
Cloudera Runtime 7.1.7

Configuring Apache HBase High Availability
Date published: 2020-02-29
Date modified: 2021-07-30

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Enable HBase high availability using Cloudera Manager....................................4

HBase read replicas..4

Timeline consistency... 5

Keep replicas current... 5

Read replica properties..5

Configure read replicas using Cloudera Manager..6

Using rack awareness for read replicas... 7
Create a topology map... 7
Create a topology script... 8

Activate read replicas on a table.. 8

Request a timeline-consistent read... 8

Cloudera Runtime Enable HBase high availability using Cloudera Manager

Enable HBase high availability using Cloudera Manager

You can configure one or more backup Master role in Cloudera Manager to ensure that every component is highly
available.

About this task

HBase administrators can configure HBase clusters with High Availability, or HA. You must configure HA when
HBase applications require low-latency queries and can tolerate minimal (near-zero-second) staleness for read
operations. Examples include queries on remote sensor data, distributed messaging, object stores, and user profile
management.

Most aspects of HBase are highly available in a standard configuration. A cluster typically consists of one Master
and three or more RegionServers. To ensure that every component is highly available, configure one or more backup
Masters. The backup Masters run on other hosts than the active Master.

Procedure

1. In Cloudera Manager, select the HBase service.

2. Follow the process for adding a role instance and add a backup Master to a different host than the one on which
the active Master is running.

HBase read replicas

You can configure read replicas to enable the HMaster to distribute read-only copies of regions (replicas) to different
RegionServers in the cluster.

Without read replicas, only one RegionServer services a read request from a client, regardless of whether
RegionServers are colocated with other DataNodes that have local access to the same block. This ensures consistency
of the data being read. However, a RegionServer can become a bottleneck due to an underperforming RegionServer,
network problems, or other reasons that could cause slow reads. With read replicas enabled, the HMaster distributes
read-only copies of regions (replicas) to different RegionServers in the cluster. One RegionServer services the
default or primary replica, which is the only replica which can service write requests. If the RegionServer servicing
the primary replica is down, writes will fail. Other RegionServers serve the secondary replicas, follow the primary
RegionServer and only see committed updates. The secondary replicas are read-only, and are unable to service write
requests.

The secondary replicas can be kept up to date by reading the primary replica's HFiles at a set interval or by
replication. If they use the first approach, the secondary replicas may not reflect the most recent updates to the data
when updates are made and the RegionServer has not yet flushed the memstore to HDFS. If the client receives the
read response from a secondary replica, this is indicated by marking the read as "stale". Clients can detect whether
or not the read result is stale and react accordingly. Replicas are placed on different RegionServers, and on different
racks when possible. This provides a measure of high availability (HA), as far as reads are concerned.

If a RegionServer becomes unavailable, the regions it was serving can still be accessed by clients even before the
region is taken over by a different RegionServer, using one of the secondary replicas. The reads may be stale until
the entire WAL is processed by the new RegionServer for a given region. For any given read request, a client can
request a faster result even if it comes from a secondary replica, or if consistency is more important than speed, it can
ensure that its request is serviced by the primary RegionServer. This allows you to decide the relative importance of
consistency and availability, in terms of the CAP Theorem, in the context of your application, or individual aspects of
your application, using Timeline Consistency semantics.

4

Cloudera Runtime Timeline consistency

Timeline consistency

You can change your consistency level to TIMELINE to allow a more flexible standard of consistency than the
default HBase model of STRONG consistency.

A client can indicate the level of consistency it requires for a given read (Get or Scan) operation. The default
consistency level is STRONG, meaning that the read request is only sent to the RegionServer servicing the region.
This is the same behavior as when read replicas are not used. The other possibility, TIMELINE, sends the request to
all RegionServers with replicas, including the primary. The client accepts the first response, which includes whether it
came from the primary or a secondary RegionServer. If it came from a secondary, the client can choose to verify the
read later or not to treat it as definitive.

Keep replicas current

You can choose from two different mechanisms for keeping replicas up to date: using a timer or using replication.

Using a Timer: In this mode, replicas are refreshed at a time interval controlled by the configuration option
hbase.regionserver.storefile.refresh.period.

Using Replication: In this mode, replicas are kept current between a source and sink cluster using HBase Async
WAL replication. This works similarly to HBase’s multi-datacenter replication, but instead the data from a region
is replicated to the secondary regions. Each secondary replica always receives and observes the writes in the same
order that the primary region committed them. In some sense, this design can be thought of as in-cluster replication,
where instead of replicating to a different datacenter, the data goes to secondary regions to keep secondary region’s
in-memory state up-to-date. The data files are shared between the primary region and other replicas, so that no extra
storage overhead exists. However, the secondary regions contain recent non-flushed data in their memstores, which
increases the memory overhead. The primary region writes flush, compaction, and bulk load events to its WAL as
well, which are also replicated through WAL replication to secondaries. When they observe the flush or compaction
or bulk load event, the secondary regions replay the event to pick up the new files and drop the old ones.

Committing writes in the same order as in primary ensures that the secondaries do not diverge from the primary
regions data, however; the data might still be stale in secondary regions because the log replication is asynchronous.

Async WAL Replication is disabled by default. You can enable this feature by setting
hbase.region.replica.replication.enabled to true.

Read replica properties

You must understand the various properties to configure to enable support for read replicas in HBase.

5

Cloudera Runtime Configure read replicas using Cloudera Manager

Table 1: HBase Read Replica Properties

Property Name Default Value Description

hbase.region.replica.replication.enabled false The mechanism for refreshing the secondary
replicas. If set to false, secondary replicas are
not guaranteed to be consistent at the row level.
Secondary replicas are refreshed at intervals
controlled by a timer (hbase.regionserver.storefile
.refresh.period), and so are guaranteed to be at most
that interval of milliseconds behind the primary
RegionServer. Secondary replicas read from the
HFile in HDFS, and have no access to writes that
have not been flushed to the HFile by the primary
RegionServer.

If true, replicas are kept up-to-date using replication.

hbase.regionserver.storefile.refresh.period 0 (disabled) The period, in milliseconds, for refreshing the store
files for the secondary replicas. The default value of
0 indicates that the feature is disabled. Secondary
replicas update their store files from the primary
RegionServer at this interval.

If refreshes occur too often, this can create a
burden for the NameNode. If refreshes occur
too infrequently, secondary replicas will be less
consistent with the primary RegionServer.

hbase.ipc.client.specificThreadForWriting true Whether or not to enable interruption of RPC threads
at the client. This is required for region replicas with
fallback RPC’s to secondary regions. The default
value of true enables primary RegionServers to
access data from other regions' secondary replicas.

hbase.client.primaryCallTimeout.get 10000 µs The timeout period, in microseconds, an HBase
client waits for a response before the read is
submitted to a secondary replica if the read request
allows timeline consistency. The default value is
10000 µs. Lower values increase the number of
remote procedure calls while lowering latency.

hbase.client.primaryCallTimeout.multiget 10000 µs The timeout period, in milliseconds, before an
HBase client's multi-get request, such as HTab
le.get(List<GET>)), is submitted to a secondary
replica if the multi-get request allows timeline
consistency. Lower values increase the number of
remote procedure calls while lowering latency.

Configure read replicas using Cloudera Manager

You can configure read replicas using Cloudera Manager.

Procedure

1. Before you can use replication to keep replicas current, you must set the column attribute REGION_MEMST
ORE_REPLICATION to false for the HBase table, using HBase Shell or the client API.

2. In Cloudera Manager, select the HBase service.

3. Click the Configuration tab.

4. Select Scope > HBase or HBase Service-Wide .

5. Select Category > Advanced .

6. Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search
for it by typing its name in the Search box.

6

Cloudera Runtime Using rack awareness for read replicas

7. Create a configuration and paste it into the text field. The following example configuration demonstrates the
syntax:

<property>
 <name>hbase.regionserver.storefile.refresh.period</name>
 <value>0</value>
</property>
<property>
 <name>hbase.ipc.client.allowsInterrupt</name>
 <value>true</value>
 <description>Whether to enable interruption of RPC threads at the client
. The default value of true is
 required to enable Primary RegionServers to access other RegionServers
 in secondary mode. </description>
</property>
<property>
 <name>hbase.client.primaryCallTimeout.get</name>
 <value>10</value>
</property>
<property>
 <name>hbase.client.primaryCallTimeout.multiget</name>
 <value>10</value>
</property>

8. Click Save Changes to commit the changes.

9. Restart the HBase service.

Using rack awareness for read replicas

Rack awareness for read replicas is modeled after the mechanism used for rack awareness in Hadoop.

The default implementation, which you can override by setting hbase.util.ip.to.rack.determiner, to custom
implementation, is ScriptBasedMapping, which uses a topology map and a topology script to enforce distribution of
the replicas across racks.

Create a topology map
The topology map assigns hosts to racks. You can create a topology map using Cloudera Manager.

About this task

The topology map assigns hosts to racks. It is read by the topology script. A rack is a logical grouping, and does not
necessarily correspond to physical hardware or location. Racks can be nested. If a host is not in the topology map, it is
assumed to be a member of the default rack. The following map uses a nested structure, with two data centers which
each have two racks. All services on a host that are rack-aware will be affected by the rack settings for the host.

Procedure

• If you use Cloudera Manager, do not create the map manually. Instead, go to Hosts, select the hosts to assign to a
rack, and select Actions for Selected > Assign Rack .

<topology>
 <node name="host1.example.com" rack="/dc1/r1"/>
 <node name="host2.example.com" rack="/dc1/r1"/>
 <node name="host3.example.com" rack="/dc1/r2"/>
 <node name="host4.example.com" rack="/dc1/r2"/>
 <node name="host5.example.com" rack="/dc2/r1"/>
 <node name="host6.example.com" rack="/dc2/r1"/>

7

Cloudera Runtime Activate read replicas on a table

 <node name="host7.example.com" rack="/dc2/r2"/>
 <node name="host8.example.com" rack="/dc2/r2"/>
</topology>

Create a topology script
The topology script determines rack topology using the topology map.

About this task

The topology script determines rack topology using the topology map. By default, CDH uses /etc/hadoop/conf.cloude
ra.YARN-1/topology.py

Procedure

• To use a different script, set net.topology.script.file.name to the absolute path of the topology script.

Activate read replicas on a table

After enabling read replica support on your RegionServers, configure the tables for which you want read replicas to
be created.

About this task

After enabling read replica support on your RegionServers, configure the tables for which you want read replicas to
be created.

Procedure

• At table creation, to create a new table with read replication capabilities enabled, set the
REGION_REPLICATION property on the table. Use a command like the following, in HBase Shell:

hbase> create 'myTable', 'myCF', {REGION_REPLICATION => '3'}

• By altering an existing table, you can also alter an existing column family to enable or change the number of read
replicas it propagates, using a command similar to the following. The change will take effect at the next major
compaction.

hbase> disable 'myTable'
hbase> alter 'myTable', 'myCF', {REGION_REPLICATION => '3'}
hbase> enable 'myTable'

Request a timeline-consistent read

You can use request a timeline-consistent read in your application.

About this task

To request a timeline-consistent read in your application, use the get.setConsistency(Consistency.TIMELINE)
method before performing the Get or Scan operation.

To check whether the result is stale (comes from a secondary replica), use the isStale() method of the result object.
Use the following examples for reference.

8

Cloudera Runtime Request a timeline-consistent read

Procedure

• Get request

Get get = new Get(key);
get.setConsistency(Consistency.TIMELINE);
Result result = table.get(get);

• Scan request

Scan scan = new Scan();
scan.setConsistency(CONSISTENCY.TIMELINE);
ResultScanner scanner = table.getScanner(scan);
Result result = scanner.next();

• Scan request to a specific replica.

This example overrides the normal behavior of sending the read request to all known replicas, and only sends it to
the replica specified by ID.

Scan scan = new Scan();
scan.setConsistency(CONSISTENCY.TIMELINE);
scan.setReplicaId(2);
ResultScanner scanner = table.getScanner(scan);
Result result = scanner.next();

• Detect a stale result

You can also request timeline consistency using HBase Shell, allowing the result to come from a secondary
replica.

hbase> get 'myTable', 'myRow', {CONSISTENCY => "TIMELINE"}
hbase> scan 'myTable', {CONSISTENCY => 'TIMELINE'}

9

	Contents
	Enable HBase high availability using Cloudera Manager
	HBase read replicas
	Timeline consistency
	Keep replicas current
	Read replica properties
	Configure read replicas using Cloudera Manager
	Using rack awareness for read replicas
	Create a topology map
	Create a topology script

	Activate read replicas on a table
	Request a timeline-consistent read

