
Cloudera Runtime 7.1.3

Tuning Cloudera Search
Date published: 2019-11-19
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Solr Server Tuning Categories..4

Setting Java System Properties for Solr.. 5

Setting Lucene Version.. 6

Enable multi-threaded faceting...6

Tuning Garbage Collection... 7

Enable Garbage Collector Logging.. 7

Solr and HDFS - the Block Cache..8

Tuning Replication... 10
Adjust the Solr replication factor for index files stored in HDFS...11

Cloudera Runtime Solr Server Tuning Categories

Solr Server Tuning Categories

Solr performance tuning is a complex task. This is an overview of available tuning options that may be performed
either during deployment or at a later stage.

Tuning to Complete During Setup

Some tuning is best completed during the setup of your system as it may require re-indexing.

Table 1: Tuning to complete during initial setup

Tuning option Description

Configure Lucene version You can configure Solr to use a specific version of Lucene. This can help ensure that the Lucene version
that Search uses includes the latest features and bug fixes.

Design a schema When constructing a schema, use data types that most accurately describe the data that the fields will
contain. For more information on schemaless and non-schemaless mode, see Deployment Planning for
Cloudera Search.

Configure the Java heap size Set the Java heap size for the Solr Server to at least 16 GB for production environments. For more
information on memory requirements, see Deployment Planning for Cloudera Search.

General Tuning

The following tuning categories can be completed either during deployment or at a later stage. It is less important to
implement these changes before taking your system into use.

Table 2: General tuning steps

Tuning option Description

Enable multi-threaded faceting Enabling multi-threaded faceting can provide better performance for field faceting. It has no effect on query
faceting.

Consider changing batchSize
setting if you work with large
documents

In most cases, do not change the default batchSize setting of 1000. If you are working with especially large
documents, you may consider decreasing the batch size.

Enable garbage collector (GC)
logging

To help identify any garbage collector (GC) issues, enable GC logging in production. The overhead is low
and the JVM supports GC log rolling as of 1.6.0_34.

Configure garbage collection Select the garbage collection option that offers best performance in your environment.

Configure index caching Cloudera Search enables Solr to store indexes in an HDFS filesystem. To maintain performance, an HDFS
block cache has been implemented using Least Recently Used (LRU) semantics. This enables Solr to cache
HDFS index files on read and write, storing the portions of the file in JVM direct memory (off heap) by
default, or optionally in the JVM heap.

Tune commit values Changing commit values may improve performance in certain situations. These changes result in tradeoffs
and may not be beneficial in all cases.

• For hard commit values, the default value of 60000 (60 seconds) is typically effective, though changing
this value to 120 seconds may improve performance in some cases. Note, that setting this value to
higher values, such as 600 seconds may result in undesirable performance tradeoffs.

• Consider increasing the auto-soft-commit value from 15000 (15 seconds) to 120000 (120 seconds). You
may increase this to the largest value that still meets your requirements.

• If your environment does not require Near Real Time (NRT), turn off soft auto-commit in solrconfig.x
ml by setting the auto-soft commit frequency to -1.

4

Cloudera Runtime Setting Java System Properties for Solr

Tuning option Description

Tune sharding In some cases, oversharding can help improve performance including intake speed. If your environment
includes massively parallel hardware and you want to use these available resources, consider oversharding.
You might increase the number of replicas per host from 1 to 2 or 3. Making such changes creates complex
interactions, so you should continue to monitor your system's performance to ensure that the benefits of
oversharding outweigh the costs.

Minimize swappiness For better performance, Cloudera recommends setting the Linux swap space on all Solr server hosts as
shown below:

sudo sysctl vm.swappiness=1

Consider collection aliasing to
deal with massive amounts of
timestamped data in streaming-
style applications

If you need to index and near real time query huge amounts of timestamped data in Solr, such as logs or IoT
sensor data, you may consider aliasing as a massively scalable solution. This approach allows for indefinite
indexing of data without degradation of performance otherwise experienced due to the continuous growth of
a single index.

Additional Tuning Resources

Practical tuning tips outside the Cloudera Search documentation:

• For information on memory tuning, see Part 1 and Part 2 of Apache Solr Memory Tuning for Production on
Cloudera Blog.

• General information on Solr caching is available under Query Settings in SolrConfig in the Apache Solr Reference
Guide.

• Information on issues that influence performance is available on the SolrPerformanceFactors page on the Solr
Wiki.

• Resource Management describes how to use Cloudera Manager to manage resources, for example with Linux
cgroups.

• For information on improving querying performance, see How to make searching faster.
• For information on improving indexing performance, see How to make indexing faster.
• For information on aliasing, see Collection Aliasing: Near Real-Time Search for Really Big Data on Cloudera

Blog and Time Routed Aliases in the Apache Solr Reference Guide.

Related Concepts
Tuning Garbage Collection

Solr and HDFS - the Block Cache

Tuning Replication

Related Tasks
Setting Lucene Version

Enable multi-threaded faceting

Enable Garbage Collector Logging

Related Information
Deployment Planning for Cloudera Search

Resource Management

Setting Java System Properties for Solr

Several tuning steps require adding or modifying Java system properties. This is how you do it in Cloudera Manager.

Procedure

1. In Cloudera Manager, select the Solr service.

2. Click the Configuration tab.

5

https://blog.cloudera.com/apache-solr-memory-tuning-for-production/
https://blog.cloudera.com/solr-memory-tuning-for-production-part-2/
https://blog.cloudera.com/
https://lucene.apache.org/solr/guide/8_4/query-settings-in-solrconfig.html
http://wiki.apache.org/solr/SolrPerformanceFactors
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/managing-clusters/topics/cm-resource-management.html
http://wiki.apache.org/lucene-java/ImproveSearchingSpeed
http://wiki.apache.org/lucene-java/ImproveIndexingSpeed
https://blog.cloudera.com/collection-aliasing-near-real-time-search-for-really-big-data/
https://lucene.apache.org/solr/guide/7_4/time-routed-aliases.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/search-deployment-planning/topics/search-prepare-install-search.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/managing-clusters/topics/cm-resource-management.html

Cloudera Runtime Setting Lucene Version

3. In the Search box, type Java Configuration Options for Solr Server.

4. Add the property to Java Configuration Options for Solr Server using the format -D<property_name>=<value>.

Garbage collection options, such as -XX:+PrintGCTimeStamps, can also be set here. Use spaces to separate
multiple parameters.

5. Click Save Changes.

6. Restart the Solr service (Solr service Actions Restart).

Setting Lucene Version

You can configure Solr to use a specific version of Lucene. This can help ensure that the Lucene version that Search
uses includes the latest features and bug fixes.

About this task

At the time that a version of Solr ships, Solr is typically configured to use the appropriate Lucene version, in which
case there is no need to change this setting. If a subsequent Lucene update occurs, you can configure the Lucene
version requirements by directly editing the solrconfig.xml file.

Procedure

To change the configured Lucene version, edit the luceneMatchVersion element in the solrconfig.xml file.

Versions are typically of the form x.y, such as 7.4.

For example, to specify version 7.4, you would ensure the following setting exists in solrconfig.xml:

<luceneMatchVersion>7.4</luceneMatchVersion>

Enable multi-threaded faceting

Enabling multi-threaded faceting can provide better performance for field faceting.

About this task

• When multi-threaded faceting is enabled, field faceting tasks are completed in parallel with a thread working on
every field faceting task simultaneously. Performance improvements do not occur in all cases, but improvements
are likely when all of the following are true:

• The system uses highly concurrent hardware.
• Faceting operations apply to large data sets over multiple fields.
• There is not an unusually high number of queries occurring simultaneously on the system. Systems that

are lightly loaded or that are mainly engaged with ingestion and indexing may be helped by multi-threaded
faceting; for example, a system ingesting articles and being queried by a researcher. Systems heavily loaded

6

Cloudera Runtime Tuning Garbage Collection

by user queries are less likely to be helped by multi-threaded faceting; for example, an e-commerce site with
heavy user-traffic.

Note: Multi-threaded faceting only applies to field faceting and not to query faceting.

• Field faceting identifies the number of unique entries for a field. For example, multi-threaded faceting
could be used to simultaneously facet for the number of unique entries for the fields, "color" and
"size". In such a case, there would be two threads, and each thread would work on faceting one of the
two fields.

• Query faceting identifies the number of unique entries that match a query for a field. For example,
query faceting could be used to find the number of unique entries in the "size" field that are between 1
and 5. Multi-threaded faceting does not apply to these operations.

Procedure

To enable multi-threaded faceting, add facet-threads to queries.

If facet-threads is omitted or set to 0, faceting is single-threaded. If facet-threads is set to a negative value, such as
-1, multi-threaded faceting will use as many threads as there are fields to facet up to the maximum number of threads
possible on the system.

For example, to use up to 1000 threads, use a similar query:

http://localhost:8983/solr/collection1/select?q=*:*&facet=true&fl=id&facet.f
ield=f0_ws&facet.threads=1000

Tuning Garbage Collection

Choose different garbage collection options for best performance in different environments.

Some garbage collection options typically chosen include:

• Concurrent low pause collector: Use this collector in most cases. This collector attempts to minimize "Stop the
World" events. Avoiding these events can reduce connection timeouts, such as with ZooKeeper, and may improve
user experience. This collector is enabled using the Java system property -XX:+UseConcMarkSweepGC.

• Throughput collector: Consider this collector if raw throughput is more important than user experience. This
collector typically uses more "Stop the World" events so this may negatively affect user experience and
connection timeouts such as ZooKeeper heartbeats. This collector is enabled using the Java system property -
XX:+UseParallelGC. If UseParallelGC "Stop the World" events create problems, such as ZooKeeper timeouts,
consider using the UseParNewGC collector as an alternative collector with similar throughput benefits.

You can also affect garbage collection behavior by increasing the Eden space to accommodate new objects. With
additional Eden space, garbage collection does not need to run as frequently on new objects.

Related Tasks
Setting Java System Properties for Solr

Enable Garbage Collector Logging

To help identify any garbage collector (GC) issues, enable GC logging in production.

Procedure

1. In Cloudera Manager, select the Solr service.

2. Click the Configuration tab.

7

Cloudera Runtime Solr and HDFS - the Block Cache

3. In the Search box, type Java Configuration Options for Solr Server.

4. Add arguments controlling GC logging behavior.

• The minimum recommended GC logging flags are: -XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps
 -XX:+PrintGCDetails.

• To rotate the GC logs: -Xloggc: -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles= -XX:G
CLogFileSize=.

Solr and HDFS - the Block Cache

Warning: Do not enable the Solr HDFS write cache, because it can lead to index corruption.

Cloudera Search enables Solr to store indexes in an HDFS filesystem. To maintain performance, an HDFS block
cache has been implemented using Least Recently Used (LRU) semantics. This enables Solr to cache HDFS index
files on read and write, storing the portions of the file in JVM direct memory (off heap) by default, or optionally in
the JVM heap.

Batch jobs typically do not use the cache, while Solr servers (when serving queries or indexing documents) should.
When running indexing using MapReduce (MR), the MR jobs themselves do not use the block cache. Block write
caching is turned off by default and should be left disabled.

Tuning of this cache is complex and best practices are continually being refined. In general, allocate a cache that is
about 10-20% of the amount of memory available on the system. For example, when running HDFS and Solr on a
host with 96 GB of memory, allocate 10-20 GB of memory using solr.hdfs.blockcache.slab.count. As index sizes
grow you may need to tune this parameter to maintain optimal performance.

Note: Block cache metrics are currently unavailable.

Configure Index Caching

The following parameters control caching. They can be configured at the Solr process level by setting the respective
Java system property or by editing solrconfig.xml directly.

If the parameters are set at the collection level (using solrconfig.xml), the first collection loaded by the Solr server
takes precedence, and block cache settings in all other collections are ignored. Because you cannot control the order
in which collections are loaded, you must make sure to set identical block cache settings in every collection solrconf
ig.xml. Block cache parameters set at the collection level in solrconfig.xml also take precedence over parameters at
the process level.

Parameter Cloudera Manager
Setting

Default Description

solr.hdfs.blockcache.global Not directly
configurable.
Cloudera Manager
automatically enables
the global block
cache. To override
this setting, you
must use the Solr
Service Environment
Advanced
Configuration Snippet
(Safety Valve).

true If enabled, one HDFS block cache is used
for each collection on a host. If blockcache.g
lobal is disabled, each SolrCore on a host
creates its own private HDFS block cache.
Enabling this parameter simplifies managing
HDFS block cache memory.

solr.hdfs.blockcache.enabled HDFS Block Cache true Enable the block cache.

8

Cloudera Runtime Solr and HDFS - the Block Cache

Parameter Cloudera Manager
Setting

Default Description

solr.hdfs.blockcache.read.enabled Not directly
configurable.
If the block
cache is enabled,
Cloudera Manager
automatically enables
the read cache. To
override this setting,
you must use the Solr
Service Environment
Advanced
Configuration Snippet
(Safety Valve).

true Enable the read cache.

solr.hdfs.blockcache.write.enabled Not directly
configurable.
If the block
cache is enabled,
Cloudera Manager
automatically disables
the write cache.

Warning:
Do not
enable the
Solr HDFS
write
cache,
because it
can lead
to index
corruption.

false Enable the write cache.

solr.hdfs.blockcache.direct.memory.allocation HDFS Block Cache
Off-Heap Memory

true Enable direct memory allocation. If this is
false, heap is used.

solr.hdfs.blockcache.blocksperbank HDFS Block Cache
Blocks per Slab

16384 Number of blocks per cache slab. The size of
the cache is 8 KB (the block size) times the
number of blocks per slab times the number
of slabs.

solr.hdfs.blockcache.slab.count HDFS Block Cache
Number of Slabs

1 Number of slabs per block cache. The size of
the cache is 8 KB (the block size) times the
number of blocks per slab times the number
of slabs.

Note:

Increasing the direct memory cache size may make it necessary to increase the maximum direct memory
size allowed by the JVM. Each Solr slab allocates memory, which is 128 MB by default, as well as
allocating some additional direct memory overhead. Therefore, ensure that the MaxDirectMemorySize is
set comfortably above the value expected for slabs alone. The amount of additional memory required varies
according to multiple factors, but for most cases, setting MaxDirectMemorySize to at least 20-30% more than
the total memory configured for slabs is sufficient. Setting MaxDirectMemorySize to the number of slabs
multiplied by the slab size does not provide enough memory.

To set MaxDirectMemorySize using Cloudera Manager:

1. Go to the Solr service.
2. Click the Configuration tab.
3. In the Search box, type Java Direct Memory Size of Solr Server in Bytes.
4. Set the new direct memory value.
5. Restart Solr servers after editing the parameter.

Solr HDFS optimizes caching when performing NRT indexing using Lucene's NRTCachingDirectory.

9

Cloudera Runtime Tuning Replication

Lucene caches a newly created segment if both of the following conditions are true:

• The segment is the result of a flush or a merge and the estimated size of the merged segment is <= solr.hdfs.nrtcac
hingdirectory.maxmergesizemb.

• The total cached bytes is <= solr.hdfs.nrtcachingdirectory.maxcachedmb.

The following parameters control NRT caching behavior:

Parameter Default Description

solr.hdfs.nrtcachingdirectory.enable true Whether to enable the NRTCachingDirectory.

solr.hdfs.nrtcachingdirectory.maxcachedmb 192 Size of the cache in megabytes.

solr.hdfs.nrtcachingdirectory.maxmergesizemb 16 Maximum segment size to cache.

This is an example solrconfig.xml file with defaults:

 <directoryFactory name="DirectoryFactory">
 <bool name="solr.hdfs.blockcache.enabled">${solr.hdfs.blockcache.enabled
:true}</bool>
 <int name="solr.hdfs.blockcache.slab.count">${solr.hdfs.blockcache.sla
b.count:1}</int>
 <bool name="solr.hdfs.blockcache.direct.memory.allocation">${solr.hdfs.
blockcache.direct.memory.allocation:true}</bool>
 <int name="solr.hdfs.blockcache.blocksperbank">${solr.hdfs.blockcache.b
locksperbank:16384}</int>
 <bool name="solr.hdfs.blockcache.read.enabled">${solr.hdfs.blockcache.
read.enabled:true}</bool>
 <bool name="solr.hdfs.nrtcachingdirectory.enable">${solr.hdfs.nrtcachi
ngdirectory.enable:true}</bool>
 <int name="solr.hdfs.nrtcachingdirectory.maxmergesizemb">${solr.hdfs.nrt
cachingdirectory.maxmergesizemb:16}</int>
 <int name="solr.hdfs.nrtcachingdirectory.maxcachedmb">${solr.hdfs.nrtc
achingdirectory.maxcachedmb:192}</int>
</directoryFactory>

Related Tasks
Setting Java System Properties for Solr

Apache Solr Reference Guide

Query Settings in SolrConfig gives general information on Solr caching.

Tuning Replication

If you have sufficient additional hardware, you may add more replicas for a linear boost of query throughput.

Note: Do not adjust HDFS replication settings for Solr in most cases.

Note, that adding replicas may slow write performance on the first replica, but otherwise this should have minimal
negative consequences.

Transaction Log Replication

Cloudera Search supports configurable transaction log replication levels for replication logs stored in HDFS.
Cloudera recommends leaving the value unchanged at 3 or, barring that, setting it to at least 2.

10

https://lucene.apache.org/solr/guide/7_4/query-settings-in-solrconfig.html

Cloudera Runtime Tuning Replication

Configure the transaction log replication factor for a collection by modifying the tlogDfsReplication setting in solr
config.xml. The tlogDfsReplication is a setting in the updateLog settings area. An excerpt of the solrconfig.xml file
where the transaction log replication factor is set is as follows:

 <updateHandler class="solr.DirectUpdateHandler2">

 <!-- Enables a transaction log, used for real-time get, durability, and
 solr cloud replica recovery. The log can grow as big as
 uncommitted changes to the index, so use of a hard autoCommit
 is recommended (see below).
 "dir" - the target directory for transaction logs, defaults to the
 solr data directory. -->
 <updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
 <int name="tlogDfsReplication">${solr.ulog.tlogDfsReplication:3}</int>
 <int name="numVersionBuckets">${solr.ulog.numVersionBuckets:65536}</
int>
 </updateLog>

The default replication level is 3. For clusters with fewer than three DataNodes (such as proof-of-concept clusters),
reduce this number to the amount of DataNodes in the cluster. Changing the replication level only applies to new
transaction logs.

Initial testing shows no significant performance regression for common use cases.

Related Tasks
Adjust the Solr replication factor for index files stored in HDFS

Adjust the Solr replication factor for index files stored in HDFS
You can adjust the degree to which different data is replicated.

Procedure

1. Go to Solr service Configuration Category Advanced .

2. Click the plus sign next to Solr Service Advanced Configuration Snippet (Safety Valve) for hdfs-site.xml to add a
new property with the following values:

Name: dfs.replication

Value: 2

3. Click Save Changes.

4. Restart the Solr service (Solr service Actions Restart).

11

	Contents
	Solr Server Tuning Categories
	Setting Java System Properties for Solr
	Setting Lucene Version
	Enable multi-threaded faceting
	Tuning Garbage Collection
	Enable Garbage Collector Logging
	Solr and HDFS - the Block Cache
	Tuning Replication
	Adjust the Solr replication factor for index files stored in HDFS

