Cloudera Runtime 7.1.4

Configuring Apache Spark

Date published: 2019-09-23
Date modified: 2020-12-15

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Configuring dynamic resour ce alloCation..........cccovuveeeereesieesee e see e 4
Customize dynamic resource allOCation SEtINGS.........ccoeereirierirererere ettt 4
Configure a Spark job for dynamic reSource allOCaLION...........erererirerireree e 4
Dynamic resource allOCatiON PrOPEITIES.........cccirirririeririeieriet ettt sb s bt b et e bt sa et sa bbb e b e enes 5

=T S = o U] Y S 6
Enabling Spark aUthentiCaLiON..........cceiueeeieire st sttt e e e e e e e e s e e seeneerenrenneerenen 6
Tz LT a0 RS o= S = gTox Y/ o) (o) o P 6
Running Spark appliCations 0N SECUIE CIUSLEY'S.........ciuciveiieireeecesese st steseste e tesaesae e e e s e s e s e ssessesnesresseseeseens 7

Accessing compressed filesS in SPark........ocoveeieieenee e 7

Cloudera Runtime Configuring dynamic resource allocation

This section describes how to configure dynamic resource allocation for Apache Spark.

When the dynamic resource allocation feature is enabled, an application's use of executorsis dynamically adjusted
based on workload. This means that an application can relinquish resources when the resources are no longer needed,
and request them later when there is more demand. This feature is particularly useful if multiple applications share
resources in your Spark cluster.

f Important: Dynamic resource allocation does not work with Spark Streaming.

Y ou can configure dynamic resource allocation at either the cluster or the job level:

e Cluster level: Dynamic resource alocation is enabled by default. The associated shuffle service starts
automatically.

« Joblevel: You can customize dynamic resource allocation settings on a per-job basis. Job settings override cluster
configuration settings.

Cluster configuration is the default, unless overridden by job configuration.

The following subsections describe each configuration approach, followed by alist of dynamic resource allocation
properties.

Use the following steps to review and customize dynamic resource all ocation settings.

Dynamic resource allocation requires an external shuffle service that runs on each worker node as an auxiliary service
of NodeManager. This service is started automatically; no further steps are needed.

Dynamic resource allocation is enabled by default. To modify dynamic allocation settings, use the following
procedure.

1. From the Cloudera Data Platform (CDP) interface, click through to Cloudera Manager for the cluster running
Spark.

Go to the Spark service page (ClustersSpark service).

Click on the Configuration tab.

In the Search box, enter dynamicAllocation.

After making the changes you want, enter the reason for the change in the Reason for change... box, and then click
Save Changes.

6. Restart the Spark service (Spark serviceActionsRestart).

o~ wD

Use the following steps to configure dynamic resource allocation for a specific job.

There are two ways to customize dynamic resource allocation properties for a specific job:

Cloudera Runtime Configuring dynamic resource allocation

* Include property valuesin the spark-submit command, using the -conf option.

This approach loads the default spark-defaults.conf file first, and then applies property values specified in your
spark-submit command.

Example:

spark-submit --conf “property_name=property_value”
» Create ajob-specific spark-defaults.conf file and passit to the spark-submit command.

This approach uses the specified properties file, without reading the default property file.
Example:

spark-submit --properties-file <property_file>

Dynamic resource allocation properties

The following tables provide more information about dynamic resource allocation properties. These properties can be
accessed by clicking through to Cloudera Manager from the Cloudera Data Platform interface for the cluster running

Spark.

Table 1: Dynamic Resource Allocation Properties

Property Name Default Value Description

spark.dynamicAllocation.enabled false for Spark jobs Enable dynamic allocation of executorsin
Spark applications.
spark.shuffle.service. enabled true Enables the external shuffle service. The

external shuffle service preserves shuffle files
written by executors so that the executors can
be deallocated without losing work. Must be
enabled if dynamic alocation is enabled.

spark.dynamicAllocation. initialExecutors | Same value as spark.dynamicAllocation. When dynamic allocation is enabled, number
minExecutors of executors to alocate when the application
starts.

Must be greater than or equal to the minExecu
torsvalue, and less than or equal to the maxE
xecutors value.

spark.dynamicAllocation. maxExecutors infinity When dynamic allocation is enabled,
maximum number of executors to allocate.
By default, Spark relieson YARN to control
the maximum number of executorsfor the
application.

spark.dynamicAllocation. minExecutors 0 When dynamic allocation is enabled,
minimum number of executorsto keep alive
while the application is running.

spark.dynamicAllocation. executorldleT 60 seconds (60s) When dynamic allocation is enabled, time
imeout after which idle executors will be stopped.
spark.dynamicAllocation. cachedExecutorl | infinity When dynamic alocation is enabled, time
dleTimeout after which idle executors with cached RDD
blocks will be stopped.
spark.dynamicAllocation. schedulerBacklo | 1 second (1s) When dynamic allocation is enabled, timeout
gTimeout before requesting new executors when there
are backlogged tasks.
spark.dynamicAllocation. sustainedSchedu | Same value as schedulerBacklogTimeout When dynamic alocation is enabled, timeout
lerBacklogTimeout before requesting new executors after the

initial backlog timeout has already expired.
By default thisis the same value as the initial
backlog timeout.

Cloudera Runtime Spark security

Apache Dynamic Resource Allocation

When you create an environment in the Cloudera Data Platform (CDP) Management Console, it automatically creates
aKerberos- and TL S-enabled data lake cluster. Data hub clusters are linked to environments, and therefore also have
Kerberos enabled by default. Y ou do not need to do anything to enable Kerberos or TLS for Apache Spark in CDP.
Disabling security is not supported.

To submit Spark jobs to the cluster, users must authenticate with their Kerberos credentials. For more information,
see the Environments documentation.

Spark authentication here refers to an internal authentication mechanism, and not to Kerberos authentication, which is
enabled automatically for all Cloudera Data Platform deployments.

Minimum Required Role: Security Administrator (also provided by Full Administrator)

Spark has an internal mechanism that authenticates executors with the driver controlling a given application. This
mechanism is enabled using the Cloudera Manager Admin Console, as detailed below. Cluster administrators can
enable the spark.authenticate mechanism to authenticate the various processes that support a Spark application.

To enable this feature on the cluster:

In the Cloudera Data Platform (CDP) Management Console, go to Data Hub Clusters.
Find and select the cluster you want to configure.
Click thelink for the Cloudera Manager URL.
Goto Clusters <Cluster Name>Spark serviceConfiguration .
Scroll down to the Spark Authentication setting, or search for spark.authenticate to find it.
In the Spark Authentication setting, click the checkbox next to the Spark (Service-Wide) property to activate the
setting.
Enter the reason for the change at the bottom of the screen, and then click Save Changes.
Restart Y ARN:
a) Select Clusters YARN .
b) Select Restart from the Actions drop-down selector.
9. Re-deploy the client configurations:

a) Sedect Clusters Cluster_name

b) Select Deploy Client Configurations from the Actions drop-down selector.
10. Restart stale services.

o gk wbdhpE

© N

https://spark.apache.org/docs/2.0.0/job-scheduling.html#dynamic-resource-allocation
https://docs.cloudera.com/management-console/cloud/environments/topics/mc-environments.html

Cloudera Runtime Accessing compressed filesin Spark

Before enabling encryption, you must first enable Spark authentication.

In the Cloudera Data Platform (CDP) Management Console, go to Data Hub Clusters.
Find and select the cluster you want to configure.

Click thelink for the Cloudera Manager URL.

Goto Clusters <Cluster Name>Spark serviceConfiguration .

Search for the Enable Network Encryption property. Use the checkbox to enable encrypted communication
between Spark processes belonging to the same application.

6. Search for the Enable 1/0O Encryption property. Use the checkbox to enabled encryption for temporary shuffle and
cache files stored by Spark on local disks.

7. Enter the reason for the change at the bottom of the screen, and then click Save Changes.
8. Re-deploy the client configurations:

a) Select Clusters Cluster_name
b) Select Deploy Client Configurations from the Actions drop-down selector.

9. Restart stale services.

a s DR

All CDP clusters are secure by default. Disabling security on CDP clustersis not supported. To run a Spark
application on a secure cluster, you must first authenticate using Kerberos.

Users running Spark applications must first authenticate to Kerberos, using kinit, as follows:
ki nit user name@XAMPLE. COM

After authenticating to Kerberos, users can submit their applications using spark-submit as usual, as shown below.
This command submits one of the default Spark sample jobs using an environment variable as part of the path, so
modify as needed for your own use;

$ spark-subnmit --class org. apache. spark. exanpl es. SparkPi --nmaster yarn \
- -depl oy- node cl uster $SPARK HOVE/ | i b/ spar k- exanpl es.jar 10

For information on creating user accountsin CDP, see Onboarding Users.

Y ou can read compressed files using one of the following methods:

o textFile(path)
» hadoopFile(path,outputFormatClass)

Y ou can save compressed files using one of the following methods:

» saveAsTextFile(path, compressionCodecClass="codec class")
» saveAsHadoopFile(path,outputFormatClass, compressionCodecClass="codec class')

where codec _classis one of these classes:

e Qzip - org.apache.hadoop.io.compress.GzipCodec
* bzip2 - org.apache.hadoop.io.compress.BZip2Codec

https://docs.cloudera.com/management-console/cloud/user-management/topics/mc-onboarding-users.html

Cloudera Runtime Accessing compressed filesin Spark

e LZO - com.hadoop.compression.|zo.L zopCodec
* Snappy - org.apache.hadoop.io.compress.SnappyCodec
» Deflate - org.apache.hadoop.io.compress.DeflateCodec

For examples of accessing Avro and Parquet files, see Spark with Avro and Parquet.

https://github.com/sryza/simplesparkavroapp

	Contents
	Configuring dynamic resource allocation
	Customize dynamic resource allocation settings
	Configure a Spark job for dynamic resource allocation
	Dynamic resource allocation properties

	Spark security
	Enabling Spark authentication
	Enabling Spark Encryption
	Running Spark applications on secure clusters

	Accessing compressed files in Spark

