
Cloudera Runtime 7.1.4

Data Protection
Date published: 2020-02-20
Date modified: 2020-10-13

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Data protection..4
Backing up HDFS metadata...4

Introduction to HDFS metadata files and directories.. 4
Back up HDFS metadata..8

Using HDFS snapshots for data protection... 11
Considerations for working with HDFS snapshots..11
Enable snapshot creation on a directory.. 12
Create snapshots on a directory... 12
Recover data from a snapshot..13
Options to determine differences between contents of snapshots..13
CLI commands to perform snapshot operations.. 14
Managing snapshot policies using Cloudera Manager...15
Enable and disable snapshot creation using Cloudera Manager.. 16
Create snapshots using Cloudera Manager.. 16
Delete snapshots using Cloudera Manager.. 17

Configuring HDFS trash...17
Trash behavior with HDFS Transparent Encryption enabled.. 17
Enabling and disabling trash.. 18
Setting the trash interval...18

Preventing inadvertent deletion of directories... 18

Cloudera Runtime Data protection

Data protection

You can ensure data protection by preventing accidental deletion of files and backing up HDFS metadata.

Backing up HDFS metadata
HDFS metadata represents the structure and attributes of HDFS directories and files in a tree. You can back up the
metadata without affecting NameNode availability.

Introduction to HDFS metadata files and directories
HDFS metadata represents the structure of HDFS directories and files in a tree. It also includes the various attributes
of directories and files, such as ownership, permissions, quotas, and replication factor.

Files and directories
Persistence of HDFS metadata is implemented using fsimage file and edits files.

Attention:

Do not attempt to modify metadata directories or files. Unexpected modifications can cause HDFS downtime,
or even permanent data loss. This information is provided for educational purposes only.

Persistence of HDFS metadata broadly consist of two categories of files:

fsimage

Contains the complete state of the file system at a point in time. Every file system modification
is assigned a unique, monotonically increasing transaction ID. An fsimage file represents the file
system state after all modifications up to a specific transaction ID.

edits file

Contains a log that lists each file system change (file creation, deletion or modification) that was
made after the most recent fsimage.

Checkpointing is the process of merging the content of the most recent fsimage, with all edits applied after that
fsimage is merged, to create a new fsimage. Checkpointing is triggered automatically by configuration policies or
manually by HDFS administration commands.

NameNodes
Understand the HDFS metadata directory details taken from a NameNode.

The following example shows an HDFS metadata directory taken from a NameNode. This shows the output of
running the tree command on the metadata directory, which is configured by setting dfs.namenode.name.dir in hdfs-
site.xml.

data/dfs/name
current#
VERSION#
edits_0000000000000000001-0000000000000000007
edits_0000000000000000008-0000000000000000015
edits_0000000000000000016-0000000000000000022
edits_0000000000000000023-0000000000000000029
edits_0000000000000000030-0000000000000000030
edits_0000000000000000031-0000000000000000031
edits_inprogress_0000000000000000032
fsimage_0000000000000000030
fsimage_0000000000000000030.md5
fsimage_0000000000000000031
fsimage_0000000000000000031.md5

4

Cloudera Runtime Data protection

seen_txid
in_use.lock

In this example, the same directory has been used for both fsimage and edits. Alternative configuration options are
available that allow separating fsimage and edits into different directories. Each file within this directory serves a
specific purpose in the overall scheme of metadata persistence:

VERSION

Text file that contains the following elements:

layoutVersion

Version of the HDFS metadata format. When you add new features that require a change to the
metadata format, you change this number. An HDFS upgrade is required when the current HDFS
software uses a layout version that is newer than the current one.

namespaceID/clusterID/blockpoolID

Unique identifiers of an HDFS cluster. These identifiers are used to prevent DataNodes from
registering accidentally with an incorrect NameNode that is part of a different cluster. These
identifiers also are particularly important in a federated deployment. Within a federated deployment,
there are multiple NameNodes working independently. Each NameNode serves a unique portion of
the namespace (namespaceID) and manages a unique set of blocks (blockpoolID). The clusterID
ties the whole cluster together as a single logical unit. This structure is the same across all nodes in
the cluster.

storageType

Always NAME_NODE for the NameNode, and never JOURNAL_NODE.

cTime

Creation time of file system state. This field is updated during HDFS upgrades.

edits_start transaction ID-end transaction ID

Finalized and unmodifiable edit log segments. Each of these files contains all of the edit log
transactions in the range defined by the file name. In an High Availability deployment, the standby
can only read up through the finalized log segments. The standby NameNode is not up-to-date with
the current edit log in progress. When an HA failover happens, the failover finalizes the current log
segment so that it is completely caught up before switching to active.

fsimage_end transaction ID

Contains the complete metadata image up through . Each fsimage file also has a corresponding .md5
file containing a MD5 checksum, which HDFS uses to guard against disk corruption.

seen_txid

Contains the last transaction ID of the last checkpoint (merge of edits into an fsimage) or edit
log roll (finalization of current edits_inprogress and creation of a new one). This is not the last
transaction ID accepted by the NameNode. The file is not updated on every transaction, only on a
checkpoint or an edit log roll. The purpose of this file is to try to identify if edits are missing during
startup. It is possible to configure the NameNode to use separate directories for fsimage and edits
files. If the edits directory accidentally gets deleted, then all transactions since the last checkpoint
would go away, and the NameNode starts up using just fsimage at an old state. To guard against
this, NameNode startup also checks seen_txid to verify that it can load transactions at least up
through that number. It aborts startup if it cannot verify the load transactions.

in_use.lock

Lock file held by the NameNode process, used to prevent multiple NameNode processes from
starting up and concurrently modifying the directory.

5

Cloudera Runtime Data protection

JournalNodes
Understand the components of the JournalNode metadata directory.

In an HA deployment, edits are logged to a separate set of daemons called JournalNodes. A JournalNode’s metadata
directory is configured by setting dfs.journalnode.edits.dir. The JournalNode contains a VERSION file, multiple
edits__ files and an edits_inprogress_, just like the NameNode. The JournalNode does not have fsimage files or seen
_txid. In addition, it contains several other files relevant to the HA implementation. These files help prevent a split-
brain scenario, in which multiple NameNodes could think they are active and all try to write edits.

committed-txid

Tracks last transaction ID committed by a NameNode.

last-promised-epoch

Contains the “epoch,” which is a monotonically increasing number. When a new NameNode, starts
as active, it increments the epoch and presents it in calls to the JournalNode. This scheme is the
NameNode’s way of claiming that it is active and requests from another NameNode, presenting a
lower epoch, must be ignored.

last-writer-epoch

Contains the epoch number associated with the writer who last actually wrote a transaction.

paxos

Specifies the directory that temporary files used in the implementation of the Paxos distributed
consensus protocol. This directory often appears as empty.

DataNodes
Although DataNodes do not contain metadata about the directories and files stored in an HDFS cluster, they do
contain a small amount of metadata about the DataNode itself and its relationship to a cluster.

This shows the output of running the tree command on the DataNode’s directory, configured by setting
dfs.datanode.data.dir in hdfs-site.xml.

data/dfs/data/
current
BP-1079595417-192.168.2.45-1412613236271
current
VERSION
finalized
subdir0# # # # ### subdir1
blk_1073741825
blk_1073741825_1001.meta
lazyPersist
rbw
dncp_block_verification.log.curr
dncp_block_verification.log.prev
tmp
VERSION
in_use.lock

The purpose of these files are as follows:

BP-random integer-NameNode-IP address-creation time

Top level directory for datanodes. The naming convention for this directory is significant and
constitutes a form of cluster metadata. The name is a block pool ID. “BP” stands for “block
pool,” the abstraction that collects a set of blocks belonging to a single namespace. In the case
of a federated deployment, there are multiple “BP” sub-directories, one for each block pool. The
remaining components form a unique ID: a random integer, followed by the IP address of the
NameNode that created the block pool, followed by creation time.

VERSION

6

Cloudera Runtime Data protection

Text file containing multiple properties, such as layoutVersion, clusterId and cTime, which is much
like the NameNode and JournalNode. There is a VERSION file tracked for the entire DataNode as
well as a separate VERSION file in each block pool sub-directory.

In addition to the properties already discussed earlier, the DataNode’s VERSION files also contain:

storageType

storageType field is set to DATA_NODE.

blockpoolID

Repeats the block pool ID information encoded into the sub-directory name.

finalized/rbw

Both finalized and rbw contain a directory structure for block storage. This holds numerous block
files, which contain HDFS file data and the corresponding .meta files, which contain checksum
information. rbw stands for “replica being written”. This area contains blocks that are still being
written to by an HDFS client. The finalized sub-directory contains blocks that are not being written
to by a client and have been completed.

lazyPersist

HDFS is incorporating a new feature to support writing transient data to memory, followed by lazy
persistence to disk in the background. If this feature is in use, then a lazyPersist sub-directory is
present and used for lazy persistence of in-memory blocks to disk. We’ll cover this exciting new
feature in greater detail in a future blog post.

scanner.cursor

File to which the "cursor state" is saved.

The DataNode runs a block scanner which periodically does checksum verification of each block
file on disk. This scanner maintains a "cursor," representing the last block to be scanned in each
block pool slice on the volume, and called the "cursor state."

in_use.lock

Lock file held by the DataNode process, used to prevent multiple DataNode processes from starting
up and concurrently modifying the directory.

HDFS commands for metadata files and directories
You can use HDFS commands to manipulate metadata files and directories.

hdfs namenode

Automatically saves a new checkpoint at NameNode startup. As stated earlier, checkpointing is
the process of merging any outstanding edit logs with the latest fsimage, saving the full state to a
new fsimage file, and rolling edits. Rolling edits means finalizing the current edits_inprogress and
starting a new one.

hdfs dfsadmin -safemode enter
hdfs dfsadmin -saveNamespace

Saves a new checkpoint (similar to restarting NameNode) while the NameNode process remains
running. The NameNode must be in safe mode, and all attempted write activity fails while this
command runs.

hdfs dfsadmin -rollEdits

Manually rolls edits. Safe mode is not required.

This can be useful if a standby NameNode is lagging behind the active NameNode and you want it
to get caught up more quickly. The standby NameNode can only read finalized edit log segments,
not the current in progress edits file.

7

Cloudera Runtime Data protection

hdfs dfsadmin -fetchImage

Downloads the latest fsimage from the NameNode. This can be helpful for a remote backup type of
scenario.

Configuration properties
Use the NameNode and DataNode properties to configure the NameNode and DataNodes.

dfs.namenode.name.dir

Specifies where on the local filesystem the DFS name node stores the name table (fsimage). If this
is a comma-delimited list of directories then the name table is replicated in all of the directories, for
redundancy.

dfs.namenode.edits.dir

Specifies where on the local filesystem the DFS name node stores the transaction (edits) file. If this
is a comma-delimited list of directories, the transaction file is replicated in all of the directories, for
redundancy. The default value is set to the same value as dfs.namenode.name.dir.

dfs.namenode.checkpoint.period

Specifies the number of seconds between two periodic checkpoints.

dfs.namenode.checkpoint.txns

The standby creates a checkpoint of the namespace every dfs.namenode.checkpoint.txns
transactions, regardless of whether dfs.namenode.checkpoint.period has expired.

dfs.namenode.checkpoint.check.period

Specifies how frequently to query for the number of un-checkpointed transactions.

dfs.namenode.num.checkpoints.retained

Specifies the number of image checkpoint files to be retained in storage directories. All edit logs
necessary to recover an up-to-date namespace from the oldest retained checkpoint are also retained.

dfs.namenode.num.extra.edits.retained

Specifies the number of extra transactions which are retained beyond what is minimally necessary
for a NN restart. This can be useful for audit purposes or for an HA setup where a remote Standby
Node might have been offline and need to have a longer backlog of retained edits to start again.

dfs.namenode.edit.log.autoroll.multiplier.threshold

Specifies when an active namenode rolls its own edit log. The actual threshold (in number of
edits) is determined by multiplying this value by dfs.namenode.checkpoint.txns. This prevents
extremely large edit files from accumulating on the active namenode, which can cause timeouts
during namenode start-up and pose an administrative hassle. This behavior is intended as a fail-safe
for when the standby fails to roll the edit log by the normal checkpoint threshold.

dfs.namenode.edit.log.autoroll.check.interval.ms

Specifies the time in milliseconds that an active namenode checks if it needs to roll its edit log.

dfs.datanode.data.dir

Determines where on the local filesystem an DFS data node should store its blocks. If this is
a comma-delimited list of directories, then data is stored in all named directories, typically on
different devices. Directories that do not exist are ignored. Heterogeneous storage allows specifying
that each directory resides on a different type of storage: DISK, SSD, ARCHIVE or RAM_DISK.

Back up HDFS metadata
You can back up HDFS metadata without taking down either HDFS or the NameNodes.

8

Cloudera Runtime Data protection

Prepare to back up the HDFS metadata
Regardless of the solution, a full, up-to-date continuous backup of the namespace is not possible. Some of the most
recent data is always lost. HDFS is not an Online Transaction Processing (OLTP) system. Most data can be easily
recreated if you re-run Extract, Transform, Load (ETL) or processing jobs.

• Normal NameNode failures are handled by the Standby NameNode. Doing so creates a safety-net for the very
unlikely case where both master NameNodes fail.

• In the case of both NameNode failures, you can start the NameNode service with the most recent image of the
namespace.

• Name Nodes maintain the namespace as follows:

• Standby NameNodes keep a namespace image in memory based on edits available in a storage ensemble in
Journal Nodes.

• Standby NameNodes make a namespace checkpoint and saves an fsimage_* to disk.
• Standby NameNodes transfer the fsimage to the primary NameNodes using HTTP.

Both NameNodes write fsimages to disk in the following sequence:

• NameNodes write the namespace to a file fsimage.ckpt_* on disk.
• NameNodes creates an fsimage_*.md5 file.
• NameNodes moves the file fsimage.ckpt_* to fsimage_.*.

The process by which both NameNodes write fsimages to disk ensures that:

• The most recent namespace image on disk in an fsimage_* file is on the standby NameNode.
• Any fsimage_* file on disk is finalized and does not receive updates.

Backing up NameNode metadata
You must back up the VERSION file and then back up the NameNode metadata.

Procedure

1. Make a single backup of the VERSION file.

This does not need to be backed up regularly as it does not change, but it is important since it contains the
clusterID, along with other details.

2. Use the following command to back up the NameNode metadata.

It automatically determines the active NameNode, retrieves the current fsimage, and places it in the defined
backup_dir.

hdfs dfsadmin -fetchImage backup_dir

Results
On startup, the NameNode process reads the fsimage file and commits it to memory. If the JournalNodes are up and
running, and there are edit files present, any edits newer than the fsimage are also applied. If the JournalNodes are
unavailable, it is possible to lose any data transferred in the interim.

Back up HDFS metadata using Cloudera Manager
HDFS metadata backups can be used to restore a NameNode when both NameNode roles have failed. In addition,
Cloudera recommends backing up HDFS metadata before a major upgrade.

About this task
This backup method requires you to shut down the cluster.

Procedure

1. Note the active NameNode.

9

Cloudera Runtime Data protection

2. Stop the cluster.

It is particularly important that the NameNode role process is not running so that you can make a consistent
backup.

3. Go to the HDFS service.

4. Click the Configuration tab.

5. In the Search field, search for "NameNode Data Directories" and note the value.

6. On the active NameNode host, back up the directory listed in the NameNode Data Directories property. If a file
with the extension lock exists in the NameNode data directory, the NameNode most likely is still running. Repeat
the steps, beginning with shutting down the NameNode role.

If more than one is listed, make a backup of one directory, because each directory is a complete copy. For
example, if the NameNode data directory is /data/dfs/nn, do the following as root:

cd /data/dfs/nn
tar -cvf /root/nn_backup_data.tar .

You should see output like this:

/dfs/nn/current
./
./VERSION
./edits_0000000000000000001-0000000000000008777
./edits_0000000000000008778-0000000000000009337
./edits_0000000000000009338-0000000000000009897
./edits_0000000000000009898-0000000000000010463
./edits_0000000000000010464-0000000000000011023
<snip>
./edits_0000000000000063396-0000000000000063958
./edits_0000000000000063959-0000000000000064522
./edits_0000000000000064523-0000000000000065091
./edits_0000000000000065092-0000000000000065648
./edits_inprogress_0000000000000065649
./fsimage_0000000000000065091
./fsimage_0000000000000065091.md5
./fsimage_0000000000000065648
./fsimage_0000000000000065648.md5
./seen_txid

Restoring NameNode metadata
If both the NameNode and the secondary NameNode were to suddenly go offline, you can restore the NameNode.

Procedure

1. Add a new host to your Hadoop cluster.

2. Add the NameNode role to the host. Make sure it has the same hostname as the original NameNode.

3. Create a directory path for the NameNode name.dir (for example, /dfs/nn/current), ensuring that the permissions
are set correctly.

4. Copy the VERSION and latest fsimage file to the /dfs/nn/current directory.

5. Run the following command to create the md5 file for the fsimage.

md5sum fsimage > fsimage.md5

6. Start the NameNode process.

Restore HDFS metadata from a backup using Cloudera Manager
When both the NameNode hosts have failed, you can use Cloudera Manager to restore HDFS metadata.

10

Cloudera Runtime Data protection

Procedure

1. Remove the NameNode, JournalNode, and Failover Controller roles from the HDFS service.

2. Add the host on which the NameNode role will run.

3. Create the NameNode data directory, ensuring that the permissions, ownership, and group are set correctly.

4. Copy the backed up files to the NameNode data directory.

5. Add the NameNode role to the host.

6. Add the Secondary NameNode role to another host.

7. Enable high availability.

If not all roles are started after the wizard completes, restart the HDFS service. Upon startup, the NameNode reads
the fsimage file and loads it into memory. If the JournalNodes are up and running and there are edit files present,
any edits newer than the fsimage are applied.

Perform a backup of the HDFS metadata
You can back up HDFS metadata without affecting the availability of NameNode.

Procedure

1. Make sure the Standby NameNode checkpoints the namespace to fsimage_ once per hour.

2. Deploy monitoring on both NameNodes to confirm that checkpoints are triggering regularly.

This helps reduce the amount of missing transactions in the event that you need to restore from a backup
containing only fsimage files without subsequent edit logs. It is good practice to monitor this because edit logs
that are large in size and without checkpoints can cause long delays after a NameNode restart while it replays
those transactions.

3. Back up the most recent “fsimage_*” and “fsimage_*.md5” from the standby NameNode periodically.

Try to keep the latest version of the file on another machine in the cluster.

4. Back up the VERSION file from the standby NameNode.

Using HDFS snapshots for data protection
HDFS snapshots enable you to capture point-in-time copies of the file system and protect your important data against
user or application errors. Cloudera recommends that you take snapshots of specified subtrees on the file system.

Using snapshots to protect data is efficient because of the following reasons:

• Snapshot creation is instantaneous regardless of the size and depth of the directory subtree.
• Snapshots capture the block list and file size for a specified subtree. Snapshots do not create extra copies of blocks

on the file system.

You can either use the command-line interface or Cloudera Manager to manage HDFS snapshots.

Considerations for working with HDFS snapshots
You can create snapshots only for directories that allow the creation of snapshots. If a directory already contains
snapshots, you cannot delete or rename the directory unless you remove all the snapshots.

You must consider the following when working with HDFS snapshots:

• You must enable snapshot creation on a particular directory before creating snapshots on that directory. Such
a directory is termed as a snapshottable directory. However, you cannot create snapshots on a directory if its
corresponding child or parent directory is already enabled for snapshot creation.

• You cannot delete or rename a directory that contains snapshots. You must first remove all the snapshots before
attempting the delete or rename operation.

11

Cloudera Runtime Data protection

• For a snapshottable directory, its path component .snapshot can be used to access the snapshots.

For example, consider the directory /foo that is enabled for snapshot creation. For the directory /foo with a
snapshot snap1, the path /foo/.snapshot/snap1 refers to the snapshot of /foo.

• You can enable or disable snapshot creation on a particular directory only if you have the superuser privilege.
• On a snapshottable directory; you can create, delete, or rename snapshots. These operations require either the

superuser privilege or the owner access to the directory. In addition, you can list directories that have snapshot
creation enabled or view differences between contents of snapshots.

• If you enable ordered deletion of snapshots on a snapshottable directory, then you cannot create more than 100
snapshots on the particular directory.

• You cannot rename a snapshot outside the snapshottable directory.

Enable snapshot creation on a directory
You must enable snapshot creation on a directory before creating snapshots on that directory. If the snapshot creation
is enabled, the directory becomes snapshottable.

About this task

• You can perform this task only if you have the superuser privilege.
• You cannot enable snapshot creation on any directory if its parent or child directory is already enabled for

snapshot creation.

Procedure

Run the hdfs dfsadmin command with the -allowSnapshot option and specify the directory on which you want to
enable snapshot creation.
The following example shows how you can enable snapshot creation for the directory /data/dir1:

hdfs dfsadmin -allowSnapshot /data/dir1

If snapshot creation is successfully enabled on the specified directory, a confirmation message appears.

Allowing snapshot on /data/dir1 succeeded

Related Information
Enable and disable snapshot creation using Cloudera Manager

Create snapshots on a directory
You can create snapshots on a specified directory and protect your important data.

Before you begin
You must have enabled snapshot creation.

About this task

Only a user with either of the following privileges can perform this task:

• The owner privilege to the directory on which to create the snapshots
• The superuser privilege

Procedure

Run the hdfs dfs command with the -createSnapshot option and specify the path to the directory on which you want to
create snapshots.

12

Cloudera Runtime Data protection

The following example shows how you can create a snapshot snap1 on the directory /data/dir1:

hdfs dfs -createSnapshot /data/dir1 snap1

If snapshot creation is successfully enabled on the specified directory, a confirmation message appears.

Created snapshot /data/dir1/.snapshot/snap2

Note: You can also run the command without mentioning the snapshot name. In such a situation, the new
snapshot has the time stamp of creation as its name. See the following example:

Created snapshot /data/dir1/.snapshot/s20180412-065533.159

Related Information
Create snapshots using Cloudera Manager

Delete snapshots using Cloudera Manager

Recover data from a snapshot
If data is erroneously removed from a directory for which snapshots are available, you can recover the lost data using
snapshots. The snapshot ensures that the file blocks corresponding to the deleted files or directories are not removed
from the file system. Only the metadata is modified to reflect the deletion.

About this task
You must have read access to the files or directories that you want to restore.

Procedure

Run the hdfs dfs command with the cp option to copy the deleted data from the snapshot to the destination directory.
The following example shows how you can recover a file imp_details.xls from a snapshot of the directory (/data/dir1)
that contained the file:

hdfs dfs -cp /data/dir1/.snapshot/s20180412-065533.159/imp_details.xls /data
/dir1/

Related Information
Delete snapshots using Cloudera Manager

Options to determine differences between contents of snapshots
Run the hdfs snapshotDiff command for a report that lists the difference between the contents of two snapshots. Run
the distcp diff command to determine the difference between contents of specified source and target snapshots, and
use the command with the -update option to move the difference to a specified target directory.

Generating a report listing the difference between contents of two snapshots

Using the hdfs snapshotDiff between two snapshots on a specified directory path provides the list of changes to the
directory. Consider the following example:

hdfs snapshotDiff /data/dir1 snap1 snap2
M .
- ./file1.csv
R ./file2.txt -> ./fileold.txt
+ ./filenew.txt

This example shows the following changes to the directory /data/dir1 after the creation of snap1 and before the
creation of snap2:

13

Cloudera Runtime Data protection

Statement Explanation

M . The directory /data/dir1 is modified.

- ./file1.csv The file file1.csv is deleted.

R ./file2.txt -> ./fileold.txt The file file2.txt is renamed to fileold.txt.

+ ./filenew.txt The file filenew.txt is added to the directory /data/dir1.

Moving the differences between the contents of two snapshots to a specified directory

Using the distcp diff command with the -update option on snapshots enables you to determine the difference between
the contents of two snapshots and move the difference to a specified target directory. Consider the following example:

hadoop distcp -diff snap_old snap_new -update /data/source_dir /data/target_dir

The command in this example determines the changes between the snapshots snap_old and snap_new present in the
source_dir directory, and updates the target_dirdirectory with the changes.

The following conditions must be satisfied for the content changes to be moved to /data/target_dir:

• Both /data/source_dir and /data/target_dir are distributed file system paths.
• The snapshots snap_old and snap_new are created for /data/source_dir such that snap_old is older than snap_new.
• The /data/target_dir path also contains snap_old. In addition, no changes are made to /data/target_dir after the

creation of snap_old.

CLI commands to perform snapshot operations
As an administrator, you can enable or disable snapshot creation on a directory. These operations require the
superuser privilege. As a user; you can create, delete, or rename snapshots on a directory that has snapshot creation
enabled. These operations require either the superuser privilege or the owner privilege on the directory.

Administrator operations
The following table lists the snapshot-related administrator operations that you can on specified directories:

Operation Command

Enable snapshot creation on a directory hdfs dfsadmin -allowSnapshot <path>

Disable snapshot creation on a directory hdfs dfsadmin -disallowSnapshot <path>

For more information about these commands, see https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsSnapshots.html#Administrator_Operations.

User operations
The following table lists the user operations that you can perform on snapshots:

Operation Command

Create snapshots hdfs dfs -createSnapshot <path> [<snapshotName>]

Delete snapshots hdfs dfs -deleteSnapshot <path> <snapshotName>

Rename snapshots hdfs dfs -renameSnapshot <path> <oldName> <n
ewName>

List directories on which snapshot creation is enabled
(snapshottable directories)

hdfs lsSnapshottableDir

List snapshots on a snapshottable directory with their
IDs and timestamp of creation

hdfs lsSnapshot

14

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#Administrator_Operations
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#Administrator_Operations

Cloudera Runtime Data protection

Operation Command

List differences between contents of snapshots hdfs snapshotDiff <path> <fromSnapshot> <toSnaps
hot>

For more information about these commands, see https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/HdfsSnapshots.html#User_Operations.

Managing snapshot policies using Cloudera Manager
Cloudera Manager enables the creation of snapshot policies that define the directories or tables for which snapshots
should be taken, the intervals at which snapshots should be taken, and the number of snapshots that should be kept for
each snapshot interval.

For example, you can create a policy that takes both daily and weekly snapshots, and specify that seven daily
snapshots and five weekly snapshots should be maintained.

Create a snapshot policy
You can use Cloudera Manager to create snapshot policies for a directory.

Before you begin
The directory for which you want to create a snapshot policy must be snapshottable.

Procedure

1. Select Backup Snapshot Policies in the left navigation bar.

Existing snapshot policies are shown in a table on the Snapshot Policies page.

2. Click Create Snapshot Policy.

The Create Snapshot Policy window displays.

3. From the drop-down list, select the service (HDFS or HBase) and cluster for which you want to create a policy.

4. Provide a name for the policy and, optionally, a description.

5. Specify the directories, namespaces or tables to include in the snapshot.

Important: Do not take snapshots of the root directory.

• For an HDFS service, select the paths of the directories to include in the snapshot. The drop-down list allows
you to select only directories that are enabled for snapshot creation. If no directories are enabled for snapshot
creation, a warning displays.

Click to add a path and to remove a path.
• For an HBase service, list the tables to include in your snapshot. You can use a Java regular expression to

specify a set of tables. For example, finance.* match all tables with names starting with finance. You can also
create a snapshot for all tables in a given namespace, using the {namespace}:.* syntax.

6. Specify the snapshot Schedule.

You can schedule snapshots hourly, daily, weekly, monthly, or yearly, or any combination of those. Depending
on the frequency you select, you can specify the time of day to take the snapshot, the day of the week, day of the
month, or month of the year, and the number of snapshots to keep at each interval. Each time unit in the schedule
information is shared with the time units of larger granularity. That is, the minute value is shared by all the
selected schedules, hour by all the schedules for which hour is applicable, and so on. For example, if you specify
that hourly snapshots are taken at the half hour, and daily snapshots taken at the hour 20, the daily snapshot will
occur at 20:30.

7. Specify whether Alerts should be generated for various state changes in the snapshot workflow.

You can alert on failure, on start, on success, or when the snapshot workflow is aborted.

15

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html#User_Operations
https://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Cloudera Runtime Data protection

8. Click Save Policy.

The new Policy displays on the Snapshot Policies page.

Edit or delete a snapshot policy
You can use Cloudera Manager to edit or delete existing snapshot policies.

Procedure

1. Select Backup Snapshot Policies in the left navigation bar.

Existing snapshot policies are shown in a table on the Snapshot Policies page.

2.

Click next to a policy and select Edit Configuration or Delete.

3. If you want to edit the selected policy, make the required changes and click Save Policy.

Enable and disable snapshot creation using Cloudera Manager
For snapshots to be created, HDFS directories must be enabled for snapshots. You cannot specify a directory as part
of a snapshot policy unless it has been enabled for snapshots.

Procedure

1. From the Clusters tab, select the HDFS service.

2. Go to the File Browser tab.

3. Go to the directory you want to enable for snapshots.

4. In the File Browser, click the drop-down menu next to the full file path and select Enable Snapshots.

Note: Once you enable snapshots for a directory, you cannot enable snapshots on any of its
subdirectories. Snapshots can be taken only on directories that have snapshots enabled.

Note: To disable snapshots for a directory that has snapshots enabled, use Disable Snapshots from
the drop-down menu specified earlier. If snapshots of the directory exist, they must be deleted before
snapshots can be disabled.

Related Information
Enable snapshot creation on a directory

Create snapshots using Cloudera Manager
You can use Cloudera Manager to create snapshots on a snapshottable directory.

Procedure

1. From the Clusters tab, select the HDFS service.

2. Go to the File Browser tab.

3. Go to the directory for which you want to create the snapshot.

4. Click the drop-down menu next to the full path name and select Take Snapshot.

The Take Snapshot screen displays.

5. Enter a name for the snapshot.

6. Click OK.

The Take Snapshot button is present, enabling an immediate snapshot of the directory.

7. To take a snapshot, click Take Snapshot, specify the name of the snapshot, and click Take Snapshot.

The snapshot is added to the snapshot list. Any snapshots that have been taken are listed by the time at which they
were taken, along with their names and a menu button.

16

Cloudera Runtime Data protection

Related Information
Create snapshots on a directory

Delete snapshots using Cloudera Manager
You can use Cloudera Manager select from a snapshot configured for a directory and delete it.

About this task

Procedure

1. From the Clusters tab, select the HDFS service.

2. Go to the File Browser tab.

3. Go to the directory with the snapshot you want to delete.

4.
In the list of snapshots, locate the snapshot you want to delete and click .

5. Select Delete.

Related Information
Create snapshots on a directory

Recover data from a snapshot

Configuring HDFS trash
The Hadoop trash feature helps prevent accidental deletion of files and directories.

When you delete a file in HDFS, the file is not immediately expelled from HDFS. Deleted files are first moved to
the /user/<username>/.Trash/Current directory, with their original filesystem path being preserved. After a user-
configurable period of time (fs.trash.interval), a process known as trash checkpointing renames the Current directory
to the current timestamp, that is, /user/<username>/.Trash/<timestamp>. The checkpointing process also checks the
rest of the .Trash directory for any existing timestamp directories and removes them from HDFS permanently. You
can restore files and directories in the trash simply by moving them to a location outside the .Trash directory.

Important: The trash feature is enabled by default. Cloudera recommends that you enable it on all
production clusters.

Trash behavior with HDFS Transparent Encryption enabled
You can delete files or directories that are part of an HDFS encryption zone. Moving and renaming files or directories
is an important part of trash handling in HDFS.

HDFS creates a local .Trash directory every time a new encryption zone is created. For example, when you create an
encryption zone, /enc_zone, HDFS will also create the /enc_zone/.Trash/ sub-directory. Files deleted from enc_zone
are moved to /enc_zone/.Trash/<username>/Current/. After the checkpoint, the Current directory is renamed to the
current timestamp, /enc_zone/.Trash/<username>/<timestamp>.

If you delete the entire encryption zone, it will be moved to the .Trash directory under the user's home directory,
/users/<username>/.Trash/Current/enc_zone. Trash checkpointing will occur only after the entire zone has been
moved to /users/<username>/.Trash. However, if the user's home directory is already part of an encryption zone, then
attempting to delete an encryption zone will fail because you cannot move or rename directories across encryption
zones.

If the trash directory is deleted by mistake, create the .Trash directory using the -provisionTrash option as follows:

hdfs crypto -provisionTrash -path /enc_zone

17

Cloudera Runtime Data protection

If required, you can use the following commands to manually create the .Trash directory within an encryption zone.
Make sure you run the commands as an admin user.

hdfs dfs -mkdir /enc_zone/.Trash
hdfs dfs -chmod 1777 /enc_zone/.Trash

Enabling and disabling trash
You can use Cloudera Manager to enable and disable HDFS trash.

Procedure

1. Go to the HDFS service.

2. Click the Configurations tab.

3. Select Scope Gateway .

4. Select or clear the Use Trash checkbox.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.

5. Restart the cluster and deploy the cluster client configuration.

Setting the trash interval
You can use Cloudera Manager to specify the time period after which a trash checkpoint directory is deleted.

Procedure

1. Go to the HDFS service.

2. Click the Configurations tab.

3. Select Scope NameNode .

4. Specify the Filesystem Trash Interval property, which controls the number of minutes after which a trash
checkpoint directory is deleted and the number of minutes between trash checkpoints.

For example, to enable trash so that deleted files are deleted after 24 hours, set the value of the Filesystem Trash
Interval property to 1440.

Note: The trash interval is measured from the point at which the files are moved to trash, not from the last
time the files were modified.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.

5. Restart all NameNodes.

Preventing inadvertent deletion of directories
You can prevent inadvertent deletion of important data from your HDFS cluster by marking specific directories as
protected. Marking a directory as protected prevents its recursive deletion. However, this does not protect against
graceful deletion of files under the directory. You can delete the files by moving them to trash.

Procedure

1. Go to the HDFS service.

2. Click the Configuration tab.

3. Set the Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml property as specified:

• Name: fs.protected.directories
• Value: Specify a comma-separated list of the directories that you want to mark as protected; for example, /

user, /data, and so on.

4. Enter a Reason for Change, and then click Save Changes to save the property changes.

18

Cloudera Runtime Data protection

5. Restart the cluster.

Note: By default, subdirectories present under directories (fs.protected.directories) are not protected. You
must set the dfs.protected.subdirectories.enable parameter to true to protect subdirectories. For example, if
you set the fs.protected.directories parameter to true for the parent directory testA, the subdirectory testB
under testA(/testA/testB) can be deleted or renamed if dfs.protected.subdirectories.enable is set to false.

19

	Contents
	Data protection
	Backing up HDFS metadata
	Introduction to HDFS metadata files and directories
	Files and directories
	NameNodes
	JournalNodes
	DataNodes

	HDFS commands for metadata files and directories
	Configuration properties

	Back up HDFS metadata
	Prepare to back up the HDFS metadata
	Backing up NameNode metadata
	Back up HDFS metadata using Cloudera Manager
	Restoring NameNode metadata
	Restore HDFS metadata from a backup using Cloudera Manager
	Perform a backup of the HDFS metadata

	Using HDFS snapshots for data protection
	Considerations for working with HDFS snapshots
	Enable snapshot creation on a directory
	Create snapshots on a directory
	Recover data from a snapshot
	Options to determine differences between contents of snapshots
	CLI commands to perform snapshot operations
	Managing snapshot policies using Cloudera Manager
	Create a snapshot policy
	Edit or delete a snapshot policy

	Enable and disable snapshot creation using Cloudera Manager
	Create snapshots using Cloudera Manager
	Delete snapshots using Cloudera Manager

	Configuring HDFS trash
	Trash behavior with HDFS Transparent Encryption enabled
	Enabling and disabling trash
	Setting the trash interval

	Preventing inadvertent deletion of directories

