
Cloudera Runtime 7.1.3

Schema Registry Overview
Date published: 2019-11-08
Date modified: 2020-08-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Schema Registry Overview..4
Examples of Interacting with Schema Registry...5
Schema Registry Use Cases... 7

Use Case 1: Registering and Querying a Schema for a Kafka Topic..7
Use Case 2: Reading/Deserializing and Writing/Serializing Data from and to a Kafka Topic................7
Use Case 3: Dataflow Management with Schema-based Routing...7

Schema Registry Component Architecture.. 8
Schema Registry Concepts... 8

Schema Entities...8
Compatibility Policies...10

Cloudera Runtime Schema Registry Overview

Schema Registry Overview

As the diagram below instructions, Schema Registry is part of the enterprise services that powers streams processing.

Schema Registry provides a shared repository of schemas that allows applications to flexibly interact with each other.

Applications built often need a way to share metadata across 3 dimensions:

• Data format
• Schema
• Semantics or meaning of the data

The Schema Registry design principle is to provide a way to tackle the challenges of managing and sharing schemas
between components and in such a way that the schemas are designed to support evolution such that a consumer
and producer can understand different versions of those schemas but still read all information shared between both
versions and safely ignore the rest.

Hence, the value that Schema Registry provides and the applications that integrate with it are the following:

• Centralized registry – Provide reusable schema to avoid attaching schema to every piece of data
• Version management – Define relationship between schema versions so that consumers and producers can evolve

at different rates
• Schema validation – Enable generic format conversion, generic routing and data quality

Schema Registry Usage in Flow Management

4

Cloudera Runtime Schema Registry Overview

Examples of Interacting with Schema Registry

Schema Registry UI

5

Cloudera Runtime Schema Registry Overview

You can use the Schema Registry UI to create schema groups, schema metadata, and add schema versions.

Schema Registry API

You can access the Schema Registry API Swagger documentation directly from the UI.

To do this, append your URL with: /swagger/

6

Cloudera Runtime Schema Registry Overview

For example: https://localhost:7790/swagger/

Java Client

You can review the following GitHub repositories for examples of how to interact with the Schema Registry Java
Client:

• https://github.com/georgevetticaden/cdf-ref-app/blob/master/csp-trucking-schema/src/main/java/cloudera/cdf/csp/
schema/refapp/trucking/schemaregistry/TruckSchemaRegistryLoader.java#L62

• https://github.com/hortonworks/registry/blob/0.9.0/examples/schema-registry/avro/src/main/java/com/
hortonworks/registries/schemaregistry/examples/avro/SampleSchemaRegistryClientApp.java

Kafka Serdes

See the following example of using the Schema Registry Kafka Serdes:

https://github.com/hortonworks/registry/blob/0.9.0/examples/schema-registry/avro/src/main/java/com/hortonworks/
registries/schemaregistry/examples/avro/KafkaAvroSerDesApp.java

Schema Registry Use Cases
With a basic understanding of Schema Registry, the below sections walks through common use cases for Schema
Registry.

Use Case 1: Registering and Querying a Schema for a Kafka Topic
When Kafka is integrated into enterprise organization deployments, you typically have many different Kafka topics
used by different apps and users. With the adoption of Kafka within the enterprise, some key questions that often
come up are the following:

• What are the different events in a given Kafka topic?
• What do I put into a given Kafka topic?
• Do all Kafka events have a similar type of schema?
• How do I parse and use the data in a given Kafka topic?

While Kafka topics do not have a schema, having an external store that tracks this metadata for a given Kafka topic
helps to answer these common questions. Schema Registry addresses this use case.

One important point to note is that Schema Registry is not just a metastore for Kafka. Schema Registry was designed
to be generic schema store for any type of entity or store (log files, or similar.)

Use Case 2: Reading/Deserializing and Writing/Serializing Data from and to a Kafka
Topic

In addition to storing schema metadata, another key use case is to store metadata for the format of how data should be
read and how it should be written. Schema Registry supports this use case as well by providing capabilities to store
JAR files for serializers and deserializers and then mapping the serdes to the schema.

Use Case 3: Dataflow Management with Schema-based Routing
Imagine if you are using NiFi to move different types of syslog events to downstream systems. You have data
movement requirements where you need to parse the syslog event to extract the event type, and route the event to a
certain downstream system (different Kafka topics, for example) based on the event type.

Without Schema Registry, NiFi uses regular expressions or other utilities to parse the event type value from the
payload and store into a flowfile attribute. Then NiFi uses routing processors (RouteOnAttribute, for example) to
use the parsed value for routing decisions. If the structure of the data changes considerably, this type of extract and
routing pattern is brittle and requires frequent changes.

With the introduction of Schema Registry, NiFi queries the registry for schema and then retrieves the value for a
certain element in the schema. In this case, even if the structure changes, as long as compatibility policies are adhered
to, NiFi's extract and routing rules do not change. This is another common use case for Schema Registry.

7

https://github.com/georgevetticaden/cdf-ref-app/blob/master/csp-trucking-schema/src/main/java/cloudera/cdf/csp/schema/refapp/trucking/schemaregistry/TruckSchemaRegistryLoader.java#L62
https://github.com/georgevetticaden/cdf-ref-app/blob/master/csp-trucking-schema/src/main/java/cloudera/cdf/csp/schema/refapp/trucking/schemaregistry/TruckSchemaRegistryLoader.java#L62
https://github.com/hortonworks/registry/blob/0.9.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/SampleSchemaRegistryClientApp.java
https://github.com/hortonworks/registry/blob/0.9.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/SampleSchemaRegistryClientApp.java
https://github.com/hortonworks/registry/blob/0.9.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/KafkaAvroSerDesApp.java
https://github.com/hortonworks/registry/blob/0.9.0/examples/schema-registry/avro/src/main/java/com/hortonworks/registries/schemaregistry/examples/avro/KafkaAvroSerDesApp.java

Cloudera Runtime Schema Registry Overview

Schema Registry Component Architecture
The below diagram represents the component architecture of Schema Registry.

Schema Registry has three main components:

• Registry web server – Web Application exposing the REST endpoints you can use to manage schema entities.
You can use a web proxy and load balancer with multiple Web Servers to provide HA and scalability.

• Pluggable storage – Schema Registry uses the following two types of storages:

• Schema Metadata Storage – Relational store that holds the metadata for the schema entities. Inn-memory
storage (for development purposes) and mySQL databases are supported.

• Serdes Storage – File storage for the serializer and deserializer jars. Local file system and HDFS storage are
supported. Local file system storage is the default.

• Schema Registry Client – A java client that components can use to interact with the RESTful services.

There are two integration points:

• Custom NiFi Processors – New processors and controller services in NiFi that interact with the Schema Registry.
• Kafka Serializer and Deserializer – A Kafka serializer and deserializer that uses Schema Registry. The Kafka

serdes can be found on GitHub.

Schema Registry Concepts

Schema Entities
You can use Schema Registry to work with three types of schema entities:

Schema entities

8

https://github.com/hortonworks/registry/tree/HDF-2.1.0.0/schema-registry/serdes/src/main/java/com/hortonworks/registries/schemaregistry/serdes/avro/kafka

Cloudera Runtime Schema Registry Overview

This table provides a more detailed description of the schema entities:

Table 1: Schema entity types

Entity Type Description Example

Schema Group A logical grouping of similar schemas. A Schema Group can be
based on any criteria you have for managing schemas.

Schema Groups can have multiple Schema Metadata definitions.

• Group Name – truck-sensors-log
• Group Name – truck-sensors-kafka

9

Cloudera Runtime Schema Registry Overview

Entity Type Description Example

Schema Metadata Metadata associated with a named schema. A metadata
definition is applied to all the schema versions that are assigned
to it.

Key metadata elements include:

• Schema Name – A unique name for each schema. Used as a
key to look up schemas.

• Schema Type – The format of the schema.

Note: Avro is currently the only supported type.
• Compatibility Policy – The compatibility rules that exist

when the new schemas are registered.
• Serializers/Deserializers – A set of serializers and

deserializers that you can upload to the registry and
associate with schema metadata definitions.

• Schema Name – truck_events_avro:v
• Schema Type – avro
• Compatibility Policy –

SchemaCompatibility.BACKWARD

Schema Version The versioned schema associated a schema metadata definition.
{
 "type" : "record",
 "namespace" : "hort
onworks.hdp.refapp.t
rucking",
 "name" : "truckgeoev
ent",
 "fields" : [
 { "name" : "eventTi
me" , "type" : "stri
ng" },
 { "name" : "event
Source" , "type" : "
string" },
 { "name" : "truck
Id" , "type" : "int" },
 { "name" : "driv
erId" , "type" : "in
t"},
 { "name" : "driverN
ame" , "type" : "str
ing"},
 { "name" : "route
Id" , "type" : "int"},
 { "name" : "route
" , "type" : "string"},
 { "name" : "even
tType" , "type" : "s
tring"},
 { "name" : "longitu
de" , "type" : "doub
le"},
 { "name" : "latitu
de" , "type" : "doub
le"},
 { "name" : "correl
ationId" , "type" :
"long"}
]
}

Compatibility Policies
A key Schema Registry feature is the ability to version schemas as they evolve. Compatibility policies are created at
the schema metadata level, and define evolution rules for each schema.

10

Cloudera Runtime Schema Registry Overview

After a policy has been defined for a schema, any subsequent version updates must honor the schema’s original
compatibility, otherwise you experience an error.

Compatibility of schemas can be configured with any of the below values:

Backward Compatibility

Indicates that new version of a schema would be compatible with earlier version of that schema.
That means the data written from earlier version of the schema, can be deserialized with a new
version of the schema.

When you have a Backward Compatibility policy on your schema, you can evolve schemas by
deleting portions, but you cannot add information.

Forward Compatibility

Indicates that an existing schema is compatible with subsequent versions of the schema. That means
the data written from new version of the schema can still be read with old version of the schema.

Full Compatibility

Indicates that a new version of the schema provides both backward and forward compatibilities.

None

Indicates that no compatibility policy is in place.

The default value is Backward.

You set the compatibility policy when you are adding a schema. Once set, you cannot change it.

11

	Contents
	Schema Registry Overview
	Examples of Interacting with Schema Registry
	Schema Registry Use Cases
	Use Case 1: Registering and Querying a Schema for a Kafka Topic
	Use Case 2: Reading/Deserializing and Writing/Serializing Data from and to a Kafka Topic
	Use Case 3: Dataflow Management with Schema-based Routing

	Schema Registry Component Architecture
	Schema Registry Concepts
	Schema Entities
	Compatibility Policies

