
Configuring Apache Hadoop YARN Security
Date published:
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

 | Contents | iii

Contents

Linux Container Executor... 4

Managing Access Control Lists...4
YARN ACL rules...4
YARN ACL syntax.. 5
YARN ACL types.. 5

Admin ACLs...6
Queue ACLs... 6
Application ACLs... 6

Configuring TLS/SSL for Core Hadoop Services... 10
Configuring TLS/SSL for HDFS... 11
Configuring TLS/SSL for YARN.. 12

Enabling HTTPS between ResourceManager and Application Master............14

Configuring Cross-Origin Support for YARN UIs and REST APIs................. 15

Configuring YARN Security for Long-Running Applications...........................16

YARN Ranger authorization support.. 17
Enabling YARN Ranger authorization support... 18
Disabling YARN Ranger authorization support.. 18

Enabling custom Kerberos principal support in YARN.................................... 18

Enabling custom Kerberos principal support in a Queue Manager
cluster... 21

Linux Container Executor

Linux Container Executor

A setuid binary called container-executor is part of the hadoop-yarn package and is installed in /var/lib/hadoop-yarn/
bin/container-executor.

This container-executor program, which is used on YARN only and supported on GNU/Linux only, runs the
containers as the user who submitted the application. It requires all user accounts to be created on the cluster hosts
where the containers are launched. It uses a setuid executable that is included in the Hadoop distribution. The
NodeManager uses this executable to launch and stop containers. The setuid executable switches to the user who has
submitted the application and launches or stops the containers. For maximum security, this executor sets up restricted
permissions and user/group ownership of local files and directories used by the containers such as the shared objects,
jars, intermediate files, and log files. As a result, only the application owner and NodeManager can access any of the
local files/directories including those localized as part of the distributed cache.

Parcel Deployments

Important: Configuration changes to the Linux container executor could result in local NodeManager
directories (such as usercache) being left with incorrect permissions. To avoid this, when making changes
using either Cloudera Manager or the command line, first manually remove the existing NodeManager local
directories from all configured local directories (yarn.nodemanager.local-dirs), and let the NodeManager
recreate the directory structure.

Managing Access Control Lists

An Access Control List (ACL) is a list of specific permissions or controls that allow individual users or groups to
perform specific actions upon specific objects, as well as defining what operations are allowed on a given object.

YARN ACLs do not deny access; rather, they identify a user, list of users, group, or list of groups who can access a
particular object.

Like HDFS ACLs, YARN ACLs provide a way to set different permissions for specific named users or named
groups. ACLs enhance the traditional permissions model by defining access control for arbitrary combinations of
users and groups instead of a single owner/user or a single group.

YARN ACL rules
Learn about the YARN ACL rules to which all YARN ACLs must adhere.

All YARN ACLs must adhere to the following rules:

• Special Values:

• The wildcard character (*) indicates that everyone has access.

Note: You cannot use the wildcard (*) character along with a list of users and/or groups in the same
ACL. If you use the wildcard character it must be the only item in the ACL.

• A single space entry indicates that no one has access.
• If there are no spaces in an ACL, then all entries (the listed users and/or groups) are considered authorized users.
• Group names in YARN Resource Manager ACLs are case sensitive. So, if you specify an uppercase group name

in the ACL, it will not match the group name resolved from the Active Directory because Active Directory group
names are resolved in lowercase.

• If an ACL starts with a single space, then it must consist of groups only.
• All entries after the occurrence of a second single space in an ACL are ignored.

4

Managing Access Control Lists

• There are no ACLs that deny access to a user or group. However, if you wish to block access to an operation
entirely, enter a value for a non-existent user or group (for example,'NOUSERS NOGROUPS'), or simply enter a
single space. By doing so, you ensure that no user or group maps to a particular operation by default.

• If you wish to deny only a certain set of users and/or groups, specify every single user and/or group that requires
access. Users and/or groups that are not included are "implicitly" denied access.

YARN ACL syntax
Example of YARN ACL syntax.

Note: In all cases where a single space is required, you will see: <single space>.

• Users only

user1,user2,userN

Use a comma-separated list of user names. Do not place spaces after the commas separating the users in the list.
• Groups only

<single space>HR,marketing,support

You must begin group-only ACLs with a single space. Group-only ACLs use the same syntax as users, except
each entry is a group name rather than user name.

• Users and Groups

fred,alice,haley<single space>datascience,marketing,support

A comma-separated list of user names, followed by a single space, followed by a comma-separated list of group
names. This sample ACL authorizes access to users “fred”, “alice”, and “haley”, and to those users in the groups
“datascience”, “marketing”, and “support”.

Examples

The following ACL entry authorizes access only to the members of “my_group”:

<single space>my_group

The following ACL entry authorizes access to anyone:

*

The following ACL authorizes access to the users “john”, “jane”, and the group “HR”:

john,jane<single space>HR

In this example, six groups (“group_1” through “group_6”) are defined in the system. The following ACL authorizes
access to a subset of the defined groups, allowing access to all members of groups 1 through 5 (and implicitly denies
access to members of the group “group_6”):

<single space>group_1,group_2,group_3,group_4,group_5

YARN ACL types
There are three different kinds of YARN ACL types: YARN Admin ACLs, YARN Queue ACLs and YARN
Application ACLs.

5

Managing Access Control Lists

Admin ACLs
Use the YARN Admin ACLs to allow users to run YARN administrator sub-commands, which are executed via the
yarn rmadmin <command>.

Important: The YARN Admin ACL is triggered and applied only when you run YARN sub-commands
via yarn rmadmin <cmd>. If you run other YARN commands via the YARN command line (for example,
starting the Resource or Node Manager), it does not trigger the YARN Admin ACL check or provide the
same level of security.

The default YARN Admin ACL is set to the wildcard character (*), meaning all users and groups have YARN
Administrator access and privileges. So after YARN ACL enforcement is enabled, (via the yarn.acl.enable property)
every user has YARN ACL Administrator access. Unless you wish for all users to have YARN Admin ACL access,
edit the yarn.admin.acl setting upon initial YARN configuration, and before enabling YARN ACLs.

A typical YARN Admin ACL looks like the following, where the system's Hadoop administrator and multiple groups
are granted access:

hadoopadmin<space>yarnadmgroup,hadoopadmgroup

Queue ACLs
Use Queue ACLs to control access rights to users and administrators to the Capacity Scheduler queues. Application
submission can really only happen at the leaf queue level, but an ACL restriction set on a parent queue will be applied
to all of its descendant queues.

In the Capacity Scheduler, ACLs are configured by granting queue access to a list of users and groups with the
Submit Application ACL parameter. Use Queue Administer ACL control the administration of queues at various
levels. Queue administrators can submit applications to the queue, stop applications in the queue, and obtain
information about any application in the queue.

For information about setting queue ACLs, see Control access to queues using ACLs

Related Information
Control access to queues using ACLs

Application ACLs
Use Application ACLs to provide a user or group access to an application.

Use Application ACLs to provide a user and/or group–neither of whom is the owner–access to an application. The
most common use case for Application ACLs occurs when you have a team of users collaborating on or managing
a set of applications, and you need to provide read access to logs and job statistics, or access to allow for the
modification of a job (killing the job) and/or application. Application ACLs are set per application and are managed
by the application owner.

Users who start an application (the owners) always have access to the application they start, which includes the
application logs, job statistics, and ACLs. No other user can remove or change owner access. By default, no other
users have access to the application data because the Application ACL defaults to “ “ (single space), which means no
one has access.

Application ACL evaluation
The better you understand how YARN ACLs are evaluated, the more prepared you will be to define and configure the
various YARN ACLs available to you.

For example, if you enable user access in Administrator ACLs, then you must be aware that user may have access
to/see sensitive data, and should plan accordingly. So if you are the administrator for an entire cluster, you also have
access to the logs for running applications, which means you can view sensitive information in those logs associated
with running the application.

Best Practice: A best practice for securing an environment is to set the YARN Admin ACL to include a limited set of
users and or groups.

6

https://docs.cloudera.com/cdp-private-cloud-base/7.1.8/yarn-allocate-resources/topics/yarn-control-access-to-queues-using-acls.html

Managing Access Control Lists

The following diagram shows the evaluation flow for Application ACLs:

Figure 1: Application ACL Evaluation Flow

The following diagram shows a sample queue structure, starting with leaf queues on the bottom, up to root queue at
the top:

Figure 2: Queue Structure

7

Managing Access Control Lists

Example: Stopping an application in the "Production" queue

Provide the privilege to a user to stop an application in a specific queue.

For this Application ACL evaluation flow example, assume the following for application_1536220066338_0001
running in the queue "Production":

• Application owner: John
• "Datascience" queue administrator: Jane
• YARN cluster administrator: Bob

In this use case, John attempts to stop the application, which is allowed because he is the application owner.

Working as the queue administrator, Jane attempts to stop a job in the queue "Production", which she can do as the
queue administrator of the parent queue.

Bob is the YARN cluster administrator and he is also listed as a user in the Admin ACL. He attempts to stop the job
for which he is not the owner, but because he is the YARN cluster administrator, he can stop the job.

Example: Moving the application and viewing the log in the "Test" queue

Provide the privileges to a user to move application between queues and to view a log in a specific queue.

For this Application ACL evaluation flow example, assume the following for application_1536220066338_0002
running in the queue "Test":

• Application owner: John
• "Marketing" and "Dev" queue administrator: Jane
• Jane has log view rights via the mapreduce.job.acl-view-job ACL
• YARN cluster administrator: Bob

In this use case, John attempts to view the logs for his job, which is allowed because he is the application owner.

8

Managing Access Control Lists

Jane attempts to access application_1536220066338_0002 in the queue "Test" to move the application to the
"Marketing" queue. She is denied access to the "Test" queue via the queue ACLs–so she cannot submit to or
administer the queue "Test". She is also unable to stop a job running in queue "Test". She then attempts to access the
logs for application_1536220066338_0002 and is allowed access via the mapreduce.job.acl-view-job ACL.

Bob attempts to access application_1536220066338_0002 in the queue "Test" to move the application to the
"Marketing" queue. As the YARN cluster administrator, he has access to all queues and can move the application.

Note: Permissions on the log files are also set at the filesystem level and are enforced by the filesystem: the
filesystem can block you from accessing the file, which means that you can not open/read the file to check the
ACLs that are contained in the file.

MapReduce Job ACLs
Create and use the following MapReduce Application ACLs to view YARN logs.

• mapreduce.job.acl-view-job

Provides read access to the MapReduce history and the YARN logs.
• mapreduce.job.acl-modify-job

Provides the same access as mapreduce.job.acl-view-job, and also allows the user to modify a running job.

Note: Job modification is currently limited to killing the job. No other YARN system modifications are
supported.

During a search or other activities, you may come across the following two legacy settings from MapReduce; they are
not supported by YARN. Do not use them:

• mapreduce.cluster.acls.enabled
• mapreduce.cluster.administrators

Stopping an application

The Application ACL mapreduce.job.acl-modify-job determines whether or not a user can modify a job, but in the
context of YARN, this only allows the user to stop an application.

The Application ACL mapreduce.job.acl-modify-job determines whether or not a user can modify a job, but in
the context of YARN, this only allows the user to stop an application. The kill action is application agnostic and
part of the YARN framework. Other application types, like MapReduce or Spark, implement their own kill action
independent of the YARN framework. MapReduce provides the kill actions via the mapred command.

For YARN, the following three groups of users are allowed to stop a running application:

• The application owner
• A cluster administrator defined in yarn.admin.acl
• A queue administrator defined in aclAdministerApps for the queue in which the application is running

Note that for the queue administrators, ACL inheritance applies, as described earlier.

Related Information
Application logs' ACLs

Spark Job ACLs
Spark ACLs using a separate property for users and groups.

Both user and group lists use a comma-separated list of entries. The wildcard character “*” allows access to anyone,
and the single space “ “ allows access to no one. Enable Spark ACLs using the property spark.acls.enable, which is
set to false by default (not enabled) and must be changed to true to enforce ACLs at the Spark level.

Create and use the following Application ACLs for the Spark application:

• Set spark.acls.enable to true (default is false).
• Set spark.admin.acls and spark.admin.acls.groups for administrative access to all Spark applications.

9

Configuring TLS/SSL for Core Hadoop Services

• Set spark.ui.view.acls and spark.ui.view.acls.groups for view access to the specific Spark application.
• Set spark.modify.acls and spark.modify.acls.groups for administrative access to the specific Spark application.

Application logs' ACLs
The MapReduce Application ACL mapreduce.job.acl-view-job determines whether or not you can view an
application log.

Aaccess is evaluated through the following ACLs:

• YARN Admin and Queue ACLs
• Application ACLs

After an application is in the “finished” state, logs are aggregated, depending on your cluster setup. You can access
the aggregated logs via the MapReduce History server web interface. Aggregated logs are stored on shared cluster
storage, which in most cases is HDFS. You can also share log aggregation via storage options like S3 or Azure by
modifying the yarn.nodemanager.remote-app-log-dir setting in Cloudera Manager to point to either S3 or Azure,
which should already be configured.

The shared storage on which the logs are aggregated helps to prevent access to the log files via file level permissions.
Permissions on the log files are also set at the file system level, and are enforced by the file system: the file system
can block any user from accessing the file, which means that the user cannot open/read the file to check the ACLs that
are contained within.

In the cluster storage use case of HDFS, you can only access logs that are aggregated via the:

• Application owner
• Group defined for the MapReduce History server

When an application runs, generates logs, and then places the logs into HDFS, a path/structure is generated (for
example: /tmp/logs/john/logs/application_1536220066338_0001). So access for the application owner "john" might
be set to 700, which means read, write, execute; no one else can view files underneath this directory. If you don’t
have HDFS access, you will be denied access. Command line users identified in mapreduce.job.acl-view-job are also
denied access at the file level. In such a use case, the Application ACLs stored inside the aggregated logs will never
be evaluated because the Application ACLs do not have file access.

For clusters that do not have log aggregation, logs for running applications are kept on the node where the container
runs. You can access these logs via the Resource Manager and Node Manager web interface, which performs the
ACL checks.

Configuring TLS/SSL for Core Hadoop Services

TLS/SSL for the core Hadoop services (HDFS and YARN) must be enabled as a group.

TLS/SSL for the core Hadoop services (HDFS and YARN) must be enabled as a group. Enabling TLS/SSL on HDFS
is required before it can be enabled on YARN.

Note: If you enable TLS/SSL for HDFS, you must also enable it for YARN.

The steps in the following topics include enabling Kerberos authentication for HTTP Web-Consoles. Enabling TLS/
SSL for the core Hadoop services on a cluster without enabling authentication displays a warning.

Before You Begin

• Before enabling TLS/SSL, keystores containing certificates bound to the appropriate domain names will need to
be accessible on all hosts on which at least one HDFS or YARN daemon role is running.

• Since HDFS and YARN daemons act as TLS/SSL clients as well as TLS/SSL servers, they must have access to
truststores. In many cases, the most practical approach is to deploy truststores to all hosts in the cluster, as it may
not be desirable to determine in advance the set of hosts on which clients will run.

10

Configuring TLS/SSL for Core Hadoop Services

• Keystores for HDFS and YARN must be owned by the hadoop group, and have permissions 0440 (that is,
readable by owner and group). Truststores must have permissions 0444 (that is, readable by all)

• Cloudera Manager supports TLS/SSL configuration for HDFS and YARN at the service level. For each of these
services, you must specify absolute paths to the keystore and truststore files. These settings apply to all hosts on
which daemon roles of the service in question run. Therefore, the paths you choose must be valid on all hosts.

An implication of this is that the keystore file names for a given service must be the same on all hosts. If, for
example, you have obtained separate certificates for HDFS daemons on hosts node1.example.com and node2.ex
ample.com, you might have chosen to store these certificates in files called hdfs-node1.keystore and hdfs-node2.k
eystore (respectively). When deploying these keystores, you must give them both the same name on the target host
— for example, hdfs.keystore.

• Multiple daemons running on a host can share a certificate. For example, in case there is a DataNode and an Oozie
server running on the same host, they can use the same certificate.

Configuring TLS/SSL for HDFS
You must enable TLS/SSL HDFS properties, TLS/SSL Client TrustStore properties, and allow web UI authentication.

About this task
Cloudera recommends you enable web UI authentication for the HDFS service. Web UI authentication uses
SPNEGO. After enabling this, you cannot access the Hadoop web consoles without a valid Kerberos ticket and
correct client-side configuration.

Before you begin

• You must enable Hadoop TLS/SSL Enabled in CORE_SETTINGS before configuring the HDFS properties.
• Enabling TLS/SSL on HDFS is required before enabling TLS/SSL on YARN.

Procedure to enable Hadoop TLS/SSL Enabled

1. Log in to Cloudera Manager.
2. Navigate to Clusters.
3. Select CORE_SETTINGS.
4. Go to Configurations.
5. Search for Hadoop TLS/SSL Enabled and select the checkbox.
6. Click Save Changes.

Procedure to configure the HDFS properties

1. Log in to Cloudera Manager.
2. Navigate to Clusters.
3. Select the HDFS service
4. Go to Configurations.
5. Search for TLS/SSL.
6. Search for the following properties and configure them according to your cluster configuration:

a. Hadoop TLS/SSL Server Keystore File Location
b. Hadoop TLS/SSL Server Keystore File Password
c. Hadoop TLS/SSL Server Keystore Key Password

Property Description

Hadoop TLS/SSL Server Keystore
File Location

Path to the keystore file containing the server certificate and private key.

Hadoop TLS/SSL Server Keystore
File Password

Password for the server keystore file.

11

Configuring TLS/SSL for Core Hadoop Services

Property Description

Hadoop TLS/SSL Server Keystore
Key Password

Password that protects the private key contained in the server keystore.

7. Click Save Changes.

Procedure to configure the TLS/SSL Client TrustStore properties:

If you are not using the default trustore, then perform the below steps:

1. Log in to Cloudera Manager.
2. Navigate to Clusters.
3. Select the HDFS service
4. Go to Configurations.
5. Search for TLS/SSL.
6. Search for the following properties and configure them according to your cluster configuration:

a. Cluster-Wide Default TLS/SSL Client Truststore Location
b. Cluster-Wide Default TLS/SSL Client Truststore Password

Property Description

Cluster-Wide Default TLS/SSL Client
Truststore Location

Path to the client truststore file. This truststore contains certificates of trusted servers, or of
Certificate Authorities trusted to identify servers.

Cluster-Wide Default TLS/SSL Client
Truststore Password

Password for the client truststore file.

Important: The HDFS properties below define a cluster-wide default truststore that YARN can override.

7. Click Save Changes.

Procedure to enable web UI authentication

If you want to enable web UI authentication for the HDFS service, perform the below steps:

1. Log in to Cloudera Manager.
2. Navigate to Clusters.
3. Select the HDFS service
4. Go to Configurations.
5. Search for the Enable Authentication for HTTP Web-Consoles property.
6. Select the checkbox.

Note: This is effective only if security is enabled for the HDFS service.

7. Click Save Changes.

Related Information
Configuring TLS/SSL for YARN

Configuring TLS/SSL for YARN
If you enabled TLS/SSL for HDFS, you must also enable it for YARN.

About this task

If you enable TLS/SSL for HDFS, you must also enable it for YARN.

12

Configuring TLS/SSL for Core Hadoop Services

Cloudera recommends to enable Web UI authentication for YARN.

Procedure

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for TLS/SSL.

4. Find and edit the following properties according to your cluster configuration:

Property Description

Hadoop TLS/SSL Server Keystore
File Location

Path to the keystore file containing the server certificate and private key.

Hadoop TLS/SSL Server Keystore
File Password

Password for the server keystore file.

Hadoop TLS/SSL Server Keystore
Key Password

Password that protects the private key contained in the server keystore.

If you want to override the cluster-wide defaults set by the HDFS properties, do the following:

5. Configure the following TLS/SSL client truststore properties for YARN.

Property Description

TLS/SSL Client Truststore File
Location

Path to the client truststore file. This truststore contains certificates of trusted servers, or of
Certificate Authorities trusted to identify servers.

TLS/SSL Client Truststore File
Password

Password for the client truststore file.

If you want to enable the TSL/SSL for YARN Queue Manager, do the following:

Note: If Cloudera Manager is TLS/SSL enabled, then ensure that YARN Queue Manager is also TLS/SSL
enabled. Disabling Queue Manager TLS/SSL where, Cloudera Manager has TLS/SSL causes error.

6. In Cloudera Manager, select the QUEUE MANAGER service.

Note: There is a current limitation that Cloudera Manager agent TLS must be enabled in order for the
truststore to be used when making the connection to QueueManager UI.

• Ensure that Cloudera Manager is configured with Administration Settings > Use TLS Encryption for
Agents enabled.

• Ensure that Cloudera Manager is configured with Administration Settings > Use TLS Authentication
of Agents to Server enabled.

• Ensure that the agent config.ini is configured with use_tls=1 on every node.

7. Click the Configuration tab.

8. Search for TSL/SSL.

9. Select the Enable TLS/SSL for YARN Queue Manager Store checkbox to encrypt communication between clients
and YARN Queue Manager Store.

Note:

• Ensure that the Cloudera Manager truststore is set to the same cacerts location in Administration >
Settings > Cloudera Manager TLS/SSL Trust Store File.

• Ensure that any intermediate CA certs are present in the Cloudera Manager truststore.

10. Configure the following properties according to your cluster configuration:

Property Description

TLS/SSL Server JKS Keystore File
Location

Path to the JKS keystore file containing the server and private key.

13

Enabling HTTPS between ResourceManager and Application
Master

Property Description

TLS/SSL Server JKS Keystore File
Password

Password for the JKS keystore file.

11. Select the Enable TLS/SSL for YARN Queue Manager Webapp checkbox to encrypt communication between
clients and YARN Queue Manager Webapp.

12. Configure the following properties according to your cluster configuration:

Property Description

Webapp TLS/SSL Server JKS
Keystore File Location

Path to the JKS keystore file containing the server and private key.

Webapp TLS/SSL Server JKS
Keystore File Password

Password for the Webapp JKS keystore file.

Webapp TLS/SSL Client Trust Store
File

Path to the client JKS truststore file. This truststore contains certificates of trusted servers, or of
Certificate Authorities trusted to identify servers.

Webapp TLS/SSL Client Trust Store
Password

Password for the Webapp truststore file.

If you want to enable Web UI authentication for YARN, do the following:

13. Search for web consoles.

14. Find the Enable Authentication for HTTP Web-Consoles property.

15. Check the property to enable web UI authentication.

Note: This is effective only if security is enabled for the HDFS service.

16. Click Save Changes.

17. Go back to the home page, by clicking the Cloudera Manager logo.

18. Select the HDFS service.

19. Click the Configuration tab.

20. Search for Hadoop SSL Enabled.

21. Find and select the Hadoop SSL Enabled property.
The SSL communication for HDFS and YARN is enabled.

22. Click Save Changes.

23. Click the Stale Service Restart icon that is next to the service to invoke the cluster restart wizard.

24. Click Restart Stale Services.

25. Select Re-deploy client configuration.

26. Click Restart Now.

Related Information
Configuring TLS/SSL for HDFS

Enabling HTTPS between ResourceManager and
Application Master

If you want to enable HTTPS communication between the ResourceManager and the Application Master, you have to
use a ResourceManager-level and two Application Master-level configuration properties.

14

Configuring Cross-Origin Support for YARN UIs and REST APIs

Procedure

1. Enable HTTPS communication on the ResourceManager’s side:

a) Navigate to Cloudera Manager.
b) Select the YARN service.
c) Search for ResourceManager and find the ResourceManager Advanced Configuration Snippet (Safety Valve)

for yarn-site.xml safety valve.
d) Add the following configuration:

<property>
<name>yarn.resourcemanager.application-https.policy</name>
<value>STRICT</value>
</property>

e) Restart the ResourceManager to apply the configuration change.

HTTPS communication is enabled on the ResourceManager’s side. Keystore and Truststore are available.

There are two supported Keystore and Truststore formats. The format is automatically set by the
ResourceManager:

• JKS: when FIPS is not enabled
• BCFKS: when FIPS is enabled

The NodeManager collects the Keystore and Truststore related information (location on the file system,
password, and format) and uses environment variables to provide the Application Master with the information.

2. Enable the HTTPS communication on the ApplicationMaster’s side:

When submitting a job set the yarn.app.mapreduce.am.webapp.https.enabled and the yarn.app.mapreduce.am.we
bapp.https.client.auth properties to true.

The following is an example of a simple ‘pi job’ that can be considered as a test job. Note that the jar file is
depending on the deployed CDP version:

yarn jar /opt/cloudera/parcels/CDH-7.1.5-1.cdh7.1.5.p0.6683980/lib/hadoop-
mapreduce/hadoop-mapreduce-examples-3.1.1.7.1.5.0-149.jar pi -Dyarn.app.ma
preduce.am.webapp.https.enabled=true -Dyarn.app.mapreduce.am.webapp.http
s.client.auth=true 1 1000

HTTPS communication between ResourceManager and Application Master is enabled.

What to do next

For more information, see the design document in YARN-6586

Configuring Cross-Origin Support for YARN UIs and
REST APIs

Cross-Origin Resource Sharing (CORS) is enabled by default on YARN so that the corresponding services accept
cross-origin requests from only selected domains. Enabling CORS also helps the YARN UI fetch data endpoints from
the browser.

About this task

CORS is enabled at cluster level and then on individual components such as YARN. If you want to set other values
than the default ones, use safety valves in Cloudera Manager to configure the CORS configuration properties.

15

https://issues.apache.org/jira/browse/YARN-6586

Configuring YARN Security for Long-Running Applications

Procedure

1. In the Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for core-site.xml.

4. Find YARN Service Advanced Configuration Snippet (Safety Valve) for core-site.xml.

5. Click on the plus icon to add and configure the following properties :

Property Default value Description

hadoop.http.cross-origin.allowed-origins regex:.*[.]subdomain[.]EXAMPLE[.]com(;\d
+)?.*

Comma-separated list of origins allowed for
cross-origin support.

The default value is *. Mention only specific
origins so that the services do not accept all
the cross-origin requests.

hadoop.http.cross-origin.allowed-methods GET, PUT, POST, OPTIONS, HEAD,
 DELETE

Comma-separated list of methods allowed
for cross-origin support.

hadoop.http.cross-origin.allowed-headers X-Requested-With, Content-Type, Accept,
Origin, WWW-Authenticate, Accept-
Encoding, Transfer-Encoding

Comma-separated list of headers allowed for
cross-origin support.

hadoop.http.cross-origin.max-age 180 Number of seconds until when a preflight
request can be cached.

6. Click Save Changes.

7. In the Cloudera Manager, select the YARN service.

8. Click the Configuration tab.

9. Search for yarn-site.xml.

10. Find the YARN Service Advanced Configuration Snippet (Safety Valve) for yarn-site.xml.

11. Click on the plus icon to add and configure the cross-origin.enabled properties:

Property Default value Description

yarn.nodemanager.webapp.cross-origin.ena
bled

true Enable cross-origin support for the
NodeManager.

yarn.resourcemanager.webapp.cross-origin
.enabled

true Enable cross-origin support for the
ResourceManager.

yarn.timeline-service.http-cross-origin.enab
led

true Enable cross-origin support for the timeline
service.

Note: The value of the hadoop.http.cross-origin.allowed-origins property in yarn-site.xml overrides the
value of the same property in core-site.xml. You can configure the value of this property to allow access
to specific domains; for example, regex:.*[.]hwx[.]site(:\d*)?.

12. Click Save Changes.

13. Restart the HDFS and YARN services.

Configuring YARN Security for Long-Running
Applications

Long-running applications need additional configuration since the default settings only allow the hdfs user's
delegation tokens a maximum lifetime of 7 days which is not always sufficient.

16

YARN Ranger authorization support

About this task

Long-running applications such as Spark Streaming jobs will need additional configuration since the default settings
only allow the hdfs user's delegation tokens a maximum lifetime of 7 days which is not always sufficient.

You can work around this by configuring the ResourceManager as a proxy user for the corresponding HDFS
NameNode so that the ResourceManager can request new tokens when the existing ones are past their maximum
lifetime. YARN will then be able to continue performing localization and log-aggregation on behalf of the hdfs user.

Procedure

1. In Cloudera Manager, select the YARN service.

2. Click the Configuration tab.

3. Search for yarn-site.xml.

4. Find the ResourceManager Advanced Configuration Snippet (Safety Valve) for yarn-site.xml.

5. Click the plus icon and add the followoing:

• Name: yarn.resourcemanager.proxy-user-privileges.enabled
• Value: true

6. Click Save Changes.

7. Go back to the home page by clicking the Cloudera Manager logo.

8. Select the HDFS service.

9. Click the Configuration tab.

10. Search for core-site.xml.

11. Find the Cluster-wide Advances Configuration Snippet (Safety Valve) for core-site.xml.

12. Click the plus icon and add the following:

• Name: hadoop.proxyuser.yarn.hosts
• Value: *

13. Click the plus icon again and add the following:

• Name: hadoop.proxyuser.yarn.groups
• Value: *

14. Click Save Changes.

15. Click the Stale Service Restart icon that is next to the service to invoke the cluster restart wizard.

16. Click Restart Stale Services.

17. Select Re-deploy client configuration.

18. Click Restart Now.

YARN Ranger authorization support

The YARN Ranger authorization support feature enables each Data Hub cluster’s YARN cluster to have a dedicated
Ranger YARN repository. As a result admins can set different YARN policies for different Data Hub clusters.

The YARN Ranger authorization support feature enables admins to create separate YARN queues for users sharing
the same cluster and to control who can submit jobs to each queue, and who can see or kill jobs within the queue. In
addition, users without admin privileges can only see their own jobs in a given queue.

This feature is enabled by default in a new Data Hub cluster installation. Cloudera Manager automatically creates a
Ranger YARN repository for each cluster.

The YARN Ranger authozitation support is not enabled by default after migrating to CDP Public Cloud 7.2.10 or
higher. That means no YARN Ranger repository is created after migration, and the cm_yarn repository is used until
the cluster is deleted and a new DataHub cluster with Cloudera Manager 7.4.2 or higher is created.

17

Enabling custom Kerberos principal support in YARN

Alternatively, you can enable this feature manually using Cloudera Manager.

Enabling YARN Ranger authorization support
Enable the YARN Ranger authorization support feature if you want to set different YARN policies for different Data
Hub clusters.

Procedure

1. In Cloudera Manager, navigate to YARN Configuration .

2. Search for ranger service.

3. Find the Ranger Service Name property.

4. Set the Ranger service using the following pattern: <ClusterName>_yarn

5. Click Save Changes and restart the YARN service.

Disabling YARN Ranger authorization support
You can disable any YARN Ranger repository through the Ranger Admin UI.

Procedure

1. In Cloudera Manager, selec the Ranger service.

2. Click Ranger Admin Web UI.
Takes you to the Ranger Admin Web UI site.

3. Log in to the Ranger Admin Web UI.

4. Find the applicable YARN Ranger repository.

5. Click the edit icon.

6. Find the Active Status field and select Disabled.

7. Click Save.

Enabling custom Kerberos principal support in YARN

By default Cloudera Manager sets the Kerberos principal in YARN to yarn. This value can be easily changed using
Cloudera Manager.

About this task

Important: Cloudera Manager configures CDP services to use the default Kerberos principal names.
Cloudera recommends that you do not change the default Kerberos principal names. If it is unavoidable to do
so, contact Cloudera Professional Services because it requires extensive additional custom configuration.

18

Enabling custom Kerberos principal support in YARN

Procedure

1. Disable the ZooKeeper ACL check temporarily.

a) In Cloudera Manager, navigate to ZooKeeper Configuration .
b) Find the Java Configuration Options for ZooKeeper Server property.
c) Add the following value:

-Dzookeeper.skipACL=yes

d) Click Save Changes.
e) Restart the ZooKeeper service.

2. In Cloudera Manager, navigate to YARN Configuration .

3. Find the Kerberos principal property and set it to the required name.

4. Click Save Changes.

5. Find the Admin ACL property and ensure that it contains either the ${yarn_user} placeholder or the updated
principal name value.

6. Ensure that YARN HDFS folders have the correct access rights and owners.

For example, if you use the Capacity Scheduler Node labels feature, the yarn.node-labels.fs-store.root-dir folder
could be inaccessible by YARN with the new Kerberos principal name. To resolve this issue, make it accessible or
use the hdfs chown command. The following is the minimum list of folder paths for which ownership needs to be
changed if Capacity Scheduler Node labels are enabled:

• /yarn/node-labels
• /user/yarn/mapreduce/mr-framework
• /user/yarn/services/service-framework/*
• /tmp/logs

7. Restart all services with stale configuration.

a) Click Stale configuration: Restart needed.
b) Ensure that Deploy client configuration is selected.
c) Click Restart.

8. Select the YARN service.

19

Enabling custom Kerberos principal support in YARN

9. Click Actions Reset ACLs on ZooKeeper nodes .

This step can take a long time if a lot of application data is stored in ZooKeeper.

10. Enable the ZooKeeper ACL check.

a) Navigate to ZooKeeper Configuration .
b) Find Jave Configuration Options for ZooKeeper Server.
c) Remove the -Dzookeeper.skipACL=yes value.
d) Click Save Changes.
e) Restart the ZooKeeper service.

20

Enabling custom Kerberos principal support in a Queue Manager
cluster

Enabling custom Kerberos principal support in a Queue
Manager cluster

In a secure Queue Manager cluster you can enable custom Kerberos principal using Cloudera Manager.

About this task

Important: Cloudera Manager configures CDP services to use the default Kerberos principal names.
Cloudera recommends that you do not change the default Kerberos principal names. If it is unavoidable to do
so, contact Cloudera Professional Services because it requires extensive additional custom configuration.

Before you begin

Ensure your Queue Manager cluster is secure. For that check if it runs on port 7183.

Procedure

1. In Cloudera Manager, navigate to YARN Configuration .

2. Search for admin acl.

3. Find the Admin ACL (yarn_admin_acls) property.

4. Add the user you want to use for the Kerberos principal to the list of Admin ACL property.

5. Click Save Changes.

6. Restart the YARN service to avoid staleness.

7. Navigate to Queue Manager Configuration .

8. Search for kerberos principal.

9. Find the Kerberos Principal (kerberos_princ_name) property.

10. Add the same user you added to the Admin ACL property.

11. Click Save Changes.

12. Restart the YARN Queue Manager service to avoid staleness.

21

Enabling custom Kerberos principal support in a Queue Manager
cluster

If you get the Exception: Only admins can carry out this operation error message while doing
Queue Manager operations, ensure that the principal name is added to the YARN Admin ACL

list.

22

	Contents
	Linux Container Executor
	Managing Access Control Lists
	YARN ACL rules
	YARN ACL syntax
	YARN ACL types
	Admin ACLs
	Queue ACLs
	Application ACLs
	Application ACL evaluation
	MapReduce Job ACLs
	Spark Job ACLs
	Application logs' ACLs

	Configuring TLS/SSL for Core Hadoop Services
	Configuring TLS/SSL for HDFS
	Configuring TLS/SSL for YARN

	Enabling HTTPS between ResourceManager and Application Master
	Configuring Cross-Origin Support for YARN UIs and REST APIs
	Configuring YARN Security for Long-Running Applications
	YARN Ranger authorization support
	Enabling YARN Ranger authorization support
	Disabling YARN Ranger authorization support

	Enabling custom Kerberos principal support in YARN
	Enabling custom Kerberos principal support in a Queue Manager cluster

