
Cloudera Runtime 7.1.7 SP2

Managing Cloudera Search
Date published: 2019-11-19
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/


Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Runtime | Contents | iii

Contents

Managing collection configuration using configs or instance directories............ 4
Cloudera Search config templates........................................................................................................................4
Generating collection configuration using configs.............................................................................................. 5
Securing configs with ZooKeeper ACLs and Ranger......................................................................................... 6
Generating Solr collection configuration using instance directories................................................................... 7
Modifying a collection configuration generated using an instance directory......................................................8
Converting instance directories to configs...........................................................................................................9
Cloudera Search configuration files...................................................................................................................10
Using custom JAR files with Search................................................................................................................. 10
Retrieving the clusterstate.json file.................................................................................................................... 12

Managing collections in Search.............................................................................12
Creating a Solr collection...................................................................................................................................12
Viewing existing collections.............................................................................................................................. 13
Deleting all documents in a collection.............................................................................................................. 14
Deleting a collection...........................................................................................................................................14
Updating the schema in a collection..................................................................................................................15

Creating a replica of an existing shard................................................................ 15

Migrating Solr replicas.......................................................................................... 15

Backing up a collection from HDFS.....................................................................18

Backing up a collection from local file system.................................................... 20

Restoring a collection............................................................................................. 23

Defining a backup target in solr.xml....................................................................25



Cloudera Runtime Managing collection configuration using configs or instance
directories

Managing collection configuration using configs or
instance directories

Both configs and instance directories are configuration sets for Solr collections that can be referenced by their
respective names. Although configs and instance directories are functionally identical from the perspective of the Solr
server, there are a number of important administrative differences between these two implementations.

The solrctl utility includes the config and instancedir commands for managing configuration. Configs and instance
directories refer to the same thing: named configuration sets used by collections, as specified by the solrctl collection
--create -c [***CONFIG NAME***]    command.

Table 1: Config and instance directory comparison

Attribute Config Instance Directory

Security • In a Kerberos-enabled cluster, the
ZooKeeper znodes associated with
configurations created using the solrctl 
config command automatically have
proper ZooKeeper ACLs.

• No ZooKeeper security support. Any user
can create, delete, or modify an instance
dir directly in ZooKeeper.

• Because instancedir updates ZooKeeper
directly, it is the client's responsibility
to add the proper ACLs, which can be
cumbersome.

Creation method Generated from existing configs or instance
directories in ZooKeeper using the ConfigSets
API.

Manually edited locally and re-uploaded
directly to ZooKeeper using solrctl utility.

Template support • Predefined templates are available. These
can be used as the basis for creating
additional configs. Additional templates
can be created by creating configs that are
immutable.

• Mutable configs that use a managed
schema can only be modified using
the Schema API as opposed to being
manually edited. As a result, configs are
less flexible, but they are also less error-
prone than instance directories.

One standard template.

Cloudera Search config templates
Config templates are immutable configuration templates that you can use as a starting point when creating configs
for Solr collections. Cloudera Search contains templates by default and you can define new ones based on existing
configs.

Configs can be declared as immutable, which means they cannot be deleted or have their Schema updated by the
Schema API. Immutable configs are uneditable config templates that are the basis for additional configs. After a
config is made immutable, you cannot change it back without accessing ZooKeeper directly as the solr (or solr@EXA
MPLE.COM principal, if you are using Kerberos) super user.

Solr provides a set of immutable config templates. These templates are only available after Solr initialization, so
templates are not available in upgrades until after Solr is initialized or re-initialized. Templates include:

Table 2: Available Config Templates and Attributes

Template Name Supports Schema API Uses Schemaless Solr

managedTemplate Yes No

schemalessTemplate Yes Yes

4



Cloudera Runtime Managing collection configuration using configs or instance
directories

Note:  schemalessTemplate is the same as the template generated by the solrctl instancedir --generate
command.

Config templates are managed using the solrctl config command. For example:

• To create a new config based on the managedTemplate template:

solrctl config --create [***NEW CONFIG***] managedTemplate -p immutable=fa
lse

Replace [***NEW CONFIG***] with the name of the config you want to create.
• To create a new template (immutable config) from an existing config:

solrctl config --create [***NEW TEMPLATE***] [***EXISTING CONFIG***] -p 
immutable=true

Replace [***NEW TEMPLATE***] with a name for the new template you want to create and [***EXISTING
CONFIG***] with the name of the existing config that you want to base [***NEW TEMPLATE***] on.

Generating collection configuration using configs
You must create a collection configuration prior to creating a Solr collection. The configuration files are created in
ZooKeeper based on existing templates using the ConfigSets API. Learn how to create one using configs.

About this task
Configs are named configuration sets that you can reference when creating collections.

You can manage configuration objects directly using the solrctl config command, which is a wrapper script for the
Solr ConfigSets API.

solrctl config --create [***NEW CONFIG***] [***TEMPLATE***] [-
p [***NAME***]=[***VALUE***]]

Procedure

1. If you are using Kerberos, kinit as a user with permission to create the collection configuration:

kinit solradmin@EXAMPLE.COM

Replace EXAMPLE.COM with your Kerberos realm name.

2. To generate configuration files for a collection, run the following command:

solrctl config --create [***NEW CONFIG***] [***TEMPLATE***] -p immutabl
e=false

where
[***NEW CONFIG***]

is the user-specified name of the config

[***TEMPLATE***]

is the name of an existing config template

To list all available config templates, use the solrctl          instancedir --list command.

-p           [***NAME***]=[***VALUE***]       

Overrides a [***TEMPLATE***] setting. The only config property that you can override is immu
table, so the possible options are -p immutable=true and -p immutable=false. If you are copying an

5



Cloudera Runtime Managing collection configuration using configs or instance
directories

immutable config, such as a template, use -p          immutable=false to make sure that you can edit
the new config.

For example, to create the configuration logs_config based on managedTemplate:

solrctl config --create logs_config managedTemplate -p immutable=false

Securing configs with ZooKeeper ACLs and Ranger
Learn how you can restrict access to configuration sets by setting ZooKeeper Acces control Lists (ACLs) on all
znodes under and including the /solr directory and using Ranger to control access to the ConfigSets API.

Before you begin
Ranger requires Kerberos authentication.

About this task

The solrctl instancedir command interacts directly with ZooKeeper, and therefore cannot be protected by Ranger.
Because the solrctl config command is a wrapper script for the ConfigSets API, it can be protected by Ranger.

To force users to use the ConfigSets API, you must set all ZooKeeper znodes under and including /solr to read-only
(except for the solr user).

After completing these steps, you cannot run commands such as solrctl instancedir    --create or solrctl instancedir 
--delete without first authenticating as the solr@EXAMPLE.COM super user principal. Unauthenticated users can
still run solrctl instancedir --list and solrctl instancedir --get, because those commands only perform read operations
against ZooKeeper.

Procedure

1. Create a jaas.conf file containing the following:

Client {
           com.sun.security.auth.module.Krb5LoginModule required
           useKeyTab=false
           useTicketCache=true
           principal="solr@[***EXAMPLE.COM***]";
           };
         

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

2. Set the LOG4J_PROPS environment variable so that it points to a log4j.properties file:

export LOG4J_PROPS=/etc/zookeeper/conf/log4j.properties

3. Set the ZKCLI_JVM_FLAGS environment variable:

export ZKCLI_JVM_FLAGS="-Djava.security.auth.login.config=[***PATH TO
 JAAS.CONF FILE***] \
             -DzkACLProvider=org.apache.solr.common.cloud.SaslZkACLProvid
er \
             -Droot.logger=INFO,console"

Replace [***PATH TO JAAS.CONF FILE***] with the path pointing to the jaas.conf file you just created.

6



Cloudera Runtime Managing collection configuration using configs or instance
directories

4. Authenticate as the solr user:

kinit solr@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

5. Run the zkcli.sh script as follows:

/opt/cloudera/parcels/CDH/lib/solr/bin/zkcli.sh -zkhost [***ZOOKEEPER
 SERVER HOSTNAME***]:2181 -cmd updateacls /solr

Replace [***ZOOKEEPER SERVER HOSTNAME***] with the hostname of a ZooKeeper server.

Generating Solr collection configuration using instance directories
You must create a collection configuration prior to creating a Solr collection. The configuration files for a Solr
collection are stored in a directory called instance directories. Learn how to create the directory and make it available
to Solr by uploading the contents to Zookeeper.

Before you begin

Note:

If you want to control access to configuration sets, you must enable ZooKeeper ACLs and use configs
instead.

Important:  Although you can create a collection directly in /var/lib/solr, Cloudera recommends using the
solrctl utility instead.

About this task
In this case, configuration files for a collection are contained in a directory called an instance directory. An instance
directory is a named set of configuration files. You can generate an instance directory template locally, edit the
configuration, and then upload the directory to ZooKeeper as a named configuration set. You can then reference this
named configuration set when creating a collection.

Procedure

1. If you are using Kerberos, kinit as a user with permission to create the collection configuration:

kinit solradmin@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

2. To generate a template instance directory, run the following command:

solrctl instancedir --generate $HOME/solr_configs

3. Customize the collection by directly editing the solrconfig.xml and schema.xml files created in $HOME/solr_c
onfigs/conf.

4. After completing the configuration, make it available to Solr by running the following command, which uploads
the contents of the instance directory to ZooKeeper:

solrctl config --upload [***COLLECTION_NAME***] $HOME/solr_configs

For example:

solrctl config --upload WEBLOGS $HOME/solr_configs

7



Cloudera Runtime Managing collection configuration using configs or instance
directories

5. Use the solrctl utility to verify that your instance directory uploaded successfully and is available to ZooKeeper.
List the uploaded instance directories as follows:

solrctl instancedir --list

If you used the --create command to create a collection named weblogs, the --list command returns weblogs.

Related Information
solrctl Reference

Modifying a collection configuration generated using an instance directory
The configuration files for a Solr collection are stored in a directory called instance directories. Learn how to modify
the directory and make it available to Solr by uploading the contents to ZooKeeper.

About this task
In this case, configuration files for a collection are contained in a directory called an instance directory. An instance
directory is a named set of configuration files. You can download and edit the configuration locally and then upload
the directory to ZooKeeper as a named configuration set. If your instance directory is already referenced by a
collection, make sure to reload it for configuration changes to take effect.

Procedure

1. If you are using Kerberos, kinit as a user with permission to create the collection configuration:

kinit solradmin@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

2. To download a template instance directory, run the following command:

solrctl instancedir --get $HOME/solr_configs

3. Customize the collection by directly editing the solrconfig.xml and schema.xml files.

4. After completing the configuration, make it available to Solr by running the following command, which uploads
the contents of the instance directory to ZooKeeper:

solrctl config --upload [***COLLECTION_NAME***] $HOME/solr_configs

For example:

solrctl config --upload WEBLOGS $HOME/solr_configs

5. Use the solrctl utility to verify that your instance directory uploaded successfully and is available to ZooKeeper.
List the uploaded instance directories as follows:

solrctl instancedir --list

If you used the --create command to create a collection named weblogs, the --list command returns weblogs.

6. After uploading the updated collection configuration. you need to reload every collection referencing that
instancce directory for the updates to take effect.

solrctl collection --reload [***COLLECTION_NAME***]

8

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/search-solrctl-reference/topics/search-solrctl-ref.html


Cloudera Runtime Managing collection configuration using configs or instance
directories

Converting instance directories to configs
Cloudera Search supports converting existing deployments that use instance directories to use configs. This allows
you to implement access control using ZooKeeper Access Control Lists and Ranger.

Procedure

1. Create a temporary config based on the existing instance directory.

solrctl config --create [***TEMPORARY NEW CONFIG***] [***EXISTING
 INSTANCEDIR***] \
-p immutable=false

Replace [***TEMPORARY NEW CONFIG***] with a config name and [***EXISTING INSTANCEDIR***] with
the name of the instancedir you want to convert.

For example, if the instance directory name is weblogs_config:

solrctl config --create weblogs_config_temp weblogs_config \
-p immutable=false

2. Delete the existing instance directory.

solrctl instancedir --delete [***EXISTING INSTANCEDIR***]

For example:

solrctl instancedir --delete weblogs_config

3. Create a config using the same name as the instance directory you just deleted, based on the temporary config you
created earlier.

solrctl config --create [***NEW CONFIG***] [***TEMPORARY NEW CONFIG***] \
-p immutable=false

Replace [***NEW CONFIG***] with the name of the instancedir you just deleted and [***TEMPORARY NEW
CONFIG***] with the name of the temporary config created earlier in this procedure.

For example:

solrctl config --create weblogs_config weblogs_config_temp \
-p immutable=false

4. Delete the temporary config:

solrctl config --delete [***TEMPORARY NEW CONFIG***]

For example:

solrctl config --delete weblogs_config_temp

9



Cloudera Runtime Managing collection configuration using configs or instance
directories

5. Reload the affected collection:

solrctl collection --reload [***COLLECTION NAME***]

Replace [***COLLECTION NAME***] with the name of the collection you want to reload.

For example:

solrctl collection --reload weblogs

Cloudera Search configuration files
Cloudera Search configuration is primarily controlled by several configuration files, that are mostly stored in Apache
ZooKeeper.

Table 3: Cloudera Search configuration files

Configuration File Description

solr.xml This file is stored in ZooKeeper, and controls global properties for
Apache Solr. To edit this file, you must download it from ZooKeeper,
make your changes, and then upload the modified file back to
ZooKeeper using the solrctl cluster command. For information about
the solr.xml file, see Solr Configuration Files and Solr Cores and
solr.xml in the Solr documentation.

solrconfig.xml Each collection in Solr uses a solrconfig.xml file, stored in ZooKeeper,
to control collection behavior. For information about the solrconfig.xml
file, see Solr Configuration Files and Configuring solrconfig.xml in the
Solr documentation.

managed-schema or schema.xml Cloudera recommends using a managed schema, and making schema
changes using the Schema API (Apache Solr documentation).
Collections use either a managed schema or the legacy schema.xml
file. These files, also stored in ZooKeeper and assigned to a collection,
define the schema for the documents you are indexing. For example,
they specify which fields to index, the expected data type for each
field, the default field to query when the field is unspecified, and so on.
For information about managed-schema and schema.xml, see Schema
Factory Definition in SolrConfig in the Solr documentation.

core.properties Unlike other configuration files, this file is stored in the local
filesystem rather than ZooKeeper, and is used for core discovery.
For more information on this process and the structure of the file, see
Defining core.properties in the Solr documentation.

Additional files Any additional files referenced in the xml files, for example, custom
JAR files.

Using custom JAR files with Search
Search supports custom plug-in code. You can load classes into JAR files and then configure Search to find these
files.

About this task

To correctly deploy custom JARs, ensure that:

• Custom JARs are pushed to the same location on all hosts in your cluster that are hosting Cloudera Search (Solr
Service).

• Supporting configuration files direct Cloudera Search to find the custom JAR files.

10

https://lucene.apache.org/solr/guide/7_0/solr-configuration-files.html
https://lucene.apache.org/solr/guide/7_0/solr-cores-and-solr-xml.html
https://lucene.apache.org/solr/guide/7_0/solr-cores-and-solr-xml.html
https://lucene.apache.org/solr/guide/7_0/solr-configuration-files.html
https://lucene.apache.org/solr/guide/7_0/configuring-solrconfig-xml.html
https://lucene.apache.org/solr/guide/7_0/schema-api.html
https://lucene.apache.org/solr/guide/7_0/schema-factory-definition-in-solrconfig.html
https://lucene.apache.org/solr/guide/7_0/schema-factory-definition-in-solrconfig.html
https://lucene.apache.org/solr/guide/8_4/defining-core-properties.html


Cloudera Runtime Managing collection configuration using configs or instance
directories

• Any required configuration files such as schema.xml or solrconfig.xml reference the custom JAR code.

The following procedure describes how to use custom JARs. Some cases may not require completion of every step.
For example, indexer tools that support passing JARs as arguments may not require modifying xml files. However,
completing all configuration steps helps ensure the custom JARs are used correctly in all cases.

Procedure

1. Copy your custom JAR file in the same location on all hosts in your cluster.

2. For all collections where custom JARs will be used, modify solrconfig.xml to include references to the new JAR
files. These directives can include explicit or relative references and can use wildcards. In the solrconfig.xml file,
add <lib> directives to indicate the JAR file locations or <path> directives for specific jar files.
For example:

<lib path="/usr/lib/solr/lib/MyCustom.jar" />

or

<lib dir="/usr/lib/solr/lib" />

or

<lib dir="../../../myProject/lib" regex=".*\.jar" />

3. For all collections in which custom JARs will be used, reference custom JAR code in the appropriate Solr
configuration file. The two configuration files that most commonly reference code in custom JARs are solrconf
ig.xml and schema.xml.

4. For all collections in which custom JARs will be used, use solrctl to update ZooKeeper's copies of configuration
files such as solrconfig.xml and schema.xml
For example:

solrctl instancedir --update [***NAME***] [***PATH***]

• [***NAME***] specifies the instancedir associated with the collection using solrctl instancedir     --create.
• [***PATH***] specifies the directory containing the collection's configuration files.

For example:

solrctl instancedir --update collection1 $HOME/solr_configs

5. For all collections in which custom JARs will be used, use RELOAD to refresh information. When the RELOAD
command is issued to any host that hosts a collection, that host sends subcommands to all replicas in the
collection. All relevant hosts refresh their information, so this command must be issued once per collection.

http://example.com:8983/solr/admin/collections?action=RELOAD&name=collec
tion1

6. Ensure that the class path includes the location of the custom JAR file.

a) For example, if you store the custom JAR file in /opt/myProject/lib/, add that path as a line to the ~/.profile for
the Solr user.

b) Restart the Solr service to reload the PATH variable.
c) Repeat this process of updating the PATH variable for all hosts.

What to do next

The system is now configured to find custom JAR files. Some command-line tools included with Cloudera Search
support specifying JAR files. For example, when using MapReduceIndexerTool, use the --libjars option to specify
JAR files to use. Tools that support specifying custom JARs include:

11



Cloudera Runtime Managing collections in Search

• MapReduceIndexerTool
• Lily HBase Indexer
• CrunchIndexerTool

Retrieving the clusterstate.json file
You can access the clusterstate.json file for Solr monitoring purposes through the Solr webUI.

Procedure

1. Go to the Solr webUI.

2. Select  Cloud Tree .

3. From the tree view select /clusterstate.json.

Managing collections in Search

A collection in Cloudera Search refers to a repository for indexing and querying documents. Collections typically
contain the same types of documents with similar schemas.

To start using Solr and indexing data, you must configure a collection to hold the index.

A collection requires the following configuration files:

• solrconfig.xml
• schema.xml
• Any additional files referenced in the xml files

The solrconfig.xml file contains all of the Solr settings for a given collection, and the schema.xml file specifies the
schema that Solr uses when indexing documents. For more details on how to configure a collection, see SchemaXml.

A typical deployment workflow with solrctl consists of:

1. Establishing a configuration.

• If using configs, creating a config object from a template.
• If using instance directories, generating an instance directory and uploading it to ZooKeeper.

2. Creating a collection associated with the name of the config or instance directory.

Collections are managed using the solrctl commandline utility.

Related Concepts
Managing collection configuration using configs or instance directories

Related Information
solrctl Reference

SchemaXml

Creating a Solr collection
Learn how to create a collection so that you can start indexing data with Solr.

Before you begin

• If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to create
collections.

• Before you can create a Solr collection you need to generate a collection configuration using either a config or an
instance directory.

12

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/search-solrctl-reference/topics/search-solrctl-ref.html
https://cwiki.apache.org/confluence/display/solr/SchemaXml


Cloudera Runtime Managing collections in Search

About this task

Note:  Although it is not currenly strictly enforced, you are strongly recommended to observe the following
limitations on collection names:

• Use only ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), or underscore (_).
• Avoid using the strings shard and replica.

Procedure

1. If you are using Kerberos, kinit as a user with permission to create the collection:

kinit solradmin@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

2. On a host running a Solr server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk03.
example.com:2181/solr

This is automatically set on hosts with a Solr Server or Gateway role in Cloudera Manager.

3. Create a new collection using the following command:

solrctl collection --create [***COLLECTION NAME***] -s [***NUMBER OF
 SHARDS***] -c [***COLLECTION CONFIGURATION***]

where

[***COLLECTION NAME***] User-defined name of the collection.

Note:  Although it is not currenly strictly enforced, you
are strongly recommended to observe the following
limitations on collection names:

• Use only ASCII alphanumeric characters (A-Za-
z0-9), hyphen (-), or underscore (_).

• Avoid using the strings shard and replica.

[***NUMBER OF SHARDS***] The number of shards you want to split your collection into.

[***COLLECTION CONFIGURATION***] The name of an existing collection configuration.

For example:

solrctl collection --create logs -s 3 -c logs_config

Related Tasks
Generating collection configuration using configs

Generating Solr collection configuration using instance directories

Viewing existing collections
Learn how you can list existing Solr collections.

You can view existing collections using the solrctl collection --list command.

13



Cloudera Runtime Managing collections in Search

Deleting all documents in a collection
Deleting all documents in a Solr collection does not delete the collection or its configuration files. It only deletes the
index. This can be useful for rapid prototyping of configuration changes in test environments.

Before you begin
If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to delete documents in
a collection.

Procedure

1. If you are using Kerberos, kinit as a user with permission to delete the collection:

kinit solradmin@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

2. On a host running Solr Server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

$ cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk0
3.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

3. Delete the documents:

solrctl collection --deletedocs logs

Deleting a collection
Deleting a Solr collection deletes the collection and its index, but does not delete its configuration files.

Before you begin
If you have enabled Ranger for authorization, you must have Solr Admin permission to be able to delete collections.

About this task

Procedure

1. If you are using Kerberos, kinit as a user with permission to delete the collection:

kinit solradmin@[***EXAMPLE.COM***]

Replace [***EXAMPLE.COM***] with your Kerberos realm name.

2. On a host running Solr Server, make sure that the SOLR_ZK_ENSEMBLE environment variable is set in /etc/sol
r/conf/solr-env.sh. For example:

$ cat /etc/solr/conf/solr-env.sh
export SOLR_ZK_ENSEMBLE=zk01.example.com:2181,zk02.example.com:2181,zk0
3.example.com:2181/solr

If you are using Cloudera Manager, this is automatically set on hosts with a Solr Server or Gateway role.

14



Cloudera Runtime Creating a replica of an existing shard

3. Delete the collection:

solrctl collection --delete [***COLLECTION NAME***]

Replace [***COLLECTION NAME***] with the name of the collection you want to delete.

Updating the schema in a collection
It is sometimes necessary to change the underlaying schema behind a Solr collection. Find out how to do it for
collections configured through instance directories and configs.

If your collection was configured using an instance directory, you can download the instance directory, edit sche
ma.xml, then re-upload it to ZooKeeper. For instructions, see Generating Solr collection configuration using instance
directories on page 7.

If your collection was configured using a config, you can update the schema using the Schema API. For information
on using the Schema API, see Schema API in the Apache Solr Reference Guide.

Creating a replica of an existing shard

You can create additional replicas of existing shards using the solrctl utility. Replicating shards boosts query
throughput and prevents data loss.

Procedure

To create additional replicas of existing shards, use the following command:

solrctl core --create [***NEW CORE***] -p collection=[***COLLECTION NAME***]
 \
-p shard=[***SHARD TO REPLICATE***]

For example, to create a new replica of the collection named collection1 that is comprised of shard1, use the
following command:

solrctl core --create collection1_shard1_replica2 \
-p collection=collection1 -p shard=shard1

Migrating Solr replicas

When you replace a host, migrating replicas from that host to the new host, instead of depending on failure recovery,
can help ensure optimal performance.

About this task

Where possible, the Solr service routes requests to the proper host. Both ADDREPLICA and DELETEREPLICA
Collections API calls can be sent to any host in the cluster.

• For adding replicas, the node parameter ensures the new replica is created on the intended host. If no host is
specified, Solr selects a host with relatively fewer replicas.

• For deleting replicas, the request is routed to the host that hosts the replica to be deleted.

Adding replicas can be resource intensive. For best results, add replicas when the system is not under heavy load. For
example, do not add replicas when heavy indexing is occurring or when MapReduceIndexerTool jobs are running.

15

https://lucene.apache.org/solr/guide/8_4/schema-api.html


Cloudera Runtime Migrating Solr replicas

Cloudera recommends using API calls to create and unload cores. Do not use the Cloudera Manager Admin Console
or the Solr Admin UI for these tasks.

This procedure uses the following names:

• Host names:

• Origin: solr01.example.com.
• Destination: solr02.example.com.

• Collection name: email
• Replicas:

• The original replica email_shard1_replica1, which is on solr01.example.com.
• The new replica email_shard1_replica2, which will be on solr02.example.com.

Procedure

1. If you want to add a replica to a particular node, review the contents of the live_nodes directory on ZooKeeper to
find all nodes available to host replicas. Open the Solr Administration User interface, click  Cloud Tree live_nodes
.

The Solr Administration User Interface, including live_nodes, appears.

Note:  Information about Solr nodes can also be found in clusterstate.json, but that file only lists nodes
currently hosting replicas. Nodes running Solr but not currently hosting replicas are not listed in the clus
terstate.json file.

16



Cloudera Runtime Migrating Solr replicas

2. Add the new replica on solr02.example.com using the ADDREPLICA API call.

http://solr01.example.com:8983/solr/admin/collections?action=ADDREPLICA&
collection=email&shard=shard1&node=solr02.example.com:8983_solr

3. Verify that the replica creation succeeds and moves from recovery state to ACTIVE.

You can check the replica status in the Cloud view, which can be found at a URL similar to: http://solr02.exampl
e.com:8983/solr/#/~cloud.

Note:  Do not delete the original replica until the new one is in the ACTIVE state. When the newly added
replica is listed as ACTIVE, the index has been fully replicated to the newly added replica. The total time
to replicate an index varies according to factors such as network bandwidth and the size of the index.
Replication times on the scale of hours are not uncommon and do not necessarily indicate a problem.

You can use the details command to get an XML document that contains information about replication
progress. Use curl or a browser to access a URI similar to:

http://solr02.example.com:8983/solr/email_shard1_replica2/replicatio
n?command=details

Accessing this URI returns an XML document that contains content about replication progress. A snippet of the
XML content might appear as follows:

...
<str name="numFilesDownloaded">126</str>
<str name="replication StartTime">Tue Jan 21 14:34:43 PST 2014</str>
<str name="timeElapsed">457s</str>
<str name="currentFile">4xt_Lucene41_0.pos</str>
<str name="currentFileSize">975.17 MB</str>
<str name="currentFileSizeDownloaded">545 MB</str>
<str name="currentFileSizePercent">55.0</str>
<str name="bytesDownloaded">8.16 GB</str>
<str name="totalPercent">73.0</str>
<str name="timeRemaining">166s</str>
<str name="downloadSpeed">18.29 MB</str>
...

17



Cloudera Runtime Backing up a collection from HDFS

4. Use the CLUSTERSTATUS API call to retrieve information about the cluster, including current cluster status:

http://solr01.example.com:8983/solr/admin/collections?action=clusterstat
us&wt=json&indent=true

Review the returned information to find the correct replica to remove. An example of the JSON file might appear
as follows:

5. Delete the old replica on solr01.example.com server using the DELETEREPLICA API call:

http://solr01.example.com:8983/solr/admin/collections?action=DELETEREPLI
CA&collection=email&shard=shard1&replica=core_node2

The DELETEREPLICA call removes the datadir.

Related Information
Collections API in Apache Solr Reference Guide

Backing up a collection from HDFS

You can back up Solr collections to your local cluster or a remote cluster using the solrctl utility to minimize data loss
caused by accidental or malicious administrative actions. Learn how to create, prepare, and export the Solr collection
snapshot to create a backup of the Solr collection.

About this task

Note:

Creating backups and performing restore operations using the solrctl CLI tool exclusively works on
HDFS. If you want to create a backup to, or perform a restore from a different FS, consult the Apache Solr
documentation.

Before you begin

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to
each command:

--jaas [***/PATH/TO/JAAS.CONF***]

18

https://lucene.apache.org/solr/guide/8_4/collections-api.html
https://solr.apache.org/guide/8_9/making-and-restoring-backups.html
https://solr.apache.org/guide/8_9/making-and-restoring-backups.html


Cloudera Runtime Backing up a collection from HDFS

If TLS is enabled for the Solr service, specify the truststore and password using the ZKCLI_JVM_FLAGS
environment variable before you begin the procedure:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=[***/PATH/TO/TRUSTSTORE \
-Djavax.net.ssl.trustStorePassword=[***TRUST_STORE_PASSWORD***]"

Procedure

1. Create a snapshot. On a host running Solr Server, run the following command:

solrctl collection --create-snap
shot [***USER_DEFINED_NAME_OF_THE_SNAPSHOT***] -
c [***NAME_OF_THE_COLLECTION_TO_BE_BACKED_UP***]

For example, to create a snapshot for a collection named tweets:

solrctl collection --create-snapshot tweets-$(date +%Y%m%d%H%M) -c tweets
Successfully created snapshot with name tweets-202103281043 for collection
 tweets

2. If you are backing up the Solr collection to a remote cluster, prepare the snapshot for export. If you are backing up
the Solr collection to the local cluster, skip this step.

The destination HDFS directory path ([***DESTINATION_DIRECTORY***], specified by the -d option) must
exist on the local cluster before you run this command. Make sure that the Solr superuser (solr by default) has
permission to write to this directory.

solrctl collection --prepare-snapshot-ex
port [***NAME_OF_THE_SNAPSHOT_TO_BE_EXPORTED***] -
c [***COLLECTION_NAME***] -d [***DESTINATION_DIRECTORY***]

For example:

hdfs dfs -mkdir -p /path/to/backup-staging/tweets-202103281043
hdfs dfs -chown :solr /path/to/backup-staging/tweets-202103281043
solrctl collection --prepare-snapshot-export tweets-202103281043 -c twe
ets \
-d /path/to/backup-staging/tweets-202103281043

3. Export the snapshot. This step uses the DistCp utility to back up the collection metadata as well as the
corresponding index files. The destination directory must exist and be writable by the Solr superuser (solr by
default).

To export the snapshot to a remote cluster, run the following command:

solrctl collection --export-snap
shot [***NAME_OF_THE_SNAPSHOT_TO_BE_EXPORTED***] -
s [***SOURCE_DIRECTORY***] -
d [***PROTOCOL***]://[***NAMENODE***]:[***PORT***]/[***DESTINATION_DIRECTORY***]

For example:

For HDFS

HDFS protocol:

solrctl collection --export-snapshot tweets-202103281043 -s /path/to/bac
kup-staging/tweets-202103281043 \

19



Cloudera Runtime Backing up a collection from local file system

-d hdfs://nn01.example.com:8020/path/to/backups

For webHDFS

WebHDFS protocol:

solrctl collection --export-snapshot tweets-202103281043 -s /path/to/bac
kup-staging/tweets-202103281043 \
-d webhdfs://nn01.example.com:20101/path/to/backups

To export the snapshot to the local cluster, run the following command:

solrctl collection --export-snap
shot [***NAME_OF_THE_SNAPSHOT_TO_BE_EXPORTED***] -
c [***COLLECTION_NAME***] -d [***DESTINATION_DIRECTORY***]

For example:

solrctl collection --export-snapshot tweets-202103281043 -c tweets -d /p
ath/to/backups/

4. Delete the snapshot after exporting:

solrctl collection --delete-snap
shot [***NAME_OF_THE_SNAPSHOT_TO_BE_DELETED***] -c [***COLLECTION_NAME***]

For example:

solrctl collection --delete-snapshot tweets-202103281043 -c tweets

Related Information
solrctl Reference

Backing up a collection from local file system

Back up Solr collections to a shared file system to minimize data loss caused by accidental or malicious
administrative actions. Learn how to create backup of a collection from local file system (FS).

About this task

Note:

Creating backups and performing restore operations using the solrctl CLI tool exclusively works on
HDFS. If you want to create a backup to, or perform a restore from a different FS, consult the Apache Solr
documentation.

If you use local FS to store backups, each Solr host stores its backup directory locally, that is, server X contains
the backup directory snapshots.shard1, server Y contains snapshots.shard2 and you need to copy those to a shared
location in order to be able to restore them later. Because of this, Cloudera recommends to target backups to a shared
file system, even if your Solr collection uses local FS.

20

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/search-solrctl-reference/topics/search-solrctl-ref.html
https://solr.apache.org/guide/8_9/making-and-restoring-backups.html
https://solr.apache.org/guide/8_9/making-and-restoring-backups.html


Cloudera Runtime Backing up a collection from local file system

Before you begin

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to
each command:

--jaas [***/PATH/TO/JAAS.CONF***]

Note:

Procedure

1. Create a snapshot. On a host running Solr Server, run the following command:

solrctl collection --create-snap
shot [***USER_DEFINED_NAME_OF_THE_SNAPSHOT***] -
c [***NAME_OF_THE_COLLECTION_TO_BE_BACKED_UP***]

This step is optional. You can back up this snapshot by specifying the
[***USER_DEFINED_NAME_OF_THE_SNAPSHOT***] as the value of commitName parameter. If you do
not create and specify a snapshot, the backup exports the index state corresponding to the current latest finished
commit.

For example, to create a snapshot for a collection named tweets:

solrctl collection --create-snapshot tweets-$(date +%Y%m%d%H%M) -c tweets
Successfully created snapshot with name tweets-202103281043 for collection
 tweets

2. Create the backup. The destination directory must exist and be writable by the Solr superuser (solr by default).

• To back up a snapshot, use the following command:

curl -k --negotiate -u : 'http://[***HOST***]:[***PORT***]/solr/
admin/collections?action=BACKUP&name=[***BACKUP_NAME***]&commitN

21



Cloudera Runtime Backing up a collection from local file system

ame=[***SNAPSHOT_NAME***]&collection=[***COLLECTION_NAME***]&locatio
n=***BACKUP_LOCATION***'

For example:

curl -k --negotiate -u : 'http://host1.example.com:8983/solr/admin/colle
ctions?action=BACKUP&name=mybackup&commitName=tweets-202103281043&collec
tion=tweets&location=/tmp'

The example URL targets one (any one) of the Solr servers and creates a backup of the entire collection.
• To back up the current state of the index:

curl -k --negotiate -u : 'http://[***HOST***]:[***PORT***]/solr/admin/
collections?action=BACKUP&name=[***BACKUP_NAME***]&collection=tweets&l
ocation=/tmp'

For example:

curl -k --negotiate -u : 'http://host1.example.com:8983/solr/admin/colle
ctions?action=BACKUP&name=mybackup&collection=tweets&location=/tmp'

The example URL targets one (any one) of the Solr servers and creates a backup of the entire collection.

[***HOST***]

is a host name or IP address valid in your environment

[***PORT***]

is the port where you can access your Solr instance

[***BACKUP_LOCATION***]

specifies the directory (for example, /tmp) of the backup target defined in solr.xml where the backup
is to be stored. If you have defined a HDFS target backup repository, the backup is stored on HDFS
at [***BACKUP_LOCATION***]

[***BACKUP_NAME***]

specifies the name of the backup - the backup is created in the subdirectory
[***BACKUP_NAME***] of the backup repository directory [***BACKUP_LOCATION***].

[***SNAPSHOT_NAME***]

is the name of the snapshot you want to back up

[***COLLECTION_NAME***]

specifies the collection that you want to back up

Tip:  To use a specific repository as a backup target, use the repository parameter.

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="responseHeader"><int name="status">0</int><int name="QTime">363
6</int></lst>
</response>

After completing a backup, the data is stored in the standard backup format:

3. To check the backup files, run the following command:

hdfs dfs -ls /tmp/mybackup

Found 4 items

22



Cloudera Runtime Restoring a collection

-rw-rw-rw-   2 solr supergroup        181 2021-01-13 21:33 /tmp/mybackup/b
ackup.properties
drwxrwxrwx   - solr supergroup          0 2021-01-13 21:33 /tmp/mybackup/
snapshot.shard1
drwxrwxrwx   - solr supergroup          0 2021-01-13 21:33 /tmp/mybackup/s
napshot.shard2
drwxrwxrwx   - solr supergroup          0 2021-01-13 21:33 /tmp/mybackup/
zk_backup

4. Delete the snapshot after exporting:

solrctl collection --delete-snap
shot [***NAME_OF_THE_SNAPSHOT_TO_BE_DELETED***] -c [***COLLECTION_NAME***]

For example:

solrctl collection --delete-snapshot tweets-202103281043 -c tweets

Related Tasks
Defining a backup target in solr.xml

Related Information
Backup/Restore Storage Repositories

BACKUP: Backup Collection

Restoring a collection

You can restore a Solr collection from a backup stored on either a remote cluster or the local cluster using the solrctl
utility. You must pass a unique request identifier as part of the restore command in the solrctl utility while initiating
the restore operation for tracking the process.

About this task

Note:

Creating backups and performing restore operations using the solrctl CLI tool exclusively works on
HDFS. If you want to create a backup to, or perform a restore from a different FS, consult the Apache Solr
documentation.

Before you begin

If you are using a secure (Kerberos-enabled) cluster, specify your jaas.conf file by adding the following parameter to
each command:

-jaas [***/PATH/TO/JAAS.CONF***]

If TLS is enabled for the Solr service, specify the truststore and password by using the ZKCLI_JVM_FLAGS
environment variable before you begin the procedure:

export ZKCLI_JVM_FLAGS="-Djavax.net.ssl.trustStore=[***/PATH/TO/TRUSTSTORE \
-Djavax.net.ssl.trustStorePassword=[***TRUST_STORE_PASSWORD***]"

23

https://solr.apache.org/guide/making-and-restoring-backups.html#backup-restore-storage-repositories
https://solr.apache.org/guide/collection-management.html#backup
https://solr.apache.org/guide/8_9/making-and-restoring-backups.html
https://solr.apache.org/guide/8_9/making-and-restoring-backups.html


Cloudera Runtime Restoring a collection

Procedure

1. If you are restoring from a backup stored on a remote cluster, copy the backup from the remote cluster to the local
cluster. If you are restoring from a local backup, skip this step.

Run the following commands on the cluster to which you want to restore the collection:

hdfs dfs -mkdir -p [***PATH/TO/RESTORE/STAGING***]hadoop distc
p [***PROTOCOL***]://[***NAMENODE***]:[***PORT***]/[***PATH/TO/
BACKUP***] [***/PATH/TO/RESTORE-STAGING***]

For example:

For HDFS
HDFS protocol:

hadoop distcp hdfs://nn01.example.com:8020/path/to/backups/tweet
s-202103281043 /path/to/restore-staging

For webHDFS
WebHDFS protocol:

hadoop distcp webhdfs://nn01.example.com:20101/path/to/backups/t
weets-202103281043 /path/to/restore-staging

2. Start the restore procedure. Run the following command:

solrctl collection --restore [***NAME_OF_THE_RESTORED_COLLECTION***] -
l [***BACKUP_LOCATION***] -b [***NAME_OF_THE_SNAPSHOT_TO_BE_RESTORED***] -
i [***REQUEST_ID***]

Make sure that you use a unique [***REQUEST_ID***] each time you run this command.

Note:

Statuses of historic job runs are stored in ZooKeeper and can be retrieved using the solrctl collection --req
uest-status          [***REQUEST_ID***] command. The number of async call responses stored in a cluster
is limited to 10,000.

Status information can be removed from ZooKeeper using the DELETESTATUS API call.

For example:

solrctl collection --restore tweets -l /path/to/restore-staging -b tweet
s-202103281043 -i restore-tweets

3. Monitor the status of the restore operation. Run the following command periodically:

solrctl collection --request-status [***REQUEST_ID***]

Look for <str name="state"> in the output. For example (emphasis added):

solrctl collection --request-status restore-tweets
 <?xml version="1.0" encoding="UTF-8"?> <response> <lst name="responseHea
der"> <int name="status"> 0</int> <int name="QTime"> 1</int> </lst> \

24

https://lucene.apache.org/solr/guide/collections-api.html#deletestatus


Cloudera Runtime Defining a backup target in solr.xml

<lst name="status"> <str name="state"> completed</str> <str name="msg"> fo
und restore-tweets in completed tasks</str> </lst> </response>

The state parameter can be one of the following:

• running: The restore operation is running.
• completed: The restore operation is complete.
• failed: The restore operation failed.
• notfound: The specified [***REQUEST_ID***] does not exist.

Related Information
solrctl Reference

Defining a backup target in solr.xml

If you want to to define or modify a backup target, you can do it by downloading, editing, and reuploading the
solr.xml file from ZooKeeper.

About this task

The solr.xml file of your Solr installation, which is stored in ZooKeeper, can define a backup target repository, and
depending on your installation it likely has a default target pointing to HDFS.

HDFS as a backup target is still fine even if your Solr collection uses a local file system (FS) /
NRTCachingDirectoryFactory, so even with local FS collections you can store your backups on HDFS.

Similarly to this, other repositories like a LocalFileSystemRepository can also be defined in the solr.xml if you want
to store the backups on a location other than HDFS.

Important:  If you use a local FS to store backups, each Solr host stores its backup directory locally. That
is, server X contains the backup directory snapshots.shard1, server Y contains snapshots.shard2 and you
need to copy them to a shared location in order to be able to restore them later. Because of this, Cloudera
recommends you to target backups to a shared file system.

If the solr.xml does not have a backup repository at all, it defaults to the local FS repository.

Note:  If you use a HDFS backup repository, the backup also works if the Solr servers are located on nodes
which do not have HDFS data node roles, they just need to have a HDFS client (gateway) role.

Procedure

1. To define or modify a backup target, download the solr.xml file from ZooKeeper using the following solrctl
command:

solrctl cluster --get-solrxml solr.xml

2. Edit the contents of the solr.xml file.
This is an example of defining a HDFS backup target in the solr.xml file:

<backup>
  <repository name="hdfs" class="org.apache.solr.core.backup.repository
.HdfsBackupRepository" default="false">
    <str name="location">${solr.hdfs.default.backup.path}</str>
    <str name="solr.hdfs.home">${solr.hdfs.home:}</str>
    <str name="solr.hdfs.confdir">${solr.hdfs.confdir:}</str>
  </repository>
</backup>

25

https://docs.cloudera.com/cdp-private-cloud-base/7.1.7/search-solrctl-reference/topics/search-solrctl-ref.html


Cloudera Runtime Defining a backup target in solr.xml

3. Reupload the modified solr.xml file:

solrctl cluster --put-solrxml solr.xml

26


	Contents
	Managing collection configuration using configs or instance directories
	Cloudera Search config templates
	Generating collection configuration using configs
	Securing configs with ZooKeeper ACLs and Ranger
	Generating Solr collection configuration using instance directories
	Modifying a collection configuration generated using an instance directory
	Converting instance directories to configs
	Cloudera Search configuration files
	Using custom JAR files with Search
	Retrieving the clusterstate.json file

	Managing collections in Search
	Creating a Solr collection
	Viewing existing collections
	Deleting all documents in a collection
	Deleting a collection
	Updating the schema in a collection

	Creating a replica of an existing shard
	Migrating Solr replicas
	Backing up a collection from HDFS
	Backing up a collection from local file system
	Restoring a collection
	Defining a backup target in solr.xml

