
Cloudera Runtime 7.1.3

Securing Apache Kafka
Date published: 2019-12-18
Date modified: 2020-08-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

TLS... 4
Step 1: Generate keys and certificates for Kafka brokers... 4
Step 2: Create your own certificate authority..4
Step 3: Sign the certificate...4
Step 4: Configure Kafka brokers... 5
Step 5: Configure Kafka clients...7
Configure Zookeeper TLS/SSL support for Kafka..8

Authentication... 8
Enable Kerberos authentication..8
Delegation token based authentication...10

Enable or disable authentication with delegation tokens...11
Manage individual delegation tokens... 11
Rotate the master key/secret... 12
Client authentication using delegation tokens.. 13
Kafka security hardening with Zookeeper ACLs.. 14

LDAP authentication.. 16
Configure Kafka brokers.. 16
Configure Kafka clients..17

PAM Authentication... 18
Configure Kafka brokers.. 18
Configure Kafka clients..19

Authorization...20
Ranger... 20

Enable authorization in Kafka with Ranger...20
Configure the resource-based Ranger service used for authorization..21

Using Kafka's inter-broker security... 22

Cloudera Runtime TLS

TLS

Learn how to turn on and configure TLS for Kafka.

Kafka allows clients to connect over TLS. By default, TLS is disabled, but can be turned on as needed.

Step 1: Generate keys and certificates for Kafka brokers
Learn how to generate keys and certificates for brokers.

Generate the key and the certificate for each machine in the cluster using the Java keytool utility. For more
information see, the Generate TLS Certificates section in Manually Configuring TLS Encryption for Cloudera
Manager.

Make sure that the common name (CN) matches the fully qualified domain name (FQDN) of your server. The client
compares the CN with the DNS domain name to ensure that it is connecting to the correct server.

Related Information
Manually Configuring TLS Encryption for Cloudera Manager

Step 2: Create your own certificate authority
Learn how to create your own certificate authority.

You have generated a public-private key pair for each machine and a certificate to identify the machine. However, the
certificate is unsigned, so an attacker can create a certificate and pretend to be any machine. Sign certificates for each
machine in the cluster to prevent unauthorized access.

A Certificate Authority (CA) is responsible for signing certificates. A CA is similar to a government that issues
passports. A government stamps (signs) each passport so that the passport becomes difficult to forge. Similarly, the
CA signs the certificates, and the cryptography guarantees that a signed certificate is computationally difficult to
forge. If the CA is a genuine and trusted authority, the clients have high assurance that they are connecting to the
authentic machines.

openssl req -new -x509 -keyout ca-key -out ca-cert -days 365

The generated CA is a public-private key pair and certificate used to sign other certificates.

Add the generated CA to the client truststores so that clients can trust this CA:

keytool -keystore {client.truststore.jks} -alias CARoot -import -file {ca-ce
rt}

Note: If you configure Kafka brokers to require client authentication by setting ssl.client.auth to be requested
or required on the Kafka brokers config, you must provide a truststore for the Kafka brokers as well. The
truststore must have all the CA certificates by which the clients keys are signed. The keystore created in step
1 stores each machine’s own identity. In contrast, the truststore of a client stores all the certificates that the
client should trust. Importing a certificate into a truststore means trusting all certificates that are signed by that
certificate. This attribute is called the chain of trust. It is particularly useful when deploying SSL on a large
Kafka cluster. You can sign all certificates in the cluster with a single CA, and have all machines share the
same truststore that trusts the CA. That way, all machines can authenticate all other machines.

Step 3: Sign the certificate
Learn how to self-sign certificates created for Kafka.

4

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/security-encrypting-data-in-transit/topics/cm-security-how-to-configure-cm-tls.html
https://kafka.apache.org/documentation/#brokerconfigs

Cloudera Runtime TLS

1. Create a certificate request from the keystore:

keytool -keystore server.keystore.jks -alias localhost -certreq -fil
e cert-file

where:

• keystore: the location of the keystore
• cert-file: the exported, unsigned certificate of the server

2. Sign the resulting certificate with the CA (in the real world, this can be done using a real CA):

openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed
 -days validity -CAcreateserial -passin pass:ca-password

where:

• ca-cert: the certificate of the CA
• ca-key: the private key of the CA
• cert-signed: the signed certificate of the server
• ca-password: the passphrase of the CA

3. Import both the certificate of the CA and the signed certificate into the keystore:

keytool -keystore server.keystore.jks -alias CARoot -import -file ca-cert
keytool -keystore server.keystore.jks -alias localhost -import -file cert-
signed

The following Bash script demonstrates the steps described above. One of the commands assumes a password of
SamplePassword123, so either use that password or edit the command before running it.

#!/bin/bash
#Step 1
keytool -keystore server.keystore.jks -alias localhost -validity 365 -genkey
#Step 2
openssl req -new -x509 -keyout ca-key -out ca-cert -days 365
keytool -keystore server.truststore.jks -alias CARoot -import -file ca-cert
keytool -keystore client.truststore.jks -alias CARoot -import -file ca-cert
#Step 3
keytool -keystore server.keystore.jks -alias localhost -certreq -file cert-
file
openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed -
days 365 -CAcreateserial -passin pass:SamplePassword123
keytool -keystore server.keystore.jks -alias CARoot -import -file ca-cert
keytool -keystore server.keystore.jks -alias localhost -import -file cert-s
igned

Step 4: Configure Kafka brokers
Learn how to configure TLS/SSL communication for Kafka brokers.

Kafka Brokers support listening for connections on multiple ports. If SSL is enabled for inter-broker communication,
both PLAINTEXT and SSL ports are required.

To configure the listeners from Cloudera Manager, perform the following steps:

1. In Cloudera Manager, go to Kafka Instances.
2. Go to Kafka Broker Configurations.

5

Cloudera Runtime TLS

3. In the Kafka Broker Advanced Configuration Snippet (Safety Valve) for Kafka Properties, enter the following
information:

listeners=PLAINTEXT://kafka-broker-host-name:9092,SSL://kafka-broker-host-
name:9093
advertised.listeners=PLAINTEXT://kafka-broker-host-name:9092,SSL://kafka-
broker-host-name:9093

where kafka-broker-host-name is the FQDN of the broker that you selected from the Instances page in Cloudera
Manager. In the above sample configurations we used PLAINTEXT and SSL protocols for the SSL enabled
brokers.

For information about other supported security protocols, seeUsing Kafka's inter-broker security on page 22.
4. Repeat the previous step for each broker.

The advertised.listeners configuration is needed to connect the brokers from external clients.
5. Deploy the above client configurations and rolling restart the Kafka service from Cloudera Manager.

Kafka CSD auto-generates listeners for Kafka brokers, depending on your SSL and Kerberos configuration. To enable
SSL for Kafka installations, do the following:

1. Turn on SSL for the Kafka service by turning on the ssl_enabled configuration for the Kafka CSD.
2. Set security.inter.broker.protocol as SSL, if Kerberos is disabled; otherwise, set it as SASL_SSL.

The following SSL configurations are required on each broker. Each of these values can be set in Cloudera Manager.
Be sure to replace this example with the truststore password.

For instructions, see Changing the Configuration of a Service or Role Instance.

ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
ssl.keystore.password=SamplePassword123
ssl.key.password=SamplePassword123
ssl.truststore.location=/var/private/ssl/server.truststore.jks
ssl.truststore.password=SamplePassword123

Other configuration settings may also be needed, depending on your requirements:

• ssl.client.auth=none: Other options for client authentication are required, or requested, where clients without
certificates can still connect. The use of requested is discouraged, as it provides a false sense of security and
misconfigured clients can still connect.

• ssl.cipher.suites: A cipher suite is a named combination of authentication, encryption, MAC, and a key exchange
algorithm used to negotiate the security settings for a network connection using TLS or SSL network protocol.
This list is empty by default.

• ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1: Provide a list of SSL protocols that your brokers accept from
clients.

• ssl.keystore.type=JKS
• ssl.truststore.type=JKS

Communication between Kafka brokers defaults to PLAINTEXT. To enable secured communication, modify the
broker properties file by adding security.inter.broker.protocol=SSL.

For a list of the supported communication protocols, see Using Kafka's inter-broker security on page 22.

Note: Due to import regulations in some countries, Oracle implementation of JCA limits the strength of
cryptographic algorithms. If you need stronger algorithms, you must obtain the JCE Unlimited Strength
Jurisdiction Policy Files and install them in the JDK/JRE as described in JCA Providers Documentation.

After SSL is configured your broker, logs should show an endpoint for SSL communication:

with addresses: PLAINTEXT -> EndPoint(192.168.1.1,9092,PLAINTEXT),SSL -> End
Point(192.168.1.1,9093,SSL)

6

Cloudera Runtime TLS

You can also check the SSL communication to the broker by running the following command:

openssl s_client -debug -connect localhost:9093 -tls1

This check can indicate that the server keystore and truststore are set up properly.

Note: ssl.enabled.protocols should include TLSv1.

The output of this command should show the server certificate:

-----BEGIN CERTIFICATE-----
{variable sized random bytes}
-----END CERTIFICATE-----
subject=/C=US/ST=CA/L=Palo Alto/O=org/OU=org/CN=Franz Kafka
issuer=/C=US/ST=CA/L=Palo Alto
/O=org/OU=org/CN=kafka/emailAddress=kafka@your-domain.com

If the certificate does not appear, or if there are any other error messages, your keystore is not set up properly.

Related Information
Using Kafka's inter-broker security

Changing the Configuration of a Service or Role Instance

Step 5: Configure Kafka clients
Learn how to configure TLS/SSL communication for Kafka clients.

SSL is supported only for the new Kafka producer and consumer APIs. The configurations for SSL are the same for
both the producer and consumer.

Before you begin with configuration, you need to acquire keys and signed certificates for all clients.

If client authentication is not required in the broker, the following example shows a minimal configuration:

security.protocol=SSL
ssl.truststore.location=/var/private/ssl/kafka.client.truststore.jks
ssl.truststore.password=SamplePassword123

If client authentication is required, a keystore must be created as well and it needs to be signed by a CA. In addition,
the following properties: must be configured:

ssl.keystore.location=/var/private/ssl/kafka.client.keystore.jks
ssl.keystore.password=SamplePassword123
ssl.key.password=SamplePassword123

Other configuration settings might also be needed, depending on your requirements and the broker configuration:

• ssl.provider (Optional). The name of the security provider used for SSL connections. Default is the default
security provider of the JVM.

• ssl.cipher.suites (Optional). A cipher suite is a named combination of authentication, encryption, MAC, and a key
exchange algorithm used to negotiate the security settings for a network connection using TLS or SSL network
protocol.

• ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1. This property should list at least one of the protocols configured
on the broker side.

• ssl.truststore.type=JKS
• ssl.keystore.type=JKS

7

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/configuring-clusters/topics/cm-changing-the-configuration-of-a-service-or-role-instance.html

Cloudera Runtime Authentication

Configure Zookeeper TLS/SSL support for Kafka
Learn how to configure TLS/SSL communication between Kafka and Zookeeper.

About this task

You can configure Kafka to connect to and communicate with Zookeeper through a secure TLS/SSL channel. The
feature can be enabled or disabled with the Enable Secure Connection to ZooKeeper property. This property is set to
true by default, however, it only takes effect if the Enable TLS/SSL for ZooKeeper property is also enabled for the
dependant ZooKeeper service.

Before you begin

If you want to enable secure connections to Zookeeper, make sure that the Enable TLS/SSL for ZooKeeper property
is enabled for the dependant ZooKeeper service. For more information, see Configure ZooKeeper TLS/SSL using
Cloudera Manager.

Procedure

1. In Cloudera Manager select the Kafka service.

2. Select Configuration and find the Enable Secure Connection to ZooKeeper property.

3. Enable or disable Zookeeper TLS/SSL support for Kafka for all required services by checking or unchecking the
checkbox next to the name of the service.

4. Enter a Reason for change, and click Save Changes to commit the changes.

5. Restart the Kafka service.

Results
Zookeeper TLS/SSL support for Kafka is enabled or disabled for the selected Kafka services. If the feature was
enabled, the selected Kafka services communicate with their dependant Zookeeper service through a secure TLS/SSL
channel.

Authentication

Enable Kerberos authentication
Learn how to enable Kerberos Authentication for Kafka.

About this task

Apache Kafka supports Kerberos authentication, but it is supported only for the new Kafka Producer and Consumer
APIs.

Before you begin

If you already have a Kerberos server, you can add Kafka to your current configuration. If you do not have a Kerberos
server, install it before proceeding. See Enabling Kerberos Authentication for Runtime for detailed instructions

If you already have configured the mapping from Kerberos principals to short names using the hadoop.security.auth
_to_local HDFS configuration property, configure the same rules for Kafka by adding the sasl.kerberos.principal.to.l
ocal.rules property to the Advanced Configuration Snippet for Kafka Broker Advanced Configuration Snippet using
Cloudera Manager. Specify the rules as a comma separated list.

8

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/zookeeper-security/topics/zookeeper-configure-tls-ssl.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/zookeeper-security/topics/zookeeper-configure-tls-ssl.html

Cloudera Runtime Authentication

Procedure

1. In Cloudera Manager, navigate to Kafka Configuration.

2. Set SSL Client Authentication to none.

3. Set Inter Broker Protocol to SASL_PLAINTEXT.

4. Click Save Changes.

5. Restart the Kafka service, select Action Restart.

6. Make sure that listeners = SASL_PLAINTEXT is present in the Kafka broker logs, by default in /var/log/kafka/s
erver.log.

7. Create a jaas.conf file with either cached credentials or keytabs.

• To use cached Kerberos credentials, where you use kinit first, use this configuration:

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useTicketCache=true;
};

• If you use a keytab, use this configuration:

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
keyTab="/etc/security/keytabs/mykafkaclient.keytab"
principal="mykafkaclient/clients.hostname.com@EXAMPLE.COM";
};

For more information on generating keytabs, see Get or create a Kerberos principal for each user account.

8. Create the client.properties file containing the following properties.

security.protocol=SASL_PLAINTEXT
sasl.kerberos.service.name=kafka

9. Test with the Kafka console producer and consumer.

To obtain a Kerberos ticket-granting ticket (TGT):

kinit user

10. Verify that the jaas.conf file is used by setting the environment.

export KAFKA_OPTS="-Djava.security.auth.login.config=/home/user/jaas.conf"

11. Verify that your topic exists.

kafka-topics --list --bootstrap-server anybroker:9092 --command-config c
lient.properties

12. Run a Kafka console producer.

kafka-console-producer --broker-list anybroker:9092 --topic test1 --produc
er.config client.properties

13. Run a Kafka console consumer.

kafka-console-consumer --topic test1 --from-beginning --bootstrap-se
rver anybroker:9092 --consumer.config client.properties

Related Information
Enabling Kerberos Authentication

9

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/security-kerberos-authentication/topics/cm-security-kerberos-enabling-intro.html

Cloudera Runtime Authentication

Get or create a Kerberos principal for each user account

Delegation token based authentication
An overview on Kafka delegation tokens.

Delegation tokens are lightweight authentication method to complement existing SASL authentication. Kafka is
designed to support a high number of clients. However, using Kerberos authentication might be difficult in some
environments due to the following reasons:

• With Kerberos authentication, all clients need access to a keytab or a TGT. Securely distributing the keytabs
requires a lot of effort and careful administration. When the TGT is compromised, it has a high blast radius,
especially when the same keytabs are used to access multiple services.

• With Kerberos, client authentication is centralized, and the high number of clients can put a high load on the KDC
(Key Distribution Center), resulting in a bottleneck.

Many Hadoop components use delegation tokens to mitigate these problems:

• Delegation tokens allow these components to secure distributed workloads with low administrative overhead.
• It is not required to distribute a Kerberos TGT or keytab, which, if compromised, may grant access to all services.
• A delegation token is strictly tied to its associated service causing less damage if exposed.
• Delegation tokens make credential renewal more lightweight. This is because the renewal is designed in such a

way that only the renewer and the service are involved in the renewal process. The token itself remains the same,
so parties already using the token do not have to be updated.

Kafka Delegation Token Basics

Kafka delegation tokens are modeled after Hadoop delegation tokens, and many of their mechanism are the same or
very similar. However, this does not mean that they are interchangeable.

Delegation tokens are generated and verified following the HMAC mechanism. There are two basic parts of
information in a delegation token, the tokenID (public part) and the HMAC value (private part).

The following list of steps give a generic overview on how delegation tokens are used:

1. The user initially authenticates with the Kafka cluster via SASL, and obtains a delegation token using either the
AdminClient APIs or the kafka-delegation-token tool. The principal that created the delegation token is its owner.

2. The delegation token details are securely passed to Kafka clients. This can be achieved by sending the token data
over an SSL/TLS encrypted connection or writing them to a secure shared storage.

3. Instead of using Kerberos, the Kafka client uses the delegation tokens for subsequent authentication with the
brokers.

4. The token is valid for a certain time period, but it can be:

Renewed

A delegation token can be renewed multiple times up until its maximum life before it expires. The
token can be renewed by the owner or any other principals the owner sets as “renewer” at time of
creation.

Revoked

A delegation token can be revoked ahead of its expiry time.

Broker Configuration

Certain delegation token properties can be configured on a service level in Cloudera Manager. You can enable or
disable delegation tokens, as well as configure expiry time and maximum lifetime. For more information, see Kafka
Properties in Cloudera Runtime.

Related Information
HMAC Wikipedia Page

10

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/security-kerberos-authentication/topics/cm-security-kerberos-enabling-step6-user-principals.html
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

Cloudera Runtime Authentication

Client authentication using delegation tokens

Kafka Properties in Cloudera Runtime

Enable or disable authentication with delegation tokens
Learn how to enable or disable Kafka delegation tokens.

About this task

Delegation token based authentication requires that both the Enable Kerberos Authentication and Enable Delegation
Tokens properties are set to true. The default value of the Enable Delegation Tokens property is true, but will have no
effect until Kerberos is also enabled.

Although enabling delegation tokens enables authentication between clients and servers using the SASL/SCRAM
mechanism, it is only as a vehicle for delegation tokens. Using SCRAM credentials is not supported otherwise.

Sensitive delegation token metadata is stored in Zookeeper. It is recommended to restrict access on Zookeeper nodes
to prevent access to sensitive delegation token related data through Zookeeper. The connection between Kafka and
Zookeeper is not encrypted, therefore, it is also recommended to use delegation tokens only if no unauthorized person
can read and manipulate the traffic between these services.

Delegation tokens can be enabled separately for each Kafka service.

Before you begin

A secure Kafka cluster with Kerberos authentication enabled is required for delegation tokens to function.

Procedure

1. In Cloudera Manager select the Kafka service.

2. Select Configuration and find the Enable Delegation Tokens property.

3. Enable or disable delegation tokens for all required services by checking or unchecking the checkbox next to the
name of the service.

4. Click Save Changes.

5. Perform a Rolling Restart:

a) Return to the Home page by clicking the Cloudera Manager logo.
b) Go to the Kafka service and select ActionsRolling Restart.
c) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
d) Click Close when the restart has finished.

Results
Delegation tokens are enabled or disabled for the selected Kafka services. If delegation tokens were enabled, then the
necessary secrets and settings are generated.
Related Information
Enable Kerberos authentication

Kafka security hardening with Zookeeper ACLs

 Manage individual delegation tokens
A list of example actions you can issue to manage individual delegation tokens.

The functionality that’s needed to manage and use delegation tokens is accessible using the AdminClient APIs or the
kafka-delegation-tokens tool. All of their operations are allowed only via SASL authenticated channels.

Both the API and the script provide the following actions:

Note: The examples presented show how these actions can be executed with the kafka-delegation-tokens
tool.

11

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/configuration-properties/topics/cm_props_cdh710_kafka.html

Cloudera Runtime Authentication

Issue, and store for verification

The owner of the token is the currently authenticated principal. A renewer can be specified when
requesting the token.

kafka-delegation-tokens --bootstrap-server hostname:port --crea
te --max-life-time-period -1 --command-config client.properties
 --renewer-principal User:user1

Renew

Only the owner and the principals that are renewers of the delegation token can extend its validity
by renewing it before it expires. A successful renewal extends the Delegation Token’s expiration
time for another renew-interval, until it reaches its max lifetime. Expired delegation tokens cannot
be used to authenticate, the brokers will remove expired delegation tokens from the broker’s cache
and from Zookeeper.

kafka-delegation-tokens --bootstrap-server hostname:port --renew
 --renew-time-period -1 --command-config client.properties --h
mac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

Remove

Delegation tokens are removed when they are canceled by the client or when they expire.

kafka-delegation-tokens --bootstrap-server hostname:port --expir
e --expiry-time-period -1 --command-config client.properties
 --hmac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

Describe

Tokens can be described by owners, renewers or the Kafka super user.

kafka-delegation-tokens --bootstrap-server hostname:port --
describe --command-config client.properties --owner-princi
pal User:user1

Note: In Apache Kafka, principals that have the describe permission on the token
resource can also describe the token.

 Rotate the master key/secret
Learn how to rotate the delegation token Master Key/Secret.

About this task

The brokers generate and verify delegation tokens using a secret called delegation.token.master.key. This secret is
generated by Cloudera Manager and securely passed to Kafka brokers when authentication with delegation tokens
is enabled. You can change the secret with the Cloudera Manager API. This should be done if the secret becomes
compromised, or simply as a precautionary measure.

Important: Clients that were already connected to brokers before starting the process, will continue to work
even after the master key/secret is rotated. However, any new connections (authentication requests), as well as
renew and expire requests with old tokens can fail.

12

Cloudera Runtime Authentication

Procedure

1. Expire existing tokens.

kafka-delegation-tokens --bootstrap-server hostname:port --expire --expi
ry-time-period -1 --command-config client.properties --hmac lAYYSFmLs4bTjf
+lTZ1LCHR/ZZFNA==

2. Generate a new master key

curl -X PUT -u "user" -H "content-type:application/json" -i "htt
ps://cloudera manager host:7183/api/v31/clusters/cluster name/service
s/kafka service name/config" -d '{"items" : [{"name" : "delegation.toke
n.master.key","value" : "'$(openssl rand -base64 24)'","sensitive" : tru
e}]}'

3. Perform a Rolling Restart:

a) In Cloudera Manager go to the Kafka service and select ActionsRolling Restart.
b) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
c) Click Close when the restart has finished.

4. Reauthenticate with all clients.

This generates the new tokens.

Results
The Master Key/Secret is rotated.

 Client authentication using delegation tokens
An overview of the methods available for configuring clients to use delegation tokens.

Brokers authenticate clients by verifying the delegation tokens provided by the client against the stored delegation
tokens. Delegation token authentication makes use of SASL/SCRAM authentication mechanism under the hood.
You can configure Kafka clients in two ways, to use individually assigned delegation tokens or to use a common
delegation token.

Configure clients on a producer or consumer level
Learn how to configure client authentication using delegation tokens on a producer or consumer level.

About this task

You can set up client authentication by configuring the JAAS configuration property for each client. The JAAS
configuration property can be set in the producer.properties or consumer.properties file of the client. With this
configuration method, you have the ability to specify different token details for each Kafka client within a JVM. As a
result you can configure Kafka clients in a way that each of them use a unique token for authentication.

Procedure

Configure the JAAS configuration property for each client.

Example Configuration:

sasl.jaas.config=org.apache.kafka.common.security.scram.ScramLoginModule re
quired \
 username="tokenID" \
 password="lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==" \
 tokenauth="true";

There are three options that need to be specified. These are the username, password and tokenauth options.

13

Cloudera Runtime Authentication

The username and password options specify the token ID and token HMAC. The tokenauth option expresses the
intent to use token authentication to the server.

Configure clients on an application level
Learn how to configure client authentication using delegation tokens on an application level.

About this task

With this configuration method, you can set up all clients within a JVM to use the same delegation token for
authentication.

Procedure

1. Add a KafkaClient entry with a login module item to your JAAS configuration file.

The module has to specify the username, password and tokenauth options.

Example Configuration:

KafkaClient {
org.apache.kafka.common.security.scram.ScramLoginModule required
 username="tokenID"
 password="lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA=="
 tokenauth="true";
}

The username and password options specify the token ID and token HMAC. The tokenauth option expresses the
intent to use token authentication to the server.

2. Pass the location of your JAAS configuration file as a JVM parameter through a command line interface.

This sets the JAAS configuration on the Java process level.

export KAFKA_OPTS="-Djava.security.auth.login.config=[PATH_TO_JAAS.CONF]"

Kafka security hardening with Zookeeper ACLs
Learn how to restrict or unlock access to Kafka Metadata in Zookeeper.

Restrict access to Kafka metadata in Zookeeper
Learn how to restrict access to Kafka metadata in Zookeeper.

About this task

Locking down znodes in Zookeeper can be used to protect Kafka metadata against unauthorized access. Direct
manipulation of metadata in Zookeeper is not only dangerous for the health of the cluster, but can also serve as an
entry point for malicious users to gain elevated access who can then alter the owner or renewer of delegation tokens.
Access to Kafka metadata in Zookeeper is restricted by default. Follow these steps if you have previously unlocked
access, but want to re-enable access restrictions.

Before you begin

A secure Kafka cluster with Kerberos authentication enabled is required.

14

Cloudera Runtime Authentication

Procedure

1. Enable the use of secure ACLs:

This can be achieved by setting the zookeeper.set.acl configuration parameter to true.

a) In Cloudera Manager select the Kafka service.
b) Select Configuration.
c) Find the Enable Zookeeper ACL property.
d) Set the property to true by checking the checkbox next to the name of the role group.

2. Perform a Rolling Restart:

a) Return to the Home page by clicking the Cloudera Manager logo.
b) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
c) Click Close when the restart has finished.

3. Pass the JAAS configuration file location as a JVM parameter through a command line interface.

You can do this by setting the value of the KAFKA_OPTS environment variable to -Djava.security.auth.login.c
onfig=[PATH_TO_JAAS.CONF].

export KAFKA_OPTS="-Djava.security.auth.login.config=[PATH_TO_JAAS.CONF]"

Replace [PATH_TO_JAAS.CONF] with the path to your JAAS configuration file.

4. Run the zookeeper-security-migration tool with the zookeeper.acl option set to secure.

zookeeper-security-migration --zookeeper.connect [HOSTNAME]:[PORT]/[ZOOK
EEPER_KAFKA_CHROOT] --zookeeper.acl secure

Replace [ZOOKEEPER_KAFKA_CHROOT] with the value of the zookeeper.chroot property. To view the value
of the property, in Cloudera Manager go to Kafka Configuration and search for zookeeper.chroot.

The tool traverses the corresponding sub-trees changing the ACLs of the znodes.

5. Reset the ACLs on the root node to allow full access:

Resetting the ACLS on the root node is required because the zookeeper-security-migration tool also changes the
ACLs on the root znode. This leads to the failure of the Zookeeper canary tests, which subsequently makes the
service display as unhealthy in Cloudera Manager.

Important: This step is only necessary if the zookeeper.chroot parameter of the broker is set to /.

Note: Because the Kafka metadata at this point is already restricted, only authorized users or Zookeeper
super users can complete this step.

a) Change the JVMFLAGS environment variable to -Djava.security.auth.login.confi
g=[PATH_TO_JAAS.CONF].

export JVMFLAGS="-Djava.security.auth.login.config=[PATH_TO_JAAS.CONF]"

b) Start the zookeeper client.

zookeeper-client -server $(hostname -f):2181

c) Enter the following to reset the ACLs of the root node.

setAcl / world:anyone:crdwa

Results
Kafka metadata in Zookeeper is restricted via ACLS. Administrative operations, for example topic creation, deletion,
any configuration changes and so on, can only be performed by authorized users.

15

Cloudera Runtime Authentication

Related Information
Enable Kerberos authentication

Unlock Kafka metadata in Zookeeper
Learn how to unlock access to Kafka metadata in Zookeeper

Before you begin

A secure Kafka cluster with Kerberos authentication enabled is required.

Procedure

1. Disable the use of secure ACLs:

This can be achieved by setting the zookeeper.set.acl configuration parameter to false.

a) In Cloudera Manager select the Kafka service.
b) Select Configuration.
c) Find the Enable Zookeeper ACL property.
d) Set the property to false by unchecking the checkbox next to the name of the role group.

2. Perform a Rolling Restart:

a) Return to the Home page by clicking the Cloudera Manager logo.
b) Go to the Kafka service and select Actions Rolling Restart.
c) Check the Restart roles with stale configurations only checkbox and click Rolling restart.
d) Click Close when the restart has finished.

3. Run the zookeeper-security-migration tool with the zookeeper.acl option set to unsecure

zookeeper-security-migration --zookeeper.connect [HOSTNAME]:[PORT]/[ZOOK
EEPER_KAFKA_CHROOT] --zookeeper.acl unsecure

Replace [ZOOKEEPER_KAFKA_CHROOT] with the value of the zookeeper.chroot property. To view the value
of the property, in Cloudera Manager go to Kafka Configuration and search for zookeeper.chroot.

Results
The tool traverses the corresponding sub-trees changing the ACLs of the znodes. Access to Kafka metadata stored in
Zookeeper becomes unrestricted.
Related Information
Enable Kerberos authentication

LDAP authentication
You can configure Kafka to make use of LDAP credentials for client to broker authentication. In order to enable
LDAP authentication you must configure both brokers and clients accordingly.

Configure Kafka brokers
Learn how to configure LDAP authentication for Kafka brokers.

About this task

You can enable Kafka to use LDAP credentials for client to broker authentication. Broker configuration is done by
configuring the required properties in Cloudera Manager.

Procedure

1. In Cloudera Manager select the Kafka service.

16

Cloudera Runtime Authentication

2. Select Configuration.

3. Enable LDAP authentication:

a) Find the SASL/PLAIN Authentication property.
b) Click the radio button next to LDAP. Do this for all required Kafka services.

4. Configure the LDAP URL:

a) FInd the LDAP URL property.
b) Add your LDAP server URL.

For example:

ldap://cloudera.example.com:636

Note: Depending on how your LDAP is set up, the URL can start with either ldap:// or ldaps://.

5. Configure the LDAP User DN Template:

a) Find the LDAP User DN Template property.
b) Add your template.

For example:

uid={0},cn=users,cn=account,dc=cloudera,dc=example,dc=com

6. Click Save Changes.

7. Restart the Kafka service.

Results
LDAP authentication is configured for the brokers.

What to do next
Configure clients to use LDAP authentication.
Related Information
Configure Kafka clients

Configure Kafka clients
Learn how to configure Kafka clients for LDAP authentication.

About this task

You can enable Kafka to use LDAP credentials for client to broker authentication. Client configuration is done by
adding the required properties to the client's client.properties file.

Procedure

1. Set the SASL mechanism to PLAIN.

Add the following property to the client.properties file.

sasl.mechanism=PLAIN

17

Cloudera Runtime Authentication

2. Configure the security protocol.

You can either use SASL_SSL or SASL_PLAINTEXT. Which security protocol you use will depend on whether
or not SSL encryption is enabled on the broker. Add one of the following properties to the client.properties file.

• If encryption is enabled, use SASL_SSL:

security.protocol=SASL_SSL

• If encryption is not enabled, use SASL_PLAINTEXT:

security.protocol=SASL_PLAINTEXT

Note: In a public network Cloudera recommends that you use SASL_SSL as LDAP credentials can
become exposed.

3. Configure the JAAS.

You have two options when configuring the JAAS:

a) Embed the required properties in the client.properties file with the sasl.jaas.config property.

sasl.jaas.config= \
org.apache.kafka.common.security.plain.PlainLoginModule required \
 username="[LDAP_USERNAME]" \
 password="[LDAP_PASSWORD]";

Replace [LDAP_USERNAME] and [LDAP_PASSWORD] with a valid LDAP username and password.
b) Use a separate JAAS config file:

1. Add a KafkaClient entry with a login module item to your JAAS configuration file.

Example configuration:

KafkaClient {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="[LDAP_USERNAME]"
 password="[LDAP_PASSWORD]";
 };

Replace [LDAP_USERNAME] and [LDAP_PASSWORD] with a valid LDAP username and password.
2. Pass the location of your JAAS configuration file as a JVM parameter through a command line interface

export KAFKA_OPTS="-Djava.security.auth.login.config=[PATH_TO_JAAS.C
ONF]"

Replace [PATH_TO_JAAS.CONF] with the location of the JAAS configuration file you created.

Results
LDAP authentication is configured for the client.

PAM Authentication
You can configure Kafka to use the PAM authentication mechanism for client to broker authentication. In order to
enable PAM authentication you must configure both brokers and clients accordingly.

Configure Kafka brokers
Learn how to configure PAM authentication for Kafka brokers.

18

Cloudera Runtime Authentication

About this task

You can enable Kafka to use PAM for client to broker authentication. Broker configuration is done by configuring the
required properties in Cloudera Manager.

Procedure

1. In Cloudera Manager select the Kafka service.

2. Select Configuration.

3. Enable PAM authentication:

a) Find the SASL/PLAIN Authentication property.
b) Click the radio button next to PAM. Do this for all required Kafka services.

4. Configure the PAM service name:

a) Find the PAM Service property.
b) Enter a valid PAM service name. The property defaults to login.

5. Click Save Changes.

6. Restart the Kafka service

Results
PAM authentication is configured for the brokers.

What to do next
Configure clients to use PAM authentication.

Configure Kafka clients
Learn how to configure Kafka clients for PAM authentication.

About this task

You can enable Kafka to use PAM for client to broker authentication. Client configuration is done by adding the
required properties to the client's client.properties file.

Procedure

1. Set the SASL mechanism to PLAIN.

Add the following property to the client.properties file.

sasl.mechanism=PLAIN

2. Configure the security protocol.

You can either use SASL_SSL or SASL_PLAINTEXT. Which security protocol you use will depend on whether
or not SSL encryption is enabled on the broker. Add one of the following properties to the client.properties file.

• If encryption is enabled, use SASL_SSL:

security.protocol=SASL_SSL

• If encryption is not enabled, use SASL_PLAINTEXT:

security.protocol=SASL_PLAINTEXT

Note: In a public network Cloudera recommends that you use SASL_SSL as credentials can become
exposed.

19

Cloudera Runtime Authorization

3. Configure the JAAS.

You have two options when configuring the JAAS:

a) Embed the required properties in the client.properties file with the sasl.jaas.config property.

sasl.jaas.config= \
org.apache.kafka.common.security.plain.PlainLoginModule required \
 username="[USERNAME]" \
 password="[PASSWORD]";

Replace [USERNAME] and [PASSWORD] with a valid username and password.
b) Use a separate JAAS config file:

1. Add a KafkaClient entry with a login module item to your JAAS configuration file.

Example configuration:

KafkaClient {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="[USERNAME]"
 password="[PASSWORD]";
 };

Replace [USERNAME] and [PASSWORD] with a valid username and password.
2. Pass the location of your JAAS configuration file as a JVM parameter through a command line interface

export KAFKA_OPTS="-Djava.security.auth.login.config=[PATH_TO_JAAS.C
ONF]"

Replace [PATH_TO_JAAS.CONF] with the location of the JAAS configuration file you created.

Results
PAM authentication is configured for the client.

Authorization

Ranger
Learn more about authorization with Ranger.

You can use Ranger to provide authorization for Kafka. For more information, see Using Ranger to Provide
Authorization in CDP.

Related Information
Using Ranger to Provide Authorization in CDP

Enable authorization in Kafka with Ranger
Learn how to enable Ranger authorization for Kafka.

Before you begin

Ranger authorization requires that at least one of the following authentication mechanisms is enabled in Kafka:

• Kerberos
• Two-way TLS/SSL
• LDAP

20

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/security-ranger-authorization/topics/security-ranger-provide-authorization-cdp.html

Cloudera Runtime Authorization

• PAM

Procedure

1. In Cloudera Manager select the Kafka service.

2. Select Configuration and find the RANGER Service property.

3. Check the checkbox next to the name of the Ranger service that you want this Kafka service to depend on.

4. Click Save Changes.

5. Restart the Kafka service.

Results
Ranger authorization for Kafka is enabled. The Kafka service depends on the selected Ranger service for
authorization.

What to do next
Configure resource-based services and policies for Kafka. Additionally, configure which resource-based service
should be used for authorization.
Related Information
Configure a resource-based service: Kafka

Configure a resource-based policy: Kafka

Configure the resource-based Ranger service used for authorization

Enable Kerberos authentication

TLS

LDAP authentication

PAM Authentication

Configure the resource-based Ranger service used for authorization
Learn how to configure the resource-based Ranger service used by Kafka for authorization.

About this task

You can configure which resource-based service in Ranger is used by Kafka for authorization. This is controlled by
the Ranger service name for this Kafka cluster property which can be set in Cloudera Manager. The property can be
configured in two ways:
Set a user defined string

The property accepts a user defined string. Alphanumeric characters as well as underscores are
allowed, for example, kafka_1. In this case, Kafka checks if a resource-based service in Ranger
matching the defined string exists. If it does, Kafka will use that resource-based service. If it does
not, Kafka automatically creates and uses a new resource-based service. The name of the newly
created resource-based service will be the name that was defined in the property.

Set {{GENERATED_RANGER_SERVICE_NAME}}

The property accepts {{GENERATED_RANGER_SERVICE_NAME}} as a valid value. When
this specific placeholder value is set, Cloudera Manager generates a name for a new resource-based
service. The generated name is based on the Kafka service name and the cluster name. Kafka then
checks whether a resource-based service with the generated name exists in Ranger. If it does, Kafka
will use that resource-based service. If it does not, Kafka automatically creates and uses a new
resource-based service. The name of the newly created resource-based service will be the generated
name.

In both scenarios, the creation of the role-based service happens once the Kafka service is restarted.

The property by default is set to cm_kafka. However, for clusters provisioned with the Streams Messaging cluster
definitions in CDP Data Hub, the default is {{GENERATED_RANGER_SERVICE_NAME}}.

21

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/security-ranger-authorization/topics/security-ranger-resource-service-configure-kafka.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/security-ranger-authorization/topics/security-ranger-resource-policy-configure-kafka.html

Cloudera Runtime Using Kafka's inter-broker security

Configuring this property can prove useful when you have multiple Kafka clusters that use the same Ranger service
for authorization, but you want to define unique Ranger policies for each Kafka cluster.

Procedure

1. In Cloudera Manager select the Kafka service.

2. Select Configuration and find the Ranger service name for this Kafka cluster property.

3. Configure the property.

You have two choices:

• Set the property to a user defined string.
• Set the property to {{GENERATED_RANGER_SERVICE_NAME}}.

4. Click Save Changes.

5. Restart the Kafka service.

Results
The selected resource-based service is configured and is used by Kafka for authorization. If the resource-based
service does not exist, it will be automatically created in Ranger.
Related Information
Apache Ranger Authorization

Using Kafka's inter-broker security

Learn about Kafka inter-broker-security and supported security protocols.

Kafka can expose multiple communication endpoints, each supporting a different protocol. Supporting multiple
communication endpoints enables you to use different communication protocols for client-to-broker communications
and broker-to-broker communications. Set the Kafka inter-broker communication protocol using the security.inter.b
roker.protocol property. Use this property primarily for the following scenarios:

• Enabling SSL encryption for client-broker communication but keeping broker-broker communication as PLAI
NTEXT. Because SSL has performance overhead, you might want to keep inter-broker communication as PLAI
NTEXT if your Kafka brokers are behind a firewall and not susceptible to network snooping.

• Migrating from a non-secure Kafka configuration to a secure Kafka configuration without requiring downtime.
Use a rolling restart and keep security.inter.broker.protocol set to a protocol that is supported by all brokers until
all brokers are updated to support the new protocol.

For example, if you have a Kafka cluster that needs to be configured to enable Kerberos without downtime, follow
these steps:

1. Set security.inter.broker.protocol to PLAINTEXT.
2. Update the Kafka service configuration to enable Kerberos.
3. Perform a rolling restart.
4. Set security.inter.broker.protocol to SASL_PLAINTEXT.

The following combination of protocols are supported.

SSL Kerberos

PLAINTEXT No No

SSL Yes No

SASL_PLAINTEXT No Yes

SASL_SSL Yes Yes

22

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/security-ranger-authorization/topics/security-ranger-provide-authorization-cdp.html

Cloudera Runtime Using Kafka's inter-broker security

These protocols can be defined for broker-to-client interaction and for broker-to-broker interaction. The property secu
rity.inter.broker.protocol allows the broker-to-broker communication protocol to be different than the broker-to-client
protocol, allowing rolling upgrades from non-secure to secure clusters. In most cases, set security.inter.broker.protoc
ol to the protocol you are using for broker-to-client communication. Set security.inter.broker.protocol to a protocol
different than the broker-to-client protocol only when you are performing a rolling upgrade from a non-secure to a
secure Kafka cluster.

23

	Contents
	TLS
	Step 1: Generate keys and certificates for Kafka brokers
	Step 2: Create your own certificate authority
	Step 3: Sign the certificate
	Step 4: Configure Kafka brokers
	Step 5: Configure Kafka clients
	Configure Zookeeper TLS/SSL support for Kafka

	Authentication
	Enable Kerberos authentication
	Delegation token based authentication
	Enable or disable authentication with delegation tokens
	Manage individual delegation tokens
	Rotate the master key/secret
	Client authentication using delegation tokens
	Configure clients on a producer or consumer level
	Configure clients on an application level

	Kafka security hardening with Zookeeper ACLs
	Restrict access to Kafka metadata in Zookeeper
	Unlock Kafka metadata in Zookeeper

	LDAP authentication
	Configure Kafka brokers
	Configure Kafka clients

	PAM Authentication
	Configure Kafka brokers
	Configure Kafka clients

	Authorization
	Ranger
	Enable authorization in Kafka with Ranger
	Configure the resource-based Ranger service used for authorization

	Using Kafka's inter-broker security

