
Cloudera Runtime 7.1.9

Cruise Control
Date published: 2019-08-22
Date modified: 2023-09-07

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Kafka cluster load balancing using Cruise Control..4
How Cruise Control retrieves metrics..5
How Cruise Control rebalancing works...5
How Cruise Control self-healing works.. 6

Cloudera Runtime Kafka cluster load balancing using Cruise Control

Kafka cluster load balancing using Cruise Control

You can use Cruise Control as a load balancing component in large Kafka installations to automatically balance
the partitions based on specific conditions for your deployment. The elements in the Cruise Control architecture are
responsible for different parts of the rebalancing process that uses Kafka metrics and optimization goals.

The following illustration shows the architecture of Cruise Control.

Note: Based on the configuration of the Metrics Reporter, either Cloudera Manager or the default Metrics
Reporter in Kafka can be used.

Load Monitor

Generates a cluster workload model based on standard Kafka metrics and resource metrics to utilize disk, CPU, bytes-
in rate, and bytes-out rate. Feeds the cluster model into Anomaly Detector and Analyzer.

Analyzer

Generates optimization proposals based on optimization goals provided by the user, and cluster workload model
from Load Monitor. Hard goals and soft goals can be set. Hard goals must be fulfilled, while soft goals can be left
unfulfilled if hard goals are reached. The optimization fails if the hard goal is violated by optimization results.

Anomaly Detector

Responsible for detecting anomalies that can happen during the rebalancing process. The following anomaly
detections are supported in Cruise Control:

• Broker failure
• Goal violations
• Disk failure
• Slow broker as Metric Anomaly
• Topic replication factor

4

Cloudera Runtime Kafka cluster load balancing using Cruise Control

The detected anomalies can be resolved by the self-healing feature of Cruise Control. For more information, see the
How Cruise Control self-healing works documentation.

Executor

Carries out the optimization proposals and it can be safely interrupted when executing proposals. The executions are
always resource-aware processes.

How Cruise Control retrieves metrics
Cruise Control creates metric samples using the retrieved raw metrics from Kafka. The metric samples are used to
set up the cluster workload model for the Load Monitor. When deploying Cruise Control in a CDP environment, you
can use Cloudera Manager or the default Metrics Reporter of Cruise Control to execute the process of retrieving the
metrics.

In Load Monitor, the Metric Fetcher Manager is responsible for coordinating all the sampling tasks: the Metric
Sampling Task, the Bootstrap Task, and the Linear Model Training Task.

Each sampling task is carried out by a configured number of Metric Fetcher threads. Each Metric Fetcher thread uses
a pluggable Metric Sampler to fetch samples. Each Metric Fetcher is assigned with a few partitions in the cluster to
get the samples. The metric samples are organized by the Metric Sample Aggregator that puts each metric sample into
a workload snapshot according to the timestamp of a metric sample.

The cluster workload model is the primary output of the Load Monitor. The cluster workload model reflects the
current replica assignment of the cluster and provides interfaces to move partitions or replicas. These interfaces are
used by the Analyzer to generate optimization solutions.

The Sample Store stores the metric and training samples for future use.

With the metric sampler, you can deploy Cruise Control to various environments and work with the existing metric
system.

When you use Cruise Control in the Cloudera environment, you have the option to choose between Cloudera
Manager and Cruise Control Metrics Reporter. When using Cloudera Manager, HttpMetricsReporter reports metrics
to the Cloudera Manager time-series database. As a result, the Kafka metrics can be read using Cloudera Manager.

When using the default Metrics Reporter in Cruise Control, raw metrics are produced directly to a Kafka topic by
CruiseControlMetricsReporter. Then these metrics are fetched by Cruise Control and metric samples are created and
stored back to Kafka. The samples are used as the building blocks of cluster models.

How Cruise Control rebalancing works
For the rebalancing process, Cruise Control creates a workload model based on the resources of the cluster, such as
CPU, disk and network load, also known as capacity estimates. This workload model will be the foundation of the
optimization proposal to rebalance the Kafka cluster, which can be further customized for your requirements using
optimization goals.

During the rebalancing operation, the Kafka brokers are checked to determine if they met the requirements set
by the selected goals. If the goals are fulfilled, the rebalancing process is not triggered. If a goal is not fulfilled,
the rebalancing process is triggered, and partitions, replicas and topics are reassigned between the brokers until
the requirements set by the goal are met. The rebalancing fails in case the hard goals are not met at the end of the
reassignment process.

The following goals can be defined for the rebalancing process:
Hard goals

• List of goals that any optimization proposal must fulfill. If the selected hard goals are not met,
the rebalancing process fails.

Default goals

5

Cloudera Runtime Kafka cluster load balancing using Cruise Control

• Default goals are used to pre-compute optimization proposals that can be applied regardless of
any anomalies. These default goal settings on a healthy cluster can optimize resource utilization
if self-healing goals are not specified.

• The value of the Default goals must be a subset of the Supported goals, and a superset of the
Hard and Self-healing goals.

• If there are no goals specified as query parameters, the Default goals will be used for the
rebalancing process.

Supported goals

• List of supported goals to assist the optimized rebalancing process.

When the hard, default and supported goals are fulfilled, the rebalancing is successful. If there are any goal violations,
self-healing can be used.

Self-healing goals

• List of goals to be used for self-healing relevant anomalies. If there are no self-healing goals
defined, the Default goals are used for self-healing.

• If the rebalancing process is triggered by self-healing and the Self-healing goals list is not
empty, then the Self-healing goals will be used to create the optimization proposal instead of the
Default goals.

• The value of the Self-healing goals must be a subset of the Supported goals and a superset of the
Hard goals.

Anomaly detection goals

• List of goals that the Anomaly detector should detect if violated. It must be a subset of the self-
healing goals and thus also of Default goals.

• The value of the Anomaly detection goals must be a subset of the Self-healing goals. Otherwise,
the self-healing process is not able to resolve the goal violation anomaly.

Cruise Control has an anomaly detection feature where goal violations can also be set. The Anomaly detection goals
configuration defines when the goals are not met, thus causing a violation. These anomalies can be fixed by the
proposal generated from the Self-healing goal configuration. In case there is no self-healing goal specified, Cruise
Control uses the Default goals setting. Hard goals can also be set to guarantee the fulfillment of any optimization or
self-healing process.

How Cruise Control self-healing works
The Anomaly detector is responsible for the self-healing feature of Cruise Control. When self-healing is enabled in
Cruise Control, the detected anomalies can trigger the attempt to automatically fix certain types of failure such as
broker failure, disk failure, goal violations and other anomalies.
Broker failures

The anomaly is detected when a non-empty broker crashes or when a broker is removed from a
cluster. This results in offline replicas and under-replicated partitions.

When the broker failure is detected, Cruise Control receives an internal notification. If self-healing
for this anomaly type is enabled, Cruise Control will trigger an operation to move all the offline
replicas to other healthy brokers in the cluster. Because brokers can be removed in general during
cluster management, the anomaly detector provides a configurable period of time before the notifier
is triggered and the self-healing process starts.

If a broker disappears from a cluster at a timestamp specified as T, the detector will start a
countdown. If the broker did not rejoin the cluster within the broker.failure.alert.threshold.ms since
the specified T, the broker is defined as dead and an alert is triggered. Within the defined time of
broker.failure.self.healing.threshold.ms, the self-healing process is activated and the failed broker is
decommissioned.

Goal violations

6

Cloudera Runtime Kafka cluster load balancing using Cruise Control

The anomaly is detected when an optimization goal is violated.

When an optimization goal is violated, Cruise Control receives an internal notification. If self-
healing for this anomaly type is enabled, Cruise Control will proactively attempt to address the goal
violation by automatically analyzing the workload, and executing optimization proposals.

You need to configure the anomaly.detection.goals property if you enable self-healing for goal
violations to choose which type of goal violations should be considered. By default, the following
goals are set for anomaly.detection.goals:

• com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal
• com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
• com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal

Disk failure

The anomaly is detected when one of the non-empty disks dies.

Note: This is the only anomaly that is related to Kafka broker running on a JBOD
disk.

When a disk fails, Cruise Control will send out a notification. If self-healing for this anomaly type is
enabled, Cruise Control will trigger an operation to move all the offline replicas by replicating alive
replicas to other healthy brokers in the cluster.

Slow broker

The anomaly is detected when based on the configured thresholds, a broker is identified as a slow
broker.

Within the Metric anomaly, you can set the threshold to identify slow brokers. In case a broker is
identified as slow, the broker will be decommissioned or demoted based on the configuration you
set for the remove.slow.broker. The remove.slow.broker configuration can be set to true, this means
the slow broker will be removed. When setting the remove.slow.broker configuration to false, the
slow broker will be demoted.

For more information about configuring the slow broker finder, see the official Cruise Control
documentation.

Topic replication factor

The anomaly is detected when a topic partition does not have the desired replication factor.

The topic partition will be reconfigured to match the desired replication factor.

7

https://github.com/linkedin/cruise-control/wiki/Configurations#slowbrokerfinder-configurations
https://github.com/linkedin/cruise-control/wiki/Configurations#slowbrokerfinder-configurations

	Contents
	Kafka cluster load balancing using Cruise Control
	How Cruise Control retrieves metrics
	How Cruise Control rebalancing works
	How Cruise Control self-healing works

