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This section describes how to configure dynamic resource allocation for Apache Spark.

When the dynamic resource allocation feature is enabled, an application's use of executorsis dynamically adjusted
based on workload. This means that an application can relinquish resources when the resources are no longer needed,
and request them later when there is more demand. This feature is particularly useful if multiple applications share
resources in your Spark cluster.

f Important: Dynamic resource allocation does not work with Spark Streaming.

Y ou can configure dynamic resource allocation at either the cluster or the job level:

e Cluster level: Dynamic resource alocation is enabled by default. The associated shuffle service starts
automatically.

« Joblevel: You can customize dynamic resource allocation settings on a per-job basis. Job settings override cluster
configuration settings.

Cluster configuration is the default, unless overridden by job configuration.

The following subsections describe each configuration approach, followed by alist of dynamic resource allocation
properties.

Use the following steps to review and customize dynamic resource all ocation settings.

Dynamic resource allocation requires an external shuffle service that runs on each worker node as an auxiliary service
of NodeManager. This service is started automatically; no further steps are needed.

Dynamic resource allocation is enabled by default. To modify dynamic allocation settings, use the following
procedure.

1. From the Cloudera Data Platform (CDP) interface, click through to Cloudera Manager for the cluster running
Spark.

Go to the Spark service page (ClustersSpark service).

Click on the Configuration tab.

In the Search box, enter dynamicAllocation.

After making the changes you want, enter the reason for the change in the Reason for change... box, and then click
Save Changes.

6. Restart the Spark service (Spark serviceActionsRestart).
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Use the following steps to configure dynamic resource allocation for a specific job.

There are two ways to customize dynamic resource allocation properties for a specific job:
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* Include property valuesin the spark-submit command, using the -conf option.

This approach loads the default spark-defaults.conf file first, and then applies property values specified in your
spark-submit command.

Example:

spark-submit --conf “property_name=property_value”
» Create ajob-specific spark-defaults.conf file and passit to the spark-submit command.

This approach uses the specified properties file, without reading the default property file.
Example:

spark-submit --properties-file <property_file>

Dynamic resource allocation properties

The following tables provide more information about dynamic resource allocation properties. These properties can be
accessed by clicking through to Cloudera Manager from the Cloudera Data Platform interface for the cluster running

Spark.

Table 1: Dynamic Resource Allocation Properties

Property Name Default Value Description

spark.dynamicAllocation.enabled false for Spark jobs Enable dynamic allocation of executorsin
Spark applications.
spark.shuffle.service. enabled true Enables the external shuffle service. The

external shuffle service preserves shuffle files
written by executors so that the executors can
be deallocated without losing work. Must be
enabled if dynamic alocation is enabled.

spark.dynamicAllocation. initialExecutors | Same value as spark.dynamicAllocation. When dynamic allocation is enabled, number
minExecutors of executors to alocate when the application
starts.

Must be greater than or equal to the minExecu
torsvalue, and less than or equal to the maxE
xecutors value.

spark.dynamicAllocation. maxExecutors infinity When dynamic allocation is enabled,
maximum number of executors to allocate.
By default, Spark relieson YARN to control
the maximum number of executorsfor the
application.

spark.dynamicAllocation. minExecutors 0 When dynamic allocation is enabled,
minimum number of executorsto keep alive
while the application is running.

spark.dynamicAllocation. executorldleT 60 seconds (60s) When dynamic allocation is enabled, time
imeout after which idle executors will be stopped.
spark.dynamicAllocation.  cachedExecutorl | infinity When dynamic alocation is enabled, time
dleTimeout after which idle executors with cached RDD
blocks will be stopped.
spark.dynamicAllocation.  schedulerBacklo | 1 second (1s) When dynamic allocation is enabled, timeout
gTimeout before requesting new executors when there
are backlogged tasks.
spark.dynamicAllocation.  sustainedSchedu | Same value as schedulerBacklogTimeout When dynamic alocation is enabled, timeout
lerBacklogTimeout before requesting new executors after the

initial backlog timeout has already expired.
By default thisis the same value as the initial
backlog timeout.
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Apache Dynamic Resource Allocation

When you create an environment in the Cloudera Data Platform (CDP) Management Console, it automatically creates
aKerberos- and TL S-enabled data lake cluster. Data hub clusters are linked to environments, and therefore also have
Kerberos enabled by default. Y ou do not need to do anything to enable Kerberos or TLS for Apache Spark in CDP.
Disabling security is not supported.

To submit Spark jobs to the cluster, users must authenticate with their Kerberos credentials. For more information,
see the Environments documentation.

Spark authentication here refers to an internal authentication mechanism, and not to Kerberos authentication, which is
enabled automatically for all Cloudera Data Platform deployments.

Minimum Required Role: Security Administrator (also provided by Full Administrator)

Spark has an internal mechanism that authenticates executors with the driver controlling a given application. This
mechanism is enabled using the Cloudera Manager Admin Console, as detailed below. Cluster administrators can
enable the spark.authenticate mechanism to authenticate the various processes that support a Spark application.

To enable this feature on the cluster:

In the Cloudera Data Platform (CDP) Management Console, go to Data Hub Clusters.
Find and select the cluster you want to configure.
Click thelink for the Cloudera Manager URL.
Goto Clusters <Cluster Name>Spark serviceConfiguration .
Scroll down to the Spark Authentication setting, or search for spark.authenticate to find it.
In the Spark Authentication setting, click the checkbox next to the Spark (Service-Wide) property to activate the
setting.
Enter the reason for the change at the bottom of the screen, and then click Save Changes.
Restart Y ARN:
a) Select Clusters YARN .
b) Select Restart from the Actions drop-down selector.
9. Re-deploy the client configurations:

a) Sedect Clusters Cluster_name

b) Select Deploy Client Configurations from the Actions drop-down selector.
10. Restart stale services.
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Before enabling encryption, you must first enable Spark authentication.

In the Cloudera Data Platform (CDP) Management Console, go to Data Hub Clusters.
Find and select the cluster you want to configure.

Click thelink for the Cloudera Manager URL.

Goto Clusters <Cluster Name>Spark serviceConfiguration .

Search for the Enable Network Encryption property. Use the checkbox to enable encrypted communication
between Spark processes belonging to the same application.

6. Search for the Enable 1/0O Encryption property. Use the checkbox to enabled encryption for temporary shuffle and
cache files stored by Spark on local disks.

7. Enter the reason for the change at the bottom of the screen, and then click Save Changes.
8. Re-deploy the client configurations:

a) Select Clusters Cluster_name
b) Select Deploy Client Configurations from the Actions drop-down selector.

9. Restart stale services.
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All CDP clusters are secure by default. Disabling security on CDP clustersis not supported. To run a Spark
application on a secure cluster, you must first authenticate using Kerberos.

Users running Spark applications must first authenticate to Kerberos, using kinit, as follows:
ki nit user name@XAMPLE. COM

After authenticating to Kerberos, users can submit their applications using spark-submit as usual, as shown below.
This command submits one of the default Spark sample jobs using an environment variable as part of the path, so
modify as needed for your own use;

$ spark-subnmit --class org. apache. spark. exanpl es. SparkPi --nmaster yarn \
- -depl oy- node cl uster $SPARK HOVE/ | i b/ spar k- exanpl es.jar 10

For information on creating user accountsin CDP, see Onboarding Users.

Y ou can read compressed files using one of the following methods:

o textFile(path)
» hadoopFile(path,outputFormatClass)

Y ou can save compressed files using one of the following methods:

» saveAsTextFile(path, compressionCodecClass="codec class")
» saveAsHadoopFile(path,outputFormatClass, compressionCodecClass="codec class')

where codec _classis one of these classes:

e Qzip - org.apache.hadoop.io.compress.GzipCodec
* bzip2 - org.apache.hadoop.io.compress.BZip2Codec



https://docs.cloudera.com/management-console/cloud/user-management/topics/mc-onboarding-users.html

Cloudera Runtime Accessing compressed filesin Spark

e LZO - com.hadoop.compression.|zo.L zopCodec
*  Snappy - org.apache.hadoop.io.compress.SnappyCodec
» Deflate - org.apache.hadoop.io.compress.DeflateCodec

For examples of accessing Avro and Parquet files, see Spark with Avro and Parquet.
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