
Configuring Oozie for Managing Hadoop Jobs
Date published:
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

 | Contents | iii

Contents

Overview of Oozie.. 5

Adding the Oozie service using Cloudera Manager..5

Considerations for Oozie to work with AWS.. 5

Adding file system credentials to an Oozie workflow...5
Credentials for token delegation.. 5
File System Credentials..6
Setting file system credentials for Oozie through hadoop properties using Hue Editor......................................6
Setting default credentials using Cloudera Manager... 11
Advanced settings: Overriding default configurations...13
Modifying the workflow file manually..14
Hue Limitation..14

User authorization configuration for Oozie...15

Redeploying the Oozie ShareLib.. 16
Redeploying the Oozie sharelib using Cloudera Manager.. 17

Oozie configurations with CDP services.. 17
Using Sqoop actions with Oozie..17

Deploying and configuring Oozie Sqoop1 Action JDBC drivers..17
Configuring Oozie Sqoop1 Action workflow JDBC drivers... 18

Configuring Oozie to enable MapReduce jobs to read or write from Amazon S3..18
Configuring Oozie to use HDFS HA...19
Using Hive Warehouse Connector with Oozie Spark Action... 19

Appendix - Creating a new ‘hwc’ ShareLib..20
Example for using HWC with Oozie Spark action... 21

Oozie High Availability..27
Requirements for Oozie High Availability.. 27
Configuring Oozie High Availability using Cloudera Manager..27

Oozie Load Balancer configuration... 27
Enabling Oozie High Availability..29
Disabling Oozie High Availability...29

Scheduling in Oozie using cron-like syntax... 29
Oozie scheduling examples.. 31

Configuring an external database for Oozie..32
Configuring PostgreSQL for Oozie..32
Configuring MariaDB for Oozie.. 33
Configuring MySQL 5 for Oozie...34
Configuring MySQL 8 for Oozie...34
Configuring Oracle for Oozie.. 35

Working with the Oozie server...36
Starting the Oozie server..36
Stopping the Oozie server.. 36
Accessing the Oozie server with the Oozie Client.. 36
Accessing the Oozie server with a browser...38

Adding schema to Oozie using Cloudera Manager...38

Enabling the Oozie web console on managed clusters..39

Enabling Oozie SLA with Cloudera Manager...40

Disabling Oozie UI using Cloudera Manager..41

Moving the Oozie service to a different host... 41

Oozie database configurations...42
Configuring Oozie data purge settings using Cloudera Manager..42
Loading the Oozie database... 42
Dumping the Oozie database... 43
Setting the Oozie database timezone... 43

Prerequisites for configuring TLS/SSL for Oozie...43

Configure TLS/SSL for Oozie...44

Oozie security enhancements...45

Additional considerations when configuring TLS/SSL for Oozie HA............... 46

Configure Oozie client when TLS/SSL is enabled.. 46

Configuring custom Kerberos principal for Oozie... 47

Overview of Oozie

Overview of Oozie

Apache Oozie Workflow Scheduler for Hadoop is a workflow and coordination service for managing Apache Hadoop
jobs:

• Oozie Workflow jobs are Directed Acyclic Graphs (DAGs) of actions; actions are Hadoop jobs (such as
MapReduce, Streaming, Hive, Sqoop and so on) or non-Hadoop actions such as Java, shell, Git, and SSH.

• Oozie Coordinator jobs trigger recurrent Workflow jobs based on time (frequency) and data availability.
• Oozie Bundle jobs are sets of Coordinator jobs managed as a single job.

Oozie is an extensible, scalable and data-aware service that you can use to orchestrate dependencies among jobs
running on Hadoop.

Related Information
Apache Oozie Workflow Scheduler for Hadoop

Adding the Oozie service using Cloudera Manager

The Oozie service can be automatically installed and started during your installation of CDP with Cloudera Manager.
If required, you can install Oozie manually with the Add Service wizard in Cloudera Manager. The wizard configures
and starts Oozie and its dependent services.

Note: If your instance of Cloudera Manager uses an external database, you must also configure Oozie with
an external database.

Considerations for Oozie to work with AWS

If you want to access Amazon Web Services (AWS) S3 data through Oozie, then ensure that the required AWS
credentials are configured in core-site.xml.

Adding file system credentials to an Oozie workflow

Oozie has to use its Kerberos credentials to obtain delegation tokens on behalf of the user from the services. You must
add additional configurations in the Oozie workflow for it to obtain this delegation token.

Credentials for token delegation
A secure cluster requires the Oozie actions to be authenticated; typically using Kerberos. However, due to the way
that Oozie runs actions, Kerberos credentials are not available to them. Some actions require communication to an
external service like HCatalog, HBase, and Hive or a secure file system like Amazon S3. For these situations, Oozie
has to use its Kerberos credentials to obtain delegation tokens which allows Oozie to access the external service or
file system.

For information about Action Authentication, see Apache Oozie documentation.

5

https://oozie.apache.org/
https://oozie.apache.org/docs/5.2.1/DG_ActionAuthentication.html

Adding file system credentials to an Oozie workflow

File System Credentials
To allow Oozie to access S3, ABFS, and other filesystems, it has to request a delegation token to obtain credentials.
Although HUE supports only the built-in credentials (see Hue limitation)this can be done through properties. There
are three options to set file system credentials for an Oozie workflow or action which are resulting the same. You can
choose any of them based on your current usage and preference.

1. Set file system credentials for Oozie through hadoop properties using Hue Editor
2. Set default credentials using Cloudera Manager
3. Modify the workflow XML file manually

You can use the advanced settings to override the default configurations.

Setting file system credentials for Oozie through hadoop properties using
Hue Editor

This option allows you to configure additional Oozie credentials with configuration properties. The following
example shows how to set up an Oozie workflow with a shell action which uses additional file system credentials.

About this task

Note: Hue Limitation - Hue is not capable of adding user defined file system credentials to the Oozie
workflow, only built-in credentials can be added. Hence, you must manually define file system credentials for
Oozie workflow.

Procedure

1. In Hue web UI, click Scheduler > Workflow to create a new workflow.

2. Click Documents and select Actions in the drop-down list.

6

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/configuring-oozie/topics/oozie-hue-limitation.html

Adding file system credentials to an Oozie workflow

3. Select the Shell icon to the workflow to add a shell action. The shell command can be echo and its parameter can
be Hello world for this example.

7

Adding file system credentials to an Oozie workflow

4. Select the settings under the Edit menu to add properties to the workflow. The Workflow Settings dialog box is
displayed.

5. In the Workflow Settings dialog box, under the Hadoop Properties section, click + Add
property and add the necessary credentials. The property name must be in the format similar
to OOZIE.ACTION.CREDENTIALS.FILESYSTEM.<MYCUSTOMCREDENTIAL> where
MYCUSTOMCREDENTIAL is the description of the credential. The value of this property must be set to a valid

8

Adding file system credentials to an Oozie workflow

filesystem URI, for example, an S3 bucket URL. Click + Add property to add additional properties if you want to
access more than one s3 bucket, and so on, as shown in the below figure.

9

Adding file system credentials to an Oozie workflow

6. Click Action Settings to set the credential defined in the previous step to use it in the workflow action where it is
needed.

7. Add a new property to the action with the name oozie.action.credentials.filesystem and its value
must be a comma-separated list of credential names defined in the hadoop properties. For example
“myCustomCredential,myOtherCustomCredential”. Based on this property, Oozie requests delegation tokens for
the file-systems defined in the given credentials.

10

Adding file system credentials to an Oozie workflow

Results
Now the workflow is ready to be submitted and the following is the generated workflow.xml

file.

Setting default credentials using Cloudera Manager
In scenarios where you need to set a credential for every action of every workflow, you can set the credential
definitions and its usages using Cloudera Manager. You can also set these as the default configurations.

Procedure

1. In Cloudera Manager, click the Oozie service.

2. Click the Configuration tab.

3. Search for action_conf and add the following in the Oozie Server Advanced Configuration Snippet (Safety Valve)
for action-conf/default.xml field:

Definition (can be seen by all the actions started by Oozie)

11

Adding file system credentials to an Oozie workflow

Name: oozie.action.credentials.filesystem.myCustomCredential
Value: s3a://<bucket-name>

Name: oozie.action.credentials.filesystem.myotherCustomCredential
Value: abfs://<bucket-name>

Usage (applies to all the actions started by Oozie)

Name: oozie.action.credentials.filesystem
Value: myCustomCredential,myotherCustomCredential

4. Click Save Changes on the bottom right corner.

5.

Click Stale Service Restart that is next to the Oozie service name.

12

Adding file system credentials to an Oozie workflow

6. Review the properties added to the default action configuration. All these properties will be available in every
Oozie action.

7. Click Restart Stale Services to make this change happen on the Oozie instances.

Note: After this configuration, you need not add anything in HUE, Oozie obtains a delegation token for
those file-system paths for every action.

Advanced settings: Overriding default configurations
You can override the default value set using Cloudera Manager, if required. For example, you have five different
actions in the workflow and four of them use S3 buckets and one use ABFS. In this case, the S3 can be set as a default
credential and can be overridden in only that one action to have a different value.

Procedure

1. Using Cloudera Manager, set the credentials to use s3 bucket in the Oozie Server Advanced Configuration Snippet
(Safety Valve) for action-conf/default.xml field:

Name: oozie.action.credentials.filesystem.myCustomCredential
Value: s3a://<bucket-name>

2. Using the HUE editor, edit the action for which you want to use a different credential and add the following:

Name: oozie.action.credentials.filesystem.myCustomCredential
Value: abfs://myAbfsBucketName

Add the following property as described in the Step 4 and 5 of the Option 1: Setting file system credentials for
Oozie through hadoop properties using Hue Editor .

Now Oozie actions will use the default S3 credential except the one which has the non-default value. It is also
possible to combine the global configuration, where you define the possible file-system credentials, and in HUE
you use the pre-defined global credentials.

13

Adding file system credentials to an Oozie workflow

Modifying the workflow file manually
You can modify or add the "<credentials>...</credentials>" block at the beginning of the Oozie
workflow.xml file. Do not remove any existing credentials from this block, add the new file system credential. Refer
the newly defined credential in the action where it needs to be used.

Example

<workflow-app name="MyTestWorkflow" xmlns="uri:oozie:workflow:0.5">
 <credentials>
 <credential name="my-s3-creds" type="filesystem">
 <property>
 <name>filesystem.path</name>
 <value>s3a://{yourBucketName}</value>
 </property>
 </credential>
 </credentials>
 <start to="shell-action"/>
 <kill name="Kill">
 <message>Action failed</message>
 </kill>
 <action name="shell-action" cred="my-s3-creds">
 <shell xmlns="uri:oozie:shell-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <exec>echo</exec>
 <argument>"Hello world"</argument>
 <capture-output/>
 </shell>
 <ok to="End"/>
 <error to="Kill"/>
 </action>
 <end name="End"/>
</workflow-app>

Hue Limitation
Hue is not capable of adding user defined file system credentials to the Oozie workflow but can add only built-in
credentials as seen in the below figure.

14

User authorization configuration for Oozie

User authorization configuration for Oozie

Learn about user authorization model for Oozie and Access Control List (ACL). Also, learn about how to define
admin users for Oozie jobs and ACL.

Oozie has a basic authorization model which is as follows:

• Users have read access to all jobs
• Users have write access to their own jobs
• Users have write access to jobs based on an ACL, which is a list of users and groups
• Users have read access to admin operations
• Admin users have write access to all jobs
• Admin users have write access to admin operations

If security is disabled all users are admin users.

Oozie security is set through the following configuration property, which is false by default:

oozie.service.AuthorizationService.security.enabled=false

Note: The old ACL model where a group was provided is still supported if the following property is set in
the oozie-site.xml file:

oozie.service.AuthorizationService.default.group.as.acl=true

Defining admin users

Admin users are determined from the list of admin groups, specified in the oozie.service.AuthorizationService.admin
.groups property. Use commas to separate multiple groups. Spaces, tabs, and ENTER characters are trimmed.

If the above property for admin groups is not set, then you can define the admin users in the following manner. The
list of admin users can be in the conf/adminusers.txt file. The syntax of this file is as follows:

• One user name per line
• Empty lines and lines starting with # are ignored

15

Redeploying the Oozie ShareLib

Admin users can also be defined in the oozie.serviceAuthorizationService.admin.users property. Use commas to
separate multiple admin users. Spaces, tabs, and ENTER characters are trimmed.

In case there are admin users defined using both methods, the effective list of admin users will be the union of the
admin users found in the adminusers.txt file and those specified with the oozie.serviceAuthorizationService.admin.
users property.

Defining access control lists

ACLs are defined in the following ways:

• workflow job submission over CLI

Configuration property group.name of job.properties.
• workflow job submission over HTTP

Configuration property group.name of the XML submitted over HTTP.
• workflow job re-run

Configuration property oozie.job.acl (preferred) or configuration property group.name of job.properties.
• coordinator job submission over CLI

Configuration property oozie.job.acl (preferred) or configuration property group.name of job.properties.
• bundle job submission over CLI

Configuration property oozie.job.acl (preferred) or configuration property group.name of job.properties.

For all other workflow, coordinator, or bundle actions, the ACL set in beforehand are used as basis.

Once the ACL for the job is defined, Oozie checks over HDFS whether the user trying to
perform a specific action is part of the necessary group(s). For implementation details, check out
org.apache.hadoop.security.Groups#getGroups(String user).

Note that it is enough that the submitting user be part of at least one group of the ACL. Note also that the ACL can
contain user names as well. If there is an ACL defined and the submitting user is not part of any group or user name
present in the ACL, an AuthorizationException is thrown.

Example: A typical ACL setup

Detail of job.properties on workflow job submission:

user.name=joe
group.name=marketing,admin,qa,root

HDFS group membership of HDFS user joe is qa. That is, the check to
org.apache.hadoop.security.Groups#getGroups("joe") returns qa. Hence, ACL check passes inside
AuthorizationService, because the user.name provided belongs to at least one of the ACL list elements provided as
group.name.

Redeploying the Oozie ShareLib

Some Oozie actions – specifically DistCp, Streaming, Sqoop, and Hive – require external JAR files in order to run.
Instead of having to keep these JAR files in each workflow's lib folder, or forcing you to manually manage them
using the oozie.libpath property on every workflow using one of these actions, Oozie provides the ShareLib.

The ShareLib behaves very similarly to oozie.libpath, except that it is specific to the aforementioned actions and their
required JARs.

16

Oozie configurations with CDP services

Redeploying the Oozie sharelib using Cloudera Manager
When you switch between MapReduce and YARN computation frameworks, you must redeploy the Oozie ShareLib.

About this task

Procedure

1. Go to the Oozie service.

2. Select Actions Install Oozie ShareLib .

Oozie configurations with CDP services

You can configure Oozie to work with different CDP services.

Some of the different services for which you can configure Oozie are as follows:

• Using Sqoop actions with Oozie
• Enabling MapReduce jobs controlled by Oozie to read from or write to Amazon S3 or Microsoft Azure ADLS
• Configuring Oozie to use HDFS HA

Using Sqoop actions with Oozie
There are certain recommendations that you must consider for using Sqoop actions with Oozie.

Note: Sqoop1 does not ship with third party JDBC drivers. You must download them separately and save
them to the /var/lib/sqoop/ directory on the Oozie server.

Recommendations for using Sqoop actions with Oozie

• Cloudera recommends that you not use Sqoop CLI commands with an Oozie Shell Action. Such deployments are
not reliable and prone to breaking during upgrades and configuration changes.

• To import data into Hive, use a combination of a Sqoop Action with a Hive2 Action.

• A Sqoop Action to simply ingest data into HDFS.
• A Hive2 Action that loads the data from HDFS into Hive.

Deploying and configuring Oozie Sqoop1 Action JDBC drivers
You must deploy and configure the Oozie Sqoop1 action JDBC drivers on HDFS.

Before you begin
Confirm that your Sqoop1 JDBC drivers are present in /var/lib/sqoop.

Procedure

• SSH to the Oozie server host and run the following commands to deploy and configure the drivers on HDFS.

cd /var/lib/sqoop
sudo -u hdfs hdfs dfs -mkdir /user/oozie/libext
sudo -u hdfs hdfs dfs -chown oozie:oozie /user/oozie/libext
sudo -u hdfs hdfs dfs -put /opt/cloudera/parcels/SQOOP_NETEZZA_CONNECTOR/s
qoop-nz-connector*.jar /user/oozie/libext/
sudo -u hdfs hdfs dfs -put /opt/cloudera/parcels/SQOOP_TERADATA_CONNECTOR/
lib/*.jar /user/oozie/libext/

17

Oozie configurations with CDP services

sudo -u hdfs hdfs dfs -put /opt/cloudera/parcels/SQOOP_TERADATA_CONNECTOR/
sqoop-connector-teradata*.jar /user/oozie/libext/
sudo -u hdfs hdfs dfs -put /var/lib/sqoop/*.jar /user/oozie/libext/
sudo -u hdfs hdfs dfs -chown oozie:oozie /user/oozie/libext/*.jar
sudo -u hdfs hdfs dfs -chmod 755 /user/oozie/libext/*.jar
sudo -u hdfs hdfs dfs -ls /user/oozie/libext
[sample contents of /user/oozie/libext]
-rwxr-xr-x 3 oozie oozie 959987 2016-05-29 09:58 /user/oozie/libext/
mysql-connector-java.jar
-rwxr-xr-x 3 oozie oozie 358437 2016-05-29 09:58 /user/oozie/libext/
nzjdbc3.jar
-rwxr-xr-x 3 oozie oozie 2739670 2016-05-29 09:58 /user/oozie/libext/
ojdbc6.jar
-rwxr-xr-x 3 oozie oozie 3973162 2016-05-29 09:58 /user/oozie/libext/
sqoop-connector-teradata-1.5c5.jar
-rwxr-xr-x 3 oozie oozie 41691 2016-05-29 09:58 /user/oozie/libext/
sqoop-nz-connector-1.3c5.jar
-rwxr-xr-x 3 oozie oozie 2405 2016-05-29 09:58 /user/oozie/libext/
tdgssconfig.jar
-rwxr-xr-x 3 oozie oozie 873860 2016-05-29 09:58 /user/oozie/libext/
terajdbc4.jar

Configuring Oozie Sqoop1 Action workflow JDBC drivers
You must confirm that the Sqoop1 JDBC drivers are present in HDFS and then configure the required variables.

Procedure

1. Confirm that the Sqoop1 JDBC drivers are present in HDFS. To do this, SSH to the Oozie Server host and run the
following command:

sudo -u hdfs hdfs dfs -ls /user/oozie/libext

2. Configure the following Oozie Sqoop1 Action workflow variables in Oozie's job.properties file as follows:

oozie.use.system.libpath = true
oozie.libpath = /user/oozie/libext

Configuring Oozie to enable MapReduce jobs to read or write from
Amazon S3

MapReduce jobs controlled by Oozie as part of a workflow can read from and write to Amazon S3.

Before you begin
You will need your AWS credentials (the appropriate Access key ID and Secret access key obtained from Amazon
Web Services for your Amazon S3 bucket). After storing these credentials in the keystore (the JCEKS file), specify
the path to this keystore in the Oozie workflow configuration.

About this task
This setup is for use in the context of Oozie workflows only, and does not support running shell scripts on Amazon
S3 or other types of scenarios.

Note: In the following steps, replace the PATH/TO/FILE with the HDFS directory where the .jceks file is
located, and replace ACCESS_KEY_ID and SECRET_ACCESS_KEY with your AWS credentials.

18

Oozie configurations with CDP services

Procedure

1. Create the credential store (.jceks) and add your AWS access key to it as follows:

hadoop credential create fs.s3a.access.key -provider \
jceks://hdfs/PATH/TO/FILE.jceks -value ACCESS_KEY_ID

For example:

hadoop credential create fs.s3a.access.key -provider \
jceks://hdfs/user/root/awskeyfile.jceks -value AKIAIPVYH....

2. Add the AWS secret to this same keystore.

hadoop credential create fs.s3a.secret.key -provider \
jceks://hdfs/PATH/TO/FILE.jceks -value SECRET_ACCESS_KEY

3. Set hadoop.security.credential.provider.path to the path of the .jceks file in Oozie's workflow.xml file in the
MapReduce Action's <configuration> section so that the MapReduce framework can load the AWS credentials
that give access to Amazon S3.

<action name="S3job">
 <map-reduce>
 <job-tracker>${jobtracker}</job-tracker>
 <name-node>${namenode}</name-node>
 <configuration>
 <property>
 <name>hadoop.security.credential.provider.path</name>
 <value>jceks://hdfs/PATH/TO/FILE.jceks</value>
 </property>

</action>

Configuring Oozie to use HDFS HA
To configure an Oozie workflow to use HDFS HA, use the HDFS nameservice instead of the NameNode URI in the
<name-node> element of the workflow.

Example:

<action name="mr-node">
 <map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>hdfs://ha-nn</name-node>

where HA-NN is the value of dfs.nameservices in hdfs-site.xml.

Related Information
Additional considerations when configuring TLS/SSL for Oozie HA

Using Hive Warehouse Connector with Oozie Spark Action
You can use Hive Warehouse Connector (HWC) with Oozie Spark action by updating job.properties file or action-
level configurations.

19

Oozie configurations with CDP services

Note: There are known issues related to using Hive Warehouse Connector with Oozie Spark Action. Read
the known issues and use the workaround listed here: Known Issues.

For Updating job properties file

Steps

1. Create a new ShareLib using a different name, such as hwc.
2. Place the HWC JAR onto the new ShareLib. For information about placing HWC JARs in the new ShareLib,

see the Appendix - Creating a new ‘hwc’ ShareLib section below.
3. Execute a ShareLib update.
4. When executing a Spark action using the HWC include the following properties in the job.properties file:

oozie.action.sharelib.for.spark=spark,hwc

For Updating action-level configuration

You can update the action-level configurations to execute Hive commands using both HWC and non-HWC. If you
have a workflow which contains an action where you would like to use HWC and another action where you do not
want to use HWC, you can achieve the same by specifying the ShareLib properties at the action level.

Example

<spark xmlns="uri:oozie:spark-action:1.0">
 ...
 <configuration>
 <property xmlns="">
 <name>oozie.action.sharelib.for.spark</name>
 <value>spark,hwc</value>
 </property>
 </configuration>
 ...
 </spark>

Related Information
Hive Warehouse Connector for accessing Apache Spark data

Appendix - Creating a new ‘hwc’ ShareLib
The oozie admin commands have to be executed by the oozie user.

1. Kinit as oozie.
2. Check the current available ShareLibs:

oozie admin -shareliblist -oozie {url}

3. Create the folder for it on HDFS:

hdfs dfs -mkdir /user/oozie/share/lib/lib_{latestTimestamp}/hwc

4. Add the JAR files to it from the /opt/cloudera/parcels/CDH/jars directory:

• hive-warehouse-connector-assembly-1.0.0.***VERSION NUMBER***-XXX.jar
• hive-jdbc-3.1.3000.***VERSION NUMBER***-XXX.jar
• hive-jdbc-handler-3.1.3000.***VERSION NUMBER***-XXX.jar
• hive-service-3.1.3000.***VERSION NUMBER***-XXX.jar
• spark-sql-kafka-0-10_2.11-***VERSION NUMBER***-XXX.jar

Note: Do not add any standalone JARs (*-standalone.jar) in this directory.

20

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/runtime-release-notes/topics/rt-pvc-known-issues-oozie.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html

Oozie configurations with CDP services

5. Update the ShareLib property:

oozie admin -sharelibupdate -oozie {url}

6. List the ShareLibs again to check if hwc is present:

oozie admin -shareliblist -oozie {url}

Example for using HWC with Oozie Spark action
Understand how you can use the Hive Warehouse Connector (HWC) with Oozie Spark actions through an example
that creates an application to read tables from Hive using HWC and display its contents. You can do it either by using
a JAR application or by using a Python application.

Using application JAR

This example provides detailed information about the job.properties file, workflow.xml file, and application logic
required for this task, and lists the necessary information required for using HWC in Oozie Spark action when you
build an application JAR.

Example application logic

You can package the following Scala application logic into a JAR by using either Maven or SBT
command line utility with the compatible CDP versions. You can call it the org.example package.
The following application logic requires only two dependencies - spark-sql and HWC.

import com.hortonworks.hwc.HiveWarehouseSession
import org.apache.spark.sql.SparkSession

object ExampleRun {
 def main(args: Array[String]): Unit = {
 println("Using Hive Warehouse connector")
 //Create a Spark session
 val spark = SparkSession.builder().enableHiveSupport().getOrC
reate()
 //Create a HWC session using the Spark Session
 val hive = HiveWarehouseSession.session(spark).build()
 println(args(0)) // Print the input
 //Query the string provided in the arguments using hive.sql()
 hive.sql(“SELECT * FROM ” + args(0)).show
 //Close the Spark session
 spark.close()
 }
}

• Maven method

Add the following dependencies when you build an application JAR by using Maven:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_2.11</artifactId>
 <version>${spark.version}</version>
 </dependency>
 <dependency>
 <groupId>com.hortonworks.hive</groupId>
 <artifactId>hive-warehouse-connector_2.11</artifactId>
 <version>${hwc.version}</version>

21

Oozie configurations with CDP services

 </dependency>

Create a JAR using the following command:

mvn clean package -Dspark.version=<CDP Spark version> -Dhwc.
version=<CDP HWC Version>

For example,

mvn clean package -Dspark.version=2.4.7.7.1.7.61-1 -Dhwc.ver
sion=1.0.0.7.1.7.61-1

• SBT method

Add the following library dependencies when you build an application JAR by using SBT:

val sparkVersion = sys.props.getOrElse("spark.version", "<CDP
 Spark version>")
val hwcVersion = sys.props.getOrElse("hwc.version", "<CDP HWC
 Version>")
libraryDependencies ++= Seq(
 "com.hortonworks.hive" % "hive-warehouse-connector_2.11" % h
wcVersion % "provided",
 "org.apache.spark" %% "spark-sql" % sparkVersion % "provid
ed" force()
)

Create a JAR file using the following command:

sbt clean compile assembly -Dspark.version=<CDP Spark version>
 -Dhwc.version=<CDP HWC Version>

For example,

sbt clean compile assembly -Dspark.version=2.4.7.7.1.7.61-1 -
Dhwc.version=1.0.0.7.1.7.61-1

Save these JAR files in HDFS in a specific location so that it can be used later in the job.properties
file. The class name here is org.example.ExampleRun which you will use later while specifying the
job.

Example job.properties file

HCAT_METASTORE_URI=thrift://myhost-1.myhost.example.site:9083
ROOT_LOGGER_LEVEL=INFO
HCAT_PRINCIPAL=hive/_HOST@EXAMPLE.COM
oozie.action.sharelib.for.spark=spark,hwc
MASTER=yarn
JDBC_PRINCIPAL=hive/_HOST@EXAMPLE.COM
JDBC_URL=jdbc:hive2://myhost-1.myhost.example.site:10001/default;
transportMode=http;httpPath=cliservice;ssl=true;sslTrustStore=/v
ar/lib/cloudera-scm-agent/agent-cert/cm-auto-global_truststore.j
ks;trustStorePassword=update_this_password
oozie.wf.application.path=hdfs:///tmp/workdir
HIVE_TABLE_NAME=sampleTable
JDBC_MODE=JDBC_CLUSTER
APP_NAME=MyApp
MODE=cluster
JAR=hdfs:///tmp/workdir/hwc-examples-1.0.jar
CLASSNAME=org.example.ExampleRun
OOZIE_LAUNCHER_OPTS=”-verbose:class”

22

Oozie configurations with CDP services

SPARK_OPTS=--conf spark.driver.extraJavaOptions='-verbose:class'
--conf spark.executor.extraJavaOptions='-verbose:class'

All the values are example values and are indicative of what you need to write in the file.

HCAT_METASTORE_URI represents the Hive metastore URI and HCAT_PRINCIPAL is the
configuration required for Kerberos authentication for the Hive metastore. oozie.action.shareli
b.for.spark=spark,hwc must be set as it is. MASTER specifies running Spark in the YARN mode.
JDBC_PRINCIPAL is required for Kerberos authentication for HiveServer2. JDBC_URL is
required to create a connection to Hive Server 2.

If you run into any classpath issues while executing the Oozie job, then you can check the details
by using OOZIE_LAUNCHER_OPTS and SPARK_OPTS. These configurations show you what
classes are loaded from which JAR files in the Spark job by checking the YARN logs of the Spark
job.

Note: The sharelib folder contains an additional folder by the name hwc and this
folder must not contain a *-standalone.jar (standalone JAR files) in it.

Example workflow.xml file

<?xml version="1.0" encoding="utf-8"?>
<workflow-app name="spark-hwc-hive-wf" xmlns="uri:oozie:workflow:
1.0">
 <credentials>
 <credential name="hcatauth" type="hcat">
 <property>
 <name>hcat.metastore.uri</name>
 <value>${HCAT_METASTORE_URI}</value>
 </property>
 <property>
 <name>hcat.metastore.principal</name>
 <value>${HCAT_PRINCIPAL}</value>
 </property>
 </credential>
 <credential name="hs2-creds" type="hive2">
 <property>
 <name>hive2.server.principal</name>
 <value>${JDBC_PRINCIPAL}</value>
 </property>
 <property>
 <name>hive2.jdbc.url</name>
 <value>${JDBC_URL}</value>
 </property>
 </credential>
 </credentials>

 <start to="SPARK_HWC_JDBC_READ"/>
 <action name="SPARK_HWC_JDBC_READ" cred="hs2-creds,hcatauth">
 <spark xmlns="uri:oozie:spark-action:1.0">
 <configuration>
 <property>
 <name>mapreduce.job.hdfs-servers</name>
 <value>${firstNotNull(wf:conf('HDFS_SERVER
S'),' ')}</value>
 </property>
 <property>
 <name>oozie.launcher.mapreduce.map.java.opts<
/name>
 <value>${firstNotNull(wf:conf('OOZIE_LAUNCHER_OPTS'),' ')}<
/value>
 </property>
 <property>

23

Oozie configurations with CDP services

 <name>oozie.action.rootlogger.log.level</na
me>
 <value>${firstNotNull(wf:conf('ROOT_LOGGER_L
EVEL'),'INFO')}</value>
 </property>
 </configuration>
 <master>${MASTER}</master>
 <mode>${MODE}</mode>
 <name>${APP_NAME}</name>
 <class>${CLASSNAME}</class>
 <jar>${JAR}</jar>
 <spark-opts>--conf spark.sql.hive.hiveserver2.jdbc
.url=${JDBC_URL} --conf spark.sql.extensions="com.hortonworks.s
park.sql.rule.Extensions" --conf spark.datasource.hive.warehouse
.read.mode=${JDBC_MODE} --conf spark.sql.hive.hiveserver2.jdbc.u
rl.principal=${JDBC_PRINCIPAL} ${firstNotNull(wf:conf('SPARK_OPT
S'),' ')}</spark-opts>
 <arg>${HIVE_TABLE_NAME}</arg>
 </spark>
 <ok to="end"/>
 <error to="fail"/>
 </action>

 <kill name="fail">
 <message>Workflow failed, error message[${wf:errorMess
age(wf:lastErrorNode())}</message>
 </kill>
 <end name="end"/>
</workflow-app>

Save this workflow.xml file in the directory where you have defined oozie.wf.application.path.
The different properties seen in “${}” are properties that are written either in the job.properties
file or can be passed in the command line. Notice that the <spark-opts> tag contains the necessary
configurations that are required for HWC. The <arg> tag contains the input for the application. The
<arg> tag is currently set to a Hive table name which is used by a SELECT statement written in the
application code.

Note: Do not include the HWC JAR file anywhere in the workflow.xml file as part
of the Spark Job. The file is present in the sharelib folder that is explicitly created for
HWC.

Using Python application

This example provides detailed information about the job.properties file, workflow.xml file, and application logic
required for this task, and lists the necessary information required for using HWC in Oozie Spark action when a
Python application is built.
Example application logic

import sys
from pyspark.sql import SparkSession
from pyspark_llap import HiveWarehouseSession

spark = SparkSession.builder.enableHiveSupport().getOrCreate()
hwc = HiveWarehouseSession.session(spark).build()
tableName = sys.argv[1]
print "=======Reading hive table - " + tableName + " via HWC===
===="
Read via HWC
hwc.sql("select * from " + tableName).show()

hwc.close()

24

Oozie configurations with CDP services

spark.stop()

You are using the pyspark module and HWC specific pyspark_llap module for executing the Python
program. The pyspark_llap module is derived from the HWC artifacts given in the CDP builds.

Example job.properties file

HCAT_METASTORE_URI=thrift://myhos
t-1.myhost.example.site:9083
ROOT_LOGGER_LEVEL=INFO
HCAT_PRINCIPAL=hive/_HOST@EXAMPLE.COM
oozie.action.sharelib.for.spark=spark,hwc
MASTER=yarn
JDBC_PRINCIPAL=hive/_HOST@EXAMPLE.COM
JDBC_URL=jdbc:hive2://myhost-1.myhost.example.site:10001/default
;transportMode=http;httpPath=cliservice;ssl=true;sslTrustStore=/
var/lib/cloudera-scm-agent/agent-cert/cm-auto-global_truststore.
jks;trustStorePassword=update_this_password
oozie.wf.application.path=hdfs:///tmp/workdir
HIVE_TABLE_NAME=sampleTable
JDBC_MODE=JDBC_CLUSTER
APP_NAME=MyApp
MODE=cluster
PY_FILE=hdfs:///tmp/workdir/testhwcread.py
PYSPARK_HWC_ZIP=/opt/cloudera/parcels/CDH/lib/hive_warehouse_con
nector/pyspark_hwc-1.0.0.7.1.7.61-1.zip
OOZIE_LAUNCHER_OPTS=”-verbose:class”
SPARK_OPTS=--conf spark.driver.extraJavaOptions='-verbose:class'
 --conf spark.executor.extraJavaOptions='-verbose:class'

All the values are example values and are indicative of what you need to write in the file.

HCAT_METASTORE_URI represents the hive metastore URI and HCAT_PRINCIPAL is the
configuration required for Kerberos authentication for the Hive metastore. oozie.action.shareli
b.for.spark=spark,hwc must be set as it is. MASTER specifies running Spark in the YARN mode.
JDBC_PRINCIPAL is required for Kerberos authentication for HiveServer2. JDBC_URL is
required to create a connection to Hive Server 2.

If you run into any classpath issues while executing the Oozie job, then you can check the details
by using OOZIE_LAUNCHER_OPTS and SPARK_OPTS. These configurations show you what
classes are loaded from which JAR files in the Spark job by checking the YARN logs of the Spark
job.

Note: The sharelib folder contains an additional folder by the name hwc and this
folder must not contain a *-standalone.jar (standalone JAR files) in it.

Example workflow.xml file

<?xml version="1.0" encoding="utf-8"?>
<workflow-app name="spark-hwc-hive-wf" xmlns="uri:oozie:workflow:
1.0">
 <credentials>
 <credential name="hcatauth" type="hcat">
 <property>
 <name>hcat.metastore.uri</name>
 <value>${HCAT_METASTORE_URI}</value>
 </property>
 <property>
 <name>hcat.metastore.principal</name>
 <value>${HCAT_PRINCIPAL}</value>
 </property>
 </credential>
 <credential name="hs2-creds" type="hive2">

25

Oozie configurations with CDP services

 <property>
 <name>hive2.server.principal</name>
 <value>${JDBC_PRINCIPAL}</value>
 </property>
 <property>
 <name>hive2.jdbc.url</name>
 <value>${JDBC_URL}</value>
 </property>
 </credential>
 </credentials>

 <start to="SPARK_HWC_JDBC_READ"/>
 <action name="SPARK_HWC_JDBC_READ" cred="hs2-creds,hcatauth">
 <spark xmlns="uri:oozie:spark-action:1.0">
 <configuration>
 <property>
 <name>mapreduce.job.hdfs-servers</name>
 <value>${firstNotNull(wf:conf('HDFS_SERVER
S'),' ')}</value>
 </property>
 <property>
 <name>oozie.launcher.mapreduce.map.java.opts<
/name>
 <value>${firstNotNull(wf:conf('OOZIE_LAUNCHER
_OPTS'),' ')}</value>
 </property>
 <property>
 <name>oozie.action.rootlogger.log.level</name
>
 <value>${firstNotNull(wf:conf('ROOT_LOGGER
_LEVEL'),'INFO')}</value>
 </property>
 </configuration>
 <master>${MASTER}</master>
 <mode>${MODE}</mode>
 <name>${APP_NAME}</name>
 <jar>${PY_FILE}</jar>
 <spark-opts>--conf spark.sql.hive.hiveserver2.jdbc.ur
l=${JDBC_URL} --conf spark.sql.extensions="com.hortonworks.spar
k.sql.rule.Extensions" --conf spark.datasource.hive.warehouse.re
ad.mode=${JDBC_MODE} --conf spark.sql.hive.hiveserver2.jdbc.url.
principal=${JDBC_PRINCIPAL} --conf spark.submit.pyFiles=${PYSPAR
K_HWC_ZIP} ${firstNotNull(wf:conf('SPARK_OPTS'),' ')}</spark-opt
s>
 <arg>${HIVE_TABLE_NAME}</arg>
 </spark>
 <ok to="end"/>
 <error to="fail"/>
 </action>

 <kill name="fail">
 <message>Workflow failed, error message[${wf:errorMess
age(wf:lastErrorNode())}</message>
 </kill>
 <end name="end"/>
</workflow-app>

Save this workflow.xml file in the directory where you have defined oozie.wf.application.path. The
different properties seen in “${}” are properties that are written either in the job.properties file or
can be passed in the command line. The <spark-opts> tag contains the necessary configurations that
are required for HWC. The <arg> tag contains the input for the application that needs to be run. It is
currently set to a Hive table name which is used for executing a SELECT query on the same table.

26

Oozie High Availability

Note: Do not include the HWC JAR anywhere in the workflow.xml file as part of
the Spark Job. It is already present in the sharelib folder that is explicitly created for
HWC.

Oozie High Availability

Oozie High Availability is "active-active" so that both Oozie servers are active at the same time, with no failover.
High availability for Oozie is supported in both MRv1 and MRv2 (YARN).

Requirements for Oozie High Availability
You must ensure your cluster meets all the requirements for configuring Oozie High Availability (HA).

• Multiple active Oozie servers, preferably identically configured.
• JDBC JAR in the same location across all Oozie hosts (for example, /var/lib/oozie/).
• External database that supports multiple concurrent connections, preferably with HA support.
• ZooKeeper ensemble with distributed locks to control database access, and service discovery for log aggregation.
• Load balancer (preferably with HA support, for example HAProxy), virtual IP, or round-robin DNS to provide a

single entry point (of the multiple active servers), and for callbacks from the Application Master or JobTracker.

Configuring Oozie High Availability using Cloudera Manager
You can use Cloudera Manager to enable or disable Oozie High Availability (HA).

Important: Enabling or disabling HA makes the previous monitoring history unavailable.

Oozie Load Balancer configuration
To enable Oozie High Availability, you must manually configure a Load Balancer.

About this task
Cloudera recommends using the HAProxy Load Balancer. These steps explain how to configure the HAProxy load
balancer. However, you can choose to configure a different Load Balancer.

Procedure

1. Install HAProxy on the host where you are setting up and configuring the Oozie load balancer. For more
information, see the HAProxy documentation.

2. You must configure the Oozie load balancer for both HTTP and HTTPS ports.

This is an example:
global
 log 127.0.0.1 local2
 pidfile /var/run/haproxy.pid
 maxconn 4000
 user haproxy
 group haproxy
 daemon
 stats socket /tmp/haproxy

defaults
 mode http
 log global
 option httplog

27

https://www.haproxy.org/
https://www.haproxy.org/

Oozie High Availability

 option dontlognull
 option forwardfor except 127.0.0.0/8
 option redispatch
 retries 3
 timeout http-request 10s
 timeout queue 1m
 timeout connect 10s
 timeout client 10m
 timeout server 10m
 timeout check 10s
 maxconn 3000

listen admin
 bind *:8000
 stats enable

#---
main frontend which proxys to the backends
#---
frontend oozie_front
 bind *:5000 ssl crt /var/lib/cloudera-scm-agent
/agent-cert/cdep-host_key_cert_chain_decrypted.pem
 default_backend oozie

#---
round robin balancing between the various backends
#---
backend oozie
 balance roundrobin
 server oozie1 my-oozie-host-1:11443/oozie check ssl ca-file /var/lib/
cloudera-scm-agent/agent-cert/cm-auto-global_cacerts.pem
 server oozie2 my-oozie-host-2:11443/oozie check ssl ca-file /var/lib/
cloudera-scm-agent/agent-cert/cm-auto-global_cacerts.pem
 server oozie3 my-oozie-host-3:11443/oozie check ssl ca-file /var/lib/
cloudera-scm-agent/agent-cert/cm-auto-global_cacerts.pem

#---
main frontend which proxys to the http backends
#---
frontend oozie_front_http
 bind *:5002
 default_backend oozie_http

#---
round robin balancing between the various http backends
#---
backend oozie_http
 balance roundrobin
 server oozie_http1 my-oozie-host-1:11000/oozie check
 server oozie_http2 my-oozie-host-2:11000/oozie check
 server oozie_http3 my-oozie-host-3:11000/oozie check

Using the example, the load balancer is setup for three Oozie instances. The load balancer listens on port 5002
for HTTP connections and forwards it to Oozie’s port 11000. The load balancer listens on port 5000 for HTTPS
connections and forwards it to Oozie’s port 11443.

If you not enabled SSL in Oozie, then you do not need the HTTPS load balancer. For HTTPS load balancing,
ensure that you set up the certificate.

3. Continue to configure the load balancer by enabling Oozie High Availability. For information about enabling
Oozie High Availability, see Enabling Oozie High Availability .

28

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/configuring-oozie/topics/oozie-load-balancer-config.html

Scheduling in Oozie using cron-like syntax

Enabling Oozie High Availability
You must select the host on which to install the additional Oozie server and specify the required property values to
install Oozie High Availability (HA).

Before you begin
Ensure that the requirements are satisfied.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Select Actions Enable High Availability to see eligible Oozie server hosts. The host running the current Oozie
server is not eligible.

3. Select the host on which to install an additional Oozie server and click Continue.

4. Update the following fields for the Oozie load balancer:

• Hostname

For example:

NIGHTLY6X-1.VPC.CLOUDERA.COM

• HTTP Port

For example:

5002

• HTTPS Port

For example:

5000

5. Click Continue.

Cloudera Manager stops the Oozie servers, adds another Oozie server, initializes the Oozie server High
Availability state in ZooKeeper, configures Hue to reference the Oozie load balancer, and restarts the Oozie
servers and dependent services. In addition, Cloudera Manager generates Kerberos credentials for the new Oozie
server and regenerates credentials for existing servers.

Disabling Oozie High Availability
Based on your requirements, you can disable Oozie High Availability (HA) using Cloudera Manager.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Select Actions Disable High Availability to see all hosts currently running Oozie servers.

3. Select the one host to run the Oozie server and click Continue.

Cloudera Manager stops the Oozie service, removes the additional Oozie servers, configures Hue to reference the
Oozie service, and restarts the Oozie service and dependent services.

Scheduling in Oozie using cron-like syntax

Most Linux distributions include the cron utility, which is used for scheduling time-based jobs. You can schedule
Oozie using Cron-like syntax.

29

http://en.wikipedia.org/wiki/Cron

Scheduling in Oozie using cron-like syntax

Location

Set the scheduling information in the frequency attribute of the coordinator.xml file. A simple file looks like the
following example. The frequency attribute and scheduling information appear in bold.

<coordinator-app name="MY_APP" frequency="30 14 * * *"
start="2009-01-01T05:00Z" end="2009-01-01T06:00Z" timezone="UTC" xmlns="ur
i:oozie:coordinator:0.5">
 <action>
 <workflow>
 <app-path>hdfs://localhost:8020/tmp/workflows</app-path>
 </workflow>
 </action>
</coordinator-app>

Syntax and structure

The cron-like syntax used by Oozie is a string with five space-separated fields:

• minute
• hour
• day-of-month
• month
• day-of-week

The structure takes the form of * * * * *. For example, 30 14 * * * means that the job runs at at 2:30 p.m. everyday.
The minute field is set to 30, the hour field is set to 14, and the remaining fields are set to *.

Allowed values and special characters

The following table describes special characters allowed and indicates in which fields they can be used.

Table 1: Special characters

Character Fields Allowed Description

* (asterisk) All Match all values.

, (comma) All Specify multiple values.

- (dash) All Specify a range.

/ (forward slash) All Specify an increment.

? (question mark) Day-of-month, day-of-week Indicate no specific value (for example, if you want to specify one but not
the other).

L Day-of-month, day-of-week Indicate the last day of the month or the last day of the week (Saturday). In
the day-of-week field, 6L indicates the last Friday of the month.

W Day-of-month Indicate the nearest weekday to the given day.

(pound sign) Day-of-week Indicate the nth day of the month

The following table summarizes the valid values for each field.

Field Allowed Values Allowed Special Characters

Minute 0-59 , - * /

Hour 0-23 , - * /

Day-of-month 0-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day-of-week 1-7 or SUN-SAT , - * ? / L #

30

Scheduling in Oozie using cron-like syntax

Important: Some cron implementations accept 0-6 as the range for days of the week. Oozie accepts 1-7
instead.

Oozie scheduling examples
You can use cron scheduling in Oozie to ensure that the jobs run according to the criteria that you specify.

The following examples show cron scheduling in Oozie. Oozie's processing time zone is UTC. If you are in a
different time zone, add to or subtract from the appropriate offset in these examples.

Run at the 30th minute of every hour

Set the minute field to 30 and the remaining fields to * so they match every value.

frequency="30 * * * *"

Run at 2:30 p.m. every day

Set the minute field to 30, the hour field to 14, and the remaining fields to *.

frequency="30 14 * * *"

Run at 2:30 p.m. every day in February

Set the minute field to 30, the hour field to 14, the day-of-month field to *, the month field to 2
(February), and the day-of-week field to *.

frequency="30 14 * 2 *"

Run every 20 minutes between 5:00-10:00 a.m. and between 12:00-2:00 p.m. on the fifth day of each
month

Set the minute field to 0/20, the hour field to 5-9,12-13, the day-of-month field to 0/5, and the
remaining fields to *.

frequency="0/20 5-9,12-13 0/5 * *"

Run every Monday at 5:00 a.m.

Set the minute field to 0, the hour field to 5, the day-of-month field to ?, the month field to *, and
the day-of-week field to MON.

frequency="0 5 ? * MON"

Note: If the ? was set to *, this expression would run the job every day at 5:00 a.m.,
not just Mondays.

Run on the last day of every month at 5:00 a.m.

Set the minute field to 0, the hour field to 5, the day-of-month field to L, the month field to *, and
the day-of-week field to ?.

frequency="0 5 L * ?"

Run at 5:00 a.m. on the weekday closest to the 15th day of each month

Set the minute field to 0, the hour field to 5, the day-of-month field to 15W, the month field to *,
and the day-of-week field to ?.

frequency="0 5 15W * ?"

Run every 33 minutes from 9:00-3:00 p.m. on the first Monday of every month

31

Configuring an external database for Oozie

Set the minute field to 0/33, the hour field to 9-14, the day-of-week field to 2#1 (the first Monday),
and the remaining fields to *.

frequency="0/33 9-14 ? * 2#1"

Run every hour from 9:00 a.m.-5:00 p.m. on weekdays

Set the minute field to 0, the hour field to 9-17, the day-of-month field to ?, the month field to *, and
the day-of-week field to 2-6.

frequency="0 9-17 ? * 2-6"

Run on the second-to-last day of every month

Set the minute field to 0, the hour field to 0, the day-of-month field to L-1, the month field to *, and
the day-of-week field to ?.

frequency="0 0 L-1 * ?"

Note: “L-1# means the second-to-last day of the month.

Oozie uses Quartz, a job scheduler library, to parse the cron syntax. For more examples, go to the CronTrigger
Tutorial on the Quartz website. Quartz has two fields (second and year) that Oozie does not support.

Configuring an external database for Oozie

Oozie is a stateless web application by design. All information about running and completed workflows, coordinators,
and bundle jobs are stored in a relational database. Oozie supports an embedded PostgreSQL database; however,
Cloudera strongly recommends that you use an external database for production systems.

Related Information
Oozie database configurations

Configuring PostgreSQL for Oozie
You must install PostgreSQL, create the Oozie user and database, and configure PostgreSQL to accept network
connections for the Oozie user.

Procedure

1. Install PostgreSQL

See the PostgreSQL documentation to install it.

2. Create the Oozie User and Oozie Database.

For example, using the PostgreSQL psql command-line tool:

$ psql -U postgres
Password for user postgres: *****

postgres=# CREATE ROLE oozie LOGIN ENCRYPTED PASSWORD 'oozie'
 NOSUPERUSER INHERIT CREATEDB NOCREATEROLE;
CREATE ROLE

postgres=# CREATE DATABASE "oozie" WITH OWNER = oozie
 ENCODING = 'UTF8'
 TABLESPACE = pg_default

32

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/documentation/quartz-2.1.7/tutorials/tutorial-lesson-06.html
http://www.quartz-scheduler.org/documentation/quartz-2.1.7/tutorials/tutorial-lesson-06.html

Configuring an external database for Oozie

 LC_COLLATE = 'en_US.UTF-8'
 LC_CTYPE = 'en_US.UTF-8'
 CONNECTION LIMIT = -1;
CREATE DATABASE

postgres=# \q

3. Configure PostgreSQL to Accept Network Connections for the Oozie User.

a) Edit the postgresql.conf file and set the listen_addresses property to *, to make sure that the PostgreSQL server
starts listening on all your network interfaces. Also make sure that the standard_conforming_strings property is
set to off.

b) Edit the PostgreSQL data/pg_hba.conf file as follows:

host oozie oozie 0.0.0.0/0 md5

4. Reload the PostgreSQL Configuration.

sudo -u postgres pg_ctl reload -s -D /opt/PostgreSQL/8.4/data

Configuring MariaDB for Oozie
You must install MariaDB, create the Oozie database and MariaDB user, and add the MariaDB JDBC driver jar file to
Oozie.

Procedure

1. Install and Start MariaDB.

2. Create the Oozie Database and Oozie MariaDB User.

For example, using the MariaDB mysql command-line tool:

$ mysql -u root -p
Enter password:

MariaDB [(none)]> create database oozie default character set utf8;
Query OK, 1 row affected (0.00 sec)
MariaDB [(none)]> grant all privileges on oozie.* to 'oozie'@'localhost'
 identified by 'oozie';
Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> grant all privileges on oozie.* to 'oozie'@'%' identi
fied by 'oozie';
Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> exit
Bye

3. Add the MariaDB JDBC Driver JAR to Oozie.

Cloudera recommends that you use the MySQL JDBC driver for MariaDB. Copy or symbolically link the MySQL
JDBC driver JAR to the /var/lib/oozie/ directory.

Note: You must manually download the MySQL JDBC driver JAR file.

33

Configuring an external database for Oozie

Configuring MySQL 5 for Oozie
You must install MySQL 5, create the Oozie database and MySQL user, and add the MySQL JDBC driver jar file to
Oozie.

Procedure

1. Install and Start MySQL 5.

2. Create the Oozie Database and Oozie MySQL User.

For example, using the MySQL mysql command-line tool:

$ mysql -u root -p
Enter password:

mysql> create database oozie default character set utf8;
Query OK, 1 row affected (0.00 sec)

mysql> grant all privileges on oozie.* to 'oozie'@'localhost' identified
by 'oozie';
Query OK, 0 rows affected (0.00 sec)

mysql> grant all privileges on oozie.* to 'oozie'@'%' identified by 'oozi
e';
Query OK, 0 rows affected (0.00 sec)

mysql> exit

3. Add the MySQL JDBC Driver JAR to Oozie.

Copy or symbolically link the MySQL JDBC driver JAR into one of the following directories:

• For installations that use packages: /var/lib/oozie/
• For installations that use parcels: /opt/cloudera/parcels/CDH/lib/oozie/lib/

Note: You must manually download the MySQL JDBC driver JAR file.

Configuring MySQL 8 for Oozie
You must install MySQL 8, create the Oozie database and MySQL user, and add the MySQL JDBC driver jar file to
Oozie.

Procedure

1. Install and Start MySQL 8.

2. Create the Oozie Database and Oozie MySQL User.

For example, using the MySQL mysql command-line tool:

$ mysql -u root -p
 Enter password:
mysql> create database oozie default character set utf8;
 Query OK, 1 row affected (0.00 sec)
mysql> CREATE USER 'oozie'@'localhost' IDENTIFIED BY 'oozie';
 Query OK, 0 rows affected (0.00 sec)
mysql> GRANT ALL PRIVILEGES ON oozie.* TO 'oozie'@'localhost';
 Query OK, 0 rows affected (0.00 sec)
mysql> CREATE USER 'oozie'@'%' IDENTIFIED BY 'oozie';
 Query OK, 0 rows affected (0.01 sec)

34

Configuring an external database for Oozie

mysql> GRANT ALL PRIVILEGES ON oozie.* TO 'oozie'@'%';
 Query OK, 0 rows affected (0.00 sec)
mysql> exit

3. Add the MySQL JDBC Driver JAR to Oozie.

Copy or symbolically link the MySQL JDBC driver JAR into one of the following directories:

• For installations that use packages: /var/lib/oozie/
• For installations that use parcels: /opt/cloudera/parcels/CDH/lib/oozie/lib/

Note: You must manually download the MySQL JDBC driver JAR file.

Configuring Oracle for Oozie
You must install Oracle 12.2, create the Oozie Oracle user and grant privileges, and add the Oracle JDBC driver jar
file to Oozie.

Procedure

1. Install and Start Oracle 12.2

Use Oracle's instructions.

2. Create the Oozie Oracle User and Grant Privileges.

The following example uses the Oracle sqlplus command-line tool, and shows the privileges Cloudera
recommends. Oozie needs CREATE SESSION to start and manage workflows. The additional roles are needed
for creating and upgrading the Oozie database.

sqlplus system@localhost/<SERVICE_NAME>

SQL> create user <user> identified by <password> default tablespace <ta
blespace> temporary tablespace temp;
 User created.
SQL> grant create sequence to <user>;
 Grant succeeded.
SQL> grant create session to <user>;
 Grant succeeded.
SQL> grant create table to <user>;
 Grant succeeded.
SQL> alter user <user> quota unlimited on <tablespace>;
 User altered.
SQL> exit

Important:

For security reasons, do not make the following grant:

grant select any table to oozie;

3. Add the Oracle JDBC Driver JAR to Oozie.

Copy or symbolically link the Oracle JDBC driver JAR into the /var/lib/oozie/ directory.

Note: You must manually download the Oracle JDBC driver JAR file.

35

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/install-and-upgrade.html

Working with the Oozie server

Working with the Oozie server

You can use the command-line interface to start or stop the Oozie server. In addition, you can access the Oozie server
with the Oozie client or with a browser.

Starting the Oozie server
You can use the service oozie start command to start Oozie.

Before you begin
Ensure that you have performed all the required configuration steps.

Procedure

• Use the service oozie start command to start Oozie.

If you see the message Oozie System ID [oozie-oozie] started in the oozie.log log file, the system has started
successfully.

Note: By default, Oozie server runs on port 11000 and its URL is http://<OOZIE_HOSTNAME>:11000/
oozie. If SSL is enabled, then Oozie server runs on port 11443 by default.

Stopping the Oozie server
Use the sudo service oozie stop command to stop a running Oozie server.

Accessing the Oozie server with the Oozie Client
The Oozie client is a command-line utility that interacts with the Oozie server using the Oozie web-services API.

Procedure

• Use the /usr/bin/oozie script to run the Oozie client.

For example, if you want to invoke the client on the same machine where the Oozie server is running:

$ oozie admin -oozie https://<oozie_server>:11443/oozie -status
System mode: NORMAL

• To make it convenient to use this utility, set the environment variable OOZIE_URL to point to the URL of the
Oozie server. Then you can skip the -oozie option.

For example, if you want to invoke the client on the same machine where the Oozie server is running, set the
OOZIE_URL to https://<oozie_server>:11443/oozie.

$ export OOZIE_URL=https://<oozie_server>:11443/oozie
$ oozie admin -version

36

Working with the Oozie server

Oozie server build version: 4.0.0-cdh5.0.0

Important: If Oozie is configured with Kerberos Security enabled:

• You must have a Kerberos session running. For example, you can start a session by running the kinit
command.

• Do not use localhost.

As with every service that uses Kerberos, Oozie has a Kerberos principal in the form <SERVICE>/<H
OSTNAME>@<REALM>. In a Kerberos configuration, you must use the <HOSTNAME> value in the
Kerberos principal to specify the Oozie server; for example, if the <HOSTNAME> in the principal is
myoozieserver.mydomain.com, set OOZIE_URL as follows:

export OOZIE_URL=https://myoozieserver.mydomain.com:11443/oozie

If you use an alternate hostname or the IP address of the service, Oozie will not work properly.
• If you want to access Oozie client through Knox:

export OOZIE_URL=https://<knox_host>:<knox_port>/gateway/cdp-proxy-api/o
ozie

When you access Oozie client through Knox, you need to specify a username and password in the command line
as Knox needs it:

export OOZIE_URL=https://<knox_host>:<knox_port>/gateway/cdp-proxy-api/o
ozie
oozie admin -version -auth BASIC -username <username> -password <password>

• When the Oozie server has SSL enabled, the Oozie client does not automatically set the necessary trust-store
properties to form a connection. You can set these properties using the following methods:

• Add them as system properties immediately after the oozie command. For instance:

oozie \
 "-Djavax.net.ssl.trustStore={trustStorePath}" \
 "-Djavax.net.ssl.trustStorePassword={trustStorePassword}" \
 "-Djavax.net.ssl.trustStoreType={trustStoreType}" \
 {oozieCommand} \
 -oozie "{oozieUrl}" \
 ...

• You can also set these properties by defining the OOZIE_CLIENT_OPTS environment variable before
running the Oozie command. For instance:

export OOZIE_CLIENT_OPTS="-Djavax.net.ssl.trustStore={trustStorePath} -D
javax.net.ssl.trustStorePassword={trustStorePassword} -Djavax.net.ssl.tr
ustStoreType={trustStoreType}"

• If you prefer, you can also utilize the -insecure argument with the Oozie command line to prevent the client
from validating the certificates:

oozie \
 {oozieCommand} \
 -oozie "{oozieUrl}" \
 -insecure \
 ...

37

Adding schema to Oozie using Cloudera Manager

Accessing the Oozie server with a browser
If you have enabled the Oozie web console by adding the ExtJS library, you can connect to the console at http://<
OOZIE_HOSTNAME>:11000/oozie.

Note: If the Oozie server is configured to use Kerberos HTTP SPNEGO Authentication, you must use a web
browser that supports Kerberos HTTP SPNEGO (for example, Firefox or Internet Explorer).

For information on how to enable the Oozie web console on managed clusters by adding the ExtJS library, see
Enabling the Oozie web console on managed clusters.

Related Information
Enabling the Oozie web console on managed clusters

Adding schema to Oozie using Cloudera Manager

Cloudera Manager automatically configures Oozie with all available official schemas, and corresponding tables. You
can manually add a schema (official or custom) with Cloudera Manager.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Click the Configuration tab.

3. Select Scope Oozie Server .

4. Select Category Advanced .

5. Locate the Oozie SchemaService Workflow Extension Schemas property or search for it by typing its name in the
Search box.

6. Enter the desired schema from the following schema list appending .xsd to each entry.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.

7. Enter a Reason for change, and then click Save Change to commit the changes.

8. Restart the Oozie service.

Table 2: Oozie schema

Schema CDP

distcp distcp-action-0.1

distcp-action-0.2

distcp-action-1.0

email email-action-0.1

email-action-0.2

git git-action-1.0

hive hive-action-0.2

hive-action-0.3

hive-action-0.4

hive-action-0.5

hive-action-0.6

hive-action-1.0

38

Enabling the Oozie web console on managed clusters

Schema CDP

HiveServer2 hive2-action-0.1

hive2-action-0.2

 hive2-action-1.0

oozie-bundle oozie-bundle-0.1

oozie-bundle-0.2

oozie-coordinator oozie-coordinator-0.1

oozie-coordinator-0.2

oozie-coordinator-0.3

oozie-coordinator-0.4

oozie-coordinator-0.5

oozie-sla oozie-sla-0.1

oozie-sla-0.2

oozie-common oozie-common-1.0

oozie-workflow oozie-workflow-0.1

oozie-workflow-0.2

oozie-workflow-0.2.5

oozie-workflow-0.3

oozie-workflow-0.4

oozie-workflow-0.4.5

oozie-workflow-0.5

oozie-workflow-1.0

shell shell-action-0.1

shell-action-0.2

shell-action-0.3

shell-action-1.0

spark spark-action-0.1

spark-action-0.2

spark-action-1.0

sqoop sqoop-action-0.2

sqoop-action-0.3

sqoop-action-0.4

sqoop-action-1.0

ssh ssh-action-0.1

ssh-action-0.2

Enabling the Oozie web console on managed clusters

You must extract the ext-2.2 libraries to your Oozie server host and enable the Oozie web console.

Procedure

1. Download ext-2.2.

39

http://tiny.cloudera.com/oozie-ext-2.2

Enabling Oozie SLA with Cloudera Manager

2. Extract the contents of the file to /var/lib/oozie on the same host as the Oozie Server.
After extraction, the content of the directories is as follows:

ls -ltr /var/lib/oozie/

total 984
drwxr-xr-x 9 oozie oozie 4096 Aug 4 2008 ext-2.2
-rw-r--r-- 1 systest root 999635 Jan 23 23:24 mysql-connector-java.jar

ls -ltr /var/lib/oozie/ext-2.2/

total 1752
-rw-r--r-- 1 oozie oozie 893 Feb 24 2008 INCLUDE_ORDER.txt
drwxr-xr-x 33 oozie oozie 4096 Aug 4 2008 examples
drwxr-xr-x 4 oozie oozie 49 Aug 4 2008 resources
drwxr-xr-x 10 oozie oozie 148 Aug 4 2008 source
drwxr-xr-x 10 oozie oozie 120 Aug 4 2008 build
-rw-r--r-- 1 oozie oozie 87524 Aug 4 2008 ext-core.js
-rw-r--r-- 1 oozie oozie 163794 Aug 4 2008 ext-core-debug.js
-rw-r--r-- 1 oozie oozie 974145 Aug 4 2008 ext-all-debug.js
drwxr-xr-x 6 oozie oozie 55 Aug 4 2008 adapter
-rw-r--r-- 1 oozie oozie 11548 Aug 4 2008 CHANGES.html
-rw-r--r-- 1 oozie oozie 538956 Aug 4 2008 ext-all.js
-rw-r--r-- 1 oozie oozie 1513 Aug 4 2008 license.txt
drwxr-xr-x 4 oozie oozie 108 Aug 4 2008 docs
drwxr-xr-x 5 oozie oozie 94 Jan 24 15:49 air

For example:

unzip ext-2.2.zip -d /var/lib/oozie
chown -R oozie:oozie /var/lib/oozie/ext-2.2

3. In Cloudera Manager Admin Console, go to the Oozie service.

4. Restart the Oozie service.

Enabling Oozie SLA with Cloudera Manager

You can use Oozie to define SLA limits for critical applications and actively monitor these jobs.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Click the Configuration tab.

3. Locate the Enable SLA Integration property or search for it by typing its name in the Search box.

4. Select Enable SLA Integration. This sets the required values for oozie.services.ext and oozie.service.EventHandl
erService.event.listeners in oozie-site.xml.

5. Enter a Reason for change, and then click Save Changes to commit the changes.

6. Restart the Oozie service.

What to do next

The following properties are set by default when you enable Oozie SLA in Cloudera Manager. You do not have to
explicitly define them, unless you want to modify any of these parameters:

 oozie.service.SchemaService.wf.schemas

40

Disabling Oozie UI using Cloudera Manager

 oozie.service.SchemaService.coord.schemas
 oozie.service.SchemaService.sla.schemas
 oozie.service.ELService.groups
 oozie.service.ELService.constants.wf-sla-submit
 oozie.service.ELService.ext.constants.coord-sla-create
 oozie.service.ELService.functions.coord-sla-create
 oozie.service.ELService.constants.coord-sla-submit
 oozie.service.ELService.functions.coord-sla-submit
 oozie.service.EventHandlerService.filter.app.types
 oozie.service.EventHandlerService.event.queue
 oozie.service.EventHandlerService.queue.size
 oozie.service.EventHandlerService.worker.interval
 oozie.service.EventHandlerService.batch.size
 oozie.service.EventHandlerService.worker.threads
 oozie.sla.service.SLAService.alert.events
 oozie.sla.service.SLAService.capacity
 oozie.sla.service.SLAService.calculator.impl
 oozie.sla.service.SLAService.job.event.latency
 oozie.sla.service.SLAService.check.interval

For oozie.sla.service.SLAService.alert.events, only END_MISS is configured by default. To change the alert events,
explicitly set END_MISS, START_MISS, or DURATION_MISS, in Oozie Server Advanced Configuration Snippet
(Safety Valve) for oozie-site.xml.

Disabling Oozie UI using Cloudera Manager

From the Cloudera 7.1.7 SP1 release onwards, the Oozie UI is enabled by default. You can disable it by setting a new
property in the Oozie site configuration.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Click the Configuration tab.

3. Locate the Oozie Server Advanced Configuration Snippet (Safety Valve) for oozie-site.xml property or search for
it by typing its name in the Search box.

4. Add the following property:

Name: oozie.ui.enabled
Value: false

5. Enter a Reason for change, and then click Save Changes to commit the changes.

6. Restart the Oozie service.

To enable the Oozie UI again, delete the oozie.ui.enabled property set using the safety valve.

Moving the Oozie service to a different host

To move the Oozie service to a new host, do the following:

Procedure

1. Stop the current Oozie service.

2. Add the Oozie service to the desired new host using Add Service wizard in Cloudera Manager. The wizard
configures and starts Oozie and its dependent services.

3. Add the role specific configurations for the previous host to the new host, if any.

41

Oozie database configurations

4. Restart the Oozie service.

Oozie database configurations

You can use Cloudera Manager to configure data purge settings, loading, and dumping the Oozie database.
Depending on the database that you are using with Oozie, you can set the timezone for the database.
Related Information
Configuring an external database for Oozie

Configuring Oozie data purge settings using Cloudera Manager
You can change your Oozie configuration to control when data is purged to improve performance, reduce database
disk usage, or keep the history for a longer period of time. Limiting the size of the Oozie database can also improve
performance during upgrades.

About this task
All Oozie workflows older than 30 days are purged from the database by default. However, actions associated with
long-running coordinators do not purge until the coordinators complete. If, for example, you schedule a coordinator to
run for a year, all those actions remain in the database for the year.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Click the Configuration tab.

3. Type purge in the Search box.

4. Set the following properties as required for your environment:

• Enable Purge for Long-Running Coordinator Jobs

Select this property to enable purging of long-running coordinator jobs for which the workflow jobs are older
than the value you set for the Days to Keep Completed Workflow Jobs property.

• Days to Keep Completed Workflow Jobs
• Days to Keep Completed Coordinator Jobs
• Days to Keep Completed Bundle Jobs

5. Enter a Reason for change, and then click Save Changes to commit the changes.

6. Select Actions Restart to restart the Oozie Service.

Loading the Oozie database
You must configure the database in which to load your Oozie data, create the required database tables, and then load
the Oozie database.

Procedure

1. Stop the Oozie server (in HA mode, stop all Oozie servers).

2. Install and configure the empty database in which to load your Oozie data.

The db.version of the database must match the db.version of the dump file.

3. Select Actions Create Oozie Database Tables .

Confirm you want to create the database tables by clicking Create Oozie Database Tables.

42

Prerequisites for configuring TLS/SSL for Oozie

4. Verify DATABASE DUMP FILE is set correctly.

a) In the Cloudera Manager Admin Console, click the Oozie service.
b) Go to the Configuration page.
c) Select Scope Oozie Server .
d) Select Category Database .

5. Select Actions Load Database .

Confirm you want to dump the database to the specified location by clicking Load Database.

6. Select Actions Start .

Confirm you want to start the service by clicking Start.

Dumping the Oozie database
You must stop the Oozie server, specify the location to which you want to dump the Oozie database, and then
perform the dumping operation.

Procedure

1. Stop the Oozie server (in HA mode, stop all Oozie servers).

2. In the Cloudera Manager Admin Console, go to the Oozie service status page.

3. Select Actions Stop .

Confirm you want to stop the service by clicking Stop.

4. Specify DATABASE DUMP FILE.

a) Go to the Configuration page.
b) Select Scope Oozie Server .
c) Select Category Database .
d) Set a file location for the Database Dump File.

5. Select Actions Dump Database .

Confirm that you want to dump the database to the specified location by clicking Dump Database.

During the export process, Cloudera Manager fetches and writes the database content a compressed zip specified
by the DATABASE DUMP FILE property.

Setting the Oozie database timezone
Depending on the type of database you are using with Oozie, you must configure specific properties for setting the
database timezone.

Cloudera recommends that you set the timezone in the Oozie database to GMT. Databases do not handle Daylight
Saving Time (DST) shifts correctly. There might be problems if you run any Coordinators with actions scheduled to
materialize during the one-hour period that gets lost in DST.

Important: Changing the timezone on an existing Oozie database while Coordinators are already running
might cause Coordinators to shift by the offset of their timezone from GMT one time after you make this
change.

For more information about how to set your database's timezone, see your database's documentation.

Prerequisites for configuring TLS/SSL for Oozie

There are certain prerequisites that must be fulfilled for configuring TLS/SSL for Oozie.

43

Configure TLS/SSL for Oozie

• Keystores for Oozie must be readable by the oozie user. This can be a copy of the Hadoop services' keystore with
permissions set to 0440 and owned by the oozie group.

• Truststores must have permissions set to 0444, which means that all users can read them.
• Specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which daemon roles

of the Oozie service run so the paths you choose must be valid on all hosts.
• If there is a DataNode and an Oozie server running on the same host, they can use the same certificate.

Configure TLS/SSL for Oozie

You can edit properties to enable TLS/SSL for Oozie, specify the keystore file location on the local file system, and
set the password for the keystore.

Procedure

1. In Cloudera Manager, select the Oozie service.

2. Click the Configuration tab.

3. In the Search field, type TLS/SSL to show the Oozie TLS/SSL properties.

4. Edit the following TLS/SSL properties according to your cluster configuration.

Property Description

Enable TLS/SSL for Oozie Check this field to enable TLS/SSL for Oozie.

Oozie TLS/SSL Server JKS Keystore
File Location

Path to the keystore file on the local file system.

Oozie TLS/SSL Server JKS Keystore
File Password

Password for the keystore file.

Oozie TLS/SSL Client Trust Store
File

Path to the client truststore file.

Oozie TLS/SSL Client Trust Store
Password

Password for the truststore file.

5. If SSL is enabled for ZooKeeper, edit the following SSL properties:

Property Description

Oozie ZooKeeper TLS/SSL Server JKS Keystore File Location Path to the keystore file.

Oozie ZooKeeper TLS/SSL Server JKS Keystore File Password Password for the keystore file.

Oozie ZooKeeper TLS/SSL Client Trust Store File Path to the client truststore file.

Oozie ZooKeeper TLS/SSL Client Trust Store Password Password for the truststore file.

6. Optionally, you can modify the values of the following properties:

• Enabled TLS Protocols - List of Cipher Suite names that should be excluded.
• Excluded Cipher Suites - TLS protocols accepted by the Oozie Server.

7. Click Save Changes.

8. Restart the Oozie service.

Related Information
Oozie security enhancements

44

Oozie security enhancements

Oozie security enhancements

Learn about Oozie security enhancements related to callback, callback endpoint, FIPS compliance, and SMTP
(Simple Mail Transfer Protocol). Oozie will be notified about completion of tasks through HTTPS.

Callback

• Prior to this enhancement, even though SSL was enabled for Oozie, the callback mechanism – which notifies the
Oozie server after an action finished (success/failed) – was going through HTTP. With the enhanced callback
feature if TLS/SSL is enabled for Oozie, the callback invocation goes through HTTPS. This applies to all Oozie
actions, including map-reduce actions. For map-reduce actions, as always, the Oozie Application Master (AM)
container does not wait for the map-reduce Job to complete, but YARN makes a callback to Oozie when the map-
reduce Job completes. This callback goes through HTTPS as well when TLS/SSL is enabled for Oozie. When
TLS/SSL is enabled for Oozie, Oozie listens only on the HTTPS port and not on the HTTP port as the HTTP port
was only needed for the callback mechanism. Oozie will not explicitly upload the truststore file required for the
HTTPS connection to the YARN applications launched by Oozie and neither should you, but Oozie will pass the
location of the file used by Oozie itself to the callback mechanism running inside the YARN container. Hence, the
truststore file used by Oozie needs to be available on all NodeManager Hosts and accessible by YARN containers.

Note: Until now, the default callback command for SSH actions was curl. If you have enabled TLS/
SSL for Oozie, Cloudera Manager will change this to curl -k. If you have added a custom callback
command setup for SSH actions through a safety valve, that setup will not be overridden by Cloudera
Manager. You must make sure that your command supports TLS/SSL.

Callback Endpoint

• Along with the callback mechanism, you can also enable authentication for the callback endpoint. If you
have Kerberos configured on your cluster, authentication is enabled for all endpoints of Oozie by default
except for the callback endpoint. You can enable authentication for the callback endpoint by setting the
oozie.servlet.CallbackServlet.authentication.required property to true as a safety-valve in Cloudera Manager.

Note: After the release of Cloudera Manager 7.3.0, you do not need to configure the callback endpoint
authentication through a safety-valve because Cloudera is introducing the Oozie Callback Servlet
Authentication property. After the release of Cloudera Manager 7.3.0, upgrade Cloudera Manager,
and search and select the new Oozie Callback Servlet Authentication option. If you have set the above
property using safety-valve, you can remove it and instead enable it through the new checkbox. No new
configuration is required in Cloudera Runtime. When callback authentication is enabled, Oozie does not
allow an unauthenticated invocation to the endpoint. Before starting the AM container, Oozie generates a
new type of delegation token and when the Job finishes and the AM container notifies the Oozie server.
This new Oozie delegation token is used to make the callback.

Note: If you enable authentication on the callback endpoint, when you are executing an SSH action, make
sure your SSH command will create a Kerberized environment. Otherwise, the callback will fail.

FIPS Compliance

To make Oozie FIPS compliant, the following changes are introduced:

• When TLS/SSL is enabled for Oozie, apart from setting the trustStore, trustStorePassword,
keyStore, and keyStorePassword properties, Cloudera Manager adds two new properties
oozie.https.truststore.type and oozie.https.keystore.type in the oozie-site.xml file.
These properties will contain the value of the globally configured keyStore type in Cloudera Manager.

• When TLS/SSL is enabled for ZooKeeper and Oozie runs with High-Availability, Cloudera Manager sets the
oozie.zookeeper.https.truststore.type and oozie.zookeeper.https.keystore.type
properties along with the existing oozie.zookeeper.https.truststore/keystore.file/
password property in the oozie-site.xml file.

45

Additional considerations when configuring TLS/SSL for Oozie HA

SMTP

To configure custom TLS/SSL protocols when executing an email action, add the new
oozie.email.smtp.ssl.protocols property using a safety valve in Cloudera Manager.

Related Information
Configure TLS/SSL for Oozie

Installing and Configuring CDP with FIPS

Additional considerations when configuring TLS/SSL for
Oozie HA

To enable clients to connect to Oozie servers (the target servers) through the load balancer using TLS/SSL, configure
the load balancer for TLS/SSL pass-through.

This means that the load balancer does not perform encryption or decryption but instead passes traffic from clients
and servers to the appropriate target host. See the documentation for your load balancer for details.

Related Information
Configuring Oozie to use HDFS HA

Configure Oozie client when TLS/SSL is enabled

You must configure the Oozie client if TLS/SSL is enabled in your cluster. You can configure the Oozie command
line client using either the JDK certificate store or using the trust-store file.

Procedure

Using JDK Certificate Store

• Import the certificate into the JDK certificate store. For example,

keytool -keystore </usr/java/default/lib/security/cacerts> -import -trus
tcacerts -alias autotls -file </opt/cloudera/CMCA/trust-store/cm-auto-gl
obal_cacerts.pem> --storepass changeit -noprompt

You must specify the JDK/JRE certificate file location with the -keystore parameter and the certificate you want
to import with the -file parameter.

Using Trust Store

• Manually specify the trust-store and trust-store password for the Oozie command line client. For example,

oozie -Djavax.net.ssl.trustStore={trustStoreFile} -Djavax.net.ssl.trustS
torePassword={trustStorePassword} jobs -oozie https://{oozieHost}:{oozie
Port}/oozie

Using insecure SSL connnection

• From the Cloudera Runtime 7.1.7 SP1 release onwards, you can manually set the SSL connection to insecure. For
example,

oozie jobs -oozie https://{oozieHost}:{ooziePort}/oozie -insecure

This causes Oozie to allow certificate errors while the data remains encrypted. With this, there is no need to
import the certificate into the JDK certificate store or specify the trust-store and trust-store password manually for
the Oozie command line client.

46

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/installation/topics/cdpdc-fips-install-configure.html

Configuring custom Kerberos principal for Oozie

Configuring custom Kerberos principal for Oozie

The Kerberos principal for Ozone is configured by default to use the same service principal as the default process
user. However, you can change the default setting by providing a custom principal in Cloudera Manager.

About this task

Important: Cloudera Manager configures CDP services to use the default Kerberos principal names.
Cloudera recommends that you do not change the default Kerberos principal names. If it is unavoidable to do
so, contact Cloudera Professional Services because it requires extensive additional custom configuration.

Procedure

1. In Cloudera Manager, click Clusters > Oozie .

2. Go to the Configuration tab

3. Search for the Kerberos Principal by entering "kerberos" in the search field.

4. For Kerberos Principal, enter your custom principal value.

5. Click Save Changes.

6. Click Actions and select Restart to restart the service.

47

	Contents
	Overview of Oozie
	Adding the Oozie service using Cloudera Manager
	Considerations for Oozie to work with AWS
	Adding file system credentials to an Oozie workflow
	Credentials for token delegation
	File System Credentials
	Setting file system credentials for Oozie through hadoop properties using Hue Editor
	Setting default credentials using Cloudera Manager
	Advanced settings: Overriding default configurations
	Modifying the workflow file manually
	Hue Limitation

	User authorization configuration for Oozie
	Redeploying the Oozie ShareLib
	Redeploying the Oozie sharelib using Cloudera Manager

	Oozie configurations with CDP services
	Using Sqoop actions with Oozie
	Deploying and configuring Oozie Sqoop1 Action JDBC drivers
	Configuring Oozie Sqoop1 Action workflow JDBC drivers

	Configuring Oozie to enable MapReduce jobs to read or write from Amazon S3
	Configuring Oozie to use HDFS HA
	Using Hive Warehouse Connector with Oozie Spark Action
	Appendix - Creating a new ‘hwc’ ShareLib
	Example for using HWC with Oozie Spark action

	Oozie High Availability
	Requirements for Oozie High Availability
	Configuring Oozie High Availability using Cloudera Manager
	Oozie Load Balancer configuration
	Enabling Oozie High Availability
	Disabling Oozie High Availability

	Scheduling in Oozie using cron-like syntax
	Oozie scheduling examples

	Configuring an external database for Oozie
	Configuring PostgreSQL for Oozie
	Configuring MariaDB for Oozie
	Configuring MySQL 5 for Oozie
	Configuring MySQL 8 for Oozie
	Configuring Oracle for Oozie

	Working with the Oozie server
	Starting the Oozie server
	Stopping the Oozie server
	Accessing the Oozie server with the Oozie Client
	Accessing the Oozie server with a browser

	Adding schema to Oozie using Cloudera Manager
	Enabling the Oozie web console on managed clusters
	Enabling Oozie SLA with Cloudera Manager
	Disabling Oozie UI using Cloudera Manager
	Moving the Oozie service to a different host
	Oozie database configurations
	Configuring Oozie data purge settings using Cloudera Manager
	Loading the Oozie database
	Dumping the Oozie database
	Setting the Oozie database timezone

	Prerequisites for configuring TLS/SSL for Oozie
	Configure TLS/SSL for Oozie
	Oozie security enhancements
	Additional considerations when configuring TLS/SSL for Oozie HA
	Configure Oozie client when TLS/SSL is enabled
	Configuring custom Kerberos principal for Oozie

