Cloudera Runtime 7.1.3

Developing Applications with Apache Kudu

Date published: 2020-02-28
Date modified: 2020-06-16

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Developing applications with Apache Kudu..........ccoveieiiiiiinn e 4
Viewing the API dOCUMENTALION. ..ottt sttt s b e e b e b e b seenea 4

KUudu example @PPlICALTIONS.........ceiieiteieteseeie sttt b et b e eb e s b e e b e se bt sb st b et b e et e e et e e ebeseebe e 4
IMAVEN BITITACES. ...ttt b et b e e b etk e bbb et e b et b et b et e b e et se et e b e 5
BUIlAING The JAVA ClIENL......ceceieeie bbbttt b ettt b e b e b 5

KUAU PYENON CHENL ..ottt b b e bt b e bt s bbb e b e ens 5

KUudu integration With SParK.........cccociieiieiei st sttt e b e et b e e 7
Upsert option iN KUAU SPArK..........cooiieee e 9

Using Spark With @ SeCUre KUAU CIUSLEN..........ooueiriiirieiricre e e 9

Spark integration known issues and lHMItatioNS............coeveeriirieniree e 10

Spark iNtegration DESE PIraCliCES.......currririeereeie ittt sttt sr e bt b e b e b 10

Cloudera Runtime Developing applications with Apache Kudu

Apache Kudu provides C++ and Java client APIs, aswell as reference examplesto illustrate their use.

Warning: Use of server-side or private interfacesis not supported, and interfaces which are not part of
public APIs have no stability guarantees.

Thistopic provides you information on how to find the APl documemntation for C++ and Java.

The documentation for the C++ client APIsisincluded in the header filesin /usr/include/kudu/ if you installed Kudu
using packages or subdirectories of src/kudu/client/ if you built Kudu from source. If you installed Kudu using
parcels, no headers are included in your installation. and you will need to build Kudu from source in order to have
access to the headers and shared libraries.

The following command is a naive approach to finding relevant header files. Use of any APIs other than the client
APIsis unsupported.

find /usr/include/kudu -type f -name *.h

View the Java APl documentation online. Alternatively, after building the Java client, Java APl documentation is
available in javalkudu-client/target/apidocs/index.html.

Java APl documentation

Severa example applications are provided in the examples directory of the Apache Kudu git repository. Each
example includes a README that shows how to compile and runit. The following list includes some of the
examples that are available today. Check the repository itself in case thislist goes out of date.

cpp/example.cc:

A simple C++ application which connects to a Kudu instance, creates atable, writes datato it, then
dropsthe table.

javaljava-example:

A simple Java application which connects to a Kudu instance, creates atable, writes datato it, then
dropsthe table.

javalinsert-loadgen:

A small Java application which listens on a TCP socket for time series data corresponding to the
Collectl wire protocol. The commonly-available collectl tool can be used to send example datato
the server.

python/dstat-kudu:
A Java application that generates random insert load.
python/graphite-kudu:

https://kudu.apache.org/apidocs/index.html

Cloudera Runtime Developing applications with Apache Kudu

An example program that shows how to use the Kudu Python API to load datainto a new / existing
Kudu table generated by an external program, dstat in this case.

python/graphite-kudu:
An example plugin for using graphite-web with Kudu as a backend.

These examples should serve as helpful starting points for your own Kudu applications and integrations.

Kudu examples

The following Maven <dependency> element is valid for the Apache Kudu GA release;

<dependency>
<gr oupl d>or g. apache. kudu</ gr oupl d>
<artifactld>kudu-client</artifactld>
<ver si on><kudu- cdp- ver si on></ ver si on>
</ dependency>

For <kudu-cdp-version>, check Cloudera Runtime component versions in Release Notes.

Convenience binary artifacts for the Java client and various Java integrations (e.g. Spark, Flume) are also now
available viathe ASF Maven repository and the Central Maven repository.

ASF Maven repository
Central Maven repository

Thistopic contains the list of requirements and the command to build the Java client.
Reguirements

« JDK7
e protoc 2.6 or newer installed in your path, or built from the thirdparty/ directory. Run the following commands to
build protoc from the third-party dependencies:

t hi rdparty/ downl oad-t hi rdparty. sh
thirdparty/build-thirdparty.sh protobuf

To build the Java client, clone the Kudu Git repository, change to the java directory, and issue the following
command:

./ gradl ew : kudu-client:assenble -x test

For more information about building the Java API, aswell as Eclipse integration, see javalREADME.md.

The Kudu Python client provides a Python friendly interface to the C++ client API. To install and use the Kudu
Python client, you need to install the Kudu C++ client libraries and headers.

See Install Using Packages topic for installing the Kudu C++ client libraries.

5

https://github.com/apache/kudu/tree/master/examples
https://repository.apache.org/
https://mvnrepository.com/artifact/org.apache.kudu
https://kudu.apache.org/releases/1.8.0/docs/installation.html#install_packages

Cloudera Runtime Developing applications with Apache Kudu

1. Update all the packages on your system by using the following command:
yum -y update

2. Install the extra packages for the Enterprise Linux distribution:
sudo yum -y install epel-release

3. Install the Python package manager:
sudo yum -y install python-pip

4. Verify the version of the PIP manager that you just installed:
pip --version

5. Install Cython:
sudo pip install cython

6. Download the following files:

e wget http://username:password@archive.cloudera.com/p/cdh7/7.0.3/redhat 7/yum/kudu/kudu-1.11.0.7.0.3.0-
98.x86_64.rpm

e wget http://username:passwor d@archive.cloudera.com/p/cdh7/7.0.3/redhat 7/yum/kudu/kudu-client-devel - 1.
11.0.7.0.3.0-98.x86_64.rpm

7. Install the kudu package from the local directory:
sudo yum -y localinstall ./kudu-*
8. Install the package used for devel oping Python extensions:
sudo yum -y install python-devel
9. Upgrade the setup toals:
sudo pip install --upgrade pip setuptools
10. Install the C++ compiler:
sudo yum -y install gcc-c++
11. Install the Kudu-python client:
sudo pip install kudu-python==<kudu-version>
12. Install kudu-python: sudo pip install kudu-python.
The following sample demonstrates the use of part of the Python client:

i mport kudu
fromkudu. client inport Partitioning
fromdatetine inport datetine

Connect to Kudu master server
client = kudu. connect (host =" kudu. naster', port=7051)

Define a schenma for a new table

bui | der = kudu. schena_bui | der ()

bui | der. add_col um("' key').type(kudu.int64). null abl e(Fal se). pri mary_key()

bui | der. add_col um('ts_val', type_=kudu.unixtine_nicros, null abl e=Fal se,
conpression='12z4")

schema = buil der. buil d()

Define partitioning schema
partitioning = Partitioning().add_hash_partitions(col um_nanmes=["'key'],
num bucket s=3)

Create new table
client.create_tabl e(' python-exanple', schena, partitioning)

Open a table
table = client.tabl e(' python-exanpl e')

6

Cloudera Runtime Developing applications with Apache Kudu

Create a new session so that we can apply wite operations
session = client.new session()

Insert a row
op = table.new_ insert({'key': 1, '"ts val': datetime.utcnow)})
sessi on. appl y(op)
Upsert a row
op = table.new upsert({'key': 2, '"ts val': "2016-01-01T00: 00: 00. 000000"})
sessi on. appl y(op)
Updating a row
op = table.new update({'key': 1, '"ts val': ("2017-01-01", "%v-%n %l")})
sessi on. appl y(op)
Delete a row
op = table.new del ete({' key': 2})
sessi on. appl y(op)
Flush wite operations, if failures occur, capture print them
try:
sessi on. fl ush()
except kudu. KuduBadSt atus as e:
print(session. get _pending_errors())

Create a scanner and add a predicate

scanner = table.scanner()
scanner.add_predicate(table['ts val'] == datetinme(2017, 1, 1))
Open Scanner and read all tuples

Note: This doesn't scale for |arge scans

result = scanner.open().read_all _ tuples()

Kudu integrates with Spark through the Data Source API as of version 1.0.0. Include the kudu-spark dependency
using the --packages option.

Use the kudu-spark_2.10 artifact if using Spark with Scala 2.10. Note that Spark 1 is no longer supported in Kudu
starting from version 1.6.0. So in order to use Spark 1 integrated with Kudu, version 1.5.0 isthe latest to go to.

spar k-shel | --packages org. apache. kudu: kudu-spark_2.10: 1. 5. 0-cdh5.13.91 --re
positories https://repository.cloudera.com artifactory/cl oudera-repos/

Use kudu-spark2_2.11 artifact if using Spark 2 with Scala2.11.

Note: kudu-spark versions 1.8.0 and below have dlightly different syntax. See the documentation of your
IE version for avalid example. Versioned documentation can be found on the rel eases page.

spark2-shel | --packages org. apache. kudu: kudu-spark2_2.11:1.9.0-cdh6.2.0 --re
positories https://repository.cloudera.com artifactory/cl oudera-repos/

Below isaminimal Spark SQL "select" example for a Kudu table created with Impalain the "default” database. We
first import the kudu spark package, then create a DataFrame, and then create a view from the DataFrame. After those
steps, the table is accessible from Spark SQL. Y ou can aso refer to the Spark quickstart guide or this Kudu-Spark
example.

Note: You can use the Kudu CLI tool to create table and generate data by kudu perf loadgen kudu.master: 70
51 -keep_auto_tablefor the following two examples:

i mport org. apache. kudu. spar k. kudu. _
/]l Create a DataFrane that points to the Kudu table we want to query.
val df = spark.read. opti ons(Map("kudu. master” -> "kudu. master:7051",

https://kudu.apache.org/releases/
https://github.com/apache/kudu/tree/master/examples/quickstart/spark
https://github.com/apache/kudu/tree/master/examples/scala/spark-example
https://github.com/apache/kudu/tree/master/examples/scala/spark-example

Cloudera Runtime Developing applications with Apache Kudu

"kudu. tabl e -> "default.my_table")).format(
"kudu") .| oad
/] Create a view fromthe DataFrane to make it accessible from Spark SQL.
df . creat eOr Repl aceTenpVi ew(" ny_t abl e")
/1 Now we can run Spark SQ. queries agai nst our view of the Kudu table.
spark.sqgl ("select * fromny_table").show)

Below is a more sophisticated example that includes both reads and writes:

i mport org.apache. kudu. client. _
i mport org.apache. kudu. spar k. kudu. KuduCont ext
i mport coll ection.JavaConverters.

// Read a table from Kudu
val df = spark.read

.options(Map("kudu. master" -> "kudu.naster:7051", "kudu.table" -> "kudu_ta
bl e"))

.format ("kudu") .|l oad

/1 Query using the Spark API..
df . sel ect("key").filter("key >= 5").show()

[l ...or register a tenporary table and use SQ
df . creat eOr Repl aceTempVi ew(" kudu_t abl e")
val filteredDF = spark.sql ("sel ect key from kudu_t abl e where key >= 5").show

0)

/1 Use KuduContext to create, delete, or wite to Kudu tables
val kuduCont ext = new KuduCont ext (" kudu. nast er: 7051", spark. spar kCont ext)
/1l Create a new Kudu table from a DataFrane schena
/1 NB: No rows fromthe DataFrane are inserted into the table
kuduCont ext . cr eat eTabl e(
"test _table", df.schema, Seq("key"),
new Creat eTabl eOpti ons()
. set NunRepl i cas(1)
.addHashPartitions(List("key").asJava, 3))

[/ Check for the existence of a Kudu table
kuduCont ext . t abl eExi st s("test _tabl e")

/1 Insert data
kuduCont ext . i nsert Rows(df, "test table")

/| Delete data
kuduCont ext . del et eRows(df, "test_table")

/1l Upsert data

kuduCont ext . upsert Rows(df, "test table")

/'l Update data

val updateDF = df.select($"key", ($"int_val" + 1).as("int_val"))

kuduCont ext . updat eRows(updat eDF, "test table")

/| Data can al so be inserted into the Kudu table using the data source, tho
ugh the met hods on

/1 KuduContext are preferred

/1 NB: The default is to upsert rows; to performstandard inserts instead, s
et operation = insert

/1 in the options map

/1 NB: Only node Append is supported

df .write

.options(Map("kudu. master"-> "kudu. nmaster: 7051", "kudu.table"-> "test t
abl e"))

. mode(" append")

Cloudera Runtime Developing applications with Apache Kudu

. format ("kudu") . save

/| Delete a Kudu table
kuduCont ext . del et eTabl e("test _tabl e")

The upsert operation in kudu-spark supports an extra write option of ignoreNull. If set to true, it will avoid setting
existing column values in Kudu table to Null if the corresponding DataFrame column values are Null. If unspecified,
ignoreNull isfalse by default.

val dataFrane = spark.read
.options(Map("kudu. master" -> "kudu. master:7051", "kudu.table" -> sinpl
eTabl eNane))
.format ("kudu"). |l oad
dat aFr ane. cr eat eOr Repl aceTenpVi ew(si npl eTabl eNane)
dat aFr ane. show()

/'l Belowis the original data in the table 'sinpleTabl eNane'
Ho - oo -+
| key| val |
+- - - - -+
| 0] fool
Ho - oo -+

/1l Upsert a rowwith existing key 0 and val Null with ignoreNull set to true
val nul | DF = spark. creat eDat aFrane(Seq((0, null.aslnstanceO[String]))).t
oDF("key", "val")

val wo = new KuduWiteOptions

wo.ignoreNull = true

kuduCont ext . upsert Rows(nul | DF, si npl eTabl eNane, wo)

dat aFr anme. show()

/1 The val field stays unchanged

+- - - - -+

| key]| val |

Ho - oo -+

| O] fool

Hom oo -+

/1 Upsert a roww th existing key 0 and val Null with ignoreNull default/set
to fal se

kuduCont ext . upsert Rows(nul | DF, si npl eTabl eNane)

/1 Equival ent to:

/1 val wo = new KuduWiteQptions

/1 wo.ignoreNull = false

/1 kuduCont ext . upsert Rows(nul | DF, si npl eTabl eNane, wo)
df . show()

/1 The val field is set to Null this tinme

e codo oo

| key| val |

dhe oo din oo o dp

| Ol null]

Focodo o oo 9p

The Kudu-Spark integration is able to operate on secure Kudu clusters which have authentication and encryption
enabled, but the submitter of the Spark job must provide the proper credentials. For Spark jobs using the default
‘client' deploy mode, the submitting user must have an active Kerberos ticket granted through kinit. For Spark jobs
using the 'cluster' deploy mode, a Kerberos principal name and keytab location must be provided through the --princi
pal and --keytab arguments to spark2-submit.

Cloudera Runtime Developing applications with Apache Kudu

Here are the limitations that you should consider while integrating Kudu and Spark.

e Spark 2.2 (and higher) requires Java 8 at runtime even though Kudu Spark 2.x integration is Java 7 compatible.
Spark 2.2 is the default dependency version as of Kudu 1.5.0.

« Kudu tables with a name containing upper case or non-ASCI| characters must be assigned an alternate name when
registered as atemporary table.

¢ Kudu tables with a column name containing upper case or non-ASCI| characters must not be used with
SparkSQL. Columns can be renamed in Kudu to work around thisissue.

* <> and ORpredicates are not pushed to Kudu, and instead will be evaluated by the Spark task. Only LIKE
predicates with a suffix wildcard are pushed to Kudu. Thismeans LIKE "FOO%" will be pushed, but LIKE "FO
O%BAR" won't.

» Kudu does not support all the types supported by Spark SQL. For example, Date and complex types are not
supported.

e Kudu tables can only be registered as temporary tablesin SparkSQL.

« Kudu tables cannot be queried using HiveContext.

Isis best to avoid multiple Kudu clients per cluster.

A common Kudu-Spark coding error isinstantiating extra KuduClient objects. In kudu-spark, a KuduClient is owned
by the KuduContext. Spark application code should not create another KuduClient connecting to the same cluster.
Instead, application code should use the KuduContext to access a KuduClient using KuduContext#syncClient.

To diagnose multiple KuduClient instances in a Spark job, look for signsin the logs of the master being overloaded
by many GetTablel ocations or GetTabletL ocations requests coming from different clients, usually around the same
time. This symptom is especially likely in Spark Streaming code, where creating a KuduClient per task will result in
periodic waves of master requests from new clients.

10

	Contents
	Developing applications with Apache Kudu
	Viewing the API documentation
	Kudu example applications
	Maven artifacts
	Building the Java client
	Kudu Python client
	Kudu integration with Spark
	Upsert option in Kudu Spark
	Using Spark with a secure Kudu cluster
	Spark integration known issues and limitations
	Spark integration best practices

