Running applications using CDS 3.3 with GPU Support

Running a Spark job using CDS 3.3 with GPU Support

  1. Log on to the node where you want to run the job.
  2. Run the following command to launch spark3-shell:
    spark3-shell  --conf "spark.rapids.sql.enabled=true" \
                  --conf "spark.executor.memoryOverhead=5g"
    where
    --conf spark.rapids.sql.enabled=true

    enables the following environment variables for GPUs:

    "spark.task.resource.gpu.amount" - sets GPU resource amount per task
    
    "spark.rapids.sql.concurrentGpuTasks" - sets the number of concurrent tasks per GPU
    "spark.sql.files.maxPartitionBytes" - sets the input partition size for DataSource API, The recommended value is "256m".
    "spark.locality.wait" - controls how long Spark waits to obtain better locality for tasks. 
    "spark.sql.adaptive.enabled" - enables Adaptive Query Execution.
    "spark.rapids.memory.pinnedPool.size" - sets the amount of pinned memory allocated per host.
    "spark.sql.adaptive.advisoryPartitionSizeInBytes" - sets the advisory size in bytes of the shuffle partition during adaptive optimization.
    For example,
    $SPARK_HOME/bin/spark3-shell \
           --conf spark.task.resource.gpu.amount=2 \
           --conf spark.rapids.sql.concurrentGpuTasks=2 \
           --conf spark.sql.files.maxPartitionBytes=256m \
           --conf spark.locality.wait=0s \
           --conf spark.sql.adaptive.enabled=true \
           --conf spark.rapids.memory.pinnedPool.size=2G \
           --conf spark.sql.adaptive.advisoryPartitionSizeInBytes=1g
    --conf "spark.executor.memoryOverhead=5g"
    sets the amount of additional memory to be allocated per executor process
    You can override these configuration settings both from the command line and from code. For more information on environment variables, see the NVIDIA spark-rapids documentation and the Spark SQL Performance Tuning Guide.
  3. Run a job in spark3-shell.
    For example:
    scala> val df = sc.makeRDD(1 to 100000000, 6).toDF
    df: org.apache.spark.sql.DataFrame = [value: int]
    
    scala>val df2 = sc.makeRDD(1 to 100000000, 6).toDF
    df2: org.apache.spark.sql.DataFrame = [value: int]
    
    scala> df.select($"value" as "a").join(df2select($"value" as "b"), $"a" === $"b").count
    res0: Long = 100000000
  4. You can verify that the job run used GPUs, by logging on to the Yarn UI v2 to review the execution plan and the performance of your spark3-shell application:

    Select the Applications tab then select your [spark3-shell application]. Select ApplicationMaster > SQL > count at <console>:28 to see the execution plan.


    Execution plan with GPU usage enabled.

Running a Spark job using CDS 3.3 with GPU Support with UCX enabled

  1. Log on to the node where you want to run the job.
  2. Run the following command to launch spark3-shell:
    spark3-shell  --conf "spark.rapids.sql.enabled=true" \
                  --conf "spark.executor.memoryOverhead=5g"
                  --rapids-shuffle=true
    where
    --rapids-shuffle=true
    makes the following configuration changes for UCX:
    
    spark.shuffle.manager=com.nvidia.spark.rapids.spark320cdh.RapidsShuffleManager
    spark.executor.extraClassPath=/opt/cloudera/parcels/SPARK3_RAPIDS/lib/spark3/rapids-plugin/*
    spark.executorEnv.UCX_ERROR_SIGNALS=
    spark.executorEnv.UCX_MEMTYPE_CACHE=n
    For more information on environment variables, see the NVIDIA spark-rapids documentation.
  3. Run a job in spark3-shell.