
Cloudera Runtime 7.1.3

Managing and Allocating Cluster Resources
using Capacity Scheduler
Date published: 2020-02-11
Date modified: 2020-08-07

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Resource Scheduling and Management... 5
YARN resource allocation of multiple resource-types.. 5
Hierarchical queue characteristics.. 5
Scheduling among queues.. 6
Application reservations... 6
Resource distribution workflow... 6
Use CPU scheduling...8

Configure CPU scheduling and isolation...8
Use CPU scheduling with distributed shell... 9

Use GPU scheduling...9
Configure GPU scheduling and isolation...9
Use GPU scheduling with distributed shell... 10

Use FPGA scheduling.. 11
Configure FPGA scheduling and isolation.. 11
Use FPGA with distributed shell... 12

Limit CPU usage with Cgroups... 12
Use Cgroups..13
Enable Cgroups...13

Partition a cluster using node labels.. 15
Configure node labels...17
Use node labels...20

Manage Queues... 21
Prerequisite..22
Add queues using YARN Queue Manager UI.. 23
Configuring cluster capacity with Queues... 26
Start and stop queues..27
Delete queues..27

Configure Scheduler Properties at the Global Level.. 27
Set global maximum application priority...30
Configure preemption... 31
Enable Intra-Queue preemption..31
Set global application limits...32
Set default Application Master resource limit... 32
Enable asynchronous scheduler..33
Configure placement rules..33

Dynamic queues..33
Create placement rules... 34
Reorder placement rules... 34
Edit placement rules... 35
Delete placement rules... 35

Configure queue mapping to use the user name from the application tag using Cloudera Manager................. 35
Configure NodeManager heartbeat.. 36
Configure data locality... 36

Configure Per Queue Properties...37
Set user limits within a queue..39
Set Maximum Application limit for a specific queue... 41
Set Application-Master resource-limit for a specific queue.. 42
Control access to queues using ACLs... 42
Enable preemption for a specific queue...43
Enable Intra-Queue Preemption for a specific queue.. 43
Configure dynamic queue properties... 44
Set Ordering policies within a specific queue... 44

Configure queue ordering policies... 45
Associate node labels with queues...45
Enable override of default queue mappings at individual queue level..50

Cloudera Runtime Resource Scheduling and Management

Resource Scheduling and Management

You can manage resources for the applications running on your cluster by allocating resources through scheduling,
limiting CPU usage by configuring cgroups, and partitioning the cluster into subclusters using node labels, and
launching applications on Docker containers.

The CapacityScheduler is responsible for scheduling. The CapacityScheduler is used to run Hadoop applications as a
shared, multi-tenant cluster in an operator-friendly manner while maximizing the throughput and the utilization of the
cluster.

The ResourceCalculator is part of the YARN CapacityScheduler. If you have only one type of resource, typically a
CPU virtual core (vcore), use the DefaultResourceCalculator. If you have multiple resource types, use the Dominant
ResourceCalculator.

YARN resource allocation of multiple resource-types
You can manage your cluster capacity using the Capacity Scheduler in YARN. You can use the Capacity Scheduler's
DefaultResourceCalculator or the DominantResourceCalculator to allocate available resources.

The fundamental unit of scheduling in YARN is the queue. The capacity of each queue specifies the percentage of
cluster resources available for applications submitted to the queue. You can set up queues in a hierarchy that reflects
the database structure, resource requirements, and access restrictions required by the organizations, groups, and
individuals who use the cluster resources.

You can use the default resource calculator when you want the resource calculator to consider only the available
memory for resource calculation. When you use the default resource calculator (DefaultResourceCalculator),
resources are allocated based on the available memory.

If you have multiple resource types, use the dominant resource calculator (DominantResourceCalculator) to enable
CPU, GPU, and memory scheduling. The dominant resource calculator is based on the Dominant Resource Fairness
(DRF) model of resource allocation. DRF is designed to fairly distribute CPU, and memory resources among different
types of processes in a mixed-workload cluster.

For example, if User A runs CPU-heavy tasks and User B runs memory-heavy tasks, the DRF allocates more CPU
and less memory to the tasks run by User A, and allocates less CPU and more memory to the tasks run by User B. In
a single resource case, in which all jobs are requesting the same resources, the DRF reduces to max-min fairness for
that resource.

Hierarchical queue characteristics
You must consider the various characteristics of the Capacity Scheduler hierarchical queues before setting them up.

There are two types of queues: parent queues and leaf queues.

• Parent queues enable the management of resources across organizations and sub- organizations. They can contain
more parent queues or leaf queues. They do not themselves accept any application submissions directly.

• Leaf queues are the queues that live under a parent queue and accept applications. Leaf queues do not have any

child queues, and therefore do not have any configuration property that ends with ".queues".

• There is a top-level parent root queue that does not belong to any organization, but instead represents the cluster
itself.

• Using parent and leaf queues, administrators can specify capacity allocations for various organizations and sub-
organizations.

5

Cloudera Runtime Resource Scheduling and Management

Scheduling among queues
Hierarchical queues ensure that guaranteed resources are first shared among the sub-queues of an organization before
any remaining free resources are shared with queues belonging to other organizations. This enables each organization
to have control over the utilization of its guaranteed resources.

• At each level in the hierarchy, every parent queue keeps the list of its child queues in a sorted manner based on
demand. The sorting of the queues is determined by the currently used fraction of each queue’s capacity (or the
full-path queue names if the reserved capacity of any two queues is equal).

• The root queue understands how the cluster capacity needs to be distributed among the first level of parent queues
and invokes scheduling on each of its child queues.

• Every parent queue applies its capacity constraints to all of its child queues.
• Leaf queues hold the list of active applications (potentially from multiple users) and schedules resources in a FIFO

(First In, First Out) manner, while at the same time adhering to capacity limits specified for individual users.

Application reservations
For a resource-intensive application, the Capacity Scheduler creates a reservation on a cluster node if the node's free
capacity can meet the particular application's requirements. This ensures that the resources are utilized only by that
particular application until the application reservation is fulfilled.

The Capacity Scheduler is responsible for matching free resources in the cluster with the resource requirements of
an application. Many times, a scheduling cycle occurs such that even though there are free resources on a node, they
are not sized large enough to satisfy the application waiting for a resource at the head of the queue. This typically
happens with high-memory applications whose resource demand for Containers is much larger than the typical
application running in the cluster. This mismatch can lead to starving these resource-intensive applications.

The Capacity Scheduler reservations feature addresses this issue as follows:

• When a node reports in with a finished Container, the Capacity Scheduler selects an appropriate queue to utilize
the newly available resources based on capacity and maximum capacity settings.

• Within that selected queue, the Capacity Scheduler looks at the applications in a FIFO order along with the
user limits. Once a needy application is found, the Capacity Scheduler tries to see if the requirements of that
application can be met by the node’s free capacity.

• If there is a size mismatch, the Capacity Scheduler immediately creates a reservation on the node for the
application’s required Container.

• Once a reservation is made for an application on a node, those resources are not used by the Capacity Scheduler
for any other queue, application, or Container until the application reservation is fulfilled.

• The node on which a reservation is made reports back when enough Containers finish running such that the total
free capacity on the node now matches the reservation size. When that happens, the Capacity Scheduler marks the
reservation as fulfilled, removes it, and allocates a Container on the node.

• In some cases another node fulfills the resources required by the application, so the application no longer needs
the reserved capacity on the first node. In this situation, the reservation is simply cancelled.

To prevent the number of reservations from growing in an unbounded manner, and to avoid any potential scheduling
deadlocks, the Capacity Scheduler maintains only one active reservation at a time on each node.

Resource distribution workflow
During scheduling, queues at any level in the hierarchy are sorted in the order of their current used capacity, and the
available resources are distributed among them starting with queues that are currently the most under-served.

With respect to capacities alone, the resource scheduling has the following workflow:

6

Cloudera Runtime Resource Scheduling and Management

• The more under-served a queue is, the higher the priority it receives during resource allocation. The most under-
served queue is the queue with the least ratio of used capacity as compared to the total cluster capacity.

• The used capacity of any parent queue is defined as the aggregate sum of used capacity of all of its descendant
queues, recursively.

• The used capacity of a leaf queue is the amount of resources used by the allocated Containers of all of the
applications running in that queue.

• Once it is decided to give a parent queue the currently available free resources, further scheduling is done
recursively to determine which child queue gets to use the resources -- based on the previously described concept
of used capacities.

• Further scheduling happens inside each leaf queue to allocate resources to applications in a FIFO order.

• This is also dependent on locality, user level limits, and application limits.
• Once an application within a leaf queue is chosen, scheduling also happens within the application.

Applications may have different priorities of resource requests.
• To ensure elasticity, capacity that is configured but not utilized by any queue due to lack of demand is

automatically assigned to the queues that are in need of resources.

Resource Distribution Process - Example

To understand the resource distribution workflow, consider the example of a 100-node cluster, each with 10 GB of
memory allocated for YARN containers, for a total cluster capacity of 1000 GB (1 TB).

For example, the "engineering" organization is assigned 60% of the cluster capacity, that is, an absolute capacity of
600 GB. Similarly, the "support" organization is assigned 100 GB, and the "marketing" organization gets 300 GB.

Under the "engineering" organization, capacity is distributed between the "development" team and the "qa" team in a
1:4 ratio. So "development" gets 120 GB, and 480 GB is assigned to "qa".

Now consider the following timeline of events:

• Initially, the entire "engineering" queue is free with no applications running, while the "support" and "marketing"
queues are utilizing their full capacities.

• Users Sid and Hitesh first submit applications to the "development" leaf queue. Their applications are elastic and
can run with either all of the resources available in the cluster, or with a subset of cluster resources (depending
upon the state of the resource-usage).

• Even though the "development" queue is allocated 120 GB, Sid and Hitesh are each allowed to occupy 120
GB, for a total of 240 GB.

• This can happen despite the fact that the "development" queue is configured to be run with a capacity of 120
GB. Capacity Scheduler allows elastic sharing of cluster resources for better utilization of available cluster
resources. Since there are no other users in the "engineering" queue, Sid and Hitesh are allowed to use the
available free resources.

• Next, users Jian, Zhijie and Xuan submit more applications to the "development" leaf queue. Even though each is
restricted to 120 GB, the overall used capacity in the queue becomes 600 GB -- essentially taking over all of the
resources allocated to the "qa" leaf queue.

• User Gupta now submits an application to the "qa" queue. With no free resources available in the cluster, the
user's application must wait.

• Given that the "development" queue is utilizing all of the available cluster resources, Gupta may or may not
be able to immediately get back the guaranteed capacity of his "qa" queue -- depending upon whether or not
preemption is enabled.

• As the applications of Sid, Hitesh, Jian, Zhijie, and Xuan finish running and resources become available, the
newly available Containers will be allocated to Gupta’s application.

This will continue until the cluster stabilizes at the intended 1:4 resource usage ratio for the "development" and "qa"
queues.

From this example, you can see that it is possible for abusive users to submit applications continuously, and thereby
lock out other queues from resource allocation until Containers finish running or get preempted. To avoid this

7

Cloudera Runtime Resource Scheduling and Management

scenario, Capacity Scheduler supports limits on the elastic growth of any queue. For example, you can restrict
the "development" queue from monopolizing the "engineering" queue capacity by setting the maximum capacity
property.

To set the maximum capacity property based on this example, perform the following:

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the development queue and select Edit Child Queues option.
3. Enter 40 in the Configured Value field.
4. Click Save.

Once this is set, users of the "development" queue can still go beyond their capacity of 120 GB, but they will not be
allocated any more than 40% of the "engineering" parent queue's capacity (that is, 40% of 600 GB = 240 GB).

The capacity and maximum-capacity properties can be used to control sharing and elasticity across the organizations
and sub-organizations utilizing a YARN cluster. Administrators should balance these properties to avoid strict limits
that result in a loss of utilization, and to avoid excessive cross-organization sharing.

Use CPU scheduling
Cgroups with CPU scheduling helps you effectively manage mixed workloads.

Note: You should use CPU scheduling only in a Linux environment, because there is no isolation mechanism
(cgroups equivalent) for Windows.

MapReduce jobs only

If you primarily run MapReduce jobs on your cluster, enabling CPU scheduling does not change performance much.
The dominant resource for MapReduce is memory, so the DRF scheduler continues to balance MapReduce jobs in
a manner similar to the default resource calculator. In the case of a single resource, the DRF reduces to max-min
fairness for that resource.

Mixed workloads

An example of a mixed workload is a cluster that runs both MapReduce and Storm on YARN. MapReduce is not
CPU-constrained, but Storm on YARN is; its containers require more CPU than memory. As you add Storm jobs
along with MapReduce jobs, the DRF scheduler tries to balance memory and CPU resources, but you might see some
performance degradation in as a result. As you add more CPU-intensive Storm jobs, individual jobs start to take
longer to run as the cluster CPU resources are consumed.

To solve this problem, you can use cgroups along with CPU scheduling. Using cgroups provides isolation for CPU-
intensive processes such as Storm on YARN, thereby enabling you to predictably plan and constrain the CPU-
intensive Storm containers.

You can also use node labels in conjunction with CPU scheduling and cgroups to restrict Storm on YARN jobs to a
subset of cluster nodes.

Configure CPU scheduling and isolation
You can configure CPU scheduling on your cluster to allocate the best possible nodes having the required CPU
resources for application containers.

Procedure

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for Resource Calculator Class.

4. Select the org.apache.hadoop.yarn.util.resource.DominantResourceCalculator option.

8

Cloudera Runtime Resource Scheduling and Management

5. Search for yarn.nodemanager.resource.cpu-vcores and set the number of vcores to match the number of physical
CPU cores on the NodeManager host by providing the number of physical cores.

Related Information
Using GPU on YARN

Enable Cgroups

Limit CPU usage with Cgroups

Use CPU scheduling with distributed shell
You can run the distributed shell by specifying resources other than memory and vCores. The following is an example
for distributed shell but you can use CPU scheduling with other frameworks as well.

Procedure

• Use the following command to allocate two cores for two containers:

yarn jar </opt/cloudera/parcels/<CDH-version>/lib/hadoop-yarn/hadoop-yarn-
applications-distributedshell.jar> \
 -jar </opt/cloudera/parcels/<CDH-version>/lib/hadoop-ya
rn/hadoop-yarn-applications-distributedshell.jar> \
 -shell_command "sleep 120" \
 -container_resources memory-mb=3072,vcores=2 \
 -num_containers 2

Use GPU scheduling
On your cluster, you can configure GPU scheduling and isolation. Currently only Nvidia GPUs are supported in
YARN. You can use Cloudera Manager to configure GPU scheduling on your cluster.

Configure GPU scheduling and isolation
You can configure GPU scheduling and isolation on your cluster. Currently only Nvidia GPUs are supported in
YARN.

Before you begin

• YARN NodeManager must be installed with the Nvidia drivers.

Procedure

1. In Cloudera Manager, navigate to Hosts Hosts Configuration . .

2. Search for cgroup.

3. Select the Enable Cgroup-based Resource Management checkbox.

4. Click Save Changes.

5. Navigate to YARN Configuration .

6. Search for cgroup.

7. Find the Use CGroups for Resource Management property and enable it for the applicable clusters.

8. Find the Always use Linux Container Executor property and enable it for the applicable clusters.

9. Search for gpu.

10. Find the Enable GPU Usage property and select the NodeManager Default Group checkbox.

9

https://hadoop.apache.org/docs/r3.1.1/hadoop-yarn/hadoop-yarn-site/UsingGpus.html

Cloudera Runtime Resource Scheduling and Management

11. Find the NodeManager GPU Devices Allowed property and define the GPU devices that are managed by YARN
using one of the following ways.

• Use the default value, auto, for auto detection of all GPU devices. In this case all GPU devices are managed by
YARN.

• Manually define the GPU devices that are managed by YARN.

12. Find the NodeManager GPU Detection Executable property and define the location of nvidia-smi. By default, this
property has no value and it means that YARN checks the following paths to find nvidia-smi:

• /usr/bin
• /bin
• /usr/local/nvidia/bin

13. Click Save Changes.

14. Click the Stale Configuration: Restart needed button on the top of the page.

15. Click Restart Stale Services.

Note that this step restarts all services with stale configurations.

16. Select Re-deploy client configuration and click Restart Now.

If the NodeManager fails to start, the following error is displayed:

INFO gpu.GpuDiscoverer (GpuDiscoverer.java:initialize(240)) - Trying to disc
over GPU information ... WARN gpu.GpuDiscoverer (GpuDiscoverer.java:initiali
ze(247)) - Failed to discover GPU information from system, exception message
:ExitCodeException exitCode=12: continue...

Fix the error by exporting the LD_LIBRARY_PATH in the yarn -env.sh using the following command:
export LD_LIBRARY_PATH=/ usr/local/nvidia/lib:/usr/local/nvidia/lib64:
$LD_LIBRARY_PATH

Use GPU scheduling with distributed shell
You can run the distributed shell by specifying resources other than memory and vCores. The following is an example
for distributed shell but you can use GPU scheduling with other frameworks as well.

Procedure

• Use the following command to run the distributed shell and GPU without a Docker container:

yarn jar </opt/cloudera/parcels/<CDH-version>/lib/hadoop-yarn/hadoop-yarn-
applications-distributedshell.jar> \
 -jar </opt/cloudera/parcels/<CDH-version>/lib/hadoop-ya
rn/hadoop-yarn-applications-distributedshell.jar> \
 -shell_command /usr/local/nvidia/bin/nvidia-smi \
 -container_resources memory-mb=3072,vcores=1,yarn.io/g
pu=2 \
 -num_containers 2

You receive output similar to the following:

+---+
| NVIDIA-SMI 375.66 Driver Version: 375.66 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-PCIE... Off | 0000:04:00.0 Off | 0 |
| N/A 30C P0 24W / 250W | 0MiB / 12193MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-PCIE... Off | 0000:82:00.0 Off | 0 |
| N/A 34C P0 25W / 250W | 0MiB / 12193MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |

10

Cloudera Runtime Resource Scheduling and Management

| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

Use FPGA scheduling
You can use FPGA as a resource type.

A Field Programmable Gate Array (FPGA) is a card that contains a matrix of configurable logic blocks, mostly logic
gates. FPGA can be reprogrammed, meaning that the interconnections among the gates and integrated devices can be
re-wired. That is in contrast to a regular CPU, as the internal wiring and connections inside a CPU cannot be changed:
only the software that runs on it can be changed, but the hardware is always the same. FPGA, on the other hand,
allows changes on a circuit level.

An FPGA device does not contain only rewirable logic gates (like AND or OR gates), but also memory, DSP, chip,
external connectors and more.

Programming FPGAs

FPGAs can be programmed in various ways. The most popular methods are VHDL and Verilog.

Intel FPGA cards allow the users to upload so-called OpenCL kernels to perform certain computations simultaneously
and therefore rapidly. OpenCL is a framework and a set of standards that is currently developed and maintained by
the Khronos Group. For more information, see Khronos' OpenCL documentation.

Configure FPGA scheduling and isolation
You can enable and configure FPGA as a resource type using Cloudera Manager.

Before you begin

Ensure that the FPGA Runtime or SDK is installed in such a way that the aocl command is executable by the
NodeManager. For more information about how to install FPGA, see Intel Acceleration Stack Quick Start Guide for
Intel Programmable Acceleration Card with Intel Arria 10 GX FPGA.

Procedure

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Select FPGA Management category under Filters.

4. Find the Enable FPGA Usage property and select the NodeManagers that can provide FPGA devices to YARN
applications that request them.

5. Use the Path to FPGA (aocl) tool property to specify the full local path to the Intel aocl tool installed on the
applicable nodes.

6. Use the Allowed FPGA devices to specify the FPGA devices which can be managed by YARN NodeManager.

Valid values are the following:

• Auto: Default value. All available FPGA devices are allowed.
• Comma separated list: List the minor number of the allowed FPGAs. For example: 0,1

11

https://www.khronos.org/opencl/
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html
https://www.intel.com/content/www/us/en/programmable/documentation/iyu1522005567196.html

Cloudera Runtime Resource Scheduling and Management

7. Use the List of available FPGA devices property to manually specify the available FPGA devices.

Provide the value in the following format: deviceA/major_number:minor_number,deviceB/major_number:minor
_number

For example: acl0/238:0,acl1/238:1

The acl numbers are displayed using the aocl diagnose command.

The major and minor device numbers can usually be determined by listing the device files under /dev. Every card
has a corresponding device file. The ls -l command shows both numbers.

8. Use the FPGA device major number property to provide the major device number of the FPGA card.

This property is used in the container-executor.cfg file.

Important: Only one major number can be specified for each node, meaning that a node can have only
one kind of FPGA card.

9. Use the FPGA initializer script property to provide the path to the shell script that sets up the environment for the
FPGA device.

The initializer script sets up various environment variables, and sources other scripts allowing the aocl tool to run
properly. The contents of this script depends heavily on the installation. For example, in case of Intel Processing
Accelerator Card (PAC), it is necessary to source init_env.sh and init_opencl.sh.

The following environment variables are possibly required to be exported:

• AOCL_BOARD_PACKAGE_ROOT
• CL_CONTEXT_COMPILER_MODE_INTELFPGA

Please consult the vendor’s documentation for further details.

10. Click Save Changes.

11. Restart the affected NodeManagers.

Results
FPGA support is enabled and configured.

What to do next
Request FPGA resource by specifying yarn.io/fpga as a resource.

Use FPGA with distributed shell
Once FPGA support is enabled, an FPGA resource can be requested by specifying yarn.io/fpga as a resource.

The following is a distributed shell example:

yarn jar /path/to/hadoop-yarn-applications-distributedshell.jar
-jar /path/to/hadoop-yarn-applications-distributedshell.jar
-shell_command "date"
-container_resources memory-mb=2048,vcores=1,yarn.io/fpga=1
-num_containers 1

This command runs the date command on a node which has an FPGA card installed.

Limit CPU usage with Cgroups
You can use cgroups to limit CPU usage in a Hadoop Cluster.

You can use cgroups to isolate CPU-heavy processes in a Hadoop cluster. If you are using CPU Scheduling, you
should also use cgroups to constrain and manage CPU processes. If you are not using CPU Scheduling, do not enable
cgroups.

12

Cloudera Runtime Resource Scheduling and Management

When you enable CPU Scheduling, queues are still used to allocate cluster resources, but both CPU and memory
are taken into consideration using a scheduler that utilizes Dominant Resource Fairness (DRF). In the DRF model,
resource allocation takes into account the dominant resource required by a process. CPU-heavy processes (such as
Storm-on-YARN) receive more CPU and less memory. Memory-heavy processes (such as MapReduce) receive
more memory and less CPU. The DRF scheduler is designed to fairly distribute memory and CPU resources among
different types of processes in a mixed- workload cluster.

Cgroups compliments CPU Scheduling by providing CPU resource isolation. It enables you to set limits on the
amount of CPU resources granted to individual YARN containers, and also lets you set a limit on the total amount of
CPU resources used by YARN processes.

Cgroups represents one aspect of YARN resource management capabilities that includes CPU Scheduling, node
labels, archival storage, and memory as storage. If CPU Scheduling is used, cgroups should be used along with it to
constrain and manage CPU processes.

Related Information
Configure CPU scheduling and isolation

Use Cgroups
You can use strict cgroups CPU limits to constrain CPU processes in mixed workload clusters.

One example of a mixed workload is a cluster that runs both MapReduce and Storm-on-YARN. MapReduce is not
CPU-constrained (MapReduce containers do not ask for much CPU). Storm-on-YARN is CPU-constrained: its
containers ask for more CPU than memory. As you start adding Storm jobs along with MapReduce jobs, the DRF
scheduler attempts to balance memory and CPU resources, but as more CPU-intensive Storm jobs are added, they
may begin to take up the majority of the cluster CPU resources.

You can use cgroups along with CPU scheduling to help manage mixed workloads. cgroups provide isolation for
CPU-heavy processes such as Storm-on-YARN, thereby enabling you to predictably plan and constrain the CPU-
intensive Storm containers.

When you enable strict cgroup CPU limits, each resource gets only what it asks for, even if there is extra CPU
available. This is useful for scenarios involving charge-backs or strict SLA enforcement, where you always need to
know exactly what percentage or CPU is being used.

Also, enabling strict CPU limits would make job performance predictable, whereas without setting strict limits a
CPU-intensive job would run faster when the cluster was not under heavy use, but slower when more jobs were
running in the cluster. Strict CPU limits would therefore also be useful for benchmarking.

You can also use node labels in conjunction with cgroups and CPU scheduling to restrict Storm-on-YARN jobs to a
subset of cluster nodes.

If you are using cgroups and want more information on CPU performance, you can review the statistics available in
the /cgroup/cpu/yarn/cpu.stat file.

Enable Cgroups
You can enable CPU Scheduling to enable cgroups. You must configure certain properties in yarn-site.xml on the
ResourceManager and NodeManager hosts to enable cgroups.

About this task

cgroups is a Linux kernel feature. cgroups is supported on the following Linux operating systems:

• CentOS 6.9, 7.3
• RHEL 6.9, 7.3
• SUSE 12
• Ubuntu 16

At this time there is no cgroups equivalent for Windows. cgroups are not enabled by default on CDP. cgroups require
that the CDP cluster be Kerberos enabled.

13

Cloudera Runtime Resource Scheduling and Management

Important:

The yarn.nodemanager.linux-container-executor.cgroups.mount property must be set to false. Setting this
value to true is not currently supported.

Procedure

Enable cgroups

The following commands must be run on every reboot of the NodeManager hosts to set up the cgroup hierarchy. Note
that operating systems use different mount points for the cgroup interface. Replace /sys/fs/cgroup with your operating
system equivalent.

mkdir -p /sys/fs/cgroup/cpu/yarn
chown -R yarn /sys/fs/cgroup/cpu/yarn
mkdir -p /sys/fs/cgroup/memory/yarn
chown -R yarn /sys/fs/cgroup/memory/yarn
mkdir -p /sys/fs/cgroup/blkio/yarn
chown -R yarn /sys/fs/cgroup/blkio/yarn
mkdir -p /sys/fs/cgroup/net_cls/yarn
chown -R yarn /sys/fs/cgroup/net_cls/yarn
mkdir -p /sys/fs/cgroup/devices/yarn
chown -R yarn /sys/fs/cgroup/devices/yarn

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for Always Use Linux Container Executor and select YARN-1 (Service-Wide) option.

4. Search for NodeManager Advanced Configuration and set the below property in the NodeManager Advanced
Configuration Snippet (Safety Valve) for yarn-site.xml field.

Name: yarn.nodemanager.linux-container-executor.group
Value: hadoop

5. Search for CGroups and select YARN-1 (Service-Wide) option in the Use CGroups for Resource Management
field.

6. Search for CGroups Hierarchy and set the NodeManager Default Group value to /hadoop-yarn.

7. Search for NodeManager Advanced Configuration and set the below property in the NodeManager Advanced
Configuration Snippet (Safety Valve) for yarn-site.xml field.

Name: yarn.nodemanager.linux-container-executor.cgroups.mount
Value: false

Name: yarn.nodemanager.linux-container-executor.cgroups.mount-path
Value: /sys/fs/cgroup

8. (Optional) Set the percentage of CPU to be used by YARN. Search for Containers CPU Limit and set the value in
the Containers CPU Limit Percentage field.

Set the percentage of CPU that can be allocated for YARN containers. In most cases, the default value of 100%
should be used. If you have another process that needs to run on a node that also requires CPU resources, you can
lower the percentage of CPU allocated to YARN to free up resources for the other process.

9. (Optional) Set flexible or strict CPU limits. Search for Strict CGroup Resource Usage and select the
NodeManager Default Group field.

CPU jobs are constrained with CPU scheduling and cgroups enabled, but by default these are flexible limits. If
spare CPU cycles are available, containers are allowed to exceed the CPU limits set for them. With flexible limits,

14

Cloudera Runtime Resource Scheduling and Management

the amount of CPU resources available for containers to use can vary based on cluster usage -- the amount of CPU
available in the cluster at any given time.

You can use cgroups to set strict limits on CPU usage. When strict limits are enabled, each process receives only
the amount of CPU resources it requests. With strict limits, a CPU process will receive the same amount of cluster
resources every time it runs.

Strict limits are not enabled (set to false) by default.

Note: Irrespective of whether this property is true or false, at no point will total container CPU usage
exceed the limit set in yarn.nodemanager.resource.percentage-physical-cpu-limit.

Note: CPU resource isolation leverages advanced features in the Linux kernel. At this time, setting
yarn.nodemanager.linux-container-executor.cgroups.strict-resource-usage to true is not recommended due
to known kernel panics. In addition, with some kernels, setting yarn.nodemanager.resource.percentage-
physical-cpu-limit to a value less than 100 can result in kernel panics. If you require either of these
features, you must perform scale testing to determine if the in-use kernel and workloads are stable. As a
starting point, Linux kernel version 4.8.1 works with these features. However, testing the features with the
desired workloads is very important.

Related Information
Configure CPU scheduling and isolation

Partition a cluster using node labels
You can use Node labels to partition a cluster into sub-clusters so that jobs run on nodes with specific characteristics.

You can use Node labels to run YARN applications on cluster nodes that have a specified node label. Node labels can
be set as exclusive or shareable:

• exclusive -- Access is restricted to applications running in queues associated with the node label.
• sharable -- If idle capacity is available on the labeled node, resources are shared with all applications in the

cluster.

The fundamental unit of scheduling in YARN is the queue. The capacity of each queue specifies the percentage of
cluster resources that are available for applications submitted to the queue. Queues can be set up in a hierarchy that
reflects the resource requirements and access restrictions required by the various organizations, groups, and users that
utilize cluster resources.

Node labels enable you partition a cluster into sub-clusters so that jobs can be run on nodes with specific
characteristics. For example, you can use node labels to run memory-intensive jobs only on nodes with a larger
amount of RAM. Node labels can be assigned to cluster nodes, and specified as exclusive or shareable. You can then
associate node labels with capacity scheduler queues. Each node can have only one node label.

Exclusive Node Labels

When a queue is associated with one or more exclusive node labels, all applications submitted by the queue have
exclusive access to nodes with those labels.

15

Cloudera Runtime Resource Scheduling and Management

Shareable Node Labels

When a queue is associated with one or more shareable (non-exclusive) node labels, all applications submitted by
the queue get first priority on nodes with those labels. If idle capacity is available on the labeled nodes, resources
are shared with other non-labeled applications in the cluster. Non-labeled applications will be preempted if labeled
applications request new resources on the labeled nodes.

16

Cloudera Runtime Resource Scheduling and Management

Queues without Node Labels

If no node label is assigned to a queue, the applications submitted by the queue can run on any node without a node
label, and on nodes with shareable node labels if idle resources are available.

Preemption

Labeled applications that request labeled resources preempt non-labeled applications on labeled nodes. If a labeled
resource is not explicitly requested, the normal rules of preemption apply. Non-labeled applications cannot preempt
labeled applications running on labeled nodes.

Configure node labels
You can configure node labels on a cluster by making configuration changes on the YARN ResourceManager host.

Enable Node Labels

To enable Node Labels on a cluster, make the following configuration changes on the YARN ResourceManager host.

1. Create a Label Directory in HDFS

Use the following commands to create a "node-labels" directory in which to store the Node Labels in HDFS.

sudo su hdfs
hadoop fs -mkdir -p /yarn/node-labels

17

Cloudera Runtime Resource Scheduling and Management

hadoop fs -chown -R yarn:yarn /yarn
hadoop fs -chmod -R 700 /yarn

-chmod -R 700 specifies that only the yarn user can access the "node-labels" directory.

You can then use the following command to confirm that the directory was created in HDFS.

hadoop fs -ls /yarn

The new node label directory should appear in the list returned by the following command. The owner should be
yarn, and the permission should be drwx.

Found 1 items
drwx------ - yarn yarn 0 2014-11-24 13:09 /yarn/node-labels

Use the following commands to create a /user/<user_name> directory that is required by the distributed shell.

hadoop fs -mkdir -p /user/<user_name>
hadoop fs -chown -R yarn:yarn /user/<user_name>
hadoop fs -chmod -R 700 /user/<user_name>

2. In Cloudera Manager, select the YARN service.
3. Click the Configuration tab.
4. Search for YARN Service Advanced Configuration.
5. In YARN Service Advanced Configuration Snippet (Safety Valve) for yarn-site.xml add the following:

• Set the following property to enable Node Labels:

Name: yarn.node-labels.enabled
Value: true

• Set the following property to reference the HDFS node label directory

Name: yarn.node-labels.fs-store.root-dir
Value: hdfs://:/

For example,

Name: yarn.node-labels.fs-store.root-dir
Value: hdfs://node-1.example.com:8020/yarn/node-labels/

6. Start or Restart the YARN ResourceManager.

Add Node Labels

Use the following command format to add Node Labels. You should run these commands as the yarn user. Node
labels must be added before they can be assigned to nodes and associated with queues.

sudo su yarn
yarn rmadmin -addToClusterNodeLabels "<label1>(exclusive=<true|false>),<lab
el2>(exclusive=<true|false>)"

Note:

If exclusive is not specified, the default value is true.

For example, the following commands add the node label "x" as exclusive, and "y" as shareable (non-exclusive).

sudo su yarn
yarn rmadmin -addToClusterNodeLabels "x(exclusive=true),y(exclusive=false)"

18

Cloudera Runtime Resource Scheduling and Management

You can use the yarn cluster --list-node-labels command to confirm that Node Labels have been added:

[root@node-1 /]# yarn cluster --list-node-labels
15/07/11 13:55:43 INFO impl.TimelineClientImpl: Timeline service address: h
ttp://node-1.example.com:8188/ws/v1/timeline/
15/07/11 13:55:43 INFO client.RMProxy: Connecting to ResourceManager at no
de-1.example.com/240.0.0.10:8032
Node Labels: <x:exclusivity=true>,<y:exclusivity=false>

You can use the following command format to remove Node Labels:

yarn rmadmin -removeFromClusterNodeLabels "<label1>,<label2>"

Note:

You cannot remove a node label if it is associated with a queue.

For information about associating node labels with queues, see Associate node labels with queues on page
45.

Confirm Node Label Assignments

You can use the following commands to view information about node labels.

• List all running nodes in the cluster: yarn node -list

Example:

[root@node-1 /]# yarn node -list
14/11/21 12:14:06 INFO impl.TimelineClientImpl: Timeline service address:
 http://node-1.example.com:8188/ws/v1/timeline/
14/11/21 12:14:07 INFO client.RMProxy: Connecting to ResourceManager at no
de-1.example.com/240.0.0.10:8032
Total Nodes:3
 Node-Id Node-State Node-Http-Address Number-of-Running-Containers
node-3.example.com:45454 RUNNING node-3.example.com:50060 0
node-1.example.com:45454 RUNNING node-1.example.com:50060 0
node-2.example.com:45454 RUNNING node-2.example.com:50060 0

• List all node labels in the cluster: yarn cluster --list-node-labels

Example:

[root@node-1 /]# yarn cluster --list-node-labels
15/07/11 13:55:43 INFO impl.TimelineClientImpl: Timeline service address:
 http://node-1.example.com:8188/ws/v1/timeline/
15/07/11 13:55:43 INFO client.RMProxy: Connecting to ResourceManager at no
de-1.example.com/240.0.0.10:8032
Node Labels: <x:exclusivity=true>,<y:exclusivity=false>

• List the status of a node (includes node labels): yarn node -status <Node_ID>

Example:

[root@node-1 /]# yarn node -status node-1.example.com:45454
14/11/21 06:32:35 INFO impl.TimelineClientImpl: Timeline service address:
 http://node-1.example.com:8188/ws/v1/timeline/
14/11/21 06:32:35 INFO client.RMProxy: Connecting to ResourceManager at
 node-1.example.com/240.0.0.10:8032
Node Report :
 Node-Id : node-1.example.com:45454
 Rack : /default-rack
 Node-State : RUNNING
 Node-Http-Address : node-1.example.com:50060

19

Cloudera Runtime Resource Scheduling and Management

 Last-Health-Update : Fri 21/Nov/14 06:32:09:473PST
 Health-Report :
 Containers : 0
 Memory-Used : 0MB
 Memory-Capacity : 1408MB
 CPU-Used : 0 vcores
 CPU-Capacity : 8 vcores
 Node-Labels : x

Node labels are also displayed in the ResourceManager UI on the Nodes and Scheduler pages.

Use node labels
You can use various methods to specify node labels when submitting jobs.

Procedure

• Set Node Labels when Submitting Jobs

You can use the following methods to specify node labels when submitting jobs:

• ApplicationSubmissionContext.setNodeLabelExpression(<node_label_expression>) -- sets the node label
expression for all containers of the application.

• ResourceRequest.setNodeLabelExpression(<node_label_expression>) -- sets the node label expression for
individual resource requests. This will override the node label expression set inApplicationSubmissionContext
.setNodeLabelExpression(<node_label_expression>).

• Specify setAMContainerResourceRequest.setNodeLabelExpression in ApplicationSubmissionContext to
indicate the expected node label for the ApplicationMaster container.

You can use one of these methods to specify a node label expression, and -queue to specify a queue, when you
submit YARN jobs using the distributed shell client. If the queue has a label that satisfies the label expression,
it will run the job on the labeled node(s). If the label expression does not reference a label associated with the
specified queue, the job will not run and an error will be returned. If no node label is specified, the job will run
only on nodes without a node label, and on nodes with shareable node labels if idle resources are available.

Note:

You can only specify one node label in the .setNodeLabelExpression methods.

For example, the following commands run a simple YARN distributed shell "sleep for a long time" job. In this
example we are asking for more containers than the cluster can run so we can see which node the job runs on. We
are specifying that the job should run on queue "a1", which our user has permission to run jobs on. We are also
using the -node_label_expression parameter to specify that the job will run on all nodes with label "x".

sudo su yarn
hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-yarn/hadoop-yarn-applic
ations-distributedshell.jar
 -shell_command "sleep 100" -jar /opt/cloudera/parcels/CDH/lib/hadoop-ya
rn/hadoop-yarn-applications-distributedshell.jar
 -num_containers 30 -queue a1 -node_label_expression x

If we run this job on the example cluster we configured previously, containers are allocated on node-1, as this
node has been assigned node label "x", and queue "a1" also has node label "x":

The following commands run the same job that we specified for node label "x", but this time we will specify
queue "b1" rather than queue "a1".

sudo su yarn
hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-yarn/hadoop-yarn-applic
ations-distributedshell.jar
 -shell_command "sleep 100000" -jar /opt/cloudera/parcels/CDH/lib/hadoop-
yarn/hadoop-yarn-applications-distributedshell.jar

20

Cloudera Runtime Manage Queues

 -num_containers 30 -queue b1 -node_label_expression x

When we attempt to run this job on our example cluster, the job will fail with the following error message because
label "x" is not associated with queue "b1".

14/11/24 13:42:21 INFO distributedshell.Client: Submitting application to
 ASM
14/11/24 13:42:21 FATAL distributedshell.Client: Error running Client
org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException: Invalid
 resource request, queue=b1 doesn't
have permission to access all labels in resource request. labelExpression
 of resource request=x. Queue labels=y

• MapReduce Jobs and Node Labels

Currently you cannot specify a node label when submitting a MapReduce job. However, if you submit a
MapReduce job to a queue that has a default node label expression, the default node label will be applied to the
MapReduce job.

Using default node label expressions tends to constrain larger portions of the cluster, which at some point starts
to become counter-productive for jobs -- such as MapReduce jobs -- that benefit from the advantages offered by
distributed parallel processing.

Manage Queues

YARN Queue Manager is the queue management graphical user interface for Apache Hadoop YARN Capacity
Scheduler. You can use YARN Queue Manager UI to manage your cluster capacity using queues to balance resource
requirements of multiple applications from various users. Using YARN Queue Manager UI, you can set scheduler
level properties and queue level properties.

You can view, sort, search, and filter queues using YARN Queue Manager UI. Queue Manager stores history
of previous changes and provides the ability to view the changes of each version in the Overview and Scheduler
Configuration tabs. The previous versions will be in the read-only mode and you must select the latest version to
make changes.

The fundamental unit of scheduling in YARN is a queue. The capacity of each queue specifies the percentage of
cluster resources that are available for applications submitted to the queue. Capacity Scheduler queues can be set
up in a hierarchy that reflects the database structure, resource requirements, and access restrictions required by the
various organizations, groups, and users that utilize cluster resources.

For example, suppose that a company has three organizations: Engineering, Support, and Marketing. The Engineering
organization has two sub-teams: Development and QA. The Support organization has two sub-teams: Training and
Services. And finally, the Marketing organization is divided into Sales and Advertising. The following image shows
the queue hierarchy for this example:

21

Cloudera Runtime Manage Queues

Each child queue is tied to its parent queue and the top-level "support", "engineering", and "marketing" queues would
be tied to the "root" queue.

Prerequisite
If you add the YARN Queue Manager service to the cluster after installing the cluster, you must configure the YARN
Queue Manager dependency in the Yarn Configuration tab.

Note: If the YARN Queue Manager service is not added, you must first add the YARN Queue Manager
service using Cloudera Manager before configuring this prerequisite. For information on how to add a service
using Cloudera Manager, see Adding a Service.

1. In Cloudera Manager, click the Cluster > YARN service.
2. Click the Configuration tab.
3. Search for Queue Manager service.

22

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/managing-clusters/topics/cm-adding-a-service.html

Cloudera Runtime Manage Queues

4. Select YARN Queue Manager checkbox.

5. Click Save Changes.
6. Restart YARN and YARN Queue Manager services.

Add queues using YARN Queue Manager UI
The Capacity Scheduler has a predefined queue called root. All queues in the system are children of the root queue.
Each child queue is tied to its parent queue but children queues do not inherit properties directly from the parent
queue unless otherwise specified.

About this task

In Cloudera Manager, you can use the YARN Queue Manager UI service to add queues.

23

Cloudera Runtime Manage Queues

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service.

24

Cloudera Runtime Manage Queues

2. Click on the three vertical dots on the root and select the Add Child Queue option.

25

Cloudera Runtime Manage Queues

3. Enter the name of the queue, Configured Capacity, and Maximum Capacity values for the queue.

4. Click Save.

Repeat the above steps to add more parent and child queues.

Configuring cluster capacity with Queues
You can manage your cluster capacity using queues to balance resource requirements of multiple applications from
various users.

You can use the Capacity Scheduler to share cluster resources using FIFO (first in, first out) queues. YARN allows
you to configure queues to own a fraction of the capacity of each cluster, and this specific queue capacity is fulfilled
dynamically from the available nodes.

Users can submit applications to different queues at multiple levels in the queue hierarchy if the capacity is available
on the nodes in the cluster. Because total cluster capacity can vary, capacity configuration values are expressed using
percentages.

Specify the capacity property to allocate a floating-point percentage values of cluster capacity to a queue. The
following configurations divide the cluster resources between the "engineering", "support", and "marketing"
organizations in a 6:1:3 ratio (60%, 10%, and 30%).

To specify the capacity property based on the above example, perform the following:

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the root and select Edit Child Queues option.
3. Enter the Configured Capacity of "engineering" to 60, "support" to 10, and "marketing" to 30.
4. Click Save.

26

Cloudera Runtime Configure Scheduler Properties at the Global Level

Start and stop queues
Queues in YARN can be in two states: RUNNING or STOPPED. A RUNNING state indicates that a queue can
accept application submissions, and a STOPPED queue does not accept application submissions. The default state of
any configured queue is RUNNING.

In Capacity Scheduler, parent queues and leaf queues can be stopped. For an application to be accepted at any leaf
queue, all the queues in the hierarchy all the way up to the root queue must be running. This means that if a parent
queue is stopped, all of the descendant queues in that hierarchy are inactive, even if their own state is RUNNING.

To stop a queue:

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue and select Stop Queue .
3. You will be prompted for a confirmation. Click OK to stop the queue.

To start a queue:

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue and select Start Queue .
3. You will be prompted for a confirmation. Click OK to start the queue.

Administrators can use the ability to stop and drain applications in a queue for a number of reasons, such as when
decommissioning a queue and migrating its users to other queues. Administrators can stop queues at run-time, so that
while current applications run to completion, no new applications are accepted. Existing applications can continue
until they finish running, and thus the queue can be drained gracefully without any end-user impact.

Delete queues
You must first stop the queue before deleting the queue. You can delete a single queue and also parent queue and its
children if all the queues in the hierarchy are stopped.

In Capacity Scheduler, parent queues, child queues, and the root queue can all be stopped. For an application to be
accepted at any child queue, all the queues in the hierarchy all the way up to the root queue must be running. This
means that if a parent queue is stopped, all of the descendant queues in that hierarchy are inactive, even if their own
state is RUNNING.

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue and select Delete Queue .

You can use the Delete Queues and its Children option to delete both parent queue and its children queues.
3. You will be prompted for a confirmation. Click OK to stop the queue.

Note: Queue associated with a placement rule cannot be deleted until its associated placement rule is deleted.
For more information about deleting placement rules, see Delete placement rules on page 35

Configure Scheduler Properties at the Global Level

You can configure the scheduler properties to define the behaviour of all the queues. All parent and children queues
inherit the properties set using the Scheduler Properties.

27

Cloudera Runtime Configure Scheduler Properties at the Global Level

About this task

In Cloudera Manager, you can use the Scheduler Configuration tab to configure the scheduler properties.

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service.

28

Cloudera Runtime Configure Scheduler Properties at the Global Level

2. In the YARN Queue Manager window, click on the Scheduler Configuration tab.

29

Cloudera Runtime Configure Scheduler Properties at the Global Level

3. In the Scheduler Configuration window, enter the value of the property and click Save.

Set global maximum application priority
You can use Priority Scheduling to run YARN applications at higher priority, regardless of other applications that
are already running in the cluster. YARN allocates more resources to applications running at a higher priority over
those running at a lower priority. Priority Scheduling enables you to set an application's priority both at the time of
submission and dynamically at run time.

About this task

Priority Scheduling works only with the FIFO (First In, First Out) ordering policy. FIFO is the default Capacity
Scheduler ordering policy.

To set appliation priority (yarn.cluster.max-application-priority), perform the following:

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the Scheduler Configuration tab.

3. Enter the priority in the Maximum Application Priority text box.

4. Click Save.

30

Cloudera Runtime Configure Scheduler Properties at the Global Level

Configure preemption
Preemption allows applications of higher priority to preempt applications of lower priority.

About this task

A scenario can occur in which a queue has a guaranteed level of cluster resources, but must wait to run applications
because other queues are utilizing all of the available resources. If preemption is enabled, applications of higher
priority do not have to wait because applications of lower priority have taken up the available capacity. When
you enable Preemption (yarn.resourcemanager.scheduler.monitor.enable) underserved queues can begin to claim
their allocated cluster resources almost immediately, without having to wait for other queues' applications to finish
running.

You can use Priority Scheduling to run YARN applications at a higher priority, regardless of other applications
that are already running in the cluster . For more information, see Set global maximum application priority on page
30.

To configure the Queue Preemption options on all queues, perform the following:

Procedure

1. In Cloudera Manager, select the Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click the Scheduler Configuration tab.

3. Select the Enable Monitoring Policies checkbox.

4. Specify org.apache.hadoop.yarn.server.resourcemanager.monitor.capacity.ProportionalCapacityPreemptionPolicy
as the monitoring policy to be used in the Monitoring Policies textbox.

5. Configure the required preemption properties:

• Preemption: Observe Only - Select the checkbox to run the policy, but not affect the cluster with preemption
and kill events.

• Preemption: Monitoring Interval (ms) - The time in milliseconds between invocations of this policy. Setting
this value to a longer time interval causes the Capacity Monitor to run less frequently.

• Preemption: Maximum Wait Before Kill (ms) - The time in milliseconds between requesting a preemption
from an application and killing the container. Setting this to a higher value gives applications more time to
respond to preemption requests and gracefully release containers.

• Preemption: Total Resources Per Round - The maximum percentage of resources preempted in a single round.
You can use this value to restrict the pace at which containers are reclaimed from the cluster. After computing
the total desired preemption, the policy scales it back to this limit.

• Preemption: Over Capacity Tolerance - The maximum amount of resources above the target capacity ignored
for preemption. The default value is 0.1, which means that the Resource Manager starts preemption for a
queue only when it goes 10% above its guaranteed capacity. This avoids resource-rotation and aggressive
preemption.

• Preemption: Maximum Termination Factor - The maximum percentage of each queue's preemption target
capacity that is preempted per cycle. You can increase this value to speed up resource reclamation.

6. Click Save.

For information about configuring preemption for a specific queue, see Configure preemption for a specific queue.

Enable Intra-Queue preemption
Intra-queue preemption prevents resource imbalances in a queue.

31

Cloudera Runtime Configure Scheduler Properties at the Global Level

About this task

Intra-queue preemption helps in effective distribution of resources within a queue based on configured user limits or
application priorities.

To configure Intra-Queue Preemption (yarn.resourcemanager.monitor.capacity.preemption.intra-queue-
preemption.enabled) on all queues, perform the following:

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the Scheduler Configuration tab.

3. Select the Enable Intra Queue Preemption checkbox.

4. Click Save.

For information about configuring intra-queue preemption for a specific queue, see Configure Intra-Queue
Preemption for a specific queue.

Set global application limits
To avoid system-thrash due to an unmanageable load -- caused either by malicious users, or by accident -- the
Capacity Scheduler enables you to place a static, configurable limit on the total number of concurrently active (both
running and pending) applications at any one time.

You can set the maximum applications limit (yarn.scheduler.capacity.maximum-applications) using this configuration
property. The default value is 10,000.

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the Scheduler Configuration tab.
3. Enter the maximum application limit in the Maximum Applications text box.
4. Click Save.

For information about overriding this limit on a per-queue basis, see Set Application limit for a specific queue.

Set default Application Master resource limit
The Application Master (AM) resource limit that can be used to set a maximum percentage of cluster resources
allocated specifically to Application Masters. This property has a default value of 10%, and exists to avoid cross-
application deadlocks where significant resources in the cluster are occupied entirely by the Containers running
ApplicationMasters.

About this task

The Maximum AM Resource Limit (yarn.scheduler.capacity.maximum-am-resource-percent) property also indirectly
controls the number of concurrent running applications in the cluster, with each queue limited to a number of running
applications proportional to its capacity.

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the Scheduler Configuration tab.

3. Enter the maximum AM resource limit in the Maximum AM Resource Limit text box.

32

Cloudera Runtime Configure Scheduler Properties at the Global Level

4. Click Save.

For information about overriding this limit on a per-queue basis, see Configure Application Master resource limit
for a specific queue.

Enable asynchronous scheduler
Asynchronous scheduler decouples the CapacityScheduler scheduling from Node Heartbeats. This improves the
latency significantly.

About this task

To enables asynchronous scheduling (yarn.scheduler.capacity.schedule-asynchronously.enable), perform the
following:

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the Scheduler Configuration tab.

3. Select the Enable Asynchronous Scheduler check-box.

4. Click Save.

Configure placement rules
Placement Rules allow you to specify a set of rules for assigning jobs and applications to queues. You can define
placement rules to dynamically create queues based on the rules and the applications would be submitted to those
queues. These predefined rules enable you to submit jobs without specifying the queue name at the time of job
submission.

Types of placement rules:

• Static Rules: These rules use static queue mapping expressions for which you must create target queues and
specify those queues based on the mapping expressions. You must provide input for the parameters such as
userName, queueName and groupName based on the mapping expression.

• Dynamic Rules: These rules allow the creation of queues dynamically based on predefined expressions. You must
create a leaf queue first and then provide that queueName, which will be converted to a managed parent queue
while executing the rule.

If no rule is satisfied when the application or job runs, the YARN application is rejected.

Dynamic queues
Based on the predefined expressions of the dynamic placement rule, dynamic queues are created automatically during
runtime .

YARN supports only one level of dynamic leaf queues. You can view the queue properties of the dynamically created
leaf queues in the Dynamic Auto-Creation of Queue section of the Queue Properties. You can configure the dynamic
leaf-queue properties by clicking on the Edit Child Queues option of its managed parent queue. The queue properties
set at the managed parent queue level is applied to all of its leaf queues. For more information about setting properties
for dynamic leaf queues, see Configure dynamic queue properties on page 44.

A leaf icon is displayed next to the queue name for dynamically created leaf-queues.

33

#h.q44vs51hhz0h
#h.q44vs51hhz0h

Cloudera Runtime Configure Scheduler Properties at the Global Level

Note: The managed parent queue does not support other pre-configured queues to co-exist along with
dynamically-created queues.

Create placement rules
Placement rules determine the queues to which applications and jobs are assigned.

You must first create the target leaf queues before creating the placement rules. For static rules, the UI will display all
the existing leaf queues. Hence, you must create leaf queues before creating rules. In a dynamic placement rule, once
the leaf-queue is converted to a managed parent queue, you cannot add new child queues to it or edit the child queue
capacity.

1. In Cloudera Manager, select the Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click the Placement Rules tab.
3. Click +Add. The Add Placement Rule dialog box is displayed.
4. Select a placement rule template from the drop-down list.

5. Add the rule to match applications with the queues using the Add Placement Rule dialog box.

The static rules use the existing queues and dynamic rules create a queue if it does not exist. The dynamic rule
templates end with the phrase or create the queue if it does not exist.

6. Click Save.

The rule is added to the bottom of the placement rule list and becomes the last rule to be evaluated.

Reorder placement rules
Placement rules are evaluated in the order in which they appear in the placement rule list. When a job is submitted,
the rules are evaluated, and the first matching rule is used to determine the queue in which the job is run.

If a rule is always satisfied, subsequent rules are not evaluated. By default, placement rules are ordered in the order
they were added; the first rule added appears first. You can easily reorder rules.

1. In Cloudera Manager, select the Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click the Placement Rules tab. A list of placement rules is displayed.
3. Click Reorder.
4. Click Move Up or Move Down arrow buttons in a rule row.
5. Click Save Reorder.

34

Cloudera Runtime Configure Scheduler Properties at the Global Level

Edit placement rules
You can modify the existing placement rules.

1. In Cloudera Manager, select the Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click the Placement Rules tab. A list of placement rules is displayed.
3. Click the Edit Rule at the right of a rule.
4. Edit the rule in the Edit Placement Rule dialog box.

• For static rules, edit the target queue name associated with the rule queue mapping expression.
• For dynamic rules, edit the configured capacity and maximum capacity for dynamically created leaf-queues.

5. Click Save.

Delete placement rules
You can delete the placement rules from the UI. You can delete the managed parent queue created using the dynamic
rule after deleting that placement rule.

1. In Cloudera Manager, select theClusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click the Placement Rules tab. A list of placement rules is displayed.
3. Click Delete Rule.
4. Click Save.

Note: Queue associated with a placement rule cannot be deleted until its associated placement rule is deleted.

Configure queue mapping to use the user name from the application tag
using Cloudera Manager

You can configure queue mapping to use the user name from the application tag instead
of the proxy user who submitted the job. You can add only service users like hive using the
yarn.resourcemanager.application-tag-based-placement.username.whitelist
property and not normal users.

When a user runs Hive queries, HiveServer2 submits the query in the queue mapped from
an end user instead of a hive user. For example, when user alice submits a
Hive query with doAs=false mode, job will run in YARN as
hive user. If application-tag based scheduling is enabled, then the job
will be placed to a target queue based on the queue mapping configuration of user
alice.

For more information about queue mapping configurations, see
Configure placement rules. For
information about Hive Access, see Apache Hive Access.

How to configure queue mapping

1. In Cloudera Manager, select the YARN service.
2. Click the Configuration tab.
3. Search for ResourceManager. In the Filters pane, under Scope, select ResourceManager.
4. In ResourceManager Advanced Configuration Snippet (Safety Valve) for yarn-site.xml add the following:

a. Enable the application-tag-based-placement property to enable application placement based on the user ID
passed using the application tags.

Name: yarn.resourcemanager.application-tag-based-placement.enable

35

https://docs.cloudera.com/cdp-private-cloud-base/7.1.3/securing-hive/topics/hive_sba_permissions_model.html

Cloudera Runtime Configure Scheduler Properties at the Global Level

Value: true
Description: Set to "true" to enable application placement based on the
 user ID passed using the application tags. When it is enabled, it chec
ks for the userid=<userId> pattern and if found, the application will be
 placed onto the found user's queue, if the original user has the requir
ed rights on the passed user's queue.

b. Add the list of users in the allowlist who can use application tag based placement. The applications when
the submitting user is included in the allowlist, will be placed onto the queue defined in the yarn.scheduler.c
apacity.queue-mappings property defined for the user from the application tag. If there is no user defined, the
submitting user will be used.

Name: yarn.resourcemanager.application-tag-based-placement.username.whit
elist
Value: <Hive process user(s)>
Description: Comma separated list of users who can use the application t
ag based placement, if "yarn.resourcemanager.application-tag-based-place
ment.enable" is enabled.

Note: Check the Hive system user value(s) and add the value(s) to the allowlist:

1. In Cloudera Manager, navigate to Hive Configuration .
2. Search for System User.
3. Note down the value(s) set as process username(s), and add the value(s) to the allowlist.

5. Restart the ResourceManager service for the changes to apply.

Configure NodeManager heartbeat
You can control how many containers can be allocated in each NodeManager heartbeat.

To configure NodeManager heartbeat for all queues, perform the following:

1. In Cloudera Manager, select the Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click the Scheduler Configuration tab.
3. Select the Enable Multiple Assignments Per Heartbeat checkbox to allow multiple container assignments in one

NodeManager heartbeat.
4. Configure the following NodeManager heartbeat properties:

• Maximum Container Assignments Per Heartbeat - The maximum number of containers that can be assigned in
one NodeManager heartbeat. Setting this value to -1 disables this limit.

• Maximum Off-Switch Assignments Per Heartbeat - The maximum number of off-switch containers that can be
assigned in one NodeManager heartbeat.

5. Click Save.

Configure data locality
Capacity Scheduler leverages Delay Scheduling to honor task locality constraints. There are three levels of locality
constraint: node-local, rack-local, and off-switch. The scheduler counts the number of missed opportunities when the
locality cannot be satisfied and waits for this count to reach a threshold before relaxing the locality constraint to the
next level. You can configure this threshold using the Node Locality Delay (yarn.scheduler.capacity.node-locality-
delay) and Rack Locality Additional Delay (yarn.scheduler.capacity.rack-locality-additional-delay) fields.

To configure data locality, perform the following:

1. In Cloudera Manager, select the Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click the Scheduler Configuration tab.

36

Cloudera Runtime Configure Per Queue Properties

3. In the Node Locality Delay textbox, enter the number of scheduling opportunities that can be missed.

Capacity Scheduler attempts to schedule rack-local containers only after missing this number of opportunities.
You must ensure this number is same as the number of nodes in the cluster.

4. In the Rack Locality Additional Delay textbox, enter the number of missed scheduling opportunities, over the
Node Locality Delay ones, after which Capacity Scheduler should attempt to schedule off-switch containers.

A value of -1 means that the value is calculated based on the formula L * C / N, where L is the number of
locations (nodes or racks) specified in the resource request, C is the number of requested containers, and N is the
size of the cluster.

5. Click Save.

Configure Per Queue Properties

Queue properties contain the settings that define the behavior of the queue. Using queue properties, you can define
the setting that need not inherit properties directly from the parent queue and define the setting specific to the queue.

About this task

In Cloudera Manager, you can use the Queue Properties to view and configure the queue properties.

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service.

37

Cloudera Runtime Configure Per Queue Properties

2. Click on the three vertical dots on the queue and select the View/Edit Queue Properties option.

38

Cloudera Runtime Configure Per Queue Properties

3. In the Queue Properties window, enter the value of the property and click Save.

Set user limits within a queue
Set a minimum percentage of resources allocated to each leaf queue user.

Minimum User Limit

The Minimum User Limit (minimum-user-limit-percent) property can be used to set the minimum percentage of
resources allocated to each leaf queue user. The Minimum User Percentage is a soft limit on the smallest amount
of resources a single user should get access to if they are requesting it. For example, if you set the Minimum User

39

Cloudera Runtime Configure Per Queue Properties

Percentage property to 10%, 10 users get 10% each, assuming they are all requesting it; this value is a soft limit
because if one of the users asks for less capacity, you can place more users in the queue.

For example, to enable equal sharing of the services leaf queue capacity among five users, you must set the Minimum
User Limit value to 20%.

To configure user limits based on this example, perform the following:

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the Services queue and select View/Edit Queue Properties option.
3. In the Queue Properties dialog-box, enter 20 in the Minimum User Limit text box.
4. Click Save.

User Limit Factor

You can use the User Limit Factor (user-limit-factor) to control the maximum amount of resources that a single user
can consume. User Limit Factor is set as a multiple of the queues minimum capacity where a user limit factor of one
means the user can consume the entire minimum capacity of the queue. If the user limit factor is greater than 1, it is
possible for the user consumption to grow into maximum capacity and if the value is set to less than 1, such as 0.5, a
user can only obtain half of the minimum capacity of the queue. If you want a user to obtain the maximum capacity of
a queue, set a value greater than 1 to allow the minimum capacity to be overtaken by a user that many times.

The following table shows how the queue resources are adjusted as users submit jobs to a queue with a minimum user
limit percentage is set to 20%:

Table 1: Minimum User Limit

Minimum user limit percent = 20

1st user submits job Sole user gets 100% of the queue capacity

2nd user submits job Each user equally shares 50% of the queue capacity

3rd user submits job Each user equally shares 30.33% of the queue capacity

40

Cloudera Runtime Configure Per Queue Properties

Minimum user limit percent = 20

4th user submits job Each user equally shares 25% of the queue capacity

5th user submits job Each user equally shares 20% of the queue capacity

6th user submits job 6th user must wait for queue capacity to free up

• Queue resources are adjusted in the same manner for a single user submitting multiple jobs in succession. If
no other users are requesting queue resources, the first job receives 100% of the queue capacity. When the
user submits a second job, each job receives 50% of queue capacity. When the user submits a third job, each
job receives 33% of queue capacity. If a fourth user then submits a job, each job would receive 25% of queue
capacity. When the number of jobs submitted by all users reaches a total of five, each job will receive 20%
of queue capacity, and subsequent users must wait for queue capacity to free up (assuming preemption is not
enabled).

• The Capacity Scheduler also manages resources for decreasing numbers of users. As users’ applications finish
running, other existing users with outstanding requirements begin to reclaim that share.

• Note that despite this sharing among users, the FIFO application scheduling order of Capacity Scheduler does
not change. This guarantees that users cannot monopolize queues by submitting new applications continuously.
Applications (and thus the corresponding users) that are submitted first always get a higher priority than
applications that are submitted later.

Capacity Scheduler’s leaf queues can also use the user-limit-factor property to control user resource allocations. This
property denotes the fraction of queue capacity that any single user can consume up to a maximum value, regardless
of whether or not there are idle resources in the cluster.

To configure the maximum limit (user-limit-factor) based on this example, perform the following:

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue you want to set limit and select View/Edit Queue Properties option.
3. In the Queue Properties dialog-box, enter 1 in the User Limit Factor text box.
4. Click Save.

The default value of 1 means that any single user in the queue can, at the most, only occupy only the queue’s
configured capacity. This prevents users in a single queue from monopolizing resources across all queues in a cluster.
Setting the value to 2 restricts the queue's users to twice the queue’s configured capacity. Setting it to a value of 0.5
restricts any user from using resources beyond half of the queue capacity.

Set Maximum Application limit for a specific queue
To avoid system-thrash due to an unmanageable load -- caused either by malicious users, or by accident -- the
Capacity Scheduler enables you to place a static, configurable limit on the total number of concurrently active (both
running and pending) applications at any one time.

About this task

You can set the maximum-application-limit property using the Maximum Application queue property. The limit for
running applications in any specific queue is a fraction of this total limit, proportional to its capacity. This is a hard
limit, which means that once this limit is reached for a queue, any new applications to that queue will be rejected, and
clients will have to wait and retry later.

To set the application limit (yarn.scheduler.capacity.<queue-path>.maximum-applications) on a specific queue,
perform the following:

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

41

Cloudera Runtime Configure Per Queue Properties

2. Click on the three vertical dots on the queue and select View/Edit Queue Properties option.

3. In the Queue Properties dialog-box, enter the maximum application limit in the Maximum Application text box.

4. Click Save.

For information about setting application limits on all the queues, see Set Application Limits.

Set Application-Master resource-limit for a specific queue
The Application Master (AM) resource limit can be used to set a maximum percentage of cluster resources allocated
specifically to Application Masters. The default value is 10% and exists to avoid cross-application deadlocks where
significant resources in the cluster are occupied entirely by the Containers running Application Masters.

About this task

This property also indirectly controls the number of concurrent running applications in the cluster, with each queue
limited to a number of running applications proportional to its capacity.

To set the maximum Application Masters resource limit (yarn.scheduler.capacity.maximum-am-resource-percent) for
a specific queue:

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue and select View/Edit Queue Properties option.

3. In the Queue Properties dialog-box, enter the limit in the Maximum AM Resource Limit text box.

4. Click Save.

For information about setting Application Master resource limits on all the queues, see Set Application Master
Resource Limit.

Control access to queues using ACLs
Use Access-control lists (ACLs) to control access rights to users and administrators to the Capacity Scheduler queues.

Application submission can really only happen at the leaf queue level, but an ACL restriction set on a parent queue
will be applied to all of its descendant queues.

In the Capacity Scheduler, ACLs are configured by granting queue access to a list of users and groups with the
Submit Application ACL parameter. The format of the list is "user1,user2 group1,group2" -- a comma-separated list
of users, followed by a space, followed by a comma-separated list of groups.

Note: The default value of Submit Application ACL for a root queue is yarn, which means that only the
default yarn user can submit applications to that queue. Therefore, to provide specific users and groups with
access to the queue, you must explicitly set the value of Submit Application ACL to those users and groups.

The value of Submit Application ACL (acl_submit_applications) can also be set to "*" (asterisk) to allow access to all
users and groups, or can be set to " " (space character) to block access to all users and groups.

As mentioned previously, ACL settings on a parent queue are applied to all of its descendant queues. Therefore, if the
parent queue uses the "*" (asterisk) value (or is not specified) to allow access to all users and groups, its child queues
cannot restrict access. Similarly, before you can restrict access to a child queue, you must first set the parent queue to
" " (space character) to block access to all users and groups.

For example, the following properties would set the root Submit Application ACL value to " " (space character) to
block access to all users and groups, and also restrict access to its child "support" queue to the users "sherlock" and
"john" and the members of the "cfo-group" group:

42

Cloudera Runtime Configure Per Queue Properties

Each child queue is tied to its parent queue with the configuration property. The top-level "support", "engineering",
and "marketing" queues would be tied to the "root" queue.

To set the ACLs based on this example, perform the following:

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue you want to set ACL and select View/Edit Queue Properties option.
3. In the Queue Properties dialog-box, add sherlock,john cfo-group in the Submit Application ACL text box.
4. Click Save.

A separate ACL can be used to control the administration of queues at various levels. Queue administrators can
submit applications to the queue, kill applications in the queue, and obtain information about any application in the
queue (whereas normal users are restricted from viewing all of the details of other users' applications).

If the Queue Administer ACL value is set to " " (space character), it blocks access to all users and groups. If the ACL
is set to sherlock,john cfo-group , it allows access to the users "sherlock" and "john" and the members of the "cfo-
group" group.

Enable preemption for a specific queue
Capacity Scheduler Preemption allows higher-priority applications to preempt lower-priority applications.

About this task
A scenario can occur in which a queue has a guaranteed level of cluster resources, but must wait to run applications
because other queues are utilizing all of the available resources. If Preemption is enabled, higher-priority applications
do not have to wait because lower priority applications have taken up the available capacity. With Preemption
enabled, under-served queues can begin to claim their allocated cluster resources almost immediately, without having
to wait for other queues' applications to finish running.

Note: If the preemption policy is disabled in the scheduler configurations, you cannot enable preemption for
a specific queue. For information about setting scheduler level preemption, see Configure preemption on page
31.

You can disable the queue preemption (yarn.resourcemanager.scheduler.monitor.enable) for a specific queue.

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue and select View/Edit Queue Properties option.

3. In the Queue Properties dialog-box, uncheck the Enable Preemption checkbox.

4. Click Save.

Enable Intra-Queue Preemption for a specific queue
Intra-queue preemption prevents resource imbalances in a queue.

About this task

Intra-queue preemption helps in effective distribution of resources within a queue based on configured user limits or
application priorities.

Note: If the intra-queue preemption policy is disabled in the scheduler configurations, you cannot enable
intra-queue preemption for a specific queue. For information about setting scheduler level intra-queue
preemption, see Configure Intra-Queue Preemption.

43

Cloudera Runtime Configure Per Queue Properties

To disable Intra-Queue Preemption (yarn.resourcemanager.monitor.capacity.preemption.intra-queue-
preemption.enabled) for a specific queue

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue and select View/Edit Queue Properties option.

3. In the Queue Properties dialog-box, uncheck the Enable Intra Queue Preemption checkbox.

4. Click Save.

Configure dynamic queue properties
Dynamic queues are auto created based on the predefined expressions of the dynamic placement rule.

A leaf icon will be displayed next to the queue name for dynamically created leaf-queues. You can
view the queue properties of the dynamically created leaf queues in the Dynamic Auto-Creation of Queue section of
the Queue Properties. You can configure the dynamic leaf-queue properties like setting user limits, ACLs, ordering
policies by clicking on the Edit Child Queues option of its managed parent queue. The queue properties set at the
managed parent queue level will be applied to all of its leaf queues. For information about the queue properties, see
Configure Per Queue Properties on page 37.

Set Ordering policies within a specific queue
Set FIFO (First In, First Out) or Fair scheduling policies in Capacity Scheduler depending on your requirements.

The default ordering policy in Capacity Scheduler is FIFO (First In, First Out). FIFO generally works well for
predictable, recurring batch jobs, but sometimes not as well for on-demand or exploratory workloads. For these
types of jobs, Fair Scheduling is often a better choice. Flexible scheduling policies enable you to assign FIFO or Fair
ordering policies for different types of workloads on a per-queue basis.

Examples FIFO and Fair Sharing Policies

Both FIFO (First In, First Out) and Fair scheduling policies work differently in batch jobs and ad hoc jobs.

Batch Example

In the below example, two queues have the same resources available. One uses the FIFO ordering policy, and the
other uses the Fair Sharing policy. A user submits three jobs to each queue one after another, waiting just long enough
for each job to start. The first job uses 6x the resource limit in the queue, the second 4x, and last 2x.

• In the FIFO queue, the 6x job would start and run to completion, then the 4x job would start and run to
completion, and then the 2x job. They would start and finish in the order 6x, 4x, 2x.

• In the Fair queue, the 6x job would start, then the 4x job, and then the 2x job. All three would run concurrently,
with each using 1/3 of the available application resources. They would typically finish in the following order: 2x,
4x, 6x.

Ad Hoc Plus Batch Example

In this example, a job using 10x the queue resources is running. After the job is halfway complete, the same user
starts a second job needing 1x the queue resources.

• In the FIFO queue, the 10x job will run until it no longer uses all queue resources (map phase complete, for
example), and then the 1x job will start.

44

Cloudera Runtime Configure Per Queue Properties

• In the Fair queue, the 1x job will start, run, and complete as soon as possible – picking up resources from the 10x
job by attrition.

Best Practices for Ordering Policies

• Ordering policies are configured on a per-queue basis, with the default ordering policy set to FIFO. Fairness
is usually best for on-demand, interactive, or exploratory workloads, while FIFO can be more efficient for
predictable, recurring batch processing. You should segregate these different types of workloads into queues
configured with the appropriate ordering policy.

• · In queues supporting both large and small applications, large applications can potentially "starve" (not receive
sufficient resources). To avoid this scenario, use different queues for large and small jobs, or use size-based
weighting to reduce the natural tendency of the ordering logic to favor smaller applications.

• · Use the Maximum AM Resource Limit scheduler property to restrict the number of concurrent applications
running in the queue to avoid a scenario in which too many applications are running simultaneously. Limits on
each queue are directly proportional to their queue capacities and user limits. This property is specified as a float,
for example: 0.5 = 50%. The default setting is 0.1=10%. This property can be set for all queues by setting the
Maximum AM Resource Limit property at the root level, and can also be overridden on a per-queue basis by
setting the Maximum AM Resource LimitSet default Application Master resource limit on page 32property at
the queue level.

Configure queue ordering policies
You can configure the property for queue ordering policies (yarn.scheduler.capacity.<queue-path>.ordering-policy) to
FIFO or Fair. The default setting is FIFO.

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on the queue you want to configure queue ordering policies and select the View/
Edit Queue Properties option.

3. In the Queue Properties dialog-box, select the ordering policy as FIFO or Fair using the Ordering Policy drop-
down box .

4. Click Save.

Associate node labels with queues
You can use Node labels to partition a cluster into sub-clusters so that jobs run on nodes with specific characteristics.
You can use Node labels to run YARN applications on cluster nodes that have a specified node label.

Before you begin
Before associating node labels, you must add node labels and assign node labels to cluster nodes. For more
information about adding and assigning node labels see, Configure node labels on page 17 .

About this task

After you create labels and assign node labels to cluster nodes, use the Queue Manager to assign node labels
(yarn.scheduler.capacity.<queue-path>.accessible-node-labels) to queues and configure capacity to that queue for
the specified label. You must specify capacity on each node label of each queue, and also ensure that the sum of
capacities of each node-label of direct children of a parent queue at every level is equal to 100%. Node labels that a
queue can access (accessible Node Labels of a queue) must be the same as, or a subset of, the accessible Node Labels
of its parent queue.

45

Cloudera Runtime Configure Per Queue Properties

Example

Assume that a cluster has a total of 8 nodes. The first 3 nodes (n1-n3) have node label=x, the next 3 nodes (n4-n6)
have node label=y, and the final 2 nodes (n7, n8) do not have any Node Labels. Each node can run 10 containers.

The queue hierarchy is as follows:

Assume that queue “a” can access Node Labels “x” and “y”, and queue “b” can only access node label “y”. By
definition, nodes without labels can be accessed by all queues.

Consider the following example label configuration for the queues:

capacity(a) = 40, capacity(a, label=x) = 100, capacity(a, label=y) = 50; capacity(b) = 60, capacity(b, label=y) = 50

This means that:

• Queue “a” can access 40% of the resources on nodes without any labels, 100% of the resources on nodes with
label=x, and 50% of the resources on nodes with label=y.

• Queue “b” can access 60% of the resources on nodes without any labels, and 50% of the resources on nodes with
label=y.

You can also see that for this configuration:

capacity(a) + capacity(b) = 100

capacity(a, label=x) + capacity(b, label=x) (b cannot access label=x, it is 0) = 100

capacity(a, label=y) + capacity(b, label=y) = 100

For child queues under the same parent queue, the sum of the capacity for each label should equal 100%.

Similarly, we can set the capacities of the child queues a1, a2, and b1:

a1 and a2: capacity(a.a1) = 40, capacity(a.a1, label=x) =30, capacity(a.a1, label=y) =50 capacity(a.a2) = 60,
capacity(a.a2, label=x) =70, capacity(a.a2, label=y) =50;

b1: capacity(b.b1) = 100, capacity(b.b1, label=y) = 100

You can see that for the a1 and a2 configuration:

capacity(a.a1) + capacity(a.a2) = 100

capacity(a.a1, label=x) + capacity(a.a2, label=x) = 100

46

Cloudera Runtime Configure Per Queue Properties

capacity(a.a1, label=y) + capacity(a.a2, label=y) = 100

How many resources can queue a1 access?

Resources on nodes without any labels: Resource = 20 (total containers that can be allocated on nodes without a label,
in this case n7, n8) * 40% (a.capacity) * 40% (a.a1.capacity) = 3.2 (containers)

Resources on nodes with label=x

Resource = 30 (total containers that can be allocated on nodes with label=x, in this case n1-n3) * 100%
(a.labelx.capacity) * 30% = 9 (containers)

To implement this example configuration, perform the following

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on the three vertical dots on a queue and select the View/Edit Queue Properties option.
3. In the Queue Properties dialog-box , select the x label from the Accessible Node Labels drop-down box, click +,

agiain select the y label from the Accessible Node Labels drop-down boxand click Save.

47

Cloudera Runtime Configure Per Queue Properties

4. Repeat the above steps to assign x label for a1 and a2 queues.
5. Click on the three vertical dots on b queue and select the View/Edit Queue Properties option.
6. In the Queue Properties dialog-box, select the y label from the Accessible Node Labels drop-down box, click +,

and click Save.
7. Repeat the above steps to assign y label for b1, a, a1, and a2 queue.
8. In the Overview tab, click on the Partition drop-down box and select label x.

9. Click on the three vertical dots on the a queue and select the Edit Child Queues option.

10. Enter the Configured Capacity of a1 to 40 and a2 to 60.
11. Click on the three vertical dots on the root queue and select the Edit Child Queues option.
12. Enter the Configured Capacity of a to 100 and Click Save.

48

Cloudera Runtime Configure Per Queue Properties

13. Click on the three vertical dots on the root queue and select the Set Queue Capacity option.

14. In the Overview tab, click on the Partition drop-down box and select label y.
15. Click on the three vertical dots on the a queue and select the Edit Child Queues option.
16. Enter the Configured Capacity of a1 to 50 and a2 to 50 and Click Save.
17. Click on the three vertical dots on the b queue and select the Edit Child Queues option.
18. Enter the Configured Capacity of b1 to 100 and Click Save.
19. Click on the three vertical dots on the root queue and select the Edit Child Queues option.
20. Enter the Configured Capacity of a to 50 and b to 50 and Click Save.
21. Click on the three vertical dots on the root queue and select the Set Queue Capacity option.

49

Cloudera Runtime Configure Per Queue Properties

Enable override of default queue mappings at individual queue level
Administrators can define a default mapping policy to specify that applications submitted by users are automatically
submitted to queues. You can override default queue mappings (yarn.scheduler.capacity.queue-mappings-
override.enable) and submit applications that are specified for queues, other than those defined in the default queue
mappings.

Procedure

1. In Cloudera Manager, select Clusters > YARN Queue Manager UI service. A graphical queue hierarchy is
displayed in the Overview tab.

2. Click on Scheduler Configuration tab.

3. Select Override Queue Mappings check-box to disable the queue mapping.

4. Click Save.

50

	Contents
	Resource Scheduling and Management
	YARN resource allocation of multiple resource-types
	Hierarchical queue characteristics
	Scheduling among queues
	Application reservations
	Resource distribution workflow
	Use CPU scheduling
	Configure CPU scheduling and isolation
	Use CPU scheduling with distributed shell

	Use GPU scheduling
	Configure GPU scheduling and isolation
	Use GPU scheduling with distributed shell

	Use FPGA scheduling
	Configure FPGA scheduling and isolation
	Use FPGA with distributed shell

	Limit CPU usage with Cgroups
	Use Cgroups
	Enable Cgroups

	Partition a cluster using node labels
	Configure node labels
	Use node labels

	Manage Queues
	Prerequisite
	Add queues using YARN Queue Manager UI
	Configuring cluster capacity with Queues
	Start and stop queues
	Delete queues

	Configure Scheduler Properties at the Global Level
	Set global maximum application priority
	Configure preemption
	Enable Intra-Queue preemption
	Set global application limits
	Set default Application Master resource limit
	Enable asynchronous scheduler
	Configure placement rules
	Dynamic queues
	Create placement rules
	Reorder placement rules
	Edit placement rules
	Delete placement rules

	Configure queue mapping to use the user name from the application tag using Cloudera Manager
	Configure NodeManager heartbeat
	Configure data locality

	Configure Per Queue Properties
	Set user limits within a queue
	Set Maximum Application limit for a specific queue
	Set Application-Master resource-limit for a specific queue
	Control access to queues using ACLs
	Enable preemption for a specific queue
	Enable Intra-Queue Preemption for a specific queue
	Configure dynamic queue properties
	Set Ordering policies within a specific queue
	Configure queue ordering policies

	Associate node labels with queues
	Enable override of default queue mappings at individual queue level

