
Cloudera Runtime 7.1.3

HDFS Overview
Date published: 2020-02-20
Date modified: 2020-08-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Introduction... 4
Overview of HDFS...4

NameNodes.. 4
Moving NameNode roles... 5

Moving highly available NameNode, failover controller, and JournalNode roles using the
Migrate Roles wizard..5

Moving a NameNode to a different host using Cloudera Manager...6
Sizing NameNode heap memory..7

Environment variables for sizing NameNode heap memory... 7
Monitoring heap memory usage...7
Files and directories..7
Disk space versus namespace...8
Replication...8
Examples of estimating NameNode heap memory..8

Remove or add storage directories for NameNode data directories.. 9

DataNodes.. 10
How NameNode manages blocks on a failed DataNode...10
Replace a disk on a DataNode host...11
Remove a DataNode...11
Fixing block inconsistencies...12
Add storage directories using Cloudera Manager..12
Remove storage directories using Cloudera Manager... 12
Configuring storage balancing for DataNodes...13

Configure storage balancing for DataNodes using Cloudera Manager..13
Perform a disk hot swap for DataNodes using Cloudera Manager... 14

JournalNodes... 15
Moving the JournalNode edits directory for a role group using Cloudera Manager... 15
Moving the JournalNode edits directory for a role instance using Cloudera Manager..................................... 16
Synchronizing the contents of JournalNodes...17

Cloudera Runtime Introduction

Introduction

Hadoop Distributed File System (HDFS) is a Java-based file system that provides scalable and reliable data storage.
An HDFS cluster contains a NameNode to manage the cluster namespace and DataNodes to store data.

Overview of HDFS
Hadoop Distributed File System (HDFS) is a Java-based file system for storing large volumes of data. Designed to
span large clusters of commodity servers, HDFS provides scalable and reliable data storage.

HDFS forms the data management layer of Apache Hadoop. YARN provides the resource management while HDFS
provides the storage.

HDFS is a scalable, fault-tolerant, distributed storage system that works closely with a wide variety of concurrent
data access applications. By distributing storage and computation across many servers, the combined storage resource
grows linearly with demand.

Components of an HDFS cluster

An HDFS cluster contains the following main components: a NameNode and DataNodes.

The NameNode manages the cluster metadata that includes file and directory structures, permissions, modifications,
and disk space quotas. The file content is split into multiple data blocks, with each block replicated at multiple
DataNodes.

The NameNode actively monitors the number of replicas of a block. In addition, the NameNode maintains the
namespace tree and the mapping of blocks to DataNodes, holding the entire namespace image in RAM.

High-Availability (HA) clusters contain a standby for the active NameNode to avoid a single point of failure. These
clusters use JournalNodes to synchronize the active and standby NameNodes.

Benefits of HDFS

HDFS provides the following benefits as a result of which data is stored efficiently and is highly available in the
cluster:

• Rack awareness: A node's physical location is considered when allocating storage and scheduling tasks.
• Minimal data motion: Hadoop moves compute processes to the data on HDFS. Processing tasks can occur on the

physical node where the data resides. This significantly reduces network I/O and provides very high aggregate
bandwidth.

• Utilities: Dynamically diagnose the health of the file system and rebalance the data on different nodes.
• Version rollback: Allows operators to perform a rollback to the previous version of HDFS after an upgrade, in

case of human or systemic errors.
• Standby NameNode: Provides redundancy and supports high availability (HA).
• Operability: HDFS requires minimal operator intervention, allowing a single operator to maintain a cluster of

thousands of nodes

Related Information
Apache Hadoop HDFS

NameNodes

NameNodes maintain the namespace tree for HDFS and a mapping of file blocks to DataNodes where the data is
stored.

4

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Cloudera Runtime NameNodes

A simple HDFS cluster can have only one primary NameNode, supported by a secondary NameNode that periodically
compresses the NameNode edits log file that contains a list of HDFS metadata modifications. This reduces the
amount of disk space consumed by the log file on the NameNode, which also reduces the restart time for the primary
NameNode. A high-availability cluster contains two NameNodes: active and standby.

Moving NameNode roles
Depending on your cluster configuration, you can follow either of the two approaches to migrate the NameNode
role: using the Cloudera Manager wizard in a highly available cluster to automate the migration process, or manually
moving the NameNode role to a new host.

Important: Both procedures require cluster downtime.

Moving highly available NameNode, failover controller, and JournalNode roles using
the Migrate Roles wizard

The Migrate Roles wizard allows you to move roles of a highly available HDFS service from one host to another.
You can use it to move NameNode, JournalNode, and Failover Controller roles.

Before you begin

• This procedure requires cluster downtime, not a shutdown. The services discussed in this list must be running for
the migration to complete.

• The configuration of HDFS and services that depend on it must be valid.
• The destination host must be commissioned and healthy.
• The NameNode must be highly available using quorum-based storage.
• HDFS automatic failover must be enabled, and the cluster must have a running ZooKeeper service.
• If a Hue service is present in the cluster, its HDFS Web Interface Role property must refer to an HttpFS role, not

to a NameNode role.
• A majority of configured JournalNode roles must be running.
• The Failover Controller role that is not located on the source host must be running.
• On hosts running active and standby NameNodes, back up the data directories.
• On hosts running JournalNodes, back up the JournalNode edits directory.
• If the source host is not functioning properly, or is not reliably reachable, decommission the host.
• If CDP and HDFS metadata was recently upgraded, and the metadata upgrade was not finalized, finalize the

metadata upgrade.

About this task

Note: Nameservice federation (multiple namespaces) is not supported.

Procedure

1. If the host to which you want to move the NameNode is not in the cluster, add the required host.

2. Go to the HDFS service.

3. Click the Instances tab.

4. Click the Migrate Roles button.

5

Cloudera Runtime NameNodes

5. Click the Source Host text field and specify the host running the roles to migrate.

In the Search field optionally enter hostnames to filter the list of hosts and click Search.

Select the checkboxes next to the desired host. The list of available roles to migrate displays. Clear any roles you
do not want to migrate. When migrating a NameNode, the co-located Failover Controller must be migrated as
well.

6. Click the Destination Host text field and specify the host to which the roles will be migrated.

On destination hosts, indicate whether to delete data in the NameNode data directories and JournalNode edits
directory. If you choose not to delete data and such role data exists, the Migrate Roles command will not complete
successfully.

7. Acknowledge that the migration process incurs service unavailability by selecting the Yes, I am ready to restart
the cluster now checkbox.

8. Click Continue. The Command Progress screen displays listing each step in the migration process.

9. When the migration completes, click Finish.

What to do next
After moving a NameNode, if you have a Hive or Impala service, perform the following steps:

1. Go to the Hive service.
2. Stop the Hive service.
3. Select Actions Update Hive Metastore NameNodes .
4. If you have an Impala service, restart the Impala service or run an INVALIDATE METADATA query.

Note: The Update Hive Metastore NameNodes step only needs to be run if you have non-HA namenodes, or
if the nameservice identifier is changed.

Moving a NameNode to a different host using Cloudera Manager
You can use Cloudera Manager to manually move a NameNode from one host to another.

Before you begin
This procedure requires cluster downtime.

Procedure

1. If the host to which you want to move the NameNode is not in the cluster, add the required host.

2. Stop all the cluster services.

3. Make a backup of the dfs.name.dir directories on the existing NameNode host.

Make sure you back up the fsimage and edits files. They should be the same across all of the directories specified
by the dfs.name.dir property.

4. Copy the files you backed up from dfs.name.dir directories on the old NameNode host to the host where you want
to run the NameNode.

5. Go to the HDFS service.

6. Click the Instances tab.

7. Select the checkbox next to the NameNode role instance and then click the Delete button. Click Delete again to
confirm.

8. In the Review configuration changes page that appears, click Skip.

9. Click Add Role Instances to add a NameNode role instance.

10. Select the host where you want to run the NameNode and then click Continue.

11. Specify the location of the dfs.name.dir directories where you copied the data on the new host, and then click
Accept Changes.

6

Cloudera Runtime NameNodes

12. Start the cluster services.

After the HDFS service has started, Cloudera Manager distributes the new configuration files to the DataNodes,
which will be configured with the IP address of the new NameNode host.

Sizing NameNode heap memory
Each workload has a unique byte-distribution profile. Some workloads can use the default JVM settings for heap
memory and garbage collection, but others require tuning. You can size your NameNode JVM if the dynamic heap
settings cause a bottleneck.

All Hadoop processes run on a Java Virtual Machine (JVM). Each daemon runs on its own JVM across a cluster of
hosts.

The legacy NameNode configuration is one active (and primary) NameNode for the entire namespace and one
Secondary NameNode for checkpoints (but not failover). The recommended high-availability configuration replaces
the Secondary NameNode with a standby NameNode that prevents a single point of failure. Each NameNode uses its
own JVM.

Environment variables for sizing NameNode heap memory
You can configure the values of HADOOP_HEAPSIZE and HADOOP_NAMENODE_OPTS to size the NameNode
heap memory.

HADOOP_HEAPSIZE sets the JVM heap size for all Hadoop project servers such as HDFS, YARN, and MapReduce.
HADOOP_HEAPSIZE is an integer passed to the JVM as the maximum memory (Xmx) argument. For example:

HADOOP_HEAPSIZE=1024

HADOOP_NAMENODE_OPTS is specific to the NameNode and sets all JVM flags, which must be specified.
HADOOP_NAMENODE_OPTS overrides the HADOOP_HEAPSIZE Xmx value for the NameNode. For example:

HADOOP_NAMENODE_OPTS=-Xms1024m -Xmx1024m -XX:+UseParNewGC -XX:+UseConcMarkSw
eepGC -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSParallelRemarkEnabled -X
X:+PrintTenuringDistribution -XX:OnOutOfMemoryError={{AGENT_COMMON_DIR}}/kil
lparent.sh

Both HADOOP_NAMENODE_OPTS and HADOOP_HEAPSIZE are stored in /etc/hadoop/conf/hadoop-env.sh.

Monitoring heap memory usage
You can use several ways to monitor the heap memory usage: Cloudera Manager, NameNode web UI, or the
command line.

• Cloudera Manager: Look at the NameNode chart for heap memory usage. If you need to build the chart from
scratch, run:

select jvm_max_memory_mb, jvm_heap_used_mb where roleType="NameNode"

• NameNode Web UI: Scroll down to the Summary and look for "Heap Memory used."
• Command line: Generate a heap dump.

Files and directories
Persistence of HDFS metadata is implemented using fsimage file and edits files.

Attention:

Do not attempt to modify metadata directories or files. Unexpected modifications can cause HDFS downtime,
or even permanent data loss. This information is provided for educational purposes only.

Persistence of HDFS metadata broadly consist of two categories of files:

7

Cloudera Runtime NameNodes

fsimage

Contains the complete state of the file system at a point in time. Every file system modification
is assigned a unique, monotonically increasing transaction ID. An fsimage file represents the file
system state after all modifications up to a specific transaction ID.

edits file

Contains a log that lists each file system change (file creation, deletion or modification) that was
made after the most recent fsimage.

Checkpointing is the process of merging the content of the most recent fsimage, with all edits applied after that
fsimage is merged, to create a new fsimage. Checkpointing is triggered automatically by configuration policies or
manually by HDFS administration commands.

Disk space versus namespace
The HDFS default block size (dfs.blocksize) is set to 128 MB. Each namespace object on the NameNode consumes
approximately 150 bytes.

On DataNodes, data files are measured by disk space consumed—the actual data length—and not necessarily the full
block size. For example, a file that is 192 MB consumes 192 MB of disk space and not some integral multiple of the
block size. Using the default block size of 128 MB, a file of 192 MB is split into two block files, one 128 MB file and
one 64 MB file. On the NameNode, namespace objects are measured by the number of files and blocks. The same 192
MB file is represented by three namespace objects (1 file inode + 2 blocks) and consumes approximately 450 bytes of
memory.

Large files split into fewer blocks generally consume less memory than small files that generate many blocks. One
data file of 128 MB is represented by two namespace objects on the NameNode (1 file inode + 1 block) and consumes
approximately 300 bytes of memory. By contrast, 128 files of 1 MB each are represented by 256 namespace objects
(128 file inodes + 128 blocks) and consume approximately 38,400 bytes. The optimal split size, then, is some integral
multiple of the block size, for memory management as well as data locality optimization.

By default, Cloudera Manager allocates a maximum heap space of 1 GB for every million blocks (but never
less than 1 GB). How much memory you actually need depends on your workload, especially on the number of
files, directories, and blocks generated in each namespace. If all of your files are split at the block size, you could
allocate 1 GB for every million files. But given the historical average of 1.5 blocks per file (2 block objects), a more
conservative estimate is 1 GB of memory for every million blocks.

Important: Cloudera recommends 1 GB of NameNode heap space per million blocks to account for the
namespace objects, necessary bookkeeping data structures, and the remote procedure call (RPC) workload. In
practice, your heap requirements will likely be less than this conservative estimate.

Replication
The default block replication factor (dfs.replication) is three. Replication affects disk space but not memory
consumption.

Replication changes the amount of storage required for each block but not the number of blocks. If one block file on
a DataNode, represented by one block on the NameNode, is replicated three times, the number of block files is tripled
but not the number of blocks that represent them.

With replication off, one file of 192 MB consumes 192 MB of disk space and approximately 450 bytes of memory.
If you have one million of these files, or 192 TB of data, you need 192 TB of disk space and, without considering the
RPC workload, 450 MB of memory: (1 million inodes + 2 million blocks) * 150 bytes. With default replication on,
you need 576 TB of disk space: (192 TB * 3) but the memory usage stay the same, 450 MB. When you account for
bookkeeping and RPCs, and follow the recommendation of 1 GB of heap memory for every million blocks, a much
safer estimate for this scenario is 2 GB of memory (with or without replication).

Examples of estimating NameNode heap memory
You can estimate the heap memory by consider either the number of file inodes and blocks, or the cluster capacity.

8

Cloudera Runtime NameNodes

Example 1: Estimating NameNode heap memory used

Alice, Bob, and Carl each have 1 GB (1024 MB) of data on disk, but sliced into differently sized files. Alice and Bob
have files that are some integral of the block size and require the least memory. Carl does not and fills the heap with
unnecessary namespace objects.

Alice: 1 x 1024 MB file

• 1 file inode
• 8 blocks (1024 MB / 128 MB)

Total = 9 objects * 150 bytes = 1,350 bytes of heap memory

Bob: 8 x 128 MB files

• 8 file inodes
• 8 blocks

Total = 16 objects * 150 bytes = 2,400 bytes of heap memory

Carl: 1,024 x 1 MB files

• 1,024 file inodes
• 1,024 blocks

Total = 2,048 objects * 150 bytes = 307,200 bytes of heap memory

Example 2: Estimating NameNode heap memory needed

In this example, memory is estimated by considering the capacity of a cluster. Values are rounded. Both clusters
physically store 4800 TB, or approximately 36 million block files (at the default block size). Replication determines
how many namespace blocks represent these block files.

Cluster A: 200 hosts of 24 TB each = 4800 TB.

• Blocksize=128 MB, Replication=1
• Cluster capacity in MB: 200 * 24,000,000 MB = 4,800,000,000 MB (4800 TB)
• Disk space needed per block: 128 MB per block * 1 = 128 MB storage per block
• Cluster capacity in blocks: 4,800,000,000 MB / 128 MB = 36,000,000 blocks

At capacity, with the recommended allocation of 1 GB of memory per million blocks, Cluster A needs 36 GB of
maximum heap space.

Cluster B: 200 hosts of 24 TB each = 4800 TB.

• Blocksize=128 MB, Replication=3
• Cluster capacity in MB: 200 * 24,000,000 MB = 4,800,000,000 MB (4800 TB)
• Disk space needed per block: 128 MB per block * 3 = 384 MB storage per block
• Cluster capacity in blocks: 4,800,000,000 MB / 384 MB = 12,000,000 blocks

At capacity, with the recommended allocation of 1 GB of memory per million blocks, Cluster B needs 12 GB of
maximum heap space.

Both Cluster A and Cluster B store the same number of block files. In Cluster A, however, each block file is unique
and represented by one block on the NameNode; in Cluster B, only one-third are unique and two-thirds are replicas.

Remove or add storage directories for NameNode data directories
This is a cluster administration task where existing Namenode DataDir must be changed. Perform the following steps
to change the Namenode directories with downtime.

9

Cloudera Runtime DataNodes

Procedure

1. Take a backup of the existing DataDir paths on NNs. For instance, for each NN, if there are two DataDir paths,
taking backup of one DataDir is sufficient.

2. Create new mounts where the Namenode data will reside and ensure the permissions and ownerships are all same
as that of the old Namenode data directories.

3. Shutdown the Standby Namenode.

4. Log in to the host and copy the NN DataDir content from old mount to new mount.

5. Verify the permission and ownership of fsimage* edits* VERSION files.

6. Navigate to Cloudera Manager > HDFS > Instances > click on the SBNN role (stopped one) > Configuration >
search for dfs.namenode.name.dir > change the mount path to new one > Save Changes

7. Start the SBNN NameNode.

8. Wait for the SBNN to start and is out of safe mode.

9. Navigate to Cloudera Manager > HDFS > Configuration > Federation and High Availability > Actions > Manual
Failover > select SBNN option > click Manual Failover > wait until the failover is complete.

10. You must verify using the NN webUIs if the previous SBNN node is now the ANN and ANN node is now the
SBNN.

11. Repeat steps 2-7 on the new SBNN which was previous ANN.

DataNodes

DataNodes store data in a Hadoop cluster and is the name of the daemon that manages the data. File data is replicated
on multiple DataNodes for reliability and so that localized computation can be executed near the data.

Within a cluster, DataNodes should be uniform. If they are not uniform, issues can occur. For example, DataNodes
with less memory fill up more quickly than DataNodes with more memory, which can result in job failures.

Important: The default replication factor for HDFS is three. That is, three copies of data are maintained at
all times. Cloudera recommends that you do not configure a lower replication factor when you have at least
three DataNodes. A lower replication factor may lead to data loss.

How NameNode manages blocks on a failed DataNode
A DataNode is considered dead after a set period without any heartbeats (10.5 minutes by default).

When this happens, the NameNode performs the following actions to maintain the configured replication factor (3x
replication by default):

1. The NameNode determines which blocks were on the failed DataNode.
2. The NameNode locates other DataNodes with copies of these blocks.
3. The DataNodes with block copies are instructed to copy those blocks to other DataNodes to maintain the

configured replication factor.

Keep the following in mind when working with dead DataNodes:

• If the DataNode fails due to a disk failure, follow the procedure in Replace a disk on a DataNode host on page
11 or Perform a disk hot swap for DataNodes using Cloudera Manager on page 14 to bring a repaired
DataNode back online. If a DataNode fails to heartbeat for other reasons, it needs to be recommissioned to be
added back to the cluster.

• If a DataNode fails to heartbeat for reasons other than disk failure, it needs to be recommissioned to be added back
to the cluster.

• If a DataNode rejoins the cluster, there is a possibility for surplus replicas of blocks that were on that DataNode.
The NameNode will randomly remove excess replicas adhering to Rack-Awareness policies.

10

Cloudera Runtime DataNodes

Replace a disk on a DataNode host
In your CDP Private Cloud Base cluster, you can replace faulty disks on the DataNode host. You must stop all the
managed services and decommission the DataNode role instance before replacing the faulty disk.

Before you begin

Procedure

1. Stop managed services.

2. Decommission the DataNode role instance.

3. Replace the failed disk.

4. Recommission the DataNode role instance.

5. Run the HDFS fsck utility to validate the health of HDFS.

The utility normally reports over-replicated blocks immediately after a DataNode is reintroduced to the cluster,
which is automatically corrected over time.

6. Start managed services.

Remove a DataNode
Before removing a DataNode, ensure that all the prerequisites for removal are satisfied.

Before you begin

• The number of DataNodes in your cluster must be greater than or equal to the replication factor you have
configured for HDFS. (This value is typically 3.)

In order to satisfy this requirement, add the DataNode role on other hosts as required and start the role instances
before removing any DataNodes.

• Ensure the DataNode that is to be removed is running.

Procedure

1. Decommission the DataNode role.

When asked to select the role instance to decommission, select the DataNode role instance.

The decommissioning process moves the data blocks to the other available DataNodes.

Important: There must be at least as many DataNodes running as the replication factor or the
decommissioning process will not complete.

2. Stop the DataNode role.

When asked to select the role instance to stop, select the DataNode role instance.

3. Verify the integrity of the HDFS service.

a) Run the following command to identify any problems in the HDFS file system:

hdfs fsck /

b) Fix any errors reported by the fsck command.

If required, create a Cloudera support case.

11

https://www.cloudera.com/user/login.html

Cloudera Runtime DataNodes

4. After all errors are resolved, perform the following steps.

a) Remove the DataNode role.
b) Manually remove the DataNode data directories.

You can determine the location of these directories by examining the DataNode Data Directory property in the
HDFS configuration. In Cloudera Manager, go to the HDFS service, select the Configuration tab and search
for the property.

Fixing block inconsistencies
You can use the output of hdfs fsck or hdfs dfsadmin -report commands for information about
inconsistencies with the HDFS data blocks such as missing, misreplicated, or underreplicated blocks. You can adopt
different methods to address these inconsistencies.

Missing blocks: Ensure that the DataNodes in your cluster and the disks running on them are healthy. This should
help in recovering those blocks that have recoverable replicas (indicated as missing blocks). If a file contains corrupt
or missing blocks that cannot be recovered, then the file would be missing data, and all this data starting from the
missing block becomes inaccessible through the CLI tools and FileSystem API. In most cases, the only solution is to
delete the data file (by using the hdfs fsck <path> -delete command) and recover the data from another
source.

Important: You must exercise caution when deleting files to ensure that you do not lose any important data.
Cloudera recommends that you contact support for further assistance or any guidance on deleting files.

Underreplicated blocks: HDFS automatically attempts to fix this issue by replicating the underreplicated blocks to
other DataNodes and match the replication factor. If the automatic replication does not work, you can run the HDFS
Balancer to address the issue.

Misreplicated blocks: Run the hdfs fsck -replicate command to trigger the replication of misreplicated
blocks. This ensures that the blocks are correctly replicated across racks in the cluster.

Add storage directories using Cloudera Manager
You can add a new storage directory and specify the storage type using Cloudera Manager.

Procedure

1. Go to the HDFS service.

2. Click the Configuration tab.

3. Select Scope DataNode .

4. Add the new storage directory to the DataNode Data Directory property.

To specify the storage type for the HDFS heterogeneous storage, add the storage type, surrounded by brackets, at
the front of the path. For example: [SSD]/data/example_dir/.

5. Enter a Reason for change, and then click Save Changes to commit the changes.

6. Restart the DataNode.

Important: You must restart the DataNodes for heterogeneous storage configuration changes to take
effect.

Remove storage directories using Cloudera Manager
You can use Cloudera Manager to remove existing storage directories and specify new directories.

12

Cloudera Runtime DataNodes

Procedure

1. Stop the cluster.

2. Go to the HDFS service.

3. Click the Configuration tab.

4. Select Scope DataNode .

5. Remove the current directories and add new ones to the DataNode Data Directory property.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

7. Copy the contents under the old directory to the new directory.

8. Start the cluster.

Configuring storage balancing for DataNodes
You can configure HDFS to distribute writes on each DataNode in a manner that balances out available storage
among that DataNode's disk volumes.

By default a DataNode writes new block replicas to disk volumes solely on a round-robin basis. You can configure a
volume-choosing policy that causes the DataNode to take into account how much space is available on each volume
when deciding where to place a new replica.

You can configure

• how much DataNode volumes are allowed to differ in terms of bytes of free disk space before they are considered
imbalanced, and

• what percentage of new block allocations will be sent to volumes with more available disk space than others.

Configure storage balancing for DataNodes using Cloudera Manager
You must configure certain dfs.datanode properties to enable storage balancing for DataNodes.

Procedure

1. Go to the HDFS service.

2. Click the Configuration tab.

3. Select ScopeDataNode.

4. Select CategoryAdvanced.

13

Cloudera Runtime DataNodes

5. Configure the following properties (you can use the Search box to locate the properties).

Property Value Description

dfs.datanode.
fsdataset.
volume.choo
sing.
policy

org.apache.hadoop.
hdfs.server.datan
ode.
fsdataset.
AvailableSpaceVolume
ChoosingPolicy

Enables storage balancing among the DataNode's volumes.

dfs.datanode.
available-spac
e-
volume-choosi
ng-
policy.balan
ced-
space-thres
hold

10737418240 (default) The amount by which volumes are allowed to differ from
each other in terms of bytes of free disk space before they are
considered imbalanced. The default is 10737418240 (10 GB).

If the free space on each volume is within this range of the
other volumes, the volumes will be considered balanced and
block assignments will be done on a pure round-robin basis.

dfs.datanode.
available-spac
e-
volume-choosi
ng-
policy.balan
ced-
space-prefe
rence-
fraction

0.75 (default) What proportion of new block allocations will be sent to
volumes with more available disk space than others. The
allowable range is 0.0-1.0, but set it in the range 0.5 - 1.0 (that
is, 50-100%), since there should be no reason to prefer that
volumes with less available disk space receive more block
allocations.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

7. Restart the role.

Perform a disk hot swap for DataNodes using Cloudera Manager
You can replace disks on your CDP Private Cloud Base cluster without shutting down a DataNode. This is referred to
as hot swap.

About this task

Caution:

• Hot swap can only add disks with empty data directories.
• Removing a disk does not move the data off the disk, which could potentially result in data loss.
• Do not perform hot swap on multiple hosts at the same time.

14

Cloudera Runtime JournalNodes

Procedure

1. Configure data directories to remove the disk you are swapping out.

a) Go to the HDFS service.
b) Click the Instances tab.
c) In the Role Type column, click on the affected DataNode.
d) Click the Configuration tab.
e) Select Scope DataNode .
f) Select Category Main .
g) Change the value of the DataNode Data Directory property to remove the directories that are mount points for

the disk you are removing.

Warning: Change the value of this property only for the specific DataNode instance where you are
planning to hot swap the disk. Do not edit the role group value for this property. Doing so will cause
data loss.

2. Enter a Reason for change, and then click Save Changes to commit the changes.

3. Refresh the affected DataNode. Select ActionsRefresh DataNode configuration.

4. Remove the old disk and add the replacement disk.

5. Change the value of the DataNode Data Directory property to add back the directories that are mount points for
the disk you added.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

7. Refresh the affected DataNode. Select Actions > Refresh DataNode configuration.

8. Run the hdfs fsck / command to validate the health of HDFS.

JournalNodes

High-availability clusters use JournalNodes to synchronize active and standby NameNodes. The active NameNode
writes to each JournalNode with changes, or "edits," to HDFS namespace metadata. During failover, the standby
NameNode applies all edits from the JournalNodes before promoting itself to the active state.

Moving the JournalNode edits directory for a role group using Cloudera
Manager

Depending on your requirements, you can change the location of the edits directory for each JournalNode in the
JournalNode Default Group.

Procedure

1. Stop all services on the cluster in Cloudera Manager.

a) Go to the Cluster.
b) Select Actions Stop .

2. Find the list of JournalNode hosts.

a) Go to the HDFS service.
b) Click JournalNode under Status Summary.

15

Cloudera Runtime JournalNodes

3. Move the location of each JournalNode (jn) directory at the command line.

a) Connect to each host with a JournalNode.
b) Per host, copy the JournalNode (jn) directory to its new location with the -a option to preserve permissions.

cp -a /<old_path_to_jn_dir>/jn /<new_path_to_jn_dir>/jn

c) Per host, rename the old jn directory to avoid confusion.

mv /<old_path_to_jn_dir>/jn /<old_path_to_jn_dir>/jn_to_delete

4. Reconfigure the JournalNode Default Group.

a) Go to the HDFS service.
b) Click the Configuration tab.
c) Click JournalNode under Scope.
d) Set dfs.journalnode.edits.dir to the path of the new jn directory for all JournalNodes in the group.
e) Click Save Changes.

5. Redeploy the client configuration for the cluster.

a) Go to the Cluster.
b) Select Actions Deploy Client Configuration .

6. Start all services on the cluster by selecting Actions Start .

7. Delete the old jn_to_delete directories from the command line.

Moving the JournalNode edits directory for a role instance using Cloudera
Manager

Depending on your requirements, you can change the location of the edits directory for one JournalNode instance.

Procedure

1. Reconfigure the JournalNode Edits Directory.

a) Go to the HDFS service in Cloudera Manager.
b) Click JournalNode under Status Summary.
c) Click the JournalNode link for the instance you are changing.
d) Click the Configuration tab.
e) Set dfs.journalnode.edits.dir to the path of the new jn directory.

2. Move the location of the JournalNode (jn) directory at the command line.

a) Connect to host of the JournalNode.
b) Copy the JournalNode (jn) directory to its new location with the -a option to preserve permissions.

cp -a /<old_path_to_jn_dir>/jn /<new_path_to_jn_dir>/jn

c) Rename the old jn directory to avoid confusion.

mv /<old_path_to_jn_dir>/jn /<old_path_to_jn_dir>/jn_to_delete

3. Redeploy the HDFS client configuration.

a) Go to the HDFS service.
b) Select Actions Deploy Client Configuration .

4. Perform a rolling restart for HDFS by selecting Actions Rolling Restart .

Use the default settings.

5. From the command line, delete the old jn_to_delete directory.

16

Cloudera Runtime JournalNodes

Synchronizing the contents of JournalNodes
You can synchronize the contents of the JournalNodes in your CDP Private Cloud Base cluster. Enabling this
capability helps in maintaining consistency in the contents of all the JournalNodes across the cluster. For example, a
JournalNode whose contents go out of synchronization can automatically copy the contents of the other JournalNodes
in the cluster to ensure consistency.

Before you begin
The cluster on which you want to enable JournalNode synchronization must have High Availability enabled.

Procedure

1. Go to the HDFS service.

2. Click the Instances tab.

3. Click the link labeled NameNode (Active).

The NameNode instance page displays.

4. Go to the Process tab.

5. Click the hdfs-site.xml link under hdfs/hdfs.sh ["namenode"] to open a read-only copy of the file in a separate
browser window.

6. Note the URI value set for JournalNodes in the various dfs.namenode.shared.edits.dir parameters.

The URI value should be in the format:

qjournal://host1:port1;host2:port2;host3:port3/journalId

7. Return to the HDFS service page and click the Configuration tab.

Note: Ensure that you click the Configuration tab on the HDFS service page, not on the NameNode role
page.

8. Search for the HDFS Service Advanced Configuration Snippet (Safety Valve) for hdfs-site.xml configuration
option.

9. Add the key dfs.namenode.shared.edits.dir to the selected configuration option and provide the value noted in Step
6.

10. Click Save Changes.

11. Restart HDFS.

17

	Contents
	Introduction
	Overview of HDFS

	NameNodes
	Moving NameNode roles
	Moving highly available NameNode, failover controller, and JournalNode roles using the Migrate Roles wizard
	Moving a NameNode to a different host using Cloudera Manager

	Sizing NameNode heap memory
	Environment variables for sizing NameNode heap memory
	Monitoring heap memory usage
	Files and directories
	Disk space versus namespace
	Replication
	Examples of estimating NameNode heap memory

	Remove or add storage directories for NameNode data directories

	DataNodes
	How NameNode manages blocks on a failed DataNode
	Replace a disk on a DataNode host
	Remove a DataNode
	Fixing block inconsistencies
	Add storage directories using Cloudera Manager
	Remove storage directories using Cloudera Manager
	Configuring storage balancing for DataNodes
	Configure storage balancing for DataNodes using Cloudera Manager

	Perform a disk hot swap for DataNodes using Cloudera Manager

	JournalNodes
	Moving the JournalNode edits directory for a role group using Cloudera Manager
	Moving the JournalNode edits directory for a role instance using Cloudera Manager
	Synchronizing the contents of JournalNodes

