
Cloudera Runtime 7.1.9

Atlas Audits
Date published: 2021-03-04
Date modified: 2023-09-07

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Audit Operations...4
Atlas Type Definitions... 6
Atlas Export and Import operations...7

Exporting data using Connected type.. 8
Atlas Server Operations..9
Audit enhancements..10
Examples of Audit Operations... 12

Storage reduction for Atlas... 16
Using audit aging..17

Using default audit aging... 17
Using Sweep out configurations.. 18
Using custom audit aging...19

Aging patterns...20
Audit aging reference configurations...20
Enabling audit aging...20

Audit aging using REST API...21
Using custom audit filters.. 21

Supported operators.. 22
Rule configurations...23
Use cases and sample payloads..23

Cloudera Runtime Audit Operations

Audit Operations

As an Atlas administrator you can view the audit operations listed in the Audits tab in the Atlas UI. The audit data is
captured implicitly by Atlas for various operations.

The audit operations include:

• Import
• Export
• Server start
• Server state active (In case of HA environment)
• Type Definition create
• Type Definition update
• Type Definition delete

The Type Definition can be of any type category listed:

• Business Metadata
• Classification
• Enum
• Entity
• Relationship
• Struct

Audit is collected for every create, update and delete operations.

Note: A user or a group must have the Admin Audits Ranger permission to access audits and related
information.

The JSON data is the payload which contains the actual data. You can submit the payload using the appropriate REST
API tool.

4

Cloudera Runtime Audit Operations

An audit entry logs the total number of Type Definitions that are created for create, update, and delete operations.
Type Definitions are categorized according to entity types, struct types, Enum types, relationships, classification, and
Business Metadata. For every Type Definition, the JSON data is stored in the audit entry.

Each audit entry logs the following details:

• Users - Indicates the user name of the user who performed the audit operation..
• Operation - Indicates an operation enum; can be used for searching audit entities as well
• Client ID - Indicates the IP address of the machine from which the request was generated.
• Result Count - Provides the total number of artifacts on which the operation was performed.
• Start Time - Indicates the actual time when the request was generated.
• End Time - Indicates the actual time when the requested operation was completed.
• Duration - Indicates the time taken by a request to complete the intended operation.

5

Cloudera Runtime Audit Operations

Atlas Type Definitions
Using Type Definitions, you can create, update, and delete entities of various types.

An example of Type Definition - Create

An example of Type Definition - Update

6

Cloudera Runtime Audit Operations

An example of Type Definition - Delete

Atlas Export and Import operations
An audit entry is created for every export and import operation.

An example of - Export operation

7

Cloudera Runtime Audit Operations

Each import audit entry provides information about the total number of entities imported, along with the number of
entities imported with each Type Definition.

An example of - Import operation

Exporting data using Connected type
As per Apache Atlas Software Foundation notes, only directly connected entities must be exported and when the data
is exported with the starting entity as Hive table and the fetch type is "CONNECTED", the exported entities must not
include the external and managed locations.

But the expected behavior is that all the entities which are directly connected entities get exported. Additionally, other
dependent entities will be updated like the managed location of a database or associated database of a table which also
gets exported.

8

https://atlas.apache.org/2.0.0/Export-API.html

Cloudera Runtime Audit Operations

For example:

db1.table1 --> p1 ---> db2.table2 ---> p2 ---> db3.table3 ---> p3 ---> db4.t
able4 --> p4 ---> db5.table5

Export db3.table3 with options
{
"itemsToExport": [{
"typeName": "hive_table", "uniqueAttributes":
{ "qualifiedName": "db3.table3@cluster0" }
}],
"options":
{ "fetchType": "connected" }
}

Result: The exported ZIP file must contain entities: db2, db3, db4, table2, table3, table4, p2, and p3.

Atlas Server Operations
When you perform server related tasks, audit entries are logged.

When the Atlas server is started, an audit entry is logged. Also, when the server is started in the Active mode using
High Availability (HA), an audit entry is logged. For more information, see About Atlas High Availability.

An example of - Server Start operation

An example of - Server State Active operation

9

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/atlas-ha/topics/atlas-high-availability-overview.html

Cloudera Runtime Audit Operations

Audit enhancements
When any entity is created in Atlas, the created entity is stored in HBase tables.

Currently, when the created entity is modified or updated, for example, entity core attributes, relationship attributes,
custom attributes, or associated classifications, the changed entity is captured by Atlas either as a full entity object or
partial object (with only updated attributes or relations) and stored in HBase tables.

While processing update requests, Atlas generates entity audit events and stores them in the HBase table. These audit
events have complete entity information in the JSON format. Multiple updates on a single entity results in generating
multiple audit events, each of which has a complete entity instance duplicated with minimal changes.

For example, if entity A1 is updated or modified for about five times, for every update, along with the changes
(minimal), the entire entity is stored in the HBase tables. This process consumes additional storage space in HBase
tables. In simple terms, A1 + the number of times the changes made is the resultant output that is saved in the HBase
tables. Even if the changes are minimal (updating an attribute or relations or something that is not significant), Atlas
captures the complete entity.

The Atlas audit enhancement optimizes storage space by not capturing the entire entity instance in each audit event.
You can configure Atlas to store only differential information in audit events.

You must enable the application flag by setting the parameter using:

Cloudera Manager UI > Atlas > Configuration > Click Advanced (Under Category) > Enter the following
parameter and the value under Atlas Server Advanced Configuration Snippet (Safety Valve) for confi/atlas-
application.properties text field.

atlas.entity.audit.differential=true

To have significant savings in the HBase table memory footprint, only the difference between the original and
updated entity state is captured in Atlas.

Previously, Atlas exhibited full entity as shown in the image:

10

Cloudera Runtime Audit Operations

Currently, Atlas displays only the differences between the original and updated entity state as shown in the image

As a use case, previously when you add data under user-defined-properties, for example, key_1 and val_1, Atlas
displayed the same as seen in the image.

11

Cloudera Runtime Audit Operations

Currently Atlas displays only the changed or updated entity values.

Examples of Audit Operations
Some examples of payload submission for audit operations.

An example of creating a Type Definition:

enumDefs:
1.days_of_week
entityDefs:
1.Country
2.State
3.Vehicle

relationshipDefs:

12

Cloudera Runtime Audit Operations

1.country_state_rel
curl --location --request POST -u admin:admin 'http://car123.test1234.root
.hwx.site:23400/api/atlas/v2/types/typedefs' \
--header 'Content-Type: application/json' \
--data-raw '{
"enumDefs": [
{
"name": "days_of_week",
"typeVersion": "1.0",
"elementDefs": [
{
"ordinal": 1,
"value": "MONDAY"
},
{
"ordinal": 2,
"value": "TUESDAY"
},
{
"ordinal": 3,
"value": "WEDNESDAY"
},
{
"ordinal": 4,
"value": "THURSDAY"
},
{
"ordinal": 5,
"value": "FRIDAY"
},
{
"ordinal": 6,
"value": "SATURDAY"
},
{
"ordinal": 7,
"value": "SUNDAY"
}
]
}
],
"entityDefs": [
{
"category": "ENTITY",
"createdBy": "admin",
"updatedBy": "admin",
"createTime": 1537261952180,
"updateTime": 1537262097732,
"version": 1,
"name": "Vehicle",
"description": "desc Vehicle",
"typeVersion": "1.1",
"attributeDefs": [
{
"name": "no_of_wheels",
"typeName": "int",
"isOptional": true,
"cardinality": "SINGLE",
"valuesMinCount": 1,
"valuesMaxCount": 1,
"isUnique": false,
"isIndexable": false,
"includeInNotification": false
}

13

Cloudera Runtime Audit Operations

]
},
{
"category": "ENTITY",
"createdBy": "admin",
"updatedBy": "admin",
"createTime": 1537261952180,
"updateTime": 1537262097732,
"version": 1,
"name": "Country",
"description": "desc Country",
"typeVersion": "1.1",
"attributeDefs": [
{
"name": "ISD_CODE",
"typeName": "string",
"isOptional": false,
"cardinality": "SINGLE",
"valuesMinCount": 1,
"valuesMaxCount": 1,
"isUnique": false,
"isIndexable": false,
"includeInNotification": false
}
]
},
{
"category": "ENTITY",
"createdBy": "admin",
"updatedBy": "admin",
"createTime": 1537261952180,
"updateTime": 1537262097732,
"version": 1,
"name": "State",
"description": "desc State",
"typeVersion": "1.1",
"attributeDefs": [
{
"name": "STD_CODE",
"typeName": "string",
"isOptional": false,
"cardinality": "SINGLE",
"valuesMinCount": 1,
"valuesMaxCount": 1,
"isUnique": false,
"isIndexable": false,
"includeInNotification": false
}
]
}
],
"relationshipDefs": [
{
"name": "country_state_rel",
"typeVersion": "1.1",
"relationshipCategory": "AGGREGATION",
"endDef1": {
"type": "Country",
"name": "state_st",
"isContainer": false,
"cardinality": "SINGLE",
"isLegacyAttribute": true
},
"endDef2": {

14

Cloudera Runtime Audit Operations

"type": "State",
"name": "country_ct",
"isContainer": true,
"cardinality": "SET"
},
"propagateTags": "NONE"
}
]
}'

An example of updating a Type Definition:

enumDefs:days_of_week
entityDefs:Country
curl --location --request PUT -u admin:admin 'http://car123.car123-1.root.
hwx.site:31000/api/atlas/v2/types/typedefs' \
--header 'Content-Type: application/json' \
--data-raw '{
"enumDefs": [
{
"name": "days_of_week",
"typeVersion": "1.0",
"elementDefs": [
{
"ordinal": 1,
"value": "MONDAY"
},
{
"ordinal": 2,
"value": "TUESDAY"
},
{
"ordinal": 3,
"value": "WEDNESDAY"
},
{
"ordinal": 4,
"value": "THURSDAY"
},
{
"ordinal": 5,
"value": "FRIDAY"
},
{
"ordinal": 6,
"value": "SATURDAY"
},
{
"ordinal": 7,
"value": "SUNDAY"
},
{
"ordinal": 8,
"value": "HOLIDAY"
}
]
}
],
"entityDefs": [
{
"category": "ENTITY",
"createdBy": "admin",

15

Cloudera Runtime Storage reduction for Atlas

"updatedBy": "admin",
"createTime": 1537261952180,
"updateTime": 1537262097732,
"version": 1,
"name": "Country",
"description": "desc Country Updated",
"typeVersion": "1.1",
"attributeDefs": [
{
"name": "ISD_CODE",
"typeName": "string",
"isOptional": false,
"cardinality": "SINGLE",
"valuesMinCount": 1,
"valuesMaxCount": 1,
"isUnique": false,
"isIndexable": false,
"includeInNotification": false
}
]
}
]
}'

An example of deleting a Type Definition:

curl --location --request DELETE -u admin:admin
 'http://car123.car123-1.root.hwx.site:31000/api/atlas/v2/types/typ
edef/name/Vehicle'

An example of exporting an Atlas entity:

'{
 "itemsToExport": [
 { "typeName": "DB", "uniqueAttributes": { "name": "Sales" }},
 { "typeName": "DB", "uniqueAttributes": { "name": "Reporting" }}
,
 { "typeName": "DB", "uniqueAttributes": { "name": "Logging" }}
],
 "options": { "fetchType": "full" }
 }'

For additional reference related to exporting entities, see https://atlas.apache.org/#/ExportAPI.

An example of importing an Atlas entity:

Performing an import operation should create an entry in the audits tab.

For additional reference related to exporting entities, see https://atlas.apache.org/#/ImportAPI.

Storage reduction for Atlas

Audit aging reduces the existing audit data in the Atlas system which is based on the end user criteria and
configuration changes that users can manage. With this configuration, users can control the type of DDL events
pertaining to schema changes that will be retained for a period of time determined by their compliance requirements.

Atlas creates audit events for creation, update, and deletion (CUD) of entities in CDP, including TAG/Classification
and DML events. Notification processing with less significant metadata, exponential growth of audit events with no
constraints, and retaining of audit data for long periods of time causes overhead on the application processing and
consumes additional storage space, thereby causing operational inefficiencies.

16

https://atlas.apache.org/#/ExportAPI
https://atlas.apache.org/#/ImportAPI

Cloudera Runtime Storage reduction for Atlas

Atlas supports various audit reduction strategies, pertaining to the type of audit data the users can store and the period
of time that they can retain the data in the Atlas systems.

Some of the audit reduction options include:

• DML Audit Filter - A hook based filter that skips processing of DML events.
• Custom Audit Filters - Users can decide which audit events will be ignored..
• Audit Aging - Users can purge existing audit data based on the criteria they set.

Note: Audit reduction is targeted only for the entity audit data which persists in the
ATLAS_ENTITY_AUDIT_EVENTS table. Filtering and aging data is exclusive to Admin Audit data which
typically persists in the atlas_janus table..

Attention: Audit aging is employed for optimizing the existing audit events and Audit filters are used to
prevent unnecessary audit events.

Using audit aging
You can employ various options to manage the volume of audit data stored and reduce the storage limits on your
Atlas instance.

Audit aging overview

Using the audit aging feature helps you to manage the Atlas storage in an efficient manner. Based on certain
conditions the Atlas audit data can be deleted or aged out.

Attention: Audit aging is allowed only for users with admin-audits policy.

Configuring audit aging

You can specify the audit aging cases based on the configuration property named atlas.audit.aging.enabled=true. By
default, this property is disabled. If needed, you must explicitly enable the property.

The following types of audit aging are supported:

• Default Audit Aging
• Sweep out Audits
• Custom Audit Aging

Using default audit aging
You can use the default audit aging mechanism to configure Time-to-Live (TTL), audit count limit, and disable
default audit aging processes.

Using Time-to-Live (TTL) configuration

(TTL) is a value for the period of time that a packet, or data, should exist on a computer or network before being
discarded.

Configuration to set TTL: atlas.audit.default.ageout.ttl.in.days

This configuration makes a final decision on how long the audit data can be retained in the database. This
configuration is used by the Audit aging scheduler to delete all audit data when the audit data lifetime crosses the
configured TTL. This configuration is applicable for all entity and audit action types.

By default, the audit TTL is configured as 30 days.

As an example for TTL configuration usage, consider the following scenario::

You must maintain the entire audit data only for 40 days. The following configuration deletes audit data older than 40
days.

17

Cloudera Runtime Storage reduction for Atlas

atlas.audit.default.ageout.ttl.in.day=40

Attention: Currently, audit aging relies on both TTL and Audit count options, which is a default setting, with
TTL as 30 days and Audit Count as 10 events. Users must explicitly override the Audit count configurations
if more events are required.

Using Audit count limit parameter

Configuration to set allowed: atlas.audit.default.ageout.count

Using this configuration limits audit data for each entity. Atlas deletes all old audit data exceeding the configured
audit count for all entities. This configuration is applicable for all entity and audit action types.

By default, audit count is configured as 10.

As an example for Audit limit count configuration usage, consider the following scenario:

You must maintain only the latest 20 audits for any entity.

atlas.audit.default.ageout.count=20

Using Disable Default Audit Aging parameter

Configuration to disable default audit aging: atlas.audit.default.ageout.enabled

For all entities, the process is default aging.This process consumes more time and resources. Under certain
circumstances, if you want to execute only custom aging or sweep out features for minimal data, using this property
default aging can be disabled.

By default, default audit aging is enabled.

Related Information
Using Sweep out configurations

Using custom audit aging

Using Sweep out configurations
You can employ the sweep out option for the entire audit data without any limitations or restrictions of TTL or
minimum data count.

Caution: Use the sweep out feature carefully as any wrong usage can wipe out the entire audit data.

Sweep out option supports the following configurations to manage your audit data:

• The default Sweep out configuration is atlas.audit.sweep.out.enabled=true. The default value is false (disabled).

To delete entire audit data for specific entity types and audit action types can be configured with the following
properties:

• atlas.audit.sweep.out.entity.types=<List of entity types> With sweep out option enabled, by default it is
applicable for all entity types. You can override the configuration with specific entity types.

• atlas.audit.sweep.out.action.types=<List of audit action types> With sweep out option enabled, by default it is
applicable for all audit action types. You can override the configuration with specific audit action types.

Use cases detailing the usage of the Sweep out option using specific configurations.

Sweep out action Applicable configuration

Delete entire audit data for hive_column and hive_storagedesc atlas.audit.sweep.out.enabled=trueatlas.audit.sweep.out.entity.types=hive_column,hive_storagedesc

Delete entity update events for all entity types atlas.audit.sweep.out.enabled=true

atlas.audit.sweep.out.action.types=ENTITY_UPDATE

18

Cloudera Runtime Storage reduction for Atlas

Delete all entity update events for hive_table atlas.audit.sweep.out.enabled=true

atlas.audit.sweep.out.entity.types=hive_table

atlas.audit.sweep.out.action.types=ENTITY_UPDATE

Related Information
Using default audit aging

Using custom audit aging

Using custom audit aging
For additional flexibility to manage audit data, the custom audit aging mechanism is used to contrive the
configuration of TTL and limit audit event count which is based on entity or audit action type.

Custom audit aging encompasses both default aging and Sweep out options available throughout the audit data
ecosystem.

Supported custom aging configurations

• atlas.audit.custom.ageout.count=20
• atlas.audit.custom.ageout.ttl.in.days=30
• atlas.audit.custom.ageout.entity.types=<List of entity ypes>
• atlas.audit.custom.ageout.action.types=<List of audit action types>

Using these configurations, Atlas limits (with audit count) or age-out (with TTL) audit data for the configured entity
and audit action types.

Note: Custom audit count and custom TTL configurations are applicable only when at least one of the
custom entity or action types is configured.

Custom audit aging configurations are categorized using the following use cases:

Actions by Description

Entity Type Example: Limit to five latest audits for hive_column.

atlas.audit.custom.ageout.count=5

atlas.audit.custom.ageout.entity.types=hive_column

By Action Type Example: Delete all ENTITY_UPDATE audit events older than ten days.

atlas.audit.custom.ageout.ttl.in.days=10

atlas.audit.custom.ageout.action.types=ENTITY_UPDATE

Limited audit by Action type for specific entity type Example: Limit to five latest ENTITY_UPDATE audits for hive_storagedesc entities.

• atlas.audit.custom.ageout.count=5
• atlas.audit.custom.ageout.entity.types=hive_storagedesc
• atlas.audit.custom.ageout.action.types=ENTITY_UPDATE

Example: Limit to five latest audits created in last 1 week for hive_db entities

• atlas.audit.custom.ageout.count=5
• atlas.audit.custom.ageout.ttl.in.days=7
• atlas.audit.custom.ageout.entity.types=hive_db

Related Information
Using default audit aging

Using Sweep out configurations

19

Cloudera Runtime Storage reduction for Atlas

Aging patterns
When you simultaneously perform multiple aging operations, certain features override the order in which the aging
process takes place.

You must note about the following aging options and how they take effect.

• If the sweep out option is configured, sweep out entity types action types (if any) gets skipped from Custom aging
and Default aging operations.

• If Custom aging is configured, custom entity types and action types (if any) get skipped from Default aging
operations.

• Default aging skips the aging process for the entity and action types configured under custom and sweep out
options and shall continue to process for all the remaining entity and action types.

Finally, if all the three aging options are simultaneously configured during the audit reduction cycle, Atlas follows the
process in the following order of occurrence:

Sweep out -> Custom aging -> Default aging

Related Information
Audit aging reference configurations

Audit aging reference configurations
You must be aware about other related audit aging configurations that are required while working with optimizing the
storage requirements and retaining the required audit data in your Atlas application.

The following configuration options provide you flexibility to manage your audit aging operations.

• By default, Atlas skips deleting all ENTITY_CREATE events. Atlas audit aging options are directed at non
ENTITY_CREATE events which are handled according to the specified configurations. If you plan to delete audit
data which includes ENTITY_CREATE events, use the parameter atlas.audit.create.events.ageout.allowed=true.
By default, the value of this parameter is true.

• The frequency for performing the audit aging process is moderated by using the atlas.audit.aging.scheduler.freq
uency.in.days=10 parameter. By default the audit aging process is scheduled for every 10 days.

• You cannot directly configure the custom or default TTL value less than the minimum TTL configured for this
property - min.ttl.to.maintain. If the TTL value is configured for less than the minimum TTL, Atlas considers TTL
as the value configured for the parameter. The default value is 3.

• You cannot directly configure custom or default audit count less than the minimum audit count configured for this
property - min.audit.count.to.maintain. If you configure a lesser value, Atlas considers audit count as the value
configured for the parameter. The default value is 5.

• By default audit aging will be executed for all the subtypes of the entity types configured using the property atla
s.audit.aging.subtypes.included. By default it is configured as true. To limit audit aging operation for configured
entity types but not sub types, this configuration can be used to exclude the subtypes. For example, the iceberg_
table is a subtype of hive_table and if the user wants to purge audit data for only hive_table, in that case this
configuration can be set to false.

Related Information
Aging patterns

Enabling audit aging
You can initiate and configure Audit aging feature in Atlas either though application-properties in Cloudera Manager
and the REST API route.

For all the audit aging operations, the configuration can be enabled through application properties.

20

Cloudera Runtime Storage reduction for Atlas

From Cloudera Manager > Configuration tab > Atlas Server Advanced Configuration Snippet (Safety Valve) for
conf/atlas-application.properties

Once the configuration is updated in Cloudera Manager, restart Atlas to enable audit aging and also follow the audit
aging process based on the scheduled frequency.

Audit aging using REST API
Optionally, Atlas triggers Audit aging through REST API configuration. Using REST API to enable Audit aging
features can be less time consuming and beneficial. By default Audit Aging is disabled through REST API.

Examples for employing REST APIs in specific scenarios:

• For a single instance, when you can perform an audit aging process for any specific scenario without changing
any scheduled audit aging configuration, you can trigger audit aging using the REST API by passing the specified
audit criteria as a payload.

• When regular configuration based Audit aging is scheduled for every 30 days, and user wants to trigger it before
the next scheduled time, it can be done through REST API by passing the query parameter

useAuditConfig

Note: Default aging option is disabled by default while using the REST API option.

An example usage of the REST API feature:

POST /api/atlas/admin/audits/ageout?useAuditConfig=false
Payload options:
{
 “auditAgingEnabled”:false,
 “defaultAgeoutEnabled”:false,
 “createEventsAgeoutAllowed”:false,
 “subTypesIncluded”:true,
 “defaultAgeoutAuditCount”:10,
 “defaultAgeoutTTLInDays”:30,
 “customAgeoutAuditCount”:10,
 “customAgeoutTTLInDays”:30,
 “customAgeoutEntityTypes”:”hive_table”,
 “customAgeoutActionTypes”:”ENTITY_UPDATE”,
 “auditSweepoutEnabled”:true,
 “sweepoutEntityTypes”:”hive_column”,
 sweepoutActionTypes:”CLASSIFICATION_ADD”
}

Using custom audit filters
Customizing Atlas audit filters using the users’ criteria provides you with the flexibility to finalize which audit events
can be persisted with and which of the events can be ignored.

Custom audit filters are configured in the Atlas server which improves the performance of audit trail and an
enhancement towards audit reduction. Using this feature, you can set some predefined rules or conditions that enable
you to filter certain events that queues up the storage space in Atlas.

Common example use-cases:

• User might want to skip audit for all temporary tables.
• User might want to skip all entities name starts with “test”.
• User might want to skip all update events for all entities.
• All types of operation can be allowed for auditing.

21

Cloudera Runtime Storage reduction for Atlas

• All types of operation can be ignored from auditing.
• You can accept/discard audits by one specific attribute or combination of multiple attributes. Example attributes

include, typeName, isIncomplete, temporary, and attributes (like owner, qualifiedName, name).

The audit filters operate based on a logic that transforms into a rule that results in a single action. The logic executes
rules stored in the database to perform the following actions:

• Retrieve appropriate rules stored in the database
• Evaluate one or more rules.
• Match the rule conditions.
• Perform one or more actions that match the conditions.
• Result orientation.
• Repeat the process for the remaining rules.

Custom audit filters are supported using the REST API method.

The following REST API calls are used to perform various custom audit filter operations.

• POST: /api/atlas/admin/audits/rules/create
• GET: /api/atlas/admin/audits/rules
• PUT: /atlas/admin/audits/rules/{guid}
• DELETE: /atlas/admin/audits/rules/{guid}

Supported operators
Operators currently supported for custom audit filters are numeric, boolean, and string.

Table 1: Supported operations types

Numeric operations Boolean operations String operations

“<”: less than

“>”: greater than

“<= : less than or equal to

“>=: greater than or equal to

“==”: equals to

“!=”: not equals to

“startsWith”: starts with

“endsWith”: ends with

“contains”: contains (case-sensitive)

“notContains”: does not contain (case-
sensitive)

“isNull”: is null

“notNull”: is not null

“containsIgnoreCase”: contains (case-
insensitive)

“notContainsIgnoreCase”: does not contain
(case-insensitive)

Attention: Wildcard character * is supported for String operations. The operationType attribute currently
does not support regex with wildcard character *; hence usage of contains, notContains, containsIgnoreCase,
and notContainsIgnoreCase operators is not supported for operationType ;

A typical rule is defined in the following manner:

{
 "desc": "Discard all hive_table audits with name containing test",
 "action": "DISCARD",
 "ruleName": "test_rule_1",
 "ruleExpr": {
 "ruleExprObjList": [
 {
 "typeName": "hive_table",
 "attributeName": "name",
 "operator": "contains",

22

Cloudera Runtime Storage reduction for Atlas

 "attributeValue": "test"
 }
]
 }
 }

Related Information
Rule configurations

Rule configurations
You must use the following configurations to set up the custom audit filters.

Use the following configurations to control the usage:

From Cloudera Manager > Configuration tab > Atlas Server Advanced Configuration Snippet (Safety Valve) for
conf/atlas-application.properties

Enabling custom filters:

atlas.entity.audit.customfilter.enabled=false

By default this feature is disabled.

When no rules are created or defined, the default action is to accept the rule. The value can be changed to discard
using thefollowing parameter.

atlas.entity.audit.customfilter.default.action=DISCARD

Note: Permitted values are ACCEPT and DISCARD

Related Information
Supported operators

Use cases and sample payloads

Use cases and sample payloads
Assuming the default action is to ACCEPT an audit and the user wants to discard the audits conditionally, you must
understand the rules payload for some of the common use case scenarios.

Discard temporary and test hive_table audits (Nested rules example)

 "action": "DISCARD",
"ruleName": "test_rule_1",
 "ruleExprObjList": [
 {
 "typeName": "hive_table",
 "condition": "AND",
 "criterion": [
 {
 "operator": "==",
 "attributeName": "temporary",
 "attributeValue": "false"
 },
 {
 "condition": "OR",
 "criterion": [
 {
 "operator": "==",
 "attributeName": "name",
 "attributeValue": "tmp"
 },
 {

23

Cloudera Runtime Storage reduction for Atlas

 "operator": "==",
 "attributeName": "qualifiedName",
 "attributeValue": "tmp"
 }
]
 }
]
 }
]

Discard all audits of a type

"action": "DISCARD",
"ruleName": "test_rule_1",
"ruleExprObjList":[{
"typeName":"hive_table"
}]

Discard all update audits for all entities

"action": "DISCARD",
"ruleName": "test_rule_1",
"ruleExprObjList":[{
“typeName”:”_ALL_ENTITY_TYPES”,
"operator": "==",
"attributeName": "operationType",
"attributeValue": "ENTITY_UPDATE"
}]

Discard all CLASSIFICATION_ADD audits for all entities

"action": "DISCARD",
"ruleName": "test_rule_1",
"ruleExprObjList": [{
"typeName":"_ALL_ENTITY_TYPES",
"operator": "==",
"attributeName": "operationType",
"attributeValue": "CLASSIFICATION_ADD"
}]

Discard audits of event for a specific type based on attribute value

"action": "DISCARD",
"ruleName": "test_rule_1",
"ruleExprObjList":[{
"typeName":"hive_table",
"condition":"AND",
"criterion":[{
"operator": "==",
"attributeName": "operationType",
"attributeValue": "ENTITY_UPDATE"
},
{
"operator": "==",
"attributeName": "name",
"attributeValue": "employee"
}]
}]

Discard audits for all types under a hook type (Regex supported with wildcard character *)

"action": "DISCARD",

24

Cloudera Runtime Storage reduction for Atlas

"ruleName": "test_rule_1",
"ruleExprObjList": [
{
"typeName": "hive*",
"operator": "==",
"attributeName": "operationType",
"attributeValue": "CLASSIFICATION_ADD"
}]

Note: All audits of Hive table, Hive column, DB, storage desc, and process are discarded for
CLASSIFICATION_ADD event.

Discard all audits of a type and its sub types

"action": "DISCARD",
"ruleName": "test_rule_1",
"ruleExprObjList": [
{
"typeName": "Asset",
"includeSubTypes": true
}]

Note: All asset type audits are discarded.

CSV of type-names is supported

"action": "DISCARD",
"ruleName": "test_rule_1",
"ruleExprObjList": [{
"typeName": "hive_table,hbase_table",
"attributeName": "name",
"operator": "contains",
"attributeValue": "test1"
}]

Related Information
Rule configurations

25

	Contents
	Audit Operations
	Atlas Type Definitions
	Atlas Export and Import operations
	Exporting data using Connected type

	Atlas Server Operations
	Audit enhancements
	Examples of Audit Operations

	Storage reduction for Atlas
	Using audit aging
	Using default audit aging
	Using Sweep out configurations
	Using custom audit aging

	Aging patterns
	Audit aging reference configurations
	Enabling audit aging
	Audit aging using REST API

	Using custom audit filters
	Supported operators
	Rule configurations
	Use cases and sample payloads

