
Cloudera Runtime 7.1.3

Configuring Apache Kafka
Date published: 2019-12-18
Date modified: 2020-08-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Operating system requirements.. 4

Performance considerations...4

Quotas...5

JBOD.. 5
JBOD setup... 6
JBOD Disk migration... 7

Setting user limits for Kafka...9

Cloudera Runtime Operating system requirements

Operating system requirements

A collection of operating system requirements for Kafka.

SUSE Linux Enterprise Server (SLES)

Unlike CentOS, SLES limits virtual memory by default. Changing this default requires adding the following entries to
the /etc/security/limits.conf file:

* hard as unlimited
* soft as unlimited

Kernel Limits

There are three settings you must configure properly for the kernel.

File Descriptors

You can set file descriptors in Cloudera Manager by going to KafkaConfigurationMaximum
Process File Descriptors and setting the required value. Cloudera recommends a configuration of
100000 or higher.

Max Memory Map

You must configure the maximum number of memory maps in your specific kernel settings.
Cloudera recommends a configuration of 32000 or higher.

Max Socket Buffer Size

Set the buffer size larger than any Kafka send buffers that you define.

Performance considerations

A collection of basic recommendations for Kafka clusters.

The simplest recommendation for running Kafka with maximum performance is to have dedicated hosts for the Kafka
brokers and a dedicated ZooKeeper cluster for the Kafka cluster. If that is not an option, consider these additional
guidelines for resource sharing with the Kafka cluster:

Running in VMs

It is common practice in modern data centers to run processes in virtual machines. This generally
allows for better sharing of resources. Kafka is sufficiently sensitive to I/O throughput that VMs
interfere with the regular operation of brokers. For this reason, it is generally not recommended to
run Kafka in VMs. However, if you are running Kafka in a virtual environment you will need to
rely on your VM vendor for help with optimizing Kafka performance.

Do not run other processes with Brokers or ZooKeeper

Due to I/O contention with other processes, it is generally recommended to avoid running other
such processes on the same hosts as Kafka brokers.

Keep the Kafka-ZooKeeper Connection Stable

Kafka relies heavily on having a stable ZooKeeper connection. Putting an unreliable network
between Kafka and ZooKeeper will appear as if ZooKeeper is offline to Kafka. Examples of
unreliable networks include:

• Do not put Kafka/ZooKeeper nodes on separated networks
• Do not put Kafka/ZooKeeper nodes on the same network with other high network loads

4

Cloudera Runtime Quotas

Quotas

Learn about Quotas and how to set them.

For a quick video introduction to quotas, see Quotas.

Kafka can enforce quotas on produce and fetch requests. Producers and consumers can use very high volumes of data.
This can monopolize broker resources, cause network saturation, and generally deny service to other clients and the
brokers themselves. Quotas protect against these issues and are important for large, multi-tenant clusters where a
small set of clients using high volumes of data can degrade the user experience.

Quotas are byte-rate thresholds, defined per client ID. A client ID logically identifies an application making a request.
A single client ID can span multiple producer and consumer instances. The quota is applied for all instances as a
single entity. For example, if a client ID has a produce quota of 10 MB/s, that quota is shared across all instances with
that same ID.

When running Kafka as a service, quotas can enforce API limits. By default, each unique client ID receives a fixed
quota in bytes per second, as configured by the cluster (quota.producer.default, quota.consumer.default). This quota is
defined on a per-broker basis. Each client can publish or fetch a maximum of X bytes per second per broker before it
gets throttled.

The broker does not return an error when a client exceeds its quota, but instead attempts to slow the client down.
The broker computes the amount of delay needed to bring a client under its quota and delays the response for that
amount of time. This approach keeps the quota violation transparent to clients (outside of client-side metrics). This
also prevents clients from having to implement special backoff and retry behavior.

You can override the default quota for client IDs that need a higher or lower quota. The mechanism is similar to per-
topic log configuration overrides. Write your client ID overrides to ZooKeeper under /config/clients. All brokers read
the overrides, which are effective immediately. You can change quotas without having to do a rolling restart of the
entire cluster.

By default, each client ID receives an unlimited quota. The following configuration sets the default quota per
producer and consumer client ID to 10 MB/s.

quota.producer.default=10485760
quota.consumer.default=10485760

To set quotas using Cloudera Manager, open the Kafka Configuration page and search for Quota. Use the fields
provided to set the Default Consumer Quota or Default Producer Quota.

Related Information
Changing the Configuration of a Service or Role Instance

JBOD

Overview on Kafka with JBOD.

JBOD refers to a system configuration where disks are used independently rather than organizing them into redundant
arrays (RAID). Using RAID usually results in more reliable hard disk configurations even if the individual disks
are not reliable. RAID setups like these are common in large scale big data environments built on top of commodity
hardware. RAID enabled configurations are more expensive and more complicated to set up. In a large number of
environments, JBOD configurations are preferred for the following reasons:

• Reduced storage cost: RAID-10 is recommended to protect against disk failures. However, scaling RAID-10
configurations can become excessively expensive. Storing the data redundantly on each node means that storage
space requirements have to be multiplied because the data is also replicated across nodes.

5

https://youtu.be/zMAwFoPdcmM
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/configuring-clusters/topics/cm-changing-the-configuration-of-a-service-or-role-instance.html

Cloudera Runtime JBOD

• Improved performance: Just like HDFS, the slowest disk in RAID-10 configuration limits overall throughput.
Writes need to go through a RAID controller. On the other hand, when using JBOD, IO performance is increased
as a result of isolated writes across disks without a controller.

JBOD setup
Learn how to set up JBOD in your Kafka environment.

Before you begin

Consider the following before using JBOD support in Kafka:

• Manual operation and administration: Monitoring offline directories and JBOD related metrics is done through
Cloudera Manager. However, identifying failed disks and rebalancing partitions between disks is done manually.

• Manual load balancing between disks: Unlike with RAID-10, JBOD does not automatically distribute data across
disks. The process is fully manual.

To provide robust JBOD support in Kafka, changes in the Kafka protocol have been made. When performing an
upgrade to a new version of Kafka, make sure that you follow the recommended rolling upgrade process.

For more information regarding the JBOD related Kafka protocol changes, see KIP-112 and KIP-113.

Procedure

1. Mount the required number of disks on your system.

2. In Cloudera Manager, set up log directories for all Kafka brokers:

a) Go to the Kafka service, select Instances and select the broker.
b) Go to Configuration and find the Data Directories property.
c) Modify the path of the log directories so that they correspond with the newly mounted disks.

Note: Depending on your, setup you may need to add or remove multiple data directories.

d) Enter a Reason for change, and then click Save Changes to commit the changes.

3. Go to the Kafka service and select Configuration.

4. Find and configure the following properties depending on your system and use case.

• Number of I/O Threads
• Number of Network Threads
• Number of Replica Fetchers
• Minimum Number of Replicas in ISR

5. Set replication factor to at least 3.

Important: If you set replication factor to less than 3, your data will be at risk. In addition, in case of a
disk failure, disk maintenance cannot be carried out without system downtime.

6. Restart the service:

a) Return to the home page by clicking hte Cloudera Manager logo.
b) Go to the Kafka service and select Actions Rolling Restart
c) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
d) Click Close when the restart has finished.

Results
JBOD disks are set up in your Kafka environment.
Related Information
KIP-112

6

https://cwiki.apache.org/confluence/display/KAFKA/KIP-112%3A+Handle+disk+failure+for+JBOD#KIP-112:HandlediskfailureforJBOD-Protocol

Cloudera Runtime JBOD

KIP-113

JBOD Disk migration
Learn how to migrate existing Kafka partitions to JBOD configured disks.

About this task

Migrating data from one disk to another is achieved with the kafka-reassign-partitions tool. The following instructions
focus on migrating existing Kafka partitions to JBOD configured disks.

Note: Cloudera recommends that you minimize the volume of replica changes per command instance.
Instead of moving 10 replicas with a single command, move two at a time in order to save cluster resources.

Before you begin

• Set up JBOD in your Kafka environment. For more information, see JBOD Setup.
• Collect the log directory paths on the JBOD disks where you want to migrate existing data.
• Collect the broker IDs of the brokers you want to migrate data to.
• Collect the name of the topics you want to migrate partitions from.

Note: Output examples in these instructions are cleaned and formatted to make them easily readable.

Procedure

1. Create a topics-to-move JSON file that specifies the topics you want to reassign. Use the following format:

Use the following format:

{"topics": [{"topic": "mytopic1"},
 {"topic": "mytopic2"}],
 "version":1
}

2. Generate the content for the reassignment configuration JSON with the following command:

kafka-reassign-partitions --zookeeper hostname:port --topics-to-move-json-
file topics to move.json --broker-list broker 1, broker 2 --generate

Running the command lists the distribution of partition replicas on your current brokers followed by a proposed
partition reassignment configuration.

Example output:

Current partition replica assignment
{"version":1,
 "partitions":
 [{"topic":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any","
any"]},
 {"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any"
,"any"]},
 {"topic":"mytopic2","partition":0,"replicas":[1,2],"log_dirs":["any","
any"]},
 {"topic":"mytopic1","partition":2,"replicas":[3,1],"log_dirs":["any"
,"any"]},
 {"topic":"mytopic1","partition":1,"replicas":[2,3],"log_dirs":["any","
any"]}]
}

7

https://cwiki.apache.org/confluence/display/KAFKA/KIP-113%3A+Support+replicas+movement+between+log+directories#KIP-113:Supportreplicasmovementbetweenlogdirectories-Protocol

Cloudera Runtime JBOD

Proposed partition reassignment configuration

{"version":1,
 "partitions":
 [{"topic":"mytopic1","partition":0,"replicas":[4,5],"log_dirs":["any",
"any"]},
 {"topic":"mytopic1","partition":2,"replicas":[4,5],"log_dirs":["any
","any"]},
 {"topic":"mytopic2","partition":1,"replicas":[4,5],"log_dirs":["any",
"any"]},
 {"topic":"mytopic1","partition":1,"replicas":[5,4],"log_dirs":["any
","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[5,4],"log_dirs":["any",
"any"]}]
}

In this example, the tool proposed a configuration which reassigns existing partitions on broker 1, 2, and 3 to
brokers 4 and 5.

3. Copy and paste the proposed partition reassignment configuration into an empty JSON file.

4. Modify the suggested reassignment configuration.

When migrating data you have two choices. You can move partitions to a different log directory on the same
broker, or move it to a different log directory on another broker.

a. 1. To reassign partitions between log directories on the same broker, change the appropriate any entry to an
absolute path. For example:

{"topic":"mytopic1","partition":0,"replicas":[4,5],"log_dirs":["/
JBOD-disk/directory1","any"]}

2. To reassign partitions between log directories across different brokers, change the broker ID specified in
replicas and the appropriate any entry to an absolute path. For example:

{"topic":"mytopic1","partition":0,"replicas":[6,5],"log_dirs":["/
JBOD-disk/directory1","any"]}

5. Save the file.

6. Start the redistribution process with the following command:

kafka-reassign-partitions --zookeeper hostname:port --reassignment-json-
file reassignment configuration.json --bootstrap-server hostname:port --e
xecute

Important: The bootstrap server has to be specified with the --bootstrap-server option if an absolute log
directory path is specified for a replica in the reassignment configuration JSON file.

The tool prints a list containing the original replica assignment and a message that reassignment has started.
Example output:

Current partition replica assignment

{"version":1,
 "partitions":
 [{"topic":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any",
"any"]},
 {"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any
","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[1,2],"log_dirs":["any",
"any"]},
 {"topic":"mytopic1","partition":2,"replicas":[3,1],"log_dirs":["any
","any"]},

8

Cloudera Runtime Setting user limits for Kafka

 {"topic":"mytopic1","partition":1,"replicas":[2,3],"log_dirs":["any",
"any"]}]
}

Save this to use as the --reassignment-json-file option during rollback
Successfully started reassignment of partitions.

7. Verify the status of the reassignment with the following command:

kafka-reassign-partitions --zookeeper hostname:port --reassignment-json-
file reassignment configuration.json --bootstrap-server hostname:port --v
erify

The tool prints the reassignment status of all partitions. Example output:

Status of partition reassignment:
Reassignment of partition mytopic2-1 completed successfully
Reassignment of partition mytopic1-0 completed successfully
Reassignment of partition mytopic2-0 completed successfully
Reassignment of partition mytopic1-2 completed successfully
Reassignment of partition mytopic1-1 completed successfully

Results
Existing Kafka partitions are migrated to JBOD configured disks.
Related Information
JBOD setup

kafka-reassign-partitions

Setting user limits for Kafka

Learn more about Kafka User limits and how to monitor them.

Kafka opens many files at the same time. The default setting of 1024 for the maximum number of open files on
most Unix-like systems is insufficient. Any significant load can result in failures and cause error messages such as
java.io.IOException...(Too many open files) to be logged in the Kafka or HDFS log files. You might also notice
errors such as this:

ERROR Error in acceptor (kafka.network.Acceptor)
java.io.IOException: Too many open files

Cloudera recommends setting the value to a relatively high starting point, such as 32,768.

You can monitor the number of file descriptors in use on the Kafka Broker dashboard. In Cloudera Manager:

1. Go to the Kafka service.
2. Select a Kafka Broker.
3. Open Charts Library Process Resources and scroll down to the File Descriptors chart.

9

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/kafka-managing/topics/kafka-manage-cli-reassign-overview.html

	Contents
	Operating system requirements
	Performance considerations
	Quotas
	JBOD
	JBOD setup
	JBOD Disk migration

	Setting user limits for Kafka

