Cloudera Runtime 7.1.7

Backing up and recovering Apache Kudu

Date published: 2020-11-04
Date modified: 2021-08-05

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

S E o [T o= Tox QU o OSSPSR 4
BACK UP tBIES.....cee e b bbbttt 4
BACKUD TOO0IS......ceeteete ettt bbb bt bbbt bt btk e b e bt be et e nn e 4
LT aTc o CSI= U oL = T P PTTS 5
BaCKUP ITECLOMY SIIUCIUE.......veeeeeieeieree ettt ettt bbbtk b e et b e e e 5
Physical backups Of @n @Ntire NOUE..........couiiiiiie bbb 5

U o (U = 0 Y/ S 6
Restore tables from DACKUPS........cvii it eere e nesresbesresrententeseens 6
RECOVEr FrOM diSK TAIIUIE.......ccuiieeeictice bbbttt s e st nenes 7
RECOVEN FTOM TUIL iSKS....viietiieiiieetie ettt bbbttt e bt st 8
Bring a tablet that has lost a majority of replicas back ONliNe............ccooveiiriie s 8

Rebuild a Kudu fileSyStEM [AYOUL..........ccueiueieeceeiee s sttt st st e et e e e e ese e e eneerennn 9

Cloudera Runtime Kudu backup

Kudu supports both full and incremental table backups through a job implemented using Apache Spark.

Kudu backup and restore jobs use Apache Spark. Therefore, ensure that you install Apache Spark in your
environment. To download Apache Spark, see the Apache Spark documentation. Y ou can also review the Submitting
Soark applications topics.

Submitting Spark applications

Y ou can use the KuduBackup Spark job to backup one or more Kudu tables.g

When you first run the job for atable, afull backup is run. Additional runswill perform incremental backups which
will only contain the rows that have changed since the initial full backup. A new set of full backups can be forced at
anytime by passing the --forceFull flag to the backup job.

Following are some of the common flags that you can use while taking a backup:

e --kuduMasterAddresses: Thisis used to specify a comma-separated addresses of Kudu masters. The default value
islocahost.
« --rootPath: The root path is used to output backup data. It accepts any Spark-compatible path.

B Note: You can seethefull list of the job options by passing the --help flag.

The following code run a KuduBackup job which backs up the tables foo and bar to an HDFS directory:

spark-submt --class org.apache. kudu. backup. KuduBackup [***FULL PATH TO kudu
-backup2_2.11-1.12.0.jar***] \
- - kuduMast er Addr esses [***KUDU MASTER HOSTNAME 1***]: 7051, [***KUDU MASTER
HOSTNAME 2***]: 7051 \
--rootPath hdfs:///[***Dl RECTORY TO USE FOR BACKUP***] \
i mpal a: : [*** DATABASE NAME***].foo inpal a::[***DATABASE NAME***] . bar

An additional kudu-backup-tools JAR is available to provide some backup exploration and garbage collection
capabilities. Thisjar does not use Spark directly, but instead only requires the Hadoop classpath to run.

Commands:

o list: Lists the backupsin the rootPath
» clean: Cleans up old backed up datain the rootPath

B Note: You can seethefull list of the job options by passing the --help flag.

Following is an example execution which prints the command options:

java -cp $(hadoop cl asspat h): kudu- backup-tool s-1.12.0.jar org. apache. kudu. ba
ckup. KuduBackupCLI --hel p

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/running-spark-applications/topics/spark-submitting-apps.html

Cloudera Runtime Kudu backup

To generate alist of tables to backup using the kudu table list tool along with grep can be useful.
Following is an example that generates alist of al tables that start with my_db.:

kudu table list <master_addresses> | grep "ny_db\.*" | tr '\n

E Note: Thislist could be saved as a part of your backup process so that it can be used while restoring.

The backup directory structure in the rootPath is considered an internal detail and could change in future versions of
Kudu. Additionally, the format and content of the data and metadata files is meant for the backup and restore process
only and could change in future versions of Kudu. That said, understanding the structure of the backup rootPath and
how it is used can be useful when working with Kudu backups.

The backup directory structure in the rootPath is as follows:

/ <r oot Pat h>/ <t abl el d>- <t abl eNane>/ <backup-i d>/
. kudu- met adat a. j son
part-*.<for mat >

» rootPath: Can be used to distinguish separate backup groups, jobs, or concerns
« tableld: The uniqueinternal ID of the table being backed up
« tableName: The name of the table being backed up

« Note: Table names are URL encoded to prevent pathing issues

e backup-id: A way to uniquely identify/group the data for a single backup run

» kudu-metadata.json: Contains all of the metadata to support recreating the table, linking backups by time, and
handling data format changes

Written last so that failed backups will not have a metadata file and will not be considered at restore time or
backup linking time.

e part-*.<format>: The data files containing the tables data.
e Currently 1 part file per Kudu partition

« Incrementa backups contain an additional “RowAction” byte column at the end
e Currently the only supported format/suffix is parquet

Kudu does not provide a built-in physical backup and restore functionality yet. However, it is possible to create a
physical backup of a Kudu node (either tablet server or master) and restore it later.

Note:
IE The node to be backed up must be offline during the procedure, or else the backed up (or restored) data will
be inconsistent.

Certain aspects of the Kudu node (such as its hosthame) are embedded in the on-disk data. As such, it’s not
yet possible to restore a physical backup of anode onto another machine.

Cloudera Runtime Kudu recovery

1. Stop all Kudu processesin the cluster. This prevents the tablets on the backed up node from being rereplicated
elsewhere unnecessarily.

2. If creating a backup, make a copy of the WAL, metadata, and data directories on each node to be backed up. Itis
important that this copy preserve al file attributes as well as sparseness.

3. If restoring from a backup, delete the existing WAL, metadata, and data directories, then restore the backup via
move or copy. Aswith creating a backup, it isimportant that the restore preserve all file attributes and sparseness.

4, Start al Kudu processesin the cluster.

Kudu supports restoring tables from full and incremental backups through a restore job implemented using Apache

Spark.

Kudu backup and restore jobs use Apache Spark. Therefore, ensure that you install Apache Spark in your
environment. To download Apache Spark, see the Apache Spark documentation. Y ou can also review the Submitting
Soark applications topics.

Submitting Spark applications

Y ou can use the KuduRestore Spark job to restore one or more Kudu tables. For each backed up table, the KuduRest
ore job restores the full backup and each associated incremental backup until the full table state is restored.

Restoring the full series of full and incremental backups is possible because the backups are linked via the from_ms
and to_msfields in the backup metadata. By default the restore job will create tables with the same name as the table
that was backed up. If you want to side-load the tables without affecting the existing tables, you can pass the --tableS
uffix flag to append a suffix to each restored table.

Following are the common flags that are used when restoring the tables:
e --rootPath: The root path to the backup data. Accepts any Spark-compatible path.

See Backup directory structure for the directory structure used in the rootPath.

e --kuduMasterAddresses. Comma-separated addresses of Kudu masters. The default value is localhost.

» --createTables: If set to true, the restore process creates the tables. Set it to false if the target tables already exist.
The default value istrue.

o --tableSuffix: If set, it adds a suffix to the restored table names. Only used when createTablesis true.

e -timestampMs: A UNIX timestamp in milliseconds that defines the latest time to use when selecting restore
candidates. The default is System.currentTimeMillis().

o <table>...: A list of tablesto restore.

E Note: You can seethefull list of the job options by passing the --help flag.

Following is an example of a KuduRestore job execution which restores the tables foo and bar from the HDFS
directory kudu-backups:

spark-submt --class org.apache. kudu. backup. KuduRest or e kudu-backup2 2. 11-1.
12.0.jar \

- - kuduMast er Addr esses nmast er 1- host , nast er - 2- host , mast er - 3- host \

--root Path hdfs:///kudu-backups \

foo bar

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/running-spark-applications/topics/spark-submitting-apps.html

Cloudera Runtime Kudu recovery

Backup directory structure

Kudu nodes can only survive failures of disks on which certain Kudu directories are mounted. For more information
about the different Kudu directory types, see the Directory configuration topic.

The following table summarizes the resilience to disk failure in different releases of Apache Kudu.

Master All All
Tablet Server Directory containing WALSs All
Tablet Server Directory containing tablet metadata All
Tablet Server Directory containing data blocks only Pre-1.6.0

When adisk failure occurs that does not lead to a crash, Kudu will stop using the affected directory, shut down tablets
with blocks on the affected directories, and automatically re-replicate the affected tablets to other tablet servers. The
affected server will remain alive and print messages to the log indicating the disk failure, for example:

E1205 19: 06: 24. 163748 27115 data_dirs.cc:1011] Directory /data/8/ kudu/data m
arked as failed

E1205 19: 06: 30. 324795 27064 | og_bl ock_manager. cc: 1822] Not using report from
[dat a/ 8/ kudu/ data: 10 error: Could not open contai ner 0a6283cab82d4e75848f 4
9772d2638f e: /dat a/ 8/ kudu/ dat a/ 0a6283cab82d4e75848f 49772d2638f e. net adat a: Re
ad-only file system (error 30)

E1205 19: 06: 33. 564638 27220 ts_tabl et _manager.cc: 946] T 4957808439314e0d9
7795c1394348d80 P 70f 7ee6lead54b1885d819f 354eb3405: aborting tabl et bootstra
p: tablet has data in a failed directory

Whilein this state, the affected node will avoid using the failed disk, leading to lower storage volume and reduced
read parallelism. The administrator can remove the failed directory from the --fs_data dirs gflag to avoid seeing these
errors.

When the disk is repaired, remounted, and ready to be reused by Kudu, take the following steps:

1. Make surethat the Kudu portion of the disk is completely empty.
2. Stop thetablet server.
3. Updatethe --fs data dirs gflag to add /data/3, on the server with the disk failure. For example,

$ sudo -u kudu kudu fs update_dirs --force --fs_wal _dir=/wals --fs_data_
dirs=/data/1,/datal/2,/data/3

4. Start the tablet server.
5. Run ksck to verify cluster health, on any kudu server in the cluster. For example:

$ sudo -u kudu kudu cluster ksck master-01. exanpl e. com

Cloudera Runtime Kudu recovery

Note: Note that existing tablets will not stripe to the restored disk, but any new tablets will stripe to the
E restored disk.

Directory configurations
Changing directory configuration

By default, Kudu reserves a small amount of space, 1% by capacity, in its directories. Kudu considers adisk full if
thereis less free space available than the reservation. Kudu nodes can only tolerate running out of space on diskson
which certain Kudu directories are mounted.

The following table describes this behavior for each type of directory. The behavior is uniform across masters and

tablet servers.
Kudu Directory Type Crash on Full Disk?
Directory containing WALs Yes
Directory containing tablet metadata Yes
Directory containing data blocks only No (see below)

Prior to Kudu 1.7.0, Kudu stripes tablet data across all directories, and will avoid writing datato full directories. Kudu
will crash if all data directories are full.

In 1.7.0 and later, new tablets are assigned a disk group consisting of data directories. The number of data directories
are as specified by the -fs _target _data dirs per_tablet flag with the default being 3. If Kudu is not configured with
enough data directories for afull disk group, al data directories are used. When a data directory is full, Kudu will
stop writing new datato it and each tablet that uses that data directory will write new datato other data directories
within its group. If all data directories for atablet are full, Kudu will crash. Periodically, Kudu will check if full data
directories are still full, and will resume writing to those data directories if space has become available.

If Kudu does crash because its data directories are full, freeing space on the full directories will allow the affected
daemon to restart and resume writing. Note that it may be possible for Kudu to free some space by running:

$ sudo -u kudu kudu fs check --repair

However, the above command may also fail if there istoo little space left.

It isalso possible to alocate additional data directoriesto Kudu in order to increase the overall amount of storage
available. Note that existing tablets will not use new data directories, so adding a new data directory does not resolve
issues with full disks.

Directory configurations
Changing directory configuration

If atablet has permanently lost a majority of its replicas, it cannot recover automatically and operator intervention is
required. If the tablet servers hosting a majority of the replicas are down (i.e. onesreported as" TS unavailable" by
ksck), they should be recovered instead if possible.

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/kudu-configuration/topics/kudu-directory-configurations.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/kudu-configuration/topics/kudu-changing-directory-configuration.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/kudu-configuration/topics/kudu-directory-configurations.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/kudu-configuration/topics/kudu-changing-directory-configuration.html

Cloudera Runtime Kudu recovery

Attention: The steps below may cause recent edits to the tablet to be lost, potentially resulting in permanent
dataloss. Only attempt the procedure below if it isimpossible to bring a majority back online.

Suppose atablet has lost amajority of itsreplicas. Thefirst step in diagnosing and fixing the problem isto examine
the tablet's state using ksck:

$ sudo -u kudu kudu cl uster ksck --tabl et s=e822cab6c0584bc0858219d1539al17e6
mast er - 00, mast er- 01, mast er - 02
Connected to the Master
Fetched info fromall 5 Tablet Servers
Tabl et €822cab6c0584bc0858219d1539al7e6 of table 'ny _table' is unavail able:
2 replica(s) not RUNNI NG
638a20403e3e4ae3b55d4d07d920e6de (tserver-00: 7150) : RUNN NG
9a56f a85a38a4edc99c6229chab8aecaa (tserver-01:7150): bad state
St at e: FAI LED
Data state: TABLET_DATA READY
Last status: <failure nessage>
c311f ef 7708a4cf 9bblla3edcbcaab8c (tserver-02:7150): bad state
St at e: FAI LED
Data state: TABLET DATA READY
Last status: <failure nessage>

This output shows that, for tablet e822cab6c0584bc0858219d1539al7e6, the two tablet replicas on tserver-01 and tser
ver-02 failed. The remaining replicais not the leader, so the leader replicafailed as well. This means the chance of
datalossis higher since the remaining replica on tserver-00 may have been lagging. In general, to accept the potential
data loss and restore the tablet from the remaining replicas, divide the tablet replicas into two groups:

1. Healthy replicas: Thosein RUNNING state as reported by ksck
2. Unhedlthy replicas

For example, in the above ksck output, the replica on tablet server tserver-00 is healthy while the replicas on tserver-
01 and tserver-02 are unhealthy. On each tablet server with a healthy replica, alter the consensus configuration to
remove unhealthy replicas. In the typical case of 1 out of 3 surviving replicas, there will be only one healthy replica,
so the consensus configuration will be rewritten to include only the healthy replica.

$ sudo -u kudu kudu renote_replica unsafe_change_config tserver-00: 7150 <tab
| et-id> <tserver-00-uui d>

where <tablet-id> is e822cab6c0584bc0858219d1539a17e6 and <tserver-00-uuid> is the uuid of tserver-00, 638a
20403e3edae3b55d4d07d920e6de.

Once the healthy replicas’ consensus configurations have been forced to exclude the unhealthy replicas, the healthy
replicas will be able to elect aleader. The tablet will become available for writes though it will still be under-
replicated. Shortly after the tablet becomes available, the leader master will notice that it is under-replicated, and
will cause the tablet to re-replicate until the proper replication factor is restored. The unhealthy replicas will be
tombstoned by the master, causing their remaining data to be del eted.

In the event that critical filesare lost, i.e. WALS or tablet-specific metadata, all Kudu directories on the server must
be deleted and rebuilt to ensure correctness. Doing so will destroy the copy of the data for each tablet replica hosted
on the local server. Kudu will automatically re-replicate tablet replicas removed in this way, provided the replication
factor is at least three and all other servers are online and healthy.

B Note: These steps use atablet server as an example, but the steps are the same for Kudu master servers.

Cloudera Runtime

Kudu recovery

f Warning: If multiple nodes need their FS layouts rebuilt, wait until all replicas previously hosted on each

node have finished automatically re-replicating el sewhere before continuing. Failure to do so can result in
permanent data loss.

f Attention: Before proceeding, ensure the contents of the directories are backed up, either as a copy or in the

1

3.

form of other tablet replicas.

Thefirst step to rebuilding a server with a new directory configuration is emptying all of the server’s existing
directories. For example, if atablet server is configured with --fs_wal _dir=/data/0/kudu-tserver-wal, --fs_met
adata_dir=/data/O/kudu-tserver-meta, and --fs_data dirs=/data/1/kudu-tserver,/data/2/kudu-tserver, the following
commands will remove the WAL directory’s and data directories contents:

Note: this will delete all of the data fromthe | ocal tablet server.
$ rm-rf /data/0/ kudu-tserver-wal/* /data/0/kudu-tserver-nmeta/* /datal/1l/k
udu-tserver/* /datal/ 2/ kudu-tserver/*

If using Cloudera Manager, update the configurations for the rebuilt server to include only the desired directories.
Make sure to only update the configurations of serversto which changes were applied, rather than of the entire
Kudu service.

After directories are deleted, the server process can be started with the new directory configuration. The
appropriate sub-directories will be created by Kudu upon starting up.

10

	Contents
	Kudu backup
	Back up tables
	Backup tools
	Generate a table list
	Backup directory structure
	Physical backups of an entire node

	Kudu recovery
	Restore tables from backups
	Recover from disk failure
	Recover from full disks
	Bring a tablet that has lost a majority of replicas back online
	Rebuild a Kudu filesystem layout

