
Cloudera Runtime 7.1.3

Apache Hadoop Ozone Overview
Date published: 2020-08-11
Date modified: 2020-09-08

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Introduction to Ozone.. 4
Ozone architecture.. 5
How Ozone manages read operations..6
How Ozone manages write operations.. 6

Cloudera Runtime Introduction to Ozone

Introduction to Ozone

Apache Ozone is a scalable, redundant, and distributed object store optimized for big data workloads. Apart from
scaling to billions of objects of varying sizes, applications that use frameworks like Apache Spark, Apache YARN
and Apache Hive work natively on Ozone object store without any modifications.

HDFS works best when most of the files are large but HDFS suffers from small file limitations. Ozone is a distributed
key-value object store that can manage both small and large files alike. Ozone natively supports the S3 API and
provides a Hadoop-compatible file system interface. Ozone object store is available in a CDP Private Cloud Base
deployment.

Ozone storage elements

Ozone consists of the following important storage elements:

• Volumes

Volumes are similar to accounts. Volumes can be created or deleted only by administrators. An administrator
creates a volume for an organization or a team.

• Buckets

A volume can contain zero or more buckets. Ozone buckets are similar to Amazon S3 buckets. Depending on their
requirements, regular users can create buckets in volumes.

• Keys

Each key is part of a bucket. Keys are unique within a given bucket and are similar to S3 objects. Ozone stores
data as keys inside buckets.

When a client writes a key, Ozone stores the associated data on DataNodes in chunks called blocks. Therefore, each
key is associated with one or more blocks. Within a DataNode, multiple unrelated blocks can reside in a storage
container.

Key features of Ozone

Key features of Ozone are:

• Consistency

Strong consistency simplifies application design. Ozone object store is designed to provide strict serializability.
• Architectural simplicity

A simple architecture is easy to use and easy to debug when things go wrong. The architecture of Ozone object
store is simple and at the same time scalable. It is designed to store over 100 billion objects in a single cluster.

• Layered architecture

The layered file system of Ozone object store helps to achieve the scale required for the modern storage
systems, . It separates the namespace management from block and node management layer, which allows users to
independently scale on both axes.

• Easy recovery

A key strength of HDFS is that it can effectively recover from catastrophic events like cluster-wide power loss
without losing data and without expensive recovery steps. Rack and node losses are relatively minor events.
Ozone object store is similarly robust in the face of failures.

• Open source in Apache

The Apache Open Source community is critical to the success of Ozone object store. All Ozone design and
development are being done in the Apache Hadoop community.

4

Cloudera Runtime Introduction to Ozone

• Interoperability with Hadoop ecosystem

Ozone object store is usable by the existing Apache Hadoop ecosystem and related applications like Apache Hive,
Apache Spark and traditional MapReduce jobs.

Ozone architecture
Ozone can be co-located with HDFS with single security and governance policies for easy data exchange or migration
and also offers seamless application portability. Ozone has a scale-out architecture with minimal operational
overheads. Ozone separates management of namespaces and storage, helping it to scale effectively. The Ozone
Manager (OM) manages the namespaces while the Storage Container Manager (SCM) handles the containers.

The following diagram shows the components that form the basic architecture of Ozone:

Hadoop Distributed Data Store

Ozone is built on a highly available, replicated block storage layer called Hadoop Distributed Data
Store (HDDS).

Blocks

Blocks are the basic unit of storage. In Ozone, each block is of 256 MB in size. A collection of
blocks forms a storage container. The SCM allocates blocks inside storage containers for the client
to store data.

Storage Containers

A storage container is a group of unrelated blocks managed together as a single entity. A container
exists in a DataNode and is the basic unit of replication, with a capacity of 2 GB to 16 GB.

DataNodes

DataNodes contain storage containers comprising of data blocks. The SCM monitors DataNodes
through heartbeats.

Ozone Manager

The Ozone Manager (OM) is the metadata manager for Ozone. The OM manages the following
storage elements:

• The list of volumes for each user

5

Cloudera Runtime Introduction to Ozone

• The list of buckets for each volume
• The list of keys for each bucket

The OM maintains the mappings between keys and their corresponding Block IDs. When a client
application requests for keys to perform read and write operations, the OM interacts with the SCM
for information about blocks relevant to the read and write operations, and provides this information
to the client. In addition, the OM also handles metadata operations from the clients.

Ozone Manager

The Ozone Manager (OM) is a highly available namespace manager for Ozone.

OM manages the metadata for volumes, buckets, and keys. OM maintains the mappings between
keys and their corresponding Block IDs. When a client application requests for keys to perform read
and write operations, OM interacts with SCM for information about blocks relevant to the read and
write operations, and provides this information to the client. In addition, OM also handles metadata
operations from the clients.

Storage Container Manager

The Storage Container Manager performs multiple critical functions for an Ozone cluster.

SCM manages the addition and removal of DataNodes, and allocates storage containers and blocks.
SCM also manages block collections, ensuring that the blocks maintain the required level of
replication. SCM allocates blocks to clients through OM for read and write operations. In addition,
SCM executes recovery actions when faced with DataNode or disk failures.

Pipelines

Pipelines determine the replication strategy for the blocks associated with a write operation.

Recon Server

Recon is the management interface for Ozone. Recon provides a unified management API for
Ozone.

How Ozone manages read operations
The client requests the block locations corresponding to the key it wants to read. The Ozone Manager (OM) returns
the block locations if the client has the required read privileges.

The following steps explain how Ozone manages read operations:

1. The client requests OM for block locations corresponding to the key to read.
2. OM checks the ACLs to confirm whether the client has the required privileges, and returns the block locations and

the block token that allows the client to read data from the DataNodes.
3. The client connects to the DataNode associated with the returned Block ID and reads the data blocks.

How Ozone manages write operations
The client requests blocks from the Ozone Manager (OM) to write a key. OM returns the Block ID and the
corresponding DataNodes for the client to write data.

The following steps explain how Ozone manages write operations:

1. The client requests blocks from OM to write a key. The request includes the key, the pipeline type, and the
replication count.

2. OM finds the blocks that match the request from SCM and returns them to the client.

Note: If security is enabled on the cluster, OM also provides a block token along with the block location
to the client. The client uses the block token to connect to the DataNodes and send the command to write
chunks of data.

3. The client connects to the DataNodes associated with the returned block information and writes the data.

6

Cloudera Runtime Introduction to Ozone

4. After writing the data, the client updates the block information on OM by sending a commit request.
5. OM records the associated key information.

Note:

• Keys in Ozone are not visible until OM commits the block information associated with the keys. The
client is responsible for sending the key-block information to OM after it has written the blocks on the
DNs via a commit request.

• If OM fails to commit block information for keys after they have been written, for example, client was
unable to send the commit request OM because the write job failed, the keys would not be visible but
the data would remain on disk.

HDDS-4123: OpenKeyCleanup service in Ozone cleans up data on disk whose block information
has not been committed on OM. It does by expiring open keys that have not been committed for a
configurable time period (7days by default). OM checks for expired keys every 300s by default and
issues deletes for these keys. Any data associated with these keys are deleted when the deletes reach
DNs. You can contact Cloudera support and request a Hotfix for HDDS-4123 to get this feature.

7

https://issues.apache.org/jira/browse/HDDS-4123
https://issues.apache.org/jira/browse/HDDS-4123

	Contents
	Introduction to Ozone
	Ozone architecture
	How Ozone manages read operations
	How Ozone manages write operations

