These metrics have to be specifically enabled within
Kafka's configuration and are different from the metrics available on client instances.

Consumer and Consumer Groups Metrics

Generated by and required for Streams Messaging Manager. These metrics are different from the
metrics available on client instances.

Viewing Metrics

Cloudera Manager records most of these metrics and makes them available via Chart Builder.

Because Cloudera Manager cannot track metrics on any clients (that is, producer or consumer), you may wish to use
an alternative JMX console program to check metrics. There are several JMX console options, for example:

• JConsole, which comes bundled with the JDK.
• VisualVM, with the MBeans plugin.

Related Information
JConsole Documentation

VisualVM Homepage

Building Cloudera Manager charts with Kafka metrics
A collection query examples to build Kafka metrics charts within Cloudera Manager.

Cloudera Manager enables you to build charts based on Kafka specific metrics. To access the chart builder go to
ChartsChart Builderin Cloudera Manager. The following are a few specific examples of queries for cloudera metrics:

Controllers across all brokers

This chart shows the active controller across all brokers. It is useful for checking active controller
status (should be one at any given time, transitions should be fast).

SELECT
 kafka_active_controller
WHERE
 roleType=KAFKA_BROKER

Network idle rate

>Chart showing the network processor idle rate across all brokers. If idle time is always zero, then
probably the num.network.threads property may need to be increased.

SELECT
 kafka_network_processor_avg_idle_rate
WHERE
 roleType=KAFKA_BROKER

Partitions per broker

Chart showing the number of partitions per broker. It is useful for detecting partition imbalances
early.

SELECT
 kafka_partitions
WHERE
 roleType=KAFKA_BROKER

13

https://docs.oracle.com/javase/9/management/using-jconsole.htm#JSMGM-GUID-77416B38-7F15-4E35-B3D1-34BFD88350B5
https://visualvm.github.io/

Cloudera Runtime Metrics

Partition activity

Chart tracking partition activity on a single broker.

SELECT
 kafka_partitions, kafka_under_replicated_partitions
WHERE
 hostname=host1.domain.com

Mirror Maker activity

Chart for tracking Mirror Maker behavior. Since Mirror Maker has one or more consumers and a
single producer, most consumer or metrics should be usable with this query.

SELECT
 producer or consumer metric
WHERE
 roleType=KAFKA_MIRROR_MAKER

Related Information
Charting Time-Series Data

Essential metrics to monitor
Cloudera Manager collects a high number of performance metrics for the Kafka services running on your clusters.
Certain metrics should be monitored in any Kafka deployment as they can help you to improve the stability and
performance of your Kafka deployment.

The following tables collect the Kafka broker metrics that Cloudera recommends you to monitor in any Kafka
deployment. For more information on metrics, including a full list of Kafka metrics, see Cloudera Manager Metrics.

Table 2: ZooKeeper connectivity metrics

Metric Name Description Unit Importance Parents Version Availability

kafka_zookeeper_
expires_rate

Measures the session
expires per second.

Expires per second High cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_zookeeper_
request_latency_avg

Request latency
between the broker
and Zookeeper.

ms High cluster, kafka, rack CDH 5, CDH 6, CDP
7

Table 3: Active controller metrics

Metric Name Description Unit Importance Parents Version Availability

kafka_active_control
ler

Shows the number of
active controllers at a
given time. Ideally it
should be 1.

Number of controllers High cluster, kafka, rack CDH 5, CDH 6, CDP
7

Table 4: Network metrics

Metric Name Description Unit Importance Parents Version Availability

kafka_network_pr
ocessor_avg_idle

The average free
capacity of the
network processors.
Should be > 0.3.

Percentage of free
capacity

High cluster, kafka, rack CDH 5, CDH 6, CDP
7

14

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/monitoring-and-diagnostics/topics/cm-charting-time-series-data.html

Cloudera Runtime Metrics

Metric Name Description Unit Importance Parents Version Availability

kafka_request_qu
eue_size

Size of the request
queue in Kafka.

Message count Medium cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_response_q
ueue_size

Size of the response
queue in Kafka.

Message count Medium cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_messages_recei
ved_rate

Number of messages
written to topic on
this broker.

Messages per second Medium cluster, kafka, rack CDH 5, CDH 6, CDP
7

Table 5: Disk utilization metrics

Metric Name Description Unit Importance Parents Version Availability

kafka_produce_local_
time_rate

Local Time spent
in responding to
Produce requests.

Requests per second Low cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_log_flush_rate Rate of flushing
Kafka logs to disk.

Flushes per second Low cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_request_handle
r_avg_idle_rate

The average free
capacity of the
request handler.
Should be > 0.3.

Percentage of free
capacity

High cluster, kafka, rack CDH 5, CDH 6, CDP
7

Note: While the disk utilization metrics do not measure disk performance directly, they can point to
problems with the disks.

Table 6: Kafka metrics

Metric Name Description Unit Importance Parents Version Availability

kafka_broker_state The state the broker is
in. 0 = NotRunning,
1 = Starting, 2 =
RecoveringFromUncleanShutdown,
3 =
RunningAsBroker,
4 =
RunningAsController,
6 =
PendingControlledShutdown,
7 =
BrokerShuttingDown

Discrete states Medium cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_jvm_gc_run
s_rate

Number of garbage
collector runs
performed on this
broker.

Events per second Medium cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_isr_expands_ra
te

ISR expands per
second.

Events per second Medium cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_isr_shrinks_ra
te

ISR shrinks per
second.

Events per second Medium cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_max_replicatio
n_lag

Maximum replication
lag on the broker,
across all fetchers,
topics, and partitions.

Messages Medium cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_offline_partit
ions

Number of offline
partitions.

Partition count High cluster, kafka, rack CDH 5, CDH 6, CDP
7

15

Cloudera Runtime Command Line Tools

Metric Name Description Unit Importance Parents Version Availability

kafka_under_min_
isr_partition_count

Count of partitions
with less than the
configured minimum
in-sync replicas
available.

Partition count High cluster, kafka, rack CDH 5, CDH 6, CDP
7

kafka_under_replicat
ed_partitions

Count of partitions
with unavailable
replicas.

Partition count Low cluster, kafka, rack CDH 5, CDH 6, CDP
7

Related Information
Cloudera Manager Metrics

Command Line Tools

Kafka command line tools overview.

In some situations, it is convenient to use the command line tools available in Kafka to administer your cluster.
However, it is important to note that not all tools available for Kafka are supported by Cloudera. Moreover, certain
administration tasks can be carried out more easily and conveniently using Cloudera Manager.

When administering Kafka with command line tools, be aware of the following:

• Use Cloudera Manager to start and stop Kafka and Zookeeper services. Do not use the kafka-server-start, kafka-se
rver-stop, zookeeper-server-start, or zookeeper-server-stop commands.

• For a parcel installation, all Kafka command line tools are located in /opt/cloudera/parcels/KAFKA/lib/kafka/bin/.
For a package installation, all such tools can be found in /usr/bin/.

• Ensure that the JAVA_HOME environment variable is set to your JDK installation directory before using the
command-line tools. For example:

export JAVA_HOME=/usr/java/jdk1.8.0_144-cloudera

• Using any Zookeeper command manually can be very difficult to get right when it comes to interaction with
Kafka. Cloudera recommends that you avoid doing any write operations or ACL modifications in Zookeeper.

Note: Output examples in the command line tool descriptions are cleaned and formatted for easier
readability.

Unsupported command line tools
Kafka command line tools not supported by Cloudera.

The following tools can be found as part of the Kafka distribution, but their use is generally discouraged for various
reasons as documented here.

Tool Notes

connect-mirror-maker Use Streams Replication Manager instead.

connect-distributed

connect-standalone

Use Cloudera Manager to deploy and manage Kafka Connect workers.
In CDP Kafka Connect workers are represented by Kafka Connect
roles, which can be deployed under a Kafka service.

kafka-acls Cloudera recommends using Ranger for authorization instead.

kafka-broker-api-versions Primarily useful for Client-to-Broker protocol related development.

16

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/metrics/topics/cm-metrics-reference.html

Cloudera Runtime Command Line Tools

Tool Notes

kafka-configs Use Cloudera Manager to adjust any broker or security properties
instead of the kafka#configs tool. This tool should only be used to
modify topic properties.

kafka-delete-records Cloudera does not recommend using this tool in CDP.

kafka-mirror-maker Use Cloudera Manager to deploy Mirror Maker instances.

kafka-preferred-replica-election This tool causes leadership for each partition to be transferred back
to the 'preferred replica'. It can be used to balance leadership among
the servers. This tool is deprecated, Cloudera recommends that you
use kafka-leader-election, kafka-reassign-partitions, or Cruise Control
instead.

kafka-replay-log-producer Can be used to “rename” a topic.

kafka-replica-verification Validates that all replicas for a set of topics have the same data. This
tool is a “heavy duty” version of the ISR column of kafka-topics tool.

kafka-server-start

kafka-server-stop

Use Cloudera Manager to manage any Kafka host.

kafka-verifiable-consumer

kafka-verifiable-producer

These scripts are intended for system testing.

zookeeper-server-start

zookeeper-server-stop

Use Cloudera Manager to manage any Zookeeper host.

zookeeper-shell Limit usage of this script to reading information from Zookeeper.

kafka-topics
Learn more about the kafka-topics tool.

Use the kafka-topics tool to generate a snapshot of topics in the Kafka cluster.

kafka-topics --bootstrap-server [BROKER_HOST]:[PORT] --describe

Topic: topic-a1 PartitionCount:3 ReplicationFactor:3 Configs:
 Topic: topic-a1 Partition: 0 Leader: 64 Replicas: 6
4,62,63 Isr: 64,62,63
 Topic: topic-a1 Partition: 1 Leader: 62 Replicas:
 62,63,64 Isr: 62,63,64
 Topic: topic-a1 Partition: 2 Leader: 63 Replicas: 6
3,64,62 Isr: 63,64,62
Topic: topic-a2 PartitionCount:1 ReplicationFactor:3 Configs:
 Topic: topic-a2 Partition: 0 Leader: 64 Replicas: 64
,62,63 Isr: 64,62,63

The output lists each topic and basic partition information. Note the following about the output:

• Partition count: The more partitions, the higher the possible parallelism among consumers and producers.
• Replication factor: Shows 1 for no redundancy and higher for more redundancy.
• Replicas and in-sync replicas (ISR): Shows which broker ID’s have the partitions and which replicas are current.

There are situations where this tool shows an invalid value for the leader broker ID or the number of ISRs is fewer
than the number of replicas. In those cases, there may be something wrong with those specific topics.

It is possible to change topic configuration properties using this tool. Increasing the partition count, the replication
factor or both is not recommended.

17

Cloudera Runtime Command Line Tools

kafka-configs
Learn how to use the kafka-configs tool to set check or uncheck topic properties.

The kafka-configs tool allows you to set and unset properties to topics. Cloudera recommends that you use Cloudera
Manager instead of this tool to change properties on brokers, because this tool bypasses any Cloudera Manager safety
checks.

Setting a topic property:

kafka-configs --zookeeper [ZKHOST] --entity-type topics --entity-n
ame [TOPIC] --alter --add-config [PROPERTY_NAME]=[VALUE]

Checking a topic property:

kafka-configs --zookeeper [ZKHOST] --entity-type topics --entity-n
ame [TOPIC] --describe

Unsetting a topic property:

kafka-configs --zookeeper [ZKHOST] --entity-type topics --entity-n
ame [TOPIC] --alter --delete-config [PROPERTY_NAME]

See the upstream Apache Kafka documentation for a complete list of available topic configuration properties.

Related Information
Topic-Level Configs

kafka-console-producer
Learn how you can use the kafka-console-producer tool to produce messages to a topic.

This tool is used to write messages to a topic in a text based format.

The following examples demonstrate the basic usage of the tool. In addition to reviewing these examples, you can
also use the --help option to see a list of all available options.

Produce messages to a topic

To start producing message to a topic, you need to run the tool and specify a server as well as a topic.

kafka-console-producer --broker-list [HOST1:PORT1] --topic [TOPIC]

Start typing messages once the tool is running.

>my first message
>my second message

Alternatively, you can also produce the contents of a file to a topic.

cat [FILE] | kafka-console-producer --broker-list [HOST1:PORT1] --t
opic [TOPIC]

Produce messages to a topic in a secure cluster

In order to use the tool on a secure cluster, additional client configuration is required. You do this by creating a
.properties file that contains the necessary configurations to run the tool on a secure cluster. Which properties are
configured in this file depends on the security configuration of your cluster. See the client configuration topics in

18

https://kafka.apache.org/10/documentation.html#topicconfigs

Cloudera Runtime Command Line Tools

Securing Apache Kafka to learn more about which exact properties you need to use for your security configuration.
Once the file is created, you can use --producer.config to pass the file to the tool.

Example .properties file:

security.protocol = SASL_SSL
sasl.mechanism=GSSAPI
sasl.kerberos.service.name = kafka
ssl.truststore.location = /var/private/ssl/kafka.client.truststore.jks
ssl.truststore.password = test1234
sasl.jaas.config=com.sun.security.auth.module.Krb5LoginModule required useTi
cketCache=true;

This example shows what properties you have to set when both Kerberos and TLS/SSL are configured.

Do the following to run the tool in a secure cluster:

1. Create a .properties file.

Use the example above. Make changes as necessary.
2. Run the tool with the --producer.config option.

kafka-console-producer --broker-list [HOST1:PORT1] --topic [TOPIC] --produ
cer.config client.properties

Define a key-value delimiter

It is possible to define a key-value delimiter for the given producer instance. The delimiter can vary each time you run
the tool. For example, if you run the tool with the delimiter set to - and then a second time using :, Kafka will know
how to store the data. The first term is always stored as the key, the second as the value. As a result, when the data
written this way is consumed, the keys and values are consumed irrespective of what delimiter was used when the
records were written to the topic.

To produce messages with key-value delimiters, you need to set two properties, parse.key and key.seperator. Both
properties can be set with the --properties option.

kafka-console-producer --broker-list [HOST1:PORT1] --topic [TOPIC] --prope
rty parse.key=true --property key.separator=":"

Configure retry backoff

Before each retry, the producer refreshes the metadata of the relevant topics. You can configure the amount of time
the producer waits before refreshing the metadata with the --retry-backoff-ms option.

kafka-console-producer --broker-list [HOST1:PORT1] --topic [TOPIC] --retry-
backoff-ms 1000

Related Information
Configure Kafka clients for TLS/SSL encryption

Enable Kerberos authentication

Client authentication using delegation tokens

Configure Kafka clients for LDAP authentication

Configure Kafka clients for PAM authentication

kafka-console-consumer
Learn how to use the kafka-console-consumer tool.

19

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/kafka-securing/topics/kafka-secure-tls-clients.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/kafka-securing/topics/kafka-secure-kerberos-enable.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/kafka-securing/topics/kafka-secure-deltokens-client-auth.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/kafka-securing/topics/kafka-secure-ldap-client.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/kafka-securing/topics/kafka-secure-pam-client.html

Cloudera Runtime Command Line Tools

The kafka-console-consumer tool can be useful in a couple of ways:

• Acting as an independent consumer of particular topics. This can be useful to compare results against a consumer
program that you’ve written.

• To test general topic consumption without the need to write any consumer code.

Examples of usage:

kafka-console-consumer --bootstrap-server [BROKER1],[BROKER2]... --to
pic [TOPIC] --from-beginning
[record-earliest-offset]
[record-earliest-offset+1]

Note the following about the tool:

• This tool prints all records and keeps outputting as more records are written to the topic.
• If the kafka-console-consumer tool is given no flags, it displays the full help message.
• In older versions of Kafka, it may have been necessary to use the --new-consumer flag. As of Apache Kafka

version 0.10.2, this is no longer necessary.

kafka-consumer-groups
Learn how to use the kafka-consumer-groups tool.

The kafka-consumer-groups tool can be used to list all consumer groups, describe a consumer group, delete consumer
group info, or reset consumer group offsets. The following topic gives an overview on how to describe or reset
consumer group offsets.

Describe Offsets

This tool is primarily used for describing consumer groups and debugging any consumer offset issues, like consumer
lag. The output from the tool shows the log and consumer offsets for each partition connected to the consumer group
that is being described. You can see at a glance which consumers are current with their partition and which ones are
lagging. From there, you can determine which partitions (and likely the corresponding brokers) are slow.

Using the tool on secure and unsecure clusters differs slightly. On secure clusters, you have to use the command-conf
ig option together with an appropriate property file.

Describing offsets on an unsecure cluster

Use the following command to describe offsets committed to Kafka:

kafka-consumer-groups --bootstrap-server broker01.example.com:909
2 --describe --group flume

Output Example:

GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG
 OWNER
flume t1 0 1 3 2
 test-consumer-group_postamac.local-1456198719410-29ccd54f-0

Describing offsets on a secure cluster

In order to describe offsets on a secure Kafka cluster, the consumer-groups tool has to be run with
the command-config option. The command-config option specifies the property file that contains
the necessary configurations to run the tool on a secure cluster. Which properties are configured in
this file depends on the security configuration of your cluster.

20

Cloudera Runtime Command Line Tools

Example client.properties file:

exclude.internal.topics=false
security.protocol = SASL_SSL
sasl.kerberos.service.name = kafka
ssl.truststore.location = /var/private/ssl/kafka.client.trusts
tore.jks
ssl.truststore.password = test1234

This example shows what properties you have to set when both Kerberos and TLS/SSL are
configured.

To describe offsets do the following:

1. Pass the jaas.conf file location as a JVM parameter.

export KAFKA_OPTS='-Djava.security.auth.login.config=path/to/
jaas.conf

2. Create a client.properties file.

Use the example above. Make changes as necessary.
3. Run the tool with the command-config option.

kafka-consumer-groups --bootstrap-se
rver broker01.example.com:9093 --describe --command-confi
g client.properties --group flume

Resetting Offsets

You can use the --reset-offset option to reset the offsets of a consumer group to a particular value. The tool can be
used to reset all offsets on all topics. However, this is something you probably won’t ever want to do. Therefore, it is
highly recommended that you exercise caution when resetting offsets.

To reset offsets you need to define a scope, an execution option, and a scenario.

Scope

There are two supported scopes:

• --topic: Restricts the change to a specific topic or a specific set of partitions within a topic.
• --all-topics: Executes the change for all topics.

Note: Choosing a scope is mandatory for all scenarios except for the --from-file
scenario where specifying a scope is not required.

Execution option

There are three execution options:

• --dry-run --reset-offsets: Default option. Displays which offsets will be reset if the process is
executed.

• --execute --reset-offsets : Executes the process.
• --export --reset-offsets : Exports results in CSV format.

Scenarios

There are a number of supported scenarios. Scenarios control what value the offsets are reset to.
Specifying a scenario is mandatory.

• --to-datetime
• --by-period
• --to-earliest
• --to-latest

21

Cloudera Runtime Command Line Tools

• --shift-by
• --from-file
• --to-current

Example:

kafka-consumer-groups --dry-run --reset-offsets --bootstrap-serv
er broker-01.example.com:9092 --group flume --topic t1 --to-current

kafka-reassign-partitions
An overview of the kafka-reassign-partitions tool.

This tool provides substantial control over partitions in a Kafka cluster. It is mainly used to balance storage loads
across brokers through the following reassignment actions:

• Change the ordering of the partition assignment list. Used to control leader imbalances between brokers.
• Reassign partitions from one broker to another. Used to expand existing clusters.
• Reassign partitions between log directories on the same broker. Used to resolve storage load imbalance among

available disks in the broker.
• Reassign partitions between log directories across multiple brokers. Used to resolve storage load imbalance across

multiple brokers.

The tool uses two JSON files for input. Both of these are created by the user. The two files are the following:

• Topics-to-Move JSON
• Reassignment Configuration JSON

Topics-to-Move JSON

This JSON file specifies the topics that you want to reassign. This a simple file that tells the kafk
a-reassign-partitions tool which partitions it should look at when generating a proposal for the
reassignment configuration. The user has to create the topics-to-move JSON file from scratch.

The format of the file is the following:

{"topics": [{"topic": "mytopic1"},
 {"topic": "mytopic2"}],
 "version":1
}

Reassignment Configuration JSON

This JSON file is a configuration file that contains the parameters used in the reassignment process.
This file is created by the user, however, a proposal for its contents is generated by the tool. When
the kafka-reasssign-partitions tool is executed with the --generate option, it generates a proposed
configuration which can be fine-tuned and saved as a JSON file. The file created this way is the
reassignment configuration JSON. To generate a proposal, the tool requires a topics-to-move file as
input.

The format of the file is the following:

{"version":1,
 "partitions":
 [{"topic":"mytopic1","partition":3,"replicas":[4,5],"log_dir
s":["any","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[5,4],"log_dirs"
:["any","any"]},
 {"topic":"mytopic2","partition":2,"replicas":[6,5],"log_dir
s":["any","any"]}]
}

22

Cloudera Runtime Command Line Tools

The reassignment configuration contains multiple properties that each control and specify an aspect
of the configuration. The Reassignment Configuration Properties table lists each property and its
description.

Table 7: Reassignment Configuration Properties

Property Description

topic Specifies the topic.

partition Specifies the partition.

replicas Specifies the brokers that the selected partition is assigned to. The
brokers are listed in order, which means that the first broker in the list
is always the leader for that partition. Change the order of brokers to
resolve any leader balancing issues among brokers. Change the broker
IDs to reassign partitions to different brokers.

log_dirs Specifies the log directory of the brokers. The log directories are listed
in the same order as the brokers. By default any is specified as the
log directory, which means that the broker is free to choose where
it places the replica. By default, the current broker implementation
selects the log directory using a round-robin algorithm. An absolute
path beginning with a / can be used to explicitly set where to store the
partition replica.

Notes and Recommendations:

• Cloudera recommends that you minimize the volume of replica changes per command instance. Instead of moving
10 replicas with a single command, move two at a time in order to save cluster resources.

• This tool cannot be used to make an out-of-sync replica into the leader partition.
• Use this tool only when all brokers and topics are healthy.
• Anticipate system growth. Redistribute the load when the system is at 70% capacity. Waiting until redistribution

becomes necessary due to reaching resource limits can make the redistribution process extremely time consuming.

Tool usage
Learn how to reassign partitions with the kafka-reassign-partitions-tool.

Procedure

1. Create a topics-to-move JSON file that specifies the topics you want to reassign.

Use the following format:

{"topics": [{"topic": "mytopic1"},
 {"topic": "mytopic2"}],
 "version":1
}

2. Generate the content for the reassignment configuration JSON with the following command:

kafka-reassign-partitions --zookeeper hostname:port --topics-to-move-json-
file topics to move.json --broker-list broker 1, broker 2 --generate

Running the command lists the distribution of partition replicas on your current brokers followed by a proposed
partition reassignment configuration.

Current partition replica assignment
{"version":1,
 "partitions":
 [{"topic":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any","
any"]},

23

Cloudera Runtime Command Line Tools

 {"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any"
,"any"]},
 {"topic":"mytopic2","partition":0,"replicas":[1,2],"log_dirs":["any","
any"]},
 {"topic":"mytopic1","partition":2,"replicas":[3,1],"log_dirs":["any"
,"any"]},
 {"topic":"mytopic1","partition":1,"replicas":[2,3],"log_dirs":["any","
any"]}]
}

Proposed partition reassignment configuration

{"version":1,
 "partitions":
 [{"topic":"mytopic1","partition":0,"replicas":[4,5],"log_dirs":["any",
"any"]},
 {"topic":"mytopic1","partition":2,"replicas":[4,5],"log_dirs":["any
","any"]},
 {"topic":"mytopic2","partition":1,"replicas":[4,5],"log_dirs":["any",
"any"]},
 {"topic":"mytopic1","partition":1,"replicas":[5,4],"log_dirs":["any
","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[5,4],"log_dirs":["any",
"any"]}]
}

In this example, the tool proposed a configuration which reassigns existing partitions on broker 1, 2, and 3 to
brokers 4 and 5.

3. Copy and paste the proposed partition reassignment configuration into an empty JSON file.

4. Review, and if required, modify the suggested reassignment configuration.

5. Save the file.

6. Start the redistribution process with the following command:

kafka-reassign-partitions --zookeeper hostname:port --reassignment-json-
file reassignment configuration.json --bootstrap-server hostname:port --e
xecute

Note: Specifying a bootstrap server with the --bootstrap-server option is only required when an absolute
log directory path is specified for a replica in the reassignment configuration JSON file.

The tool prints a list containing the original replica assignment and a message that reassignment has started.
Example output:

Current partition replica assignment

{"version":1,
 "partitions":
 [{"topic":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any",
"any"]},
 {"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any
","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[1,2],"log_dirs":["any",
"any"]},
 {"topic":"mytopic1","partition":2,"replicas":[3,1],"log_dirs":["any
","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[2,3],"log_dirs":["any",
"any"]}]
}

Save this to use as the --reassignment-json-file option during rollback

24

Cloudera Runtime Command Line Tools

Successfully started reassignment of partitions.

7. Verify the status of the reassignment with the following command:

kafka-reassign-partitions --zookeeper hostname:port --reassignment-json-
file reassignment configuration.json --bootstrap-server hostname:port --v
erify

The tool prints the reassignment status of all partitions.

Status of partition reassignment:
Reassignment of partition mytopic2-1 completed successfully
Reassignment of partition mytopic1-0 completed successfully
Reassignment of partition mytopic2-0 completed successfully
Reassignment of partition mytopic1-2 completed successfully
Reassignment of partition mytopic1-1 completed successfully

Results
Partitions are reassigned.

Reassignment examples
A collection of examples that demonstrate how users can modify the proposed configuration file generated by the
kafka-reassign-partitions.

There are multiple ways to modify the configuration file. The following list of examples shows how a user can
modify a proposed configuration and what these changes do.

Suppose that the kafka-reassign-partitions tool generated the following proposed reassignment configuration:

{"version":1,
 "partitions":
 [{"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any","a
ny"]}]}

Now let's look at how this reassignment configuration has to be changed in different reassignment scenarios.
Reassign partitions between brokers

To reassign partitions from one broker to another, change the broker ID specified in replicas. For
example:

{"topic":"mytopic1","partition":0,"replicas":[5,2],"log_dirs":[
"any","any"]}

This reassignment configuration moves partition mytopic1-0 from broker 1 to broker 5.

Reassign partitions to another log directory on the same broker

To reassign partitions between log directories on the same broker, change the appropriate any entry
to an absolute path. For example:

{"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["/
log/directory1","any"]}

This reassignment configuration moves partition mytopic1-0 to the /log/directory1 log directory.

Reassign partitions between log directories across multiple brokers

25

Cloudera Runtime Command Line Tools

To reassign partitions between log directories across multiple brokers, change the broker ID
specified in replicas and the appropriate any entry to an absolute path. For example:

{"topic":"mytopic1","partition":0,"replicas":[5,2],"log_dirs":["/
log/directory1","any"]}

This reassignment configuration moves partition mytopic1-0 to /log/directory1 on broker 5.

Change partition assignment order (elect a new leader)

To change the ordering of the partition assignment list, change the order of the brokers in replicas.
For example:

{"topic":"mytopic1","partition":0,"replicas":[2,1],"log_dirs":["a
ny","any"]}

This reassignment configuration elects broker 2 as the new leader.

kafka-log-dirs
Learn how to use the kafka-log-dirs tool.

The kafka-log-dirs tool allows user to query a list of replicas per log directory on a broker. The tool provides
information that is required for optimizing replica assignment across brokers.

To retrieve replica assignment information, run the following command:

kafka-log-dirs --describe --bootstrap-server hostname:port --broker-li
st broker 1, broker 2 --topic-list topic 1, topic 2

Important: On secure clusters the admin client config property file has to be specified with the --command-
config option. Otherwise, the tool fails to execute.

If no topic is specified with the --topic-list option, then all topics are queried. If no broker is specified with the --br
oker-list option, then all brokers are queried. If a log directory is offline, the log directory will be marked offline in
the script output. Error example:

"error":"org.apache.kafka.common.errors.KafkaStorageException"

On successful execution, the tool prints a list of partitions per log directory for the specified topics and brokers. The
list contains information on topic partition, size, offset lag, and reassignment state. Example output:

{
 "brokers": [
 {
 "broker": 86,
 "logDirs": [
 {
 "error": null,
 "logDir": "/var/local/kafka/data",
 "partitions": [
 {
 "isFuture": false,
 "offsetLag": 0,
 "partition": "mytopic1-2",
 "size": 0
 }
]
 }
]

26

Cloudera Runtime Command Line Tools

 },
 ...
],
 "version": 1
}

The following table gives an overview of the information provided by the output of the kafka-log-dirs tool.

Table 8: Contents of the kafka-log-dirs Output

Property Description

broker Displays the ID of the broker.

error Indicates if there is a problem with the disk that hosts the topic
partition. If an error is detected, org.apache.kafka.common.errors.K
afkaStorageException is displayed. If no error is detected, the value is
null.

logDir Specifies the location of the log directory. Returns an absolute path.

isfuture The reassignment state of the partition. This property shows whether
there is currently replica movement underway between the log
directories.

offsetLag Displays the offset lag of the partition.

partition Displays the name of the partition.

size Displays the size of the partition in bytes.

zookeeper-security-migration
Learn how to use the zookeeper-security-migration tool.

The zookeeper-security-migration tool is used in the process of restricting or unrestricting access to metadata stored
in Zookeeper. When executed, the tool updates the ACLs of znodes based on the configuration specified by the user.

Important: Running the zookeeper-security-migration tool is only one of the steps required when restricting
or unrestricting access. For full instructions, see Restricting Access to Kafka Metadata in Zookeeper.

Set the ACLs on all existing Zookeeper znodes to secure with the following command:

zookeeper-security-migration --zookeeper.connect hostname:port --zookeeper
.acl secure

Set the ACLs on all existing Zookeeper znodes to unsecure with the following command:

zookeeper-security-migration --zookeeper.connect hostname:port --zookeeper
.acl unsecure

Related Information
Restricting Access to Kafka Metadata in Zookeeper

kafka-delegation-tokens
Learn how to use the kafka-delegation-tokens tool.

The kafka-delegation-tokens provides the user with the functionality required for using and managing delegation
tokens.

The tool can be used to issue, renew, expire, or describe delegation tokens.

27

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/kafka-securing/topics/kafka-secure-deltokens-restrict-metadata.html

Cloudera Runtime Command Line Tools

Issue, and store for verification

The owner of the token is the currently authenticated principal. A renewer can be specified when
requesting the token.

kafka-delegation-tokens --bootstrap-server hostname:port --crea
te --max-life-time-period -1 --command-config client.properties
 --renewer-principal User:user1

Renew

Only the owner and the principals that are renewers of the delegation token can extend its validity
by renewing it before it expires. A successful renewal extends the Delegation Token’s expiration
time for another renew-interval, until it reaches its max lifetime. Expired delegation tokens cannot
be renewed. The brokers remove expired delegation tokens from the broker’s cache and from
Zookeeper.

Important: A delegation token cannot be used to renew a delegation token. The
delegation token owner must authenticate using a different method to renew a token.

kafka-delegation-tokens --bootstrap-server hostname:port --renew
 --renew-time-period -1 --command-config client.properties --h
mac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

Remove

Delegation tokens are removed when they are canceled by the client or when they expire.

kafka-delegation-tokens --bootstrap-server hostname:port --expir
e --expiry-time-period -1 --command-config client.properties
 --hmac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

Describe

Tokens can be described by owners, renewers or the Kafka super user.

kafka-delegation-tokens --bootstrap-server hostname:port --
describe --command-config client.properties --owner-princi
pal User:user1

Note: In Apache Kafka, principals that have the describe permission on the token
resource can also describe the token.

kafka-*-perf-test

The kafka-*-perf-test tools can be used in several ways. In general, it is expected that these tools should be used on a
test or development cluster.

The kafka-*-perf-test tools allow you to:

• Measure, read, and write throughput.
• Stress test the cluster based on specific parameters (such as message size).
• Load test for the purpose of evaluating specific metrics or determining the impact of cluster configuration

changes.

The kafka-producer-perf-test script can either create a randomly generated byte record:

kafka-producer-perf-test --topic TOPIC --record-size SIZE_IN_BYTES

28

Cloudera Runtime Command Line Tools

or randomly read from a set of provided records:

kafka-producer-perf-test --topic TOPIC --payload-delimiter DELIMITER --paylo
ad-file INPUT_FILE

where the INPUT_FILE is a concatenated set of pre-generated messages separated by DELIMITER. This script keeps
producing messages or limited based on the --num-records flag.

The kafka-consumer-perf-test is:

kafka-consumer-perf-test --broker-list host1:port1,host2:port2,... --zooke
eper zk1:port1,zk2:port2,... --topic TOPIC

The flags of most interest for this command are:

• --group gid: If you run more than one instance of this test, you will want to set different ids for each instance.
• --num-fetch-threads: Defaults to 1. Increase if higher throughput testing is needed.
• --from-latest: To start consuming from the latest offset. May be needed for certain types of testing.

Configuring log levels for command line tools
Learn how to change the logging level of command line tools.

About this task
In some cases it can prove useful to change the default logging level of the command line tools. This can be done by
setting the required logging level in the log4j properties file that the tools use.

Procedure

1. Create a copy of the log4j.properties file that the tools use.

You are free to change the location where the copy gets created.

cp /etc/kafka/conf/tools-log4j.properties /var/tmp

2. Open the copied file and change the value of the root.logger property as required.

For example:

root.logger=TRACE,console

3. Pass the location of the newly created properties file as a JVM parameter.

You can do this by adding -Dlog4j.configuration=file:[PATH_TO_FILE] to the KAFKA_OPTS variable. For
example:

export KAFKA_OPTS="-Dlog4j.configuration=file:/var/tmp/tools-
log4j.properties"

Results
The specified logging level is configured.

Understanding the kafka-run-class Bash Script

Almost all the provided Kafka tools eventually call the kafka-run-class script. This script is generally not called
directly. However, if you are proficient with bash and want to understand certain features available in all Kafka
scripts as well as some potential debugging scenarios, familiarity with the kafka-run-class script can prove highly
beneficial.

29

Cloudera Runtime Command Line Tools

For example, there are some useful environment variables that affect all the command line scripts:

• KAFKA_DEBUG allows a Java debugger to attach to the JVM launched by the particular script. Setting
KAFKA_DEBUG also allows some further debugging customization:

• JAVA_DEBUG_PORT sets the JVM debugging port.
• JAVA_DEBUG_OPTS can be used to override the default debugging arguments being passed to the JVM.

• KAFKA_HEAP_OPTS can be used to pass memory setting arguments to the JVM.
• KAFKA_JVM_PERFORMANCE_OPTS can be used to pass garbage collection flags to the JVM.

30

	Contents
	Management basics
	Broker log management
	Record management
	Broker garbage log collection and log rotation

	Client and broker compatibility across Kafka versions
	Managing topics across multiple Kafka clusters
	Set up MirrorMaker in Cloudera Manager
	Settings to avoid data loss

	Broker migration
	Migrate brokers by modifying broker IDs in meta.properties
	Use rsync to copy files from one broker to another

	Disk management
	Monitoring
	Handling disk failures
	Disk Replacement
	Disk Removal

	Reassigning replicas between log directories
	Retrieving log directory replica assignment information

	Metrics
	Building Cloudera Manager charts with Kafka metrics
	Essential metrics to monitor

	Command Line Tools
	Unsupported command line tools
	kafka-topics
	kafka-configs
	kafka-console-producer
	kafka-console-consumer
	kafka-consumer-groups
	kafka-reassign-partitions
	Tool usage
	Reassignment examples

	kafka-log-dirs
	zookeeper-security-migration
	kafka-delegation-tokens
	kafka-*-perf-test
	Configuring log levels for command line tools
	Understanding the kafka-run-class Bash Script

