
Managing Apache Hadoop YARN Services
Date published:
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

 | Contents | iii

Contents

Configuring YARN Services API to manage long-running applications............ 4

Configuring YARN Services using Cloudera Manager..4

Configuring node attribute for application master placement............................ 5

Migrating database configuration to a new location.. 5

Running YARN Services..8
Deploying and managing services on YARN..9
Launching a YARN service... 9
Saving a YARN service definition.. 10
Creating new YARN services using UI...10

Creating a standard YARN service..10
Creating a custom YARN service..10

Managing the YARN service life cycle through the REST API... 11
YARN services API examples... 12

Configuring YARN Services API to manage long-running
applications

Configuring YARN Services API to manage long-running
applications

You can use the YARN Services API to manage long-running YARN applications.

About this task
You can use the YARN Services API to deploy and manage the YARN services.

Procedure

1. Use the YARN Services API to run a POST operation on your application, specifying a long or unlimited lifetime
in the POST attributes.

2. Use the YARN Services API to manage your application.

• Increase or decrease the number of application instances.
• Perform other application life cycle tasks.

Related Information
Configure YARN for long-running applications

Configuring YARN Services using Cloudera Manager

You can enable and configure the YARN Services feature using Cloudera Manager.

About this task

YARN Services is enabled by default to ensure that any program that is dependent on it, for example Hive LLAP, can
be installed. However you can disable it using Cloudera Manager.

Before you begin

If you want to actively use the YARN Services feature, Cloudera recommends to use Capacity Scheduler, which is
the default scheduler, as only that scheduler type can fully support this feature.

Procedure

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Select the YARN Services Management filter.

4. Ensure that Enable YARN Services is checked.

5. Configure the YARN Services Dependencies Path to specify the path where the YARN services dependencies
tarball is uploaded.

Cloudera recommends using the default path:

/user/yarn/services/service-framework/${cdhVersion}/service-dep.tar.gz

6. Click Save Changes.

If you changed the YARN Services Dependencies path, do the following:

7. Click the Actions button.

8. Select Install YARN Services Dependencies.

4

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/yarn-security/topics/yarn-long-running-applications.html

Configuring node attribute for application master placement

9. Confirm that you want to run the Install YARN Servioces Dependencies comment by clicking the Install YARN
Services Dependencies button.

10. Once the command is run successfully, close the status window.

11. Click the Stale Service Restart icon that is next to the service to invoke the cluster restart wizard.

12. Click Restart Stale Services.

13. Select Re-deploy client configuration.

14. Click Restart Now.

Configuring node attribute for application master
placement

Use the Node Attribute property to describe the attributes of a Node. The placement preference assigns nodes as
worker nodes or compute nodes using the Node Attribute property. Application Master (AM) container is placed to
run on worker nodes instead of compute nodes. The worker group is more stable because YARN ResourceManager
and HDFS NameNode run in it. Also, the worker group nodes are less likely to be shut down due to autoscaling.

By default, a script runs to tag nodes as worker nodes or compute nodes using the node attribute mapping rule. AM
containers are placed to run on worker nodes instead of compute nodes. You can disable the script to not make a
placement preference for running AM containers.

1. In Cloudera Manager, click Clusters > YARN.
2. Go to the Configuration tab.
3. Search for NM YARN-SITE.XML.
4. Set the below property using advanced configuration snippet (safety-valve).

Name: yarn.nodemanager.node-attributes.provider
Value: config

5. Click Save.
6. Click Actions and select Restart to restart the service.

Note: To enable the node attribute placement preference again, follow the above steps and delete the
yarn.nodemanager.node-attributes.provider and config configuration. Restart the YARN
service after updating the configuration.

Migrating database configuration to a new location

The operations performed on queues in Queue Manager UI are stored as Queue Manager versions. You can either
store these versions in the default database location on the host or configure a new location using Cloudera Manager
UI.

By default, Queue Manager stores the operations performed on queues as versions in the config-service.mv.db
database file on the host. Alternatively, you can configure a new database file in a new location and migrate the
version information to the new file.

For security reasons, if you do not want to allow users to access the default database, you can move the database file
to an alternative location. During an upgrade, you can move the database file to some other location and then restore
this file to the default location after the upgrade.

5

Migrating database configuration to a new location

1. (Optional) You can view the version information in the Queue Manager UI that needs to be migrated to a new
location.

Note: The following steps explain how to change the database to a new location and copy the existing
Queue Manager version information to the new database file. If you want to backup the currently used
database file to another location and not migrate, perform only Steps 7, 8, 9 to backup the file.

6

Migrating database configuration to a new location

2. In Cloudera Manager, click Clusters > queuemanager

.
3. Go to the Configuration tab.
4. Specify the new file location /var/lib/hadoop-yarn/config-service in Location for config-service DB.

Note: The config-service database file name should not contain only special characters and dot (.)
characters. Even though the file name is allowed during the creation of database from the UI, in the
backend the .mv.db file is not created. You must have the required permissions to the specified new file
location.

5. Click Save Changes.

7

Running YARN Services

6. Click Actions and select Restart.

After you add the new database location in the Queue Manager service configuration, there will be a similar
.mv.db file and .trace.db file in the new location.

7. SSH into the host machine running the YARN Queue Manager service.

ssh [***your_username***]@[***queue_manager_host_ip_address***]

8. Navigate to the directory where the configuration database file is stored.

cd /var/lib/hadoop-yarn/

9. Find the default location of the initial database file.

find / -name "config-service.mv.db"
/var/lib/hadoop-yarn/config-service.mv.db

The complete path to the .db file is displayed.
10. Replicate the permission at the directory level for the new database location and verify if the database directory

level permissions are the same.
11. Copy the contents of the old file .mv.db file to the new .mv.db file.

cp config-service.mv.db new-location-config-service.mv.db

12. Type y to overwrite the file.
13. In Cloudera Manager, click Clusters > queue manager. Click Actions and select Restart to restart the service.

You have now changed the location of the database file. All queue information is now available in the new file and
can be viewed from the Queue Manager UI.

Running YARN Services

You can use YARN Services API to manage YARN services. You can use the YARN CLI to view the logs for
running applications. In addition, you can use YARN distributed cache to deploy multiple versions of Mapreduce.

Previously, deploying a new service on YARN was not a simple experience. The APIs of existing frameworks
were either too low level (native YARN), required writing new code (for frameworks with programmatic APIs), or
required writing a complex specification (for declarative frameworks). Apache Slider was developed to run services
such as HBase, Storm, Accumulo, and Solr on YARN by exposing higher-level APIs that supported running these
services on YARN without modification.

8

Running YARN Services

The new YARN Services API greatly simplifies the deployment and management of YARN services.

Deploying and managing services on YARN
Using the YARN Services API, you can run simple and complex template-based apps on containers.

Without having the need to write new code or modify your apps, you can create and manage the life cycle of these
YARN services.

{
 "name": "sleeper-service",
 "version": "1.0.0",
 "components" : [
 {
 "name": "sleeper",
 "number_of_containers": 2,
 "launch_command": "sleep 900000",
 "resource": {
 "cpus": 1,
 "memory": "256"
 }
 }
]
 }

Each service file contains, at a minimum, a name, version, and list of components. Each component of a service has
a name, a number of containers to be launched (also referred to as component instances), a launch command, and an
amount of resources to be requested for each container.

Components optionally also include an artifact specification. The artifact can be the default type (with no artifact
specified, like the sleeper-service example above) or can have other artifact types such as TARBALL, or SERVICE.

Launching a YARN service
Launching a service saves the service file to HDFS and starts the service.

Run the following command to launch the sleeper service example. This sleeper example is provided with YARN, so
it can be referred to by the name ;sleeper; or the path to the JSON file can be specified:

yarn app -launch sleeper-service <sleeper OR /path/to/sleeper.json>

This command saves and starts the sleeper service with two instances of the sleeper component. The service could
also be launched by making calls to the REST API instead of using the command line. The service can be stopped and
destroyed as follows. The stop command stops the service from running, but leaves the service JSON file stored in
HDFS so that the service could be started again using a start command. The destroy command stops the service if it is
running and removes the service information entirely.

yarn app -stop sleeper-service

yarn app -destroy sleeper-service

9

Running YARN Services

Saving a YARN service definition
You can save a service YARN file initially without starting the service and later refer to this service YARN file while
launching other services.

Run the following command to save the simple-httpd-service YARN file:

yarn app -save simple-httpd-service /path/to/simple-httpd-service.json

Saving or launching the service from a YARN file stores a modified version of the YARN file in HDFS. This service
specification can then be referenced by other services, allowing users to assemble more complex services.

Creating new YARN services using UI
The YARN Web User Interface enables you to define new services. You can either create standard services by
providing their details or custom services by using JSON files containing the required definitions.

Creating a standard YARN service
You can create a standard service as a template and deploy it based on your requirements.

Procedure

1. On the Services page of the YARN Web User Interface, click New Service.

2. In the User name for service field, specify the name of the user who launches the service.

3. Enter the service definition details.

• Service Name: Enter a unique name for the application.
• Queue Name: Enter the name of the YARN queue to which this application should belong.
• Service Lifetime: Life time of the application from the time it is in STARTED state till the time it is

automatically destroyed by YARN. If you want to have unlimited life time, do not enter any value.
• Service Components: Enter the details of the service components such as component name, CPU required,

memory, number of containers, artifact ID, and launch command. If it is an application like HBase, the
components can be a simple role like master or RegionServer. For a complex application, the components can
be other nested applications with their own details.

• Service Configurations: Set of configuration properties that can be ingested into the application components
through environments, files, and custom pluggable helper docker containers. You can upload files of several
formats such as properties files, JSON files, XML files, YAML files, and template files.

• File Configurations: Set of file configurations that needs to be created and made available as a volume in an
application component container. You can upload JSON file configurations to add to the service.

4. Click Save.

5. Specify a name for the new service and click Add.

The newly created service is added to the list of saved templates.

Note: Click Reset if you do not want to save your changes and specify the service details again.

6. Select the service and click Deploy to deploy it.

Creating a custom YARN service
You can define a service in JSON format and save it as a template.

Procedure

1. On the Services page of the YARN Web User Interface, click New Service.

10

Running YARN Services

2. Click the Custom tab.

3. In the User name for service field, specify the name of the user who launches the service.

4. In the Service Definition field, specify the service definition in JSON format.

The following example shows the sleeper service template definition.

{
 "name": "sleeper-service",
 "version": "1.0.0",
 "components" :
 [
 {
 "name": "sleeper",
 "number_of_containers": 2,
 "launch_command": "sleep 900000",
 "resource": {
 "cpus": 1,
 "memory": "256"
 }
 }
]
}

5. Click Save.

6. Specify a name for the new service and click Add.

The newly created service is added to the list of saved templates.

Note: Click Reset if you do not want to save your changes and specify the service details again.

7. Select the service and click Deploy to deploy it.

Managing the YARN service life cycle through the REST API
You can perform various operations to manage the life cycle of a YARN service through the REST API.

Create a service

Use the following endpoint to create a service:

POST /app/v1/services

The execution of this command confirms the success of the service creation request. You cannot be sure if the service
will reach a running state. Resource availability and other factors will determine if the service will be deployed in the
cluster. You have to call the GET API to get the details of the service and determine its state.

Update a service or upgrade the binary version of a service

You can update the runtime properties of a service. You can update the lifetime, and start or stop a service. You can
also upgrade the service containers to a newer version of their artifacts.

Use the following endpoint to update the service:

PUT /app/v1/services/{service_name}

11

Running YARN Services

Destroy a service

Use the following endpoint to destroy a service and release all its resources.

DELETE /app/v1/services/{service_name}

Get the details of a service

Use the following endpoint to view the details (including containers) of a running service.

GET /app/v1/services/{service_name}

Set the number of instances of a component

Use the following endpoint to set a component's desired number of instances:

PUT /app/v1/services/{service_name}/components/{component_name}

YARN services API examples
You can use the YARN Services API for situations such as creating a single-component service and performing
various operations on the service.

• Create a simple single-component service with most attribute values as defaults

POST URL – http://localhost:8088/app/v1/services

POST Request JSON

{
 "name": "hello-world",
 "version": "1",
 "components": [
 {
 "name": "hello",
 "number_of_containers": 1,
 "artifact": {
 "id": "nginx:latest",
 "type": "DOCKER"
 },
 "launch_command": "./start_nginx.sh",
 "resource": {
 "cpus": 1,
 "memory": "256"
 }
 }
]
}

GET Response JSON

GET URL – http://localhost:8088/app/v1/services/hello-world

Note that a lifetime value of -1 means unlimited lifetime.

{
 "name": "hello-world",
 "version": "1",

12

Running YARN Services

 "id": "application_1503963985568_0002",
 "lifetime": -1,
 "components": [
 {
 "name": "hello",
 "dependencies": [],
 "resource": {
 "cpus": 1,
 "memory": "256"
 },
 "configuration": {
 "properties": {},
 "env": {},
 "files": []
 },
 "quicklinks": [],
 "containers": [
 {
 "id": "container_e03_1503963985568_0002_01_000001",
 "ip": "10.22.8.143",
 "hostname": "myhost.local",
 "state": "READY",
 "launch_time": 1504051512412,
 "bare_host": "10.22.8.143",
 "component_name": "hello-0"
 },
 {
 "id": "container_e03_1503963985568_0002_01_000002",
 "ip": "10.22.8.143",
 "hostname": "myhost.local",
 "state": "READY",
 "launch_time": 1504051536450,
 "bare_host": "10.22.8.143",
 "component_name": "hello-1"
 }
],
 "launch_command": "./start_nginx.sh",
 "number_of_containers": 1,
 "run_privileged_container": false
 }
],
 "configuration": {
 "properties": {},
 "env": {},
 "files": []
 },
 "quicklinks": {}
}

• Update the lifetime of a service

PUT URL – http://localhost:8088/app/v1/services/hello-world

PUT Request JSON

Note that irrespective of what the current lifetime value is, this update request will set the lifetime of the service
to 3600 seconds (1 hour) from the time the request is submitted. Therefore, if a service has remaining lifetime
of 5 minutes (for example) and would like to extend it to an hour, OR if an application has remaining lifetime of
5 hours (for example) and would like to reduce it down to one hour, then for both scenarios you would need to
submit the following request.

{
 "lifetime": 3600

13

Running YARN Services

}

• Stop a service

PUT URL – http://localhost:8088/app/v1/services/hello-world

PUT Request JSON

{
 "state": "STOPPED"
}

• Start a service

PUT URL – http://localhost:8088/app/v1/services/hello-world

PUT Request JSON

{
 "state": "STARTED"
}

• Increase or decrease the number of containers (instances) of a component of a service

PUT URL – http://localhost:8088/app/v1/services/hello-world/components/hello

PUT Request JSON

{
 "number_of_containers": 3
}

• Destroy a service

DELETE URL – http://localhost:8088/app/v1/services/hello-world
• Create a complicated service – HBase

POST URL - http://localhost:8088/app/v1/services/hbase-app-1

{
 "name": "hbase-app-1",
 "lifetime": "3600",
 "version": "2.0.0.3.0.0.0",
 "artifact": {
 "id": "hbase:2.0.0.3.0.0.0",
 "type": "DOCKER"
 },
 "configuration": {
 "env": {
 "HBASE_LOG_DIR": "<LOG_DIR>"
 },
 "files": [
 {
 "type": "TEMPLATE",
 "dest_file": "/etc/hadoop/conf/core-site.xml",
 "src_file": "core-site.xml"
 },
 {
 "type": "TEMPLATE",
 "dest_file": "/etc/hadoop/conf/hdfs-site.xml",
 "src_file": "hdfs-site.xml"
 },
 {
 "type": "XML",
 "dest_file": "/etc/hbase/conf/hbase-site.xml",

14

Running YARN Services

 "properties": {
 "hbase.cluster.distributed": "true",
 "hbase.zookeeper.quorum": "${CLUSTER_ZK_QUORUM}",
 "hbase.rootdir": "${SERVICE_HDFS_DIR}/hbase",
 "zookeeper.znode.parent": "${SERVICE_ZK_PATH}",
 "hbase.master.hostname": "hbasemaster-0.${SERVICE_NAME}.${USER}.
${DOMAIN}",
 "hbase.master.info.port": "16010"
 }
 }
]
 },
 "components": [
 {
 "name": "hbasemaster",
 "number_of_containers": 1,
 "launch_command": "sleep 15;/opt/cloudera/parcels/CDH-<version>/bin/
hbase master start",
 "resource": {
 "cpus": 1,
 "memory": "2048"
 },
 "configuration": {
 "env": {
 "HBASE_MASTER_OPTS": "-Xmx2048m -Xms1024m"
 }
 }
 },
 {
 "name": "regionserver",
 "number_of_containers": 1,
 "launch_command": "sleep 15; /opt/cloudera/parcels/CDH-<version>/bi
n/hbase master start",
 "dependencies": [
 "hbasemaster"
],
 "resource": {
 "cpus": 1,
 "memory": "2048"
 },
 "configuration": {
 "files": [
 {
 "type": "XML",
 "dest_file": "/etc/hbase/conf/hbase-site.xml",
 "properties": {
 "hbase.regionserver.hostname": "${COMPONENT_INSTANCE_NAME}.
${SERVICE_NAME}.${USER}.${DOMAIN}"
 }
 }
],
 "env": {
 "HBASE_REGIONSERVER_OPTS": "-XX:CMSInitiatingOccupancyFraction=
70 -Xmx2048m -Xms1024m"
 }
 }
 },
 {
 "name": "hbaseclient",
 "number_of_containers": 1,
 "launch_command": "sleep infinity",
 "resource": {
 "cpus": 1,
 "memory": "1024"

15

Running YARN Services

 }
 }
],
 "quicklinks": {
 "HBase Master Status UI": "http://hbasemaster-0.${SERVICE_NAME}.${US
ER}.${DOMAIN}:16010/master-status"
 }
}

16

	Contents
	Configuring YARN Services API to manage long-running applications
	Configuring YARN Services using Cloudera Manager
	Configuring node attribute for application master placement
	Migrating database configuration to a new location
	Running YARN Services
	Deploying and managing services on YARN
	Launching a YARN service
	Saving a YARN service definition
	Creating new YARN services using UI
	Creating a standard YARN service
	Creating a custom YARN service

	Managing the YARN service life cycle through the REST API
	YARN services API examples

