
Cloudera Runtime 7.1.9

Configuring Oozie for Managing Hadoop Jobs
Date published: 2020-07-28
Date modified: 2023-09-07

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Overview of Oozie.. 6

Adding the Oozie service using Cloudera Manager..6

Considerations for Oozie to work with AWS.. 6

Adding file system credentials to an Oozie workflow...6
Credentials for token delegation.. 6
File System Credentials..7
Setting file system credentials for Oozie through hadoop properties using Hue Editor......................................7
Setting default credentials using Cloudera Manager... 12
Advanced settings: Overriding default configurations...14
Modifying the workflow file manually..15
Hue Limitation..15

User authorization configuration for Oozie...16

Redeploying the Oozie ShareLib.. 17
Redeploying the Oozie sharelib using Cloudera Manager.. 18

Oozie configurations with CDP services.. 18
Using Sqoop actions with Oozie..18

Deploying and configuring Oozie Sqoop1 Action JDBC drivers..18
Configuring Oozie Sqoop1 Action workflow JDBC drivers... 19

Configuring Oozie to enable MapReduce jobs to read or write from Amazon S3..19
Configuring Oozie to use HDFS HA...20
Using Oozie with Ozone.. 20

Uploading Oozie ShareLib to Ozone... 21
Enabling Oozie workflows that access Ozone storage.. 23

Using Hive Warehouse Connector with Oozie Spark Action... 28
Appendix - Creating a new ‘hwc’ ShareLib..28
Example for using HWC with Oozie Spark action... 29

Oozie and client configurations..35

Spark 3 support in Oozie...36
Enable Spark actions.. 36
Use Spark actions with a custom Python executable.. 38
Spark 3 Oozie action schema...40
Differences between Spark and Spark 3 actions... 41
Upgrade Spark3 within Oozie..42
Use Spark 3 actions with a custom Python executable... 45
Spark 3 compatibility action executor... 47

Cloudera Runtime | Contents | iv

Spark 3 examples with Python or Java application...48
Shell action for Spark 3... 50
Migration of Spark 2 applications..50
Hue support for Oozie..51

Oozie High Availability..51
Requirements for Oozie High Availability.. 51
Configuring Oozie High Availability using Cloudera Manager..52

Oozie Load Balancer configuration... 52
Enabling Oozie High Availability..53
Disabling Oozie High Availability...54

Scheduling in Oozie using cron-like syntax... 54
Oozie scheduling examples.. 55

Configuring an external database for Oozie..57
Configuring PostgreSQL for Oozie..57
Configuring MariaDB for Oozie.. 58
Configuring MySQL 5 for Oozie...58
Configuring MySQL 8 for Oozie...59
Configuring Oracle for Oozie.. 60

Working with the Oozie server...60
Starting the Oozie server..61
Stopping the Oozie server.. 61
Accessing the Oozie server with the Oozie Client.. 61
Accessing the Oozie server with a browser...62

Adding schema to Oozie using Cloudera Manager...63

Enabling the Oozie web console on managed clusters..64

Enabling Oozie SLA with Cloudera Manager...65

Disabling Oozie UI using Cloudera Manager..66

Moving the Oozie service to a different host... 66

Oozie database configurations...66
Configuring Oozie data purge settings using Cloudera Manager..67
Loading the Oozie database... 67
Dumping the Oozie database... 68
Setting the Oozie database timezone... 68
Fine-tuning Oozie's database connection... 68

Assembling a secure JDBC URL for Oozie.. 70

Cloudera Runtime | Contents | v

Oracle TCPS... 70

Prerequisites for configuring TLS/SSL for Oozie...71

Configure TLS/SSL for Oozie...71

Oozie Java-based actions with Java 17.. 72

Oozie security enhancements...74

Additional considerations when configuring TLS/SSL for Oozie HA............... 75

Configure Oozie client when TLS/SSL is enabled.. 75

Configuring custom Kerberos principal for Oozie... 76

Cloudera Runtime Overview of Oozie

Overview of Oozie

Apache Oozie Workflow Scheduler for Hadoop is a workflow and coordination service for managing Apache Hadoop
jobs:

• Oozie Workflow jobs are Directed Acyclic Graphs (DAGs) of actions; actions are Hadoop jobs (such as
MapReduce, Streaming, Hive, Sqoop and so on) or non-Hadoop actions such as Java, shell, Git, and SSH.

• Oozie Coordinator jobs trigger recurrent Workflow jobs based on time (frequency) and data availability.
• Oozie Bundle jobs are sets of Coordinator jobs managed as a single job.

Oozie is an extensible, scalable and data-aware service that you can use to orchestrate dependencies among jobs
running on Hadoop.

Related Information
Apache Oozie Workflow Scheduler for Hadoop

Adding the Oozie service using Cloudera Manager

The Oozie service can be automatically installed and started during your installation of CDP with Cloudera Manager.
If required, you can install Oozie manually with the Add Service wizard in Cloudera Manager. The wizard configures
and starts Oozie and its dependent services.

Note: If your instance of Cloudera Manager uses an external database, you must also configure Oozie with
an external database.

Considerations for Oozie to work with AWS

If you want to access Amazon Web Services (AWS) S3 data through Oozie, then ensure that the required AWS
credentials are configured in core-site.xml.

Adding file system credentials to an Oozie workflow

Oozie has to use its Kerberos credentials to obtain delegation tokens on behalf of the user from the services. You must
add additional configurations in the Oozie workflow for it to obtain this delegation token.

Credentials for token delegation
A secure cluster requires the Oozie actions to be authenticated; typically using Kerberos. However, due to the way
that Oozie runs actions, Kerberos credentials are not available to them. Some actions require communication to an
external service like HCatalog, HBase, and Hive or a secure file system like Amazon S3. For these situations, Oozie
has to use its Kerberos credentials to obtain delegation tokens which allows Oozie to access the external service or
file system.

For information about Action Authentication, see Apache Oozie documentation.

6

https://oozie.apache.org/
https://oozie.apache.org/docs/5.2.1/DG_ActionAuthentication.html

Cloudera Runtime Adding file system credentials to an Oozie workflow

File System Credentials
To allow Oozie to access S3, ABFS, and other filesystems, it has to request a delegation token to obtain credentials.
Although HUE supports only the built-in credentials (see Hue limitation)this can be done through properties. There
are three options to set file system credentials for an Oozie workflow or action which are resulting the same. You can
choose any of them based on your current usage and preference.

1. Set file system credentials for Oozie through hadoop properties using Hue Editor
2. Set default credentials using Cloudera Manager
3. Modify the workflow XML file manually

You can use the advanced settings to override the default configurations.

Setting file system credentials for Oozie through hadoop properties using
Hue Editor

This option allows you to configure additional Oozie credentials with configuration properties. The following
example shows how to set up an Oozie workflow with a shell action which uses additional file system credentials.

About this task

Note: Hue Limitation - Hue is not capable of adding user defined file system credentials to the Oozie
workflow, only built-in credentials can be added. Hence, you must manually define file system credentials for
Oozie workflow.

Procedure

1. In Hue web UI, click Scheduler > Workflow to create a new workflow.

2. Click Documents and select Actions in the drop-down list.

7

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/configuring-oozie/topics/oozie-hue-limitation.html

Cloudera Runtime Adding file system credentials to an Oozie workflow

3. Select the Shell icon to the workflow to add a shell action. The shell command can be echo and its parameter can
be Hello world for this example.

8

Cloudera Runtime Adding file system credentials to an Oozie workflow

4. Select the settings under the Edit menu to add properties to the workflow. The Workflow Settings dialog box is
displayed.

5. In the Workflow Settings dialog box, under the Hadoop Properties section, click + Add
property and add the necessary credentials. The property name must be in the format similar to
oozie.action.credentials.filesystem.<myCustomCredential> where myCustomCredential is the description of the
credential. The value of this property must be set to a valid filesystem URI, for example, an S3 bucket URL. Click

9

Cloudera Runtime Adding file system credentials to an Oozie workflow

+ Add property to add additional properties if you want to access more than one s3 bucket, and so on, as shown in
the below figure.

10

Cloudera Runtime Adding file system credentials to an Oozie workflow

6. Click Action Settings to set the credential defined in the previous step to use it in the workflow action where it is
needed.

7. Add a new property to the action with the name oozie.action.credentials.filesystem and its value
must be a comma-separated list of credential names defined in the hadoop properties. For example
“myCustomCredential,myOtherCustomCredential”. Based on this property, Oozie requests delegation tokens for
the file-systems defined in the given credentials.

11

Cloudera Runtime Adding file system credentials to an Oozie workflow

Results
Now the workflow is ready to be submitted and the following is the generated workflow.xml

file.

Setting default credentials using Cloudera Manager
In scenarios where you need to set a credential for every action of every workflow, you can set the credential
definitions and its usages using Cloudera Manager. You can also set these as the default configurations.

Procedure

1. In Cloudera Manager, click the Oozie service.

2. Click the Configuration tab.

3. Search for action_conf and add the following in the Oozie Server Advanced Configuration Snippet (Safety Valve)
for action-conf/default.xml field:

Definition (can be seen by all the actions started by Oozie)

12

Cloudera Runtime Adding file system credentials to an Oozie workflow

Name: oozie.action.credentials.filesystem.myCustomCredential
Value: s3a://<bucket-name>

Name: oozie.action.credentials.filesystem.myotherCustomCredential
Value: abfs://<bucket-name>

Usage (applies to all the actions started by Oozie)

Name: oozie.action.credentials.filesystem
Value: myCustomCredential,myotherCustomCredential

4. Click Save Changes on the bottom right corner.

5.

Click Stale Service Restart that is next to the Oozie service name.

13

Cloudera Runtime Adding file system credentials to an Oozie workflow

6. Review the properties added to the default action configuration. All these properties will be available in every
Oozie action.

7. Click Restart Stale Services to make this change happen on the Oozie instances.

Note: After this configuration, you need not add anything in HUE, Oozie obtains a delegation token for
those file-system paths for every action.

Advanced settings: Overriding default configurations
You can override the default value set using Cloudera Manager, if required. For example, you have five different
actions in the workflow and four of them use S3 buckets and one use ABFS. In this case, the S3 can be set as a default
credential and can be overridden in only that one action to have a different value.

Procedure

1. Using Cloudera Manager, set the credentials to use s3 bucket in the Oozie Server Advanced Configuration Snippet
(Safety Valve) for action-conf/default.xml field:

Name: oozie.action.credentials.filesystem.myCustomCredential
Value: s3a://<bucket-name>

2. Using the HUE editor, edit the action for which you want to use a different credential and add the following:

Name: oozie.action.credentials.filesystem.myCustomCredential
Value: abfs://myAbfsBucketName

Add the following property as described in the Step 4 and 5 of the Option 1: Setting file system credentials for
Oozie through hadoop properties using Hue Editor .

Now Oozie actions will use the default S3 credential except the one which has the non-default value. It is also
possible to combine the global configuration, where you define the possible file-system credentials, and in HUE
you use the pre-defined global credentials.

14

Cloudera Runtime Adding file system credentials to an Oozie workflow

Modifying the workflow file manually
You can modify or add the "<credentials>...</credentials>" block at the beginning of the Oozie
workflow.xml file. Do not remove any existing credentials from this block, add the new file system credential. Refer
the newly defined credential in the action where it needs to be used.

Example

<workflow-app name="MyTestWorkflow" xmlns="uri:oozie:workflow:0.5">
 <credentials>
 <credential name="my-s3-creds" type="filesystem">
 <property>
 <name>filesystem.path</name>
 <value>s3a://{yourBucketName}</value>
 </property>
 </credential>
 </credentials>
 <start to="shell-action"/>
 <kill name="Kill">
 <message>Action failed</message>
 </kill>
 <action name="shell-action" cred="my-s3-creds">
 <shell xmlns="uri:oozie:shell-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <exec>echo</exec>
 <argument>"Hello world"</argument>
 <capture-output/>
 </shell>
 <ok to="End"/>
 <error to="Kill"/>
 </action>
 <end name="End"/>
</workflow-app>

Hue Limitation
Hue is not capable of adding user defined file system credentials to the Oozie workflow but can add only built-in
credentials as seen in the below figure.

15

Cloudera Runtime User authorization configuration for Oozie

User authorization configuration for Oozie

Learn about user authorization model for Oozie and Access Control List (ACL). Also, learn about how to define
admin users for Oozie jobs and ACL.

Oozie has a basic authorization model which is as follows:

• Users have read access to all jobs
• Users have write access to their own jobs
• Users have write access to jobs based on an ACL, which is a list of users and groups
• Users have read access to admin operations
• Admin users have write access to all jobs
• Admin users have write access to admin operations

If security is disabled all users are admin users.

Oozie security is set through the following configuration property, which is false by default:

oozie.service.AuthorizationService.security.enabled=false

Note: The old ACL model where a group was provided is still supported if the following property is set in
the oozie-site.xml file:

oozie.service.AuthorizationService.default.group.as.acl=true

Defining admin users

Admin users are determined from the list of admin groups, specified in the oozie.service.AuthorizationService.admin
.groups property. Use commas to separate multiple groups. Spaces, tabs, and ENTER characters are trimmed.

If the above property for admin groups is not set, then you can define the admin users in the following manner. The
list of admin users can be in the conf/adminusers.txt file. The syntax of this file is as follows:

• One user name per line
• Empty lines and lines starting with # are ignored

16

Cloudera Runtime Redeploying the Oozie ShareLib

Admin users can also be defined in the oozie.serviceAuthorizationService.admin.users property. Use commas to
separate multiple admin users. Spaces, tabs, and ENTER characters are trimmed.

In case there are admin users defined using both methods, the effective list of admin users will be the union of the
admin users found in the adminusers.txt file and those specified with the oozie.serviceAuthorizationService.admin.
users property.

Defining access control lists

ACLs are defined in the following ways:

• workflow job submission over CLI

Configuration property group.name of job.properties.
• workflow job submission over HTTP

Configuration property group.name of the XML submitted over HTTP.
• workflow job re-run

Configuration property oozie.job.acl (preferred) or configuration property group.name of job.properties.
• coordinator job submission over CLI

Configuration property oozie.job.acl (preferred) or configuration property group.name of job.properties.
• bundle job submission over CLI

Configuration property oozie.job.acl (preferred) or configuration property group.name of job.properties.

For all other workflow, coordinator, or bundle actions, the ACL set in beforehand are used as basis.

Once the ACL for the job is defined, Oozie checks over HDFS whether the user trying to
perform a specific action is part of the necessary group(s). For implementation details, check out
org.apache.hadoop.security.Groups#getGroups(String user).

Note that it is enough that the submitting user be part of at least one group of the ACL. Note also that the ACL can
contain user names as well. If there is an ACL defined and the submitting user is not part of any group or user name
present in the ACL, an AuthorizationException is thrown.

Example: A typical ACL setup

Detail of job.properties on workflow job submission:

user.name=joe
group.name=marketing,admin,qa,root

HDFS group membership of HDFS user joe is qa. That is, the check to
org.apache.hadoop.security.Groups#getGroups("joe") returns qa. Hence, ACL check passes inside
AuthorizationService, because the user.name provided belongs to at least one of the ACL list elements provided as
group.name.

Redeploying the Oozie ShareLib

Some Oozie actions – specifically DistCp, Streaming, Sqoop, and Hive – require external JAR files in order to run.
Instead of having to keep these JAR files in each workflow's lib folder, or forcing you to manually manage them
using the oozie.libpath property on every workflow using one of these actions, Oozie provides the ShareLib.

The ShareLib behaves very similarly to oozie.libpath, except that it is specific to the aforementioned actions and their
required JARs.

17

Cloudera Runtime Oozie configurations with CDP services

Redeploying the Oozie sharelib using Cloudera Manager
When you switch between MapReduce and YARN computation frameworks, you must redeploy the Oozie ShareLib.

About this task

Procedure

1. Go to the Oozie service.

2. Select Actions Install Oozie ShareLib .

Oozie configurations with CDP services

You can configure Oozie to work with different CDP services.

Some of the different services for which you can configure Oozie are as follows:

• Using Sqoop actions with Oozie
• Enabling MapReduce jobs controlled by Oozie to read from or write to Amazon S3 or Microsoft Azure ADLS
• Configuring Oozie to use HDFS HA

Using Sqoop actions with Oozie
There are certain recommendations that you must consider for using Sqoop actions with Oozie.

Note: Sqoop1 does not ship with third party JDBC drivers. You must download them separately and save
them to the /var/lib/sqoop/ directory on the Oozie server.

Recommendations for using Sqoop actions with Oozie

• Cloudera recommends that you not use Sqoop CLI commands with an Oozie Shell Action. Such deployments are
not reliable and prone to breaking during upgrades and configuration changes.

• To import data into Hive, use a combination of a Sqoop Action with a Hive2 Action.

• A Sqoop Action to simply ingest data into HDFS.
• A Hive2 Action that loads the data from HDFS into Hive.

Deploying and configuring Oozie Sqoop1 Action JDBC drivers
You must deploy and configure the Oozie Sqoop1 action JDBC drivers on HDFS.

Before you begin
Confirm that your Sqoop1 JDBC drivers are present in /var/lib/sqoop.

Procedure

• SSH to the Oozie server host and run the following commands to deploy and configure the drivers on HDFS.

cd /var/lib/sqoop
sudo -u hdfs hdfs dfs -mkdir /user/oozie/libext
sudo -u hdfs hdfs dfs -chown oozie:oozie /user/oozie/libext
sudo -u hdfs hdfs dfs -put /opt/cloudera/parcels/SQOOP_NETEZZA_CONNECTOR/s
qoop-nz-connector*.jar /user/oozie/libext/
sudo -u hdfs hdfs dfs -put /opt/cloudera/parcels/SQOOP_TERADATA_CONNECTOR/
lib/*.jar /user/oozie/libext/

18

Cloudera Runtime Oozie configurations with CDP services

sudo -u hdfs hdfs dfs -put /opt/cloudera/parcels/SQOOP_TERADATA_CONNECTOR/
sqoop-connector-teradata*.jar /user/oozie/libext/
sudo -u hdfs hdfs dfs -put /var/lib/sqoop/*.jar /user/oozie/libext/
sudo -u hdfs hdfs dfs -chown oozie:oozie /user/oozie/libext/*.jar
sudo -u hdfs hdfs dfs -chmod 755 /user/oozie/libext/*.jar
sudo -u hdfs hdfs dfs -ls /user/oozie/libext
[sample contents of /user/oozie/libext]
-rwxr-xr-x 3 oozie oozie 959987 2016-05-29 09:58 /user/oozie/libext/
mysql-connector-java.jar
-rwxr-xr-x 3 oozie oozie 358437 2016-05-29 09:58 /user/oozie/libext/
nzjdbc3.jar
-rwxr-xr-x 3 oozie oozie 2739670 2016-05-29 09:58 /user/oozie/libext/
ojdbc6.jar
-rwxr-xr-x 3 oozie oozie 3973162 2016-05-29 09:58 /user/oozie/libext/
sqoop-connector-teradata-1.5c5.jar
-rwxr-xr-x 3 oozie oozie 41691 2016-05-29 09:58 /user/oozie/libext/
sqoop-nz-connector-1.3c5.jar
-rwxr-xr-x 3 oozie oozie 2405 2016-05-29 09:58 /user/oozie/libext/
tdgssconfig.jar
-rwxr-xr-x 3 oozie oozie 873860 2016-05-29 09:58 /user/oozie/libext/
terajdbc4.jar

Configuring Oozie Sqoop1 Action workflow JDBC drivers
You must confirm that the Sqoop1 JDBC drivers are present in HDFS and then configure the required variables.

Procedure

1. Confirm that the Sqoop1 JDBC drivers are present in HDFS. To do this, SSH to the Oozie Server host and run the
following command:

sudo -u hdfs hdfs dfs -ls /user/oozie/libext

2. Configure the following Oozie Sqoop1 Action workflow variables in Oozie's job.properties file as follows:

oozie.use.system.libpath = true
oozie.libpath = /user/oozie/libext

Configuring Oozie to enable MapReduce jobs to read or write from
Amazon S3

MapReduce jobs controlled by Oozie as part of a workflow can read from and write to Amazon S3.

Before you begin
You will need your AWS credentials (the appropriate Access key ID and Secret access key obtained from Amazon
Web Services for your Amazon S3 bucket). After storing these credentials in the keystore (the JCEKS file), specify
the path to this keystore in the Oozie workflow configuration.

About this task
This setup is for use in the context of Oozie workflows only, and does not support running shell scripts on Amazon
S3 or other types of scenarios.

Note: In the following steps, replace the path/to/file with the HDFS directory where the .jceks file is located,
and replace access_key_ID and secret_access_key with your AWS credentials.

19

Cloudera Runtime Oozie configurations with CDP services

Procedure

1. Create the credential store (.jceks) and add your AWS access key to it as follows:

hadoop credential create fs.s3a.access.key -provider \
jceks://hdfs/path/to/file.jceks -value access_key_id

For example:

hadoop credential create fs.s3a.access.key -provider \
jceks://hdfs/user/root/awskeyfile.jceks -value AKIAIPVYH....

2. Add the AWS secret to this same keystore.

hadoop credential create fs.s3a.secret.key -provider \
jceks://hdfs/path/to/file.jceks -value secret_access_key

3. Set hadoop.security.credential.provider.path to the path of the .jceks file in Oozie's workflow.xml file in the
MapReduce Action's <configuration> section so that the MapReduce framework can load the AWS credentials
that give access to Amazon S3.

<action name="S3job">
 <map-reduce>
 <job-tracker>${jobtracker}</job-tracker>
 <name-node>${namenode}</name-node>
 <configuration>
 <property>
 <name>hadoop.security.credential.provider.path</name>
 <value>jceks://hdfs/path/to/file.jceks</value>
 </property>

</action>

Configuring Oozie to use HDFS HA
To configure an Oozie workflow to use HDFS HA, use the HDFS nameservice instead of the NameNode URI in the
<name-node> element of the workflow.

Example:

<action name="mr-node">
 <map-reduce>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>hdfs://ha-nn</name-node>

where ha-nn is the value of dfs.nameservices in hdfs-site.xml.

Related Information
Additional considerations when configuring TLS/SSL for Oozie HA

Using Oozie with Ozone
Oozie supports Ozone storage along with HDFS. Learn how to store Oozie workflows in Ozone.

Apache Ozone is a highly scalable next-gen object store available on the CDP Private Cloud Base cluster which
enables you to optimize storage for big data workloads.

20

Cloudera Runtime Oozie configurations with CDP services

You can use Ozone storage by performing the following steps:

1. Upload Oozie ShareLib to Ozone.
2. Enable Oozie workflows that access Ozone storage.

Related Information
Apache Ozone

Uploading Oozie ShareLib to Ozone
Learn how to create an Ozone volume and a bucket to store Oozie ShareLib, how to set the required permissions on
the bucket, how to search and update Oozie ShareLib root directory, and install Oozie ShareLib.

Procedure

1. Create an Ozone volume and bucket to store Oozie ShareLib as an Ozone admin user:

ozone sh volume create /user
ozone sh bucket create /user/oozie

21

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/ozone-overview/topics/ozone-introduction.html

Cloudera Runtime Oozie configurations with CDP services

2. Ensure that the oozie user has all permissions on the bucket and everybody else has read permissions on the
bucket.

a) Go to the Ranger Admin UI.
b) Click the Ozone repo.
c) Click Add New policy.
d) Create a policy user - volume, provide read permission to all users on the /user volume, and save the policy.

e) Click Add New policy.
f) Create a policy user - volume oozie - bucket all - keys, provide all permissions to the oozie user, read

permissions to all on the /user/oozie bucket, and save the policy.

22

Cloudera Runtime Oozie configurations with CDP services

3. Update Oozie ShareLib root directory to the oozie bucket.

a) Go to Oozie Configuration Search and Update ShareLib Root Directory .

b) Click Save Changes.
c) Restart Oozie.

4. After restarting Oozie, go to Oozie Actions Install Oozie ShareLib .

After the installation finishes, you can view the result as follows:

Enabling Oozie workflows that access Ozone storage
This section provides some examples of how to enable some Oozie workflows to use Ozone storage.

23

Cloudera Runtime Oozie configurations with CDP services

First you create Ozone volume and bucket:

kinit <admin user>
ozone sh volume create /admin
ozone sh bucket create /admin/oozie

Note: In the kinit command, <admin user> means any user with privileges to create volume and bucket.

After you create volume and bucket, ensure that your user has the appropriate privileges on the buckets or keys in
Ranger. For more details, see Using Ranger with Ozone.

Related Information
Using Ranger with Ozone

Oozie Fs action
Learn how to enable some Oozie workflows to use Ozone storage through Fs action.

Procedure

1. Create a workflow XML file, to create, move, and delete directories, and add files.

In this example the XML file name is fs_wf.xml.

<workflow-app name="oozie_ozone_wf" xmlns="uri:oozie:workflow:0.5">
 <start to="create-dir"/>
 <kill name="Kill">
 <message>Action failed, error message[${wf:errorMessage(wf:lastE
rrorNode())}]</message>
 </kill>
 <action name="create-dir">
 <fs>
 <mkdir path='ofs://ozone1/admin/oozie/dir1'/>
 <mkdir path='ofs://ozone1/admin/oozie/dir2'/>
 <touchz path='ofs://ozone1/admin/oozie/dir1/file1'/>
 </fs>
 <ok to="move-file"/>
 <error to="Kill"/>
 </action>
 <action name="move-file">
 <fs>
 <move source='ofs://ozone1/admin/oozie/dir1/file1' target='o
fs://ozone1/admin/oozie/dir2/file1'/>
 </fs>
 <ok to="del-dir"/>
 <error to="Kill"/>
 </action>
 <action name="del-dir">
 <fs>
 <delete path='ofs://ozone1/admin/oozie/dir1'/>
 </fs>
 <ok to="End"/>
 <error to="Kill"/>
 </action>
 <end name="End"/>
</workflow-app>

2. Upload the workflow file to Ozone.

Create a directory on ozone to store the workflow.xml
ozone fs -mkdir ofs://ozone1/admin/oozie/wf
ozone fs -put fs_wf.xml ofs://ozone1/admin/oozie/wf/workflow.xml

24

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/ozone-security/topics/ozone-using-with-ranger.html

Cloudera Runtime Oozie configurations with CDP services

3. Create a properties file.

In this example the properties file name is fs_job.properties.

user.name=admin
oozie.wf.application.path=ofs://ozone1/admin/oozie/wf
oozie.use.system.libpath=True

4. Run the Oozie workflow.

Run Oozie job
oozie -Djavax.net.ssl.trustStore={trustStoreFile} -Djavax.net.ssl.trust
StorePassword={trustStorePassword} job -oozie https://{oozieHost}:{oozie
Port}/oozie -config fs_job.properties -run

Oozie Hive2 action
Learn how to test creating and inserting a Hive table on Ozone.

Procedure

1. Create a workflow file, to run a Hive script, and modify cluster details in the workflow file as necessary.

In this example the name of the workflow file is hive_ozone_wf.xml.

<workflow-app name="ozone_hive_wf" xmlns="uri:oozie:workflow:0.5">
 <credentials>
 <credential name="hive2" type="hive2">
 <property>
 <name>hive2.jdbc.url</name>
 <value>jdbc:hive2://schal-ooz20-2.schal-ooz20.root.hwx.site:2181/
default;serviceDiscoveryMode=zooKeeper;ssl=true;sslTrustStore=/var/lib/c
loudera-scm-agent/agent-cert/cm-auto-global_truststore.jks;trustStorePas
sword=WTtrsQKjCimqLaArf5oe9TUBxvBSDODfDfZ13Tubkfh;zooKeeperNamespace=hiv
eserver2</value>
 </property>
 <property>
 <name>hive2.server.principal</name>
 <value>hive/_HOST@ROOT.HWX.SITE</value>
 </property>
 </credential>
 </credentials>
 <start to="hive2-test"/>
 <kill name="Kill">
 <message>Action failed, error message[${wf:errorMessage(wf:last
ErrorNode())}]</message>
 </kill>
 <action name="hive2-test" cred="hive2">
 <hive2 xmlns="uri:oozie:hive2-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <jdbc-url>jdbc:hive2://schal-ooz20-2.schal-ooz20.root.hwx.si
te:2181/default;principal=hive/_HOST@ROOT.HWX.SITE;serviceDiscoveryMode=
zooKeeper;ssl=true;sslTrustStore=/var/lib/cloudera-scm-agent/agent-cert/
cm-auto-global_truststore.jks;trustStorePassword=WTtrsQKjCimqLaArf5oe9TU
BxvBSDODfDfZ13Tubkfh;zooKeeperNamespace=hiveserver2</jdbc-url>
 <script>ofs://ozone1/admin/oozie/hive_wf/hive_script.sql</scr
ipt>
 </hive2>
 <ok to="End"/>
 <error to="Kill"/>
 </action>
 <end name="End"/>
</workflow-app>

25

Cloudera Runtime Oozie configurations with CDP services

2. Create a hive script, to create and insert data into a table on Ozone.

In this example the hive script is hive_script.sql.

CREATE EXTERNAL TABLE `oozie_test`(`code` string, `description` string,
`total_emp` int, `salary` int)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION 'ofs://ozone1/hive/warehouse/default.db/oozie_test';
insert into table default.oozie_test values ('oh-0001','Oozie Hive Insert
 test',1000,110000);

3. Create a directory on Ozone to store the workflow.xml file.

For example:

ozone fs -mkdir ofs://ozone1/admin/oozie/hive_wf
ozone fs -put hive_ozone_wf.xml ofs://ozone1/admin/oozie/hive_wf/workfl
ow.xml
ozone fs -put hive_script.sql ofs://ozone1/admin/oozie/hive_wf/

Run Oozie job
oozie -Djavax.net.ssl.trustStore={trustStoreFile} -Djavax.net.ssl.trust
StorePassword={trustStorePassword} job -oozie https://{oozieHost}:{oozie
Port}/oozie -config hive_ozone_job.properties -run

4. Create a properties file, and modify cluster details in the properties file.

In this example the properties file is hive_ozone_job.properties.

nameNode=hdfs://schal-ooz20-2.schal-ooz20.root.hwx.site:8020
jobTracker=schal-ooz20-2.schal-ooz20.root.hwx.site:8032
mapreduce.job.user.name=admin
user.name=admin
oozie.wf.application.path=ofs://ozone1/admin/oozie/hive_wf
oozie.use.system.libpath=True

5. Run the Oozie job.

oozie -Djavax.net.ssl.trustStore={trustStoreFile} -Djavax.net.ssl.trustS
torePassword={trustStorePassword} job -oozie https://{oozieHost}:{oozieP
ort}/oozie -config hive_ozone_job.properties -run

6. Verify that the table is created in Hive.

Open beeline shell and run the following
select * from default.oozie_test where code='oh-0001';

Oozie Spark action
Learn how to test inserting and selecting from a table created on Ozone using Spark engine.

Procedure

1. Create a workflow file, to run a PySpark job, and modify cluster details in the workflow file as necessary.

In this example the workflow file is spark_ozone_wf.xml.

<workflow-app name="spark_ozone_wf" xmlns="uri:oozie:workflow:0.5">
 <credentials>
 <credential name="hcat" type="hcat">
 <property>
 <name>hcat.metastore.uri</name>

26

Cloudera Runtime Oozie configurations with CDP services

 <value>thrift://schal-ooz20-2.schal-ooz20.root.hwx.site:9083</val
ue>
 </property>
 <property>
 <name>hcat.metastore.principal</name>
 <value>hive/_HOST@ROOT.HWX.SITE</value>
 </property>
 </credential>
 </credentials>
 <start to="spark-test"/>
 <kill name="Kill">
 <message>Action failed, error message[${wf:errorMessage(wf:lastErr
orNode())}]</message>
 </kill>
 <action name="spark-test" cred="hcat">
 <spark xmlns="uri:oozie:spark-action:0.1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
 <master>yarn</master>
 <mode>cluster</mode>
 <name>Spark Ozone Example</name>
 <jar>spark_ozone_test.py</jar>
 <spark-opts>--num-executors 2 --executor-cores 2 --executor-m
emory 4g --driver-memory 2g </spark-opts>
 </spark>
 <ok to="End"/>
 <error to="Kill"/>
 </action>
 <end name="End"/>
</workflow-app>

2. Create a PySpark script to insert data into a table created on Ozone.

In this example the PySpark script is spark_ozone_test.py.

from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("Spark Ozone Example").getOrCreate()
spark.sql("select * from default.oozie_test where code='opi-0001'").show()
spark.sql("insert into table default.oozie_test values ('opi-0001','Oozie
 PySpark Insert test',1000,110000)")

spark.sql("select * from default.oozie_test where code='opi-0001'").show()

3. Create a directory on Ozone to store the workflow.xml file.

ozone fs -mkdir -p ofs://ozone1/admin/oozie/spark_wf/lib
ozone fs -put spark_ozone_wf.xml ofs://ozone1/admin/oozie/spark_wf/work
flow.xml
ozone fs -put spark_ozone_test.py ofs://ozone1/admin/oozie/spark_wf/lib/

4. Create a properties file, and modify cluster details in the properties file as necessary.

In this example the properties file is spark_ozone_job.properties.

nameNode=hdfs://schal-ooz20-2.schal-ooz20.root.hwx.site:8020
jobTracker=schal-ooz20-2.schal-ooz20.root.hwx.site:8032
mapreduce.job.user.name=admin
user.name=admin
oozie.wf.application.path=ofs://ozone1/admin/oozie/spark_wf
oozie.use.system.libpath=True

27

Cloudera Runtime Oozie configurations with CDP services

5. Run the Oozie job.

oozie -Djavax.net.ssl.trustStore={trustStoreFile} -Djavax.net.ssl.trustS
torePassword={trustStorePassword} job -oozie https://{oozieHost}:{oozieP
ort}/oozie -config spark_ozone_job.properties -run

6. Verify that the data is inserted into the table.

Open beeline shell and run the following
select * from default.oozie_test where code='opi-0001';

Using Hive Warehouse Connector with Oozie Spark Action
You can use Hive Warehouse Connector (HWC) with Oozie Spark action by updating job.properties file or action-
level configurations.

Note: There are known issues related to using Hive Warehouse Connector with Oozie Spark Action. Read
the known issues and use the workaround listed in the Cloudera Runtime Release Notes.

For Updating job properties file

Steps

1. Create a new ShareLib using a different name, such as hwc.
2. Place the HWC JAR onto the new ShareLib. For information about placing HWC JARs in the new ShareLib,

see the Appendix - Creating a new ‘hwc’ ShareLib section below.
3. Execute a ShareLib update.
4. When executing a Spark action using the HWC include the following properties in the job.properties file:

oozie.action.sharelib.for.spark=spark,hwc

For Updating action-level configuration

You can update the action-level configurations to execute Hive commands using both HWC and non-HWC. If you
have a workflow which contains an action where you would like to use HWC and another action where you do not
want to use HWC, you can achieve the same by specifying the ShareLib properties at the action level.

Example

<spark xmlns="uri:oozie:spark-action:1.0">
 ...
 <configuration>
 <property xmlns="">
 <name>oozie.action.sharelib.for.spark</name>
 <value>spark,hwc</value>
 </property>
 </configuration>
 ...
 </spark>

Related Information
Hive Warehouse Connector for accessing Apache Spark data

Appendix - Creating a new ‘hwc’ ShareLib
The oozie admin commands have to be executed by the oozie user.

1. Kinit as oozie.

28

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/integrating-hive-and-bi/topics/hive_hivewarehouseconnector_for_handling_apache_spark_data.html

Cloudera Runtime Oozie configurations with CDP services

2. Check the current available ShareLibs:

oozie admin -shareliblist -oozie {url}

3. Create the folder for it on HDFS:

hdfs dfs -mkdir /user/oozie/share/lib/lib_{latestTimestamp}/hwc

4. Add the JAR files to it from the /opt/cloudera/parcels/CDH/jars directory:

• hive-warehouse-connector-assembly-1.0.0.***VERSION NUMBER***-XXX.jar
• hive-jdbc-3.1.3000.***VERSION NUMBER***-XXX.jar
• hive-jdbc-handler-3.1.3000.***VERSION NUMBER***-XXX.jar
• hive-service-3.1.3000.***VERSION NUMBER***-XXX.jar
• spark-sql-kafka-0-10_2.11-***VERSION NUMBER***-XXX.jar

Note: Do not add any standalone JARs (*-standalone.jar) in this directory.

5. Update the ShareLib property:

oozie admin -sharelibupdate -oozie {url}

6. List the ShareLibs again to check if hwc is present:

oozie admin -shareliblist -oozie {url}

Example for using HWC with Oozie Spark action
Understand how you can use the Hive Warehouse Connector (HWC) with Oozie Spark actions through an example
that creates an application to read tables from Hive using HWC and display its contents. You can do it either by using
a JAR application or by using a Python application.

Using application JAR

This example provides detailed information about the job.properties file, workflow.xml file, and application logic
required for this task, and lists the necessary information required for using HWC in Oozie Spark action when you
build an application JAR.

Example application logic

You can package the following Scala application logic into a JAR by using either Maven or SBT
command line utility with the compatible CDP versions. You can call it the org.example package.
The following application logic requires only two dependencies - spark-sql and HWC.

import com.hortonworks.hwc.HiveWarehouseSession
import org.apache.spark.sql.SparkSession

object ExampleRun {
 def main(args: Array[String]): Unit = {
 println("Using Hive Warehouse connector")
 //Create a Spark session
 val spark = SparkSession.builder().enableHiveSupport().getOrC
reate()
 //Create a HWC session using the Spark Session
 val hive = HiveWarehouseSession.session(spark).build()
 println(args(0)) // Print the input
 //Query the string provided in the arguments using hive.sql()
 hive.sql(“SELECT * FROM ” + args(0)).show
 //Close the Spark session
 spark.close()
 }

29

Cloudera Runtime Oozie configurations with CDP services

}

• Maven method

Add the following dependencies when you build an application JAR by using Maven:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_2.11</artifactId>
 <version>${spark.version}</version>
 </dependency>
 <dependency>
 <groupId>com.hortonworks.hive</groupId>
 <artifactId>hive-warehouse-connector_2.11</artifactId>
 <version>${hwc.version}</version>
 </dependency>

Create a JAR using the following command:

mvn clean package -Dspark.version=<CDP Spark version> -Dhwc.
version=<CDP HWC Version>

For example,

mvn clean package -Dspark.version=2.4.7.7.1.7.61-1 -Dhwc.ver
sion=1.0.0.7.1.7.61-1

• SBT method

Add the following library dependencies when you build an application JAR by using SBT:

val sparkVersion = sys.props.getOrElse("spark.version", "<CDP
 Spark version>")
val hwcVersion = sys.props.getOrElse("hwc.version", "<CDP HWC
 Version>")
libraryDependencies ++= Seq(
 "com.hortonworks.hive" % "hive-warehouse-connector_2.11" % h
wcVersion % "provided",
 "org.apache.spark" %% "spark-sql" % sparkVersion % "provid
ed" force()
)

Create a JAR file using the following command:

sbt clean compile assembly -Dspark.version=<CDP Spark version>
 -Dhwc.version=<CDP HWC Version>

For example,

sbt clean compile assembly -Dspark.version=2.4.7.7.1.7.61-1 -
Dhwc.version=1.0.0.7.1.7.61-1

Save these JAR files in HDFS in a specific location so that it can be used later in the job.properties
file. The class name here is org.example.ExampleRun which you will use later while specifying the
job.

Example job.properties file

HCAT_METASTORE_URI=thrift://myhost-1.myhost.example.site:9083
ROOT_LOGGER_LEVEL=INFO
HCAT_PRINCIPAL=hive/_HOST@EXAMPLE.COM
oozie.action.sharelib.for.spark=spark,hwc

30

Cloudera Runtime Oozie configurations with CDP services

MASTER=yarn
JDBC_PRINCIPAL=hive/_HOST@EXAMPLE.COM
JDBC_URL=jdbc:hive2://myhost-1.myhost.example.site:10001/default;
transportMode=http;httpPath=cliservice;ssl=true;sslTrustStore=/v
ar/lib/cloudera-scm-agent/agent-cert/cm-auto-global_truststore.j
ks;trustStorePassword=update_this_password
oozie.wf.application.path=hdfs:///tmp/workdir
HIVE_TABLE_NAME=sampleTable
JDBC_MODE=JDBC_CLUSTER
APP_NAME=MyApp
MODE=cluster
JAR=hdfs:///tmp/workdir/hwc-examples-1.0.jar
CLASSNAME=org.example.ExampleRun
OOZIE_LAUNCHER_OPTS=”-verbose:class”
SPARK_OPTS=--conf spark.driver.extraJavaOptions='-verbose:class'
--conf spark.executor.extraJavaOptions='-verbose:class'

All the values are example values and are indicative of what you need to write in the file.

HCAT_METASTORE_URI represents the Hive metastore URI and HCAT_PRINCIPAL is the
configuration required for Kerberos authentication for the Hive metastore. oozie.action.shareli
b.for.spark=spark,hwc must be set as it is. MASTER specifies running Spark in the YARN mode.
JDBC_PRINCIPAL is required for Kerberos authentication for HiveServer2. JDBC_URL is
required to create a connection to Hive Server 2.

If you run into any classpath issues while executing the Oozie job, then you can check the details
by using OOZIE_LAUNCHER_OPTS and SPARK_OPTS. These configurations show you what
classes are loaded from which JAR files in the Spark job by checking the YARN logs of the Spark
job.

Note: The sharelib folder contains an additional folder by the name hwc and this
folder must not contain a *-standalone.jar (standalone JAR files) in it.

Example workflow.xml file

<?xml version="1.0" encoding="utf-8"?>
<workflow-app name="spark-hwc-hive-wf" xmlns="uri:oozie:workflow:
1.0">
 <credentials>
 <credential name="hcatauth" type="hcat">
 <property>
 <name>hcat.metastore.uri</name>
 <value>${HCAT_METASTORE_URI}</value>
 </property>
 <property>
 <name>hcat.metastore.principal</name>
 <value>${HCAT_PRINCIPAL}</value>
 </property>
 </credential>
 <credential name="hs2-creds" type="hive2">
 <property>
 <name>hive2.server.principal</name>
 <value>${JDBC_PRINCIPAL}</value>
 </property>
 <property>
 <name>hive2.jdbc.url</name>
 <value>${JDBC_URL}</value>
 </property>
 </credential>
 </credentials>

 <start to="SPARK_HWC_JDBC_READ"/>
 <action name="SPARK_HWC_JDBC_READ" cred="hs2-creds,hcatauth">

31

Cloudera Runtime Oozie configurations with CDP services

 <spark xmlns="uri:oozie:spark-action:1.0">
 <configuration>
 <property>
 <name>mapreduce.job.hdfs-servers</name>
 <value>${firstNotNull(wf:conf('HDFS_SERVER
S'),' ')}</value>
 </property>
 <property>
 <name>oozie.launcher.mapreduce.map.java.opts<
/name>
 <value>${firstNotNull(wf:conf('OOZIE_LAUNCHER_OPTS'),' ')}<
/value>
 </property>
 <property>
 <name>oozie.action.rootlogger.log.level</na
me>
 <value>${firstNotNull(wf:conf('ROOT_LOGGER_L
EVEL'),'INFO')}</value>
 </property>
 </configuration>
 <master>${MASTER}</master>
 <mode>${MODE}</mode>
 <name>${APP_NAME}</name>
 <class>${CLASSNAME}</class>
 <jar>${JAR}</jar>
 <spark-opts>--conf spark.sql.hive.hiveserver2.jdbc
.url=${JDBC_URL} --conf spark.sql.extensions="com.hortonworks.s
park.sql.rule.Extensions" --conf spark.datasource.hive.warehouse
.read.mode=${JDBC_MODE} --conf spark.sql.hive.hiveserver2.jdbc.u
rl.principal=${JDBC_PRINCIPAL} ${firstNotNull(wf:conf('SPARK_OPT
S'),' ')}</spark-opts>
 <arg>${HIVE_TABLE_NAME}</arg>
 </spark>
 <ok to="end"/>
 <error to="fail"/>
 </action>

 <kill name="fail">
 <message>Workflow failed, error message[${wf:errorMess
age(wf:lastErrorNode())}</message>
 </kill>
 <end name="end"/>
</workflow-app>

Save this workflow.xml file in the directory where you have defined oozie.wf.application.path.
The different properties seen in “${}” are properties that are written either in the job.properties
file or can be passed in the command line. Notice that the <spark-opts> tag contains the necessary
configurations that are required for HWC. The <arg> tag contains the input for the application. The
<arg> tag is currently set to a Hive table name which is used by a SELECT statement written in the
application code.

Note: Do not include the HWC JAR file anywhere in the workflow.xml file as part
of the Spark Job. The file is present in the sharelib folder that is explicitly created for
HWC.

Using Python application

This example provides detailed information about the job.properties file, workflow.xml file, and application logic
required for this task, and lists the necessary information required for using HWC in Oozie Spark action when a
Python application is built.

32

Cloudera Runtime Oozie configurations with CDP services

Example application logic

import sys
from pyspark.sql import SparkSession
from pyspark_llap import HiveWarehouseSession

spark = SparkSession.builder.enableHiveSupport().getOrCreate()
hwc = HiveWarehouseSession.session(spark).build()
tableName = sys.argv[1]
print "=======Reading hive table - " + tableName + " via HWC===
===="
Read via HWC
hwc.sql("select * from " + tableName).show()

hwc.close()
spark.stop()

You are using the pyspark module and HWC specific pyspark_llap module for executing the Python
program. The pyspark_llap module is derived from the HWC artifacts given in the CDP builds.

Example job.properties file

HCAT_METASTORE_URI=thrift://myhos
t-1.myhost.example.site:9083
ROOT_LOGGER_LEVEL=INFO
HCAT_PRINCIPAL=hive/_HOST@EXAMPLE.COM
oozie.action.sharelib.for.spark=spark,hwc
MASTER=yarn
JDBC_PRINCIPAL=hive/_HOST@EXAMPLE.COM
JDBC_URL=jdbc:hive2://myhost-1.myhost.example.site:10001/default
;transportMode=http;httpPath=cliservice;ssl=true;sslTrustStore=/
var/lib/cloudera-scm-agent/agent-cert/cm-auto-global_truststore.
jks;trustStorePassword=update_this_password
oozie.wf.application.path=hdfs:///tmp/workdir
HIVE_TABLE_NAME=sampleTable
JDBC_MODE=JDBC_CLUSTER
APP_NAME=MyApp
MODE=cluster
PY_FILE=hdfs:///tmp/workdir/testhwcread.py
PYSPARK_HWC_ZIP=/opt/cloudera/parcels/CDH/lib/hive_warehouse_con
nector/pyspark_hwc-1.0.0.7.1.7.61-1.zip
OOZIE_LAUNCHER_OPTS=”-verbose:class”
SPARK_OPTS=--conf spark.driver.extraJavaOptions='-verbose:class'
 --conf spark.executor.extraJavaOptions='-verbose:class'

All the values are example values and are indicative of what you need to write in the file.

HCAT_METASTORE_URI represents the hive metastore URI and HCAT_PRINCIPAL is the
configuration required for Kerberos authentication for the Hive metastore. oozie.action.shareli
b.for.spark=spark,hwc must be set as it is. MASTER specifies running Spark in the YARN mode.
JDBC_PRINCIPAL is required for Kerberos authentication for HiveServer2. JDBC_URL is
required to create a connection to Hive Server 2.

If you run into any classpath issues while executing the Oozie job, then you can check the details
by using OOZIE_LAUNCHER_OPTS and SPARK_OPTS. These configurations show you what
classes are loaded from which JAR files in the Spark job by checking the YARN logs of the Spark
job.

Note: The sharelib folder contains an additional folder by the name hwc and this
folder must not contain a *-standalone.jar (standalone JAR files) in it.

33

Cloudera Runtime Oozie configurations with CDP services

Example workflow.xml file

<?xml version="1.0" encoding="utf-8"?>
<workflow-app name="spark-hwc-hive-wf" xmlns="uri:oozie:workflow:
1.0">
 <credentials>
 <credential name="hcatauth" type="hcat">
 <property>
 <name>hcat.metastore.uri</name>
 <value>${HCAT_METASTORE_URI}</value>
 </property>
 <property>
 <name>hcat.metastore.principal</name>
 <value>${HCAT_PRINCIPAL}</value>
 </property>
 </credential>
 <credential name="hs2-creds" type="hive2">
 <property>
 <name>hive2.server.principal</name>
 <value>${JDBC_PRINCIPAL}</value>
 </property>
 <property>
 <name>hive2.jdbc.url</name>
 <value>${JDBC_URL}</value>
 </property>
 </credential>
 </credentials>

 <start to="SPARK_HWC_JDBC_READ"/>
 <action name="SPARK_HWC_JDBC_READ" cred="hs2-creds,hcatauth">
 <spark xmlns="uri:oozie:spark-action:1.0">
 <configuration>
 <property>
 <name>mapreduce.job.hdfs-servers</name>
 <value>${firstNotNull(wf:conf('HDFS_SERVER
S'),' ')}</value>
 </property>
 <property>
 <name>oozie.launcher.mapreduce.map.java.opts<
/name>
 <value>${firstNotNull(wf:conf('OOZIE_LAUNCHER
_OPTS'),' ')}</value>
 </property>
 <property>
 <name>oozie.action.rootlogger.log.level</name
>
 <value>${firstNotNull(wf:conf('ROOT_LOGGER
_LEVEL'),'INFO')}</value>
 </property>
 </configuration>
 <master>${MASTER}</master>
 <mode>${MODE}</mode>
 <name>${APP_NAME}</name>
 <jar>${PY_FILE}</jar>
 <spark-opts>--conf spark.sql.hive.hiveserver2.jdbc.ur
l=${JDBC_URL} --conf spark.sql.extensions="com.hortonworks.spar
k.sql.rule.Extensions" --conf spark.datasource.hive.warehouse.re
ad.mode=${JDBC_MODE} --conf spark.sql.hive.hiveserver2.jdbc.url.
principal=${JDBC_PRINCIPAL} --conf spark.submit.pyFiles=${PYSPAR
K_HWC_ZIP} ${firstNotNull(wf:conf('SPARK_OPTS'),' ')}</spark-opt
s>
 <arg>${HIVE_TABLE_NAME}</arg>
 </spark>

34

Cloudera Runtime Oozie configurations with CDP services

 <ok to="end"/>
 <error to="fail"/>
 </action>

 <kill name="fail">
 <message>Workflow failed, error message[${wf:errorMess
age(wf:lastErrorNode())}</message>
 </kill>
 <end name="end"/>
</workflow-app>

Save this workflow.xml file in the directory where you have defined oozie.wf.application.path. The
different properties seen in “${}” are properties that are written either in the job.properties file or
can be passed in the command line. The <spark-opts> tag contains the necessary configurations that
are required for HWC. The <arg> tag contains the input for the application that needs to be run. It is
currently set to a Hive table name which is used for executing a SELECT query on the same table.

Note: Do not include the HWC JAR anywhere in the workflow.xml file as part of
the Spark Job. It is already present in the sharelib folder that is explicitly created for
HWC.

Oozie and client configurations
Learn about how Oozie handles the client configuration files for different actions that rely on Hadoop, Hive, and so
on, clients.

In certain cases, it is necessary to have the required client configurations (site.xml files) available for action
executions in YARN. Previously, you manually copied some site.xml files to either your workflow lib folder or the
corresponding Oozie ShareLib. This section summarizes how Oozie utilizes the client configuration files.

Hive2 action

The hive-site.xml is not automatically propagated to YARN. The Hive2 action executes the beeline command, which
uses the hive-site.xml file from /etc/hive/conf.

Oozie automatically propagates the hbase-site.xml to YARN if the conditions described in the Conditions section are
met.

MapReduce and Shell actions

The hbase-site.xml, hive-site.xml, and sqoop-site.xml are propagated to the YARN container if the corresponding
conditions mentioned in the Conditions section are met.

Spark and Spark3 actions

Oozie automatically propagates the sqoop-site.xml to YARN if the conditions described in the Conditions section are
met.

Oozie automatically propagates the hive-site.xml to YARN if the Hive service dependency is enabled for Oozie in
Cloudera Manager.

Oozie automatically propagates the hbase-site.xml to YARN if the HBase service dependency is enabled for Oozie in
Cloudera Manager.

Sqoop action

Oozie automatically propagates the hive-site.xml to YARN if the conditions described in the Conditions section are
met.

35

Cloudera Runtime Spark 3 support in Oozie

Oozie automatically propagates the sqoop-site.xml to YARN if the Sqoop client dependency is enabled for Oozie in
Cloudera Manager.

Oozie automatically propagates the hbase-site.xml to YARN if the HBase service dependency is enabled for Oozie in
Cloudera Manager.

Conditions

All the client configurations are only automatically saved to the YARN container if no existing file is already
present. This allows you to manually make a client configuration file available in the Workflow's lib folder or the
corresponding Oozie ShareLib.

The following applies to the client configurations mentioned in the sections above, where the Conditions section is
referenced:

To enable Oozie to automatically copy the client configuration files, the following dependencies must be enabled in
Cloudera Manager for Oozie:

• hbase-site.xml

HBase service dependency.
• hive-site.xml

Hive service dependency.
• sqoop-site.xml

Sqoop client dependency.

Automatic propagation of these configurations can be disabled by setting the following settings to true:

• hbase-site.xml: oozie.action.propagate.hbase-site.xml.disabled
• hive-site.xml: oozie.action.propagate.hive-site.xml.disabled
• sqoop-site.xml: oozie.action.propagate.sqoop-site.xml.disabled

You can configure these settings globally using a safety-valve, or in the Workflow's global configuration, or in the
job.properties file, or at the action-level through the action's configuration in the workflow definition. The order of
precedence is as follows:

1. Action-level configuration
2. Workflow global configuration
3. job.properties configuration
4. Global safety-valve configuration

Spark 3 support in Oozie

This section describes how to re-enable the Spark actions, provides guidance on migrating your workflows from
Spark actions to Spark 3 actions, highlights the differences between the two, and outlines the enhancements made to
Spark actions to simplify the migration process.

Due to the discontinuation and deprecation of Spark 2, Oozie's Spark actions are deprecated, which are based on
Spark 2. Consequently, Oozie's Spark actions are disabled by default, and if you attempt to execute a Spark action, an
error appears. Oozie supports the new Spark 3 based Spark 3 actions.

Enable Spark actions
While Spark actions are initially disabled, you have the flexibility to enable them at your discretion if you still want to
utilize them.

36

Cloudera Runtime Spark 3 support in Oozie

Enabling Spark actions globally

Perform the following steps to enable Spark action globally through Cloudera Manager:

1. Navigate to Oozie's configuration page in Cloudera Manager.
2. Search for Oozie Server Advanced Configuration Snippet (Safety Valve) for oozie-site.xml.
3. Add a new property named oozie.action.spark.enabled with the value true.

4. Save the modifications.
5. Allow Cloudera Manager some time to recognize the changes.
6. Redeploy Oozie.

Note: You can also enable the above setting through the same safety-valve property before upgrading to
Private Cloud Base 7.1.9 or higher. By doing so, you can ensure that your scheduled Spark 2 applications
with Oozie continue to run successfully after the upgrade, avoiding any potential failures.

Enabling Spark actions per workflows

If you do not want to enable Spark actions globally, you can enable them on a per workflow basis. To do so, set the
value of the oozie.action.spark.enabled property to true in the global configuration of the specific workflow. For
example:

<workflow-app name="spark_workflow" xmlns="uri:oozie:workflow:1.0">
 <global>
 <configuration>
 <property>
 <name>oozie.action.spark.enabled</name>
 <value>true</value>
 </property>
 </configuration>
 </global>
 <start to="spark_action"/>
 <action name="spark_action">
 ...

By following this approach, if your workflow contains multiple Spark actions, all of them will be enabled and
operational.

You can also enable Spark actions for a given workflow by specifying the oozie.action.spark.enabled property in your
job.properties file.

37

Cloudera Runtime Spark 3 support in Oozie

Enabling a given Spark action only

If you want to further restrict the enablement of a Spark action, you have the option to enable it only for a specific
Spark action within a workflow. This can be achieved by utilizing the oozie.action.spark.enabled property in the
configuration of that particular action. For example:

<workflow-app name="spark_workflow" xmlns="uri:oozie:workflow:1.0">
 <start to="spark_action"/>
 <action name="spark_action">
 <spark xmlns="uri:oozie:spark-action:1.0">
 <resource-manager>${resourceManager}</resource-manager>
 <name-node>${nameNode}</name-node>
 <configuration>
 <property>
 <name>oozie.action.spark.enabled</name>
 <value>true</value>
 </property>
 </configuration>
 ...

The order of precedence for the above options is as follows:

1. If you have configured the property at the action level, it takes precedence over all other settings, and the
remaining configurations are disregarded.

2. If you have configured the property in the global configuration of the workflow, the value from there is used.
3. If the setting is not available in either of the previous locations, the value configured in your job.properties file is

used instead.
4. Lastly, the global safety-valve setting comes into effect.

Use Spark actions with a custom Python executable
Spark 2 supports both PySpark and JavaSpark applications. Learn how to use a custom Python executable in a given
Spark action.

In case of PySpark, in Spark 2, you can designate a custom Python executable for your Spark application by utilizing
the spark.pyspark.python Spark conf argument. For more details, see Spark 2.4 documentation. Consequently, if you
include the spark.pyspark.python Spark conf argument in your Oozie Spark action, the Python executable you specify
is used when executing the Spark action through Oozie.

To simplify the usage of a customized Python executable with Oozie's Spark action, you can use the oozie.service.Sp
arkConfigurationService.spark.pyspark.python property. This property functions similarly to Spark's spark.pyspar
k.python conf argument, allowing you to specify a custom Python executable. Oozie then passes this executable to the
underlying Spark application executed through Oozie.

You can specify the oozie.service.SparkConfigurationService.spark.pyspark.python property in different ways.

Setting Spark actions with a custom Python executable globally

You can set it globally in Cloudera Manager through a safety-valve. To do that, perform the following steps:

1. Navigate to Oozie's configuration page in Cloudera Manager.
2. Search for Oozie Server Advanced Configuration Snippet (Safety Valve) for oozie-site.xml.
3. Add a new property named oozie.service.SparkConfigurationService.spark.pyspark.python.

38

https://spark.apache.org/docs/2.4.3/configuration.html

Cloudera Runtime Spark 3 support in Oozie

4. Specify its value to point to your custom Python executable.

For example, if you installed Python 3.7 to /opt/python37-for-oozie, then specify the value as /opt/python37-for-
oozie/bin/python3.

5. Save the modifications.
6. Allow Cloudera Manager some time to recognize the changes.
7. Redeploy Oozie.

Setting Spark actions with a custom Python executable per workflows

You can also specify a custom Python executable for a given workflow using the same property:

<workflow-app name="spark_workflow" xmlns="uri:oozie:workflow:1.0">
 <global>
 <configuration>
 <property>
 <name>oozie.service.SparkConfigurationService.spark.pyspark.
python</name>
 <value>/opt/python37-for-oozie/bin/python3</value>
 </property>
 </configuration>
 </global>
 <start to="spark_action"/>
 <action name="spark_action">
 ...

The same workflow-level Python executable can be achieved if you set the property in your job.properties file.

Setting Spark actions with a custom Python executable for a given Spark action only

Finally, you can only change the Python executable for a given Spark action. For example:

<workflow-app name="spark_workflow" xmlns="uri:oozie:workflow:1.0">
 <start to="spark_action"/>
 <action name="spark_action">
 <spark xmlns="uri:oozie:spark-action:1.0">
 <resource-manager>${resourceManager}</resource-manager>
 <name-node>${nameNode}</name-node>
 <configuration>
 <property>
 <name>oozie.service.SparkConfigurationService.spark.pys
park.python</name>
 <value>/opt/python37-for-oozie/bin/python3</value>

39

Cloudera Runtime Spark 3 support in Oozie

 </property>
 </configuration>
 ...

The following order of precedence is applied for this configuration:

1. Oozie does not override the configuration of spark.pyspark.python in the <spark-opts> tag of your action
definition if you have already set it.

2. If you have configured the property at the action level, it takes precedence over all other settings, and the
remaining configurations are disregarded.

3. If you have configured the property in the global configuration of the workflow, the value from there is used.
4. If the setting is not available in either of the previous locations, the value configured in your job.properties file is

used.
5. Lastly, the global safety-valve setting comes into effect.

It is also possible to inform Oozie that you do not want to use a custom Python executable in a given Spark action, but
you want to use the default one configured for Spark 2, even if you already configured at a lower level of precedence.
For instance, if the oozie.service.SparkConfigurationService.spark.pyspark.python is set as a safety-valve to /opt/pyt
hon37-for-oozie/bin/python3, but in a workflow or in a specific action you want to use the default Python executable
configured for Spark 2, you can set the value of the property to default. For example:

<workflow-app name="spark_workflow" xmlns="uri:oozie:workflow:1.0">
 <global>
 <configuration>
 <property>
 <name>oozie.service.SparkConfigurationService.spark.pyspark.
python</name>
 <value>default</value>
 </property>
 </configuration>
 </global>
 <start to="spark_action"/>
 <action name="spark_action">
 ...

In this scenario, the value set in Cloudera Manager in Oozie’s safety-valve configuration, is ignored, and the spark.py
spark.python Spark conf is not set at all.

Important: If you choose to use a custom Python executable in Spark actions, then the given executable
must be available on all nodes where YARN Node Manager is also available.

Note: Since Spark 2 supports Python up to Python 3.7, you can use the above configuration option to specify
any custom Python installation from 2.7 to 3.7.

Spark 3 Oozie action schema
Refer to the following for the schema of a Spark 3 Oozie action.

<xs:schema elementFormDefault="qualified"
 targetNamespace="uri:oozie:spark3-action:1.0"
 xmlns:spark3="uri:oozie:spark3-action:1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:include schemaLocation="oozie-common-1.0.xsd"/>
 <xs:element name="spark3" type="spark3:ACTION"/>
 <xs:complexType name="ACTION">
 <xs:sequence>
 <xs:element maxOccurs="1" minOccurs="1" name="resource-manager"
 type="xs:string"/>

40

Cloudera Runtime Spark 3 support in Oozie

 <xs:element maxOccurs="1" minOccurs="0" name="name-node" type=
"xs:string"/>
 <xs:element maxOccurs="1" minOccurs="0" name="prepare" type="s
park3:PREPARE"/>
 <xs:element maxOccurs="1" minOccurs="0" name="launcher" type="s
park3:LAUNCHER"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="job-xml"
 type="xs:string"/>
 <xs:element maxOccurs="1" minOccurs="0" name="configuration" typ
e="spark3:CONFIGURATION"/>
 <xs:element maxOccurs="1" minOccurs="1" name="master" type="x
s:string"/>
 <xs:element maxOccurs="1" minOccurs="0" name="mode" type="xs:str
ing"/>
 <xs:element maxOccurs="1" minOccurs="1" name="name" type="xs:
string"/>
 <xs:element maxOccurs="1" minOccurs="0" name="class" type="xs:
string"/>
 <xs:element maxOccurs="1" minOccurs="1" name="jar" type="xs:st
ring"/>
 <xs:element maxOccurs="1" minOccurs="0" name="spark-opts" type="
xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="arg" type
="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="file" t
ype="xs:string"/>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="archive"
 type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Differences between Spark and Spark 3 actions
Learn about the differences between a Spark action and a Spark 3 action definition, the difference in the logging
frameworks used in Spark and Spark 3, and the action credentials.

There are several notable distinctions between a Spark action and a Spark 3 action definition. Firstly, the XML
element representing the action differs between the two. For Spark actions, it is denoted as spark, whereas for Spark 3
actions, it is labeled as spark3.

Additionally, the support for certain tags also varies. Specifically, the Spark 3 action definition does not include
support for the job-tracker tag, but instead exclusively employs the resource-manager tag.

In contrast to Oozie's Spark action, where omitting the <mode> tag in the workflow definition allows setting the <mas
ter> tag to either yarn-cluster or yarn-client, the same flexibility does not apply to Spark 3 actions. With Spark 3
actions, if you previously set the <master> tag to yarn-cluster in Spark actions, you must set the <master> tag to yarn
and the <mode> tag to cluster in Spark 3 actions. Similarly, if you previously set the <master> tag to yarn-client in
Spark actions, for Spark 3 actions, you must set the <master> tag to yarn and the <mode> tag to client.

Differences in the actions’ configuration

To configure Spark actions, there are multiple configuration options available. These options are prefixed with oozi
e.service.SparkConfigurationService. For example:

• oozie.service.SparkConfigurationService.spark.configurations.blacklist
• oozie.service.SparkConfigurationService.hive2.configurations

In order to differentiate between configurations for Spark actions and Spark 3 actions, the prefix for properties related
to Spark 3 actions is modified to oozie.service.Spark3ConfigurationService.

41

Cloudera Runtime Spark 3 support in Oozie

During the migration from Spark actions to Spark 3 actions, it is necessary to adjust the prefix for any Spark action
configuration that is configured in Cloudera Manager using a safety-valve.

Log4j vs. Log4j 2

When comparing Spark 2 and Spark 3, there is a difference in the logging frameworks used. While Spark 2 relies on
log4j or reload4j, Spark 3 has transitioned to log4j2. As a result, Oozie's Spark 3 action also utilizes log4j2.

Oozie provides a logging property file for both Spark and Spark 3 actions. However, there is a distinction in the
naming conventions of these files. In the case of Spark actions, the file is named spark-log4j.properties, whereas for
Spark 3 actions, it is named spark3-log4j2.properties.

During the migration process from Spark to Spark 3 actions, if you have a custom spark-log4j.properties file located
in the lib folder of your workflow or within Oozie's ShareLib, you need to rename this file. Since Spark 3 uses log4j2,
you might also need to modify your custom Spark logging configuration file to ensure compatibility with log4j2.

Action credentials

The Spark 3 action in Oozie provides support for the same credentials as Spark actions.

Upgrade Spark3 within Oozie
In Cloudera Private Cloud Base, Spark 3 is not included in the CDH parcel but is available as a separate parcel. This
allows independent upgrades of Spark 3.

When upgrading the Spark 3 parcel, you need to update the Spark 3 distribution in Oozie's Spark 3 ShareLib since
Oozie's Spark 3 ShareLib is created during the Oozie build process.

To simplify this process, you can use the Update the Spark3 ShareLib action in Cloudera Manager:

42

Cloudera Runtime Spark 3 support in Oozie

This command performs an update of the Spark 3 ShareLib based on the Spark 3 parcel, while retaining all other
ShareLibs in their current state. This ensures that any custom JARs placed in other ShareLibs are not deleted.
However, if you previously placed custom JARs in Oozie's Spark 3 ShareLib, they are deleted during this operation.
In such cases, you need to manually upload those JARs to HDFS again.

Important: Remember that this command is not automatically invoked when the Spark 3 parcel is upgraded;
you must manually invoke it.

To maintain compatibility, the existing Install Oozie ShareLib action also updates the Spark 3 ShareLib. However,
you can disable this feature using the following setting:

43

Cloudera Runtime Spark 3 support in Oozie

By default, the Update the Spark3 ShareLib action selects the currently activated Spark 3 parcel for uploading JARs.
However, you can modify this behavior using the following setting:

The setting should specify the name of the folder for the Spark 3 parcel to use, located at the root directory of parcels,
typically /opt/cloudera/parcels. By default, it is set as SPARK3, which is a symbolic link to the currently activated
Spark 3 parcel. You can also specify the folder name of another downloaded and distributed Spark 3 parcel that is not
currently activated. For instance, SPARK3-3.3.0.3.4.7190.0-174-1.p0.42371348. Cloudera recommends to change
the default setting only if you encounter any problem with the currently activated Spark 3 parcel in Oozie. While
your issue is being investigated, you can temporarily use a different version of Spark 3 with Oozie by modifying this
setting.

Please be aware that if you change the default value of this setting, Cloudera Manager displays a warning to remind
you about this:

44

Cloudera Runtime Spark 3 support in Oozie

Use Spark 3 actions with a custom Python executable
Learn how to use a custom Python executable in a given Spark 3 action.

Similar to Spark 2, Spark 3 also provides the capability to define a custom Python executable for use with spark3-
submit through the spark.pyspark.python Spark 3 conf argument. For more details, please see the Latest Spark3
documentation. Consequently, if you include the spark.pyspark.python Spark 3 conf in your Oozie Spark 3 action, the
Python executable you specify is used when executing the Spark 3 action through Oozie.

To simplify the usage of a customized Python executable with Oozie's Spark 3 action, you can use the oozie.servic
e.Spark3ConfigurationService.spark.pyspark.python property. This property functions similar to Spark 3's spark.py
spark.python conf argument, allowing you to specify a custom Python executable. Oozie then passes this executable
to the underlying Spark 3 application executed through Oozie.

You can specify this configuration in different ways.

Setting Spark 3 actions with a custom Python executable globally

You can set it globally in Cloudera Manager. To do that, perform the following steps:

1. Navigate to Oozie's configuration page in Cloudera Manager.
2. Search for Python Executable for Spark3 Actions.

45

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html

Cloudera Runtime Spark 3 support in Oozie

3. Specify its value to point to your custom Python executable.

For example, if you installed Python 3.7 to /opt/python37-for-oozie, then specify the value as /opt/python37-for-
oozie/bin/python3.

4. Save the modifications.
5. Allow Cloudera Manager some time to recognize the changes.
6. Redeploy Oozie.

Setting Spark 3 actions with a custom Python executable per workflows

You can also specify a custom Python executable for a given workflow using the same property:

<workflow-app name="spark_workflow" xmlns="uri:oozie:workflow:1.0">
 <global>
 <configuration>
 <property>
 <name>oozie.service.Spark3ConfigurationService.spark.pyspark
.python</name>
 <value>/opt/python37-for-oozie/bin/python3</value>
 </property>
 </configuration>
 </global>
 <start to="spark_action"/>
 <action name="spark_action">
 ...

The same workflow-level Python executable can be achieved if you set the property in your job.properties file.

Setting Spark 3 actions with a custom Python executable for a given Spark action only

Finally, you can only change the Python executable for a given Spark 3 action. For example:

<workflow-app name="spark_workflow" xmlns="uri:oozie:workflow:1.0">
 <start to="spark_action"/>
 <action name="spark_action">
 <spark3 xmlns="uri:oozie:spark3-action:1.0">
 <resource-manager>${resourceManager}</resource-manager>
 <name-node>${nameNode}</name-node>
 <configuration>
 <property>
 <name>oozie.service.Spark3ConfigurationService.spark.
pyspark.python</name>
 <value>/opt/python37-for-oozie/bin/python3</value>
 </property>

46

Cloudera Runtime Spark 3 support in Oozie

 </configuration>
 ...

The following order of precedence is applied for this configuration:

1. Oozie does not override the configuration of spark.pyspark.python in the <spark-opts> tag of your action
definition if you have already set it.

2. If you have configured the property at the action level, it takes precedence over all other settings, and the
remaining configurations are disregarded.

3. If you have configured the property in the global configuration of the workflow, the value from there is used.
4. If the setting is not available in either of the previous locations, the value configured in your job.properties file is

used.
5. Lastly, the global setting in Cloudera Manager comes into effect.

It is also possible to inform Oozie that you do not want to use a custom Python executable in a given Spark 3
action, but you want to use the default one configured for Spark 3, even if you already configured at a lower level of
precedence. For instance, if the Python Executable for Spark3 Actions property is set in Cloudera Manager to /opt/pyt
hon37-for-oozie/bin/python3, but in a workflow or in a specific action you want to use the default Python executable
configured for Spark 3, you can set the value of the property to default. For example:

<workflow-app name="spark_workflow" xmlns="uri:oozie:workflow:1.0">
 <global>
 <configuration>
 <property>
 <name>oozie.service.Spark3ConfigurationService.spark.pyspark
.python</name>
 <value>default</value>
 </property>
 </configuration>
 </global>
 <start to="spark_action"/>
 <action name="spark_action">
 ...

In this scenario, the value set in Cloudera Manager is ignored, and the spark.pyspark.python Spark 3 conf is not set at
all.

Important: If you choose to use a custom Python executable in Spark 3 actions, then the given executable
must be available on all nodes where YARN Node Manager is also available.

Spark 3 compatibility action executor
To facilitate smooth transitions from Oozie's Spark actions to Spark 3 actions, you can use the Spark 3 compatibility
action executor. The purpose of this executor is to allow you to retain your existing Spark action definitions in your
workflows while executing them with Spark 3 instead of Spark 2.

When you use this executor, Oozie automatically converts a Spark action definition to a Spark 3 action definition
before executing it. To configure the Spark 3 action, Oozie utilizes the Spark action configurations (prefixed with
oozie.service.SparkConfigurationService) and converts them to Spark 3 configurations.

This feature enables you to run Spark 3 actions without making any modifications to your workflow definitions.

Important: However, it is important to note that this compatibility executor should be considered as a
temporary solution while you transition your Spark action definitions to Spark 3 action definitions. It might
not support all the features provided by the actual Spark 3 action executor.

Additionally, remember that your Python or Java Spark actions must be runtime and binary compatible with Spark 3.
This is necessary to execute them using the compatibility action executor. For more detailed information on this topic,
please refer to the Migration of Spark 2 applications in this document.

47

Cloudera Runtime Spark 3 support in Oozie

To enable Spark 3 compatibility mode for Spark 2 action workflow definitions, you use the oozie.action.spark.compa
tibility property.

You can configure this property in the following ways:

• Global configuration:

1. Go to the Oozie configuration page in Cloudera Manager and search for Oozie Server Advanced Configurat
ion Snippet (Safety Valve) for oozie-site.xml.

2. Add a new key with the name oozie.action.spark.compatibility and set the value to true.
3. Redeploy Oozie.

• Workflow-level configuration

Add the property to the global configuration section of your workflow.xml file. Alternatively, you can add it to
your job.properties file.

• Action-level Configuration

If you only want to enable compatibility mode for a specific Spark action in your workflow definition, add an
action-level property with the name oozie.action.spark.compatibility and set the value to true.

Limitations

Due to the high customizability of Oozie's Spark and Spark 3 actions, certain restrictions and limitations have been
introduced. The current known limitations are outlined as follows:

• The following properties are not permitted in your action configuration, which includes configurations at the
global level, workflow level, and action level:

• oozie.action.sharelib.for.spark
• oozie.action.sharelib.for.spark3
• oozie.action.sharelib.for.spark.exclude
• oozie.action.sharelib.for.spark3.exclude

• As the Spark 3 action utilizes log4j2 instead of log4j (used by the Spark action), it is crucial to avoid mixing the
two in compatibility mode. Therefore, having a spark-log4j.properties file in the lib folder of your workflow or in
ShareLib is not allowed.

Related Information
Migration of Spark 2 applications

Spark 3 examples with Python or Java application
This section provides you some examples of Spark 3 with Python and Java applications.

Spark3 with a Java application with Hive2 credentials

<workflow-app name="JavaSpark" xmlns="uri:oozie:workflow:1.0">
 <credentials>
 <credential name="hive-credential" type="hive2">
 <property>
 <name>hive2.jdbc.url</name>
 <value>jdbc:hive2://...</value>
 </property>
 <property>
 <name>hive2.server.principal</name>
 <value>...</value>
 </property>
 </credential>
 </credentials>
 <start to="spark-node-javaspark"/>
 <action name="spark-node-javaspark" cred="hive-credential">

48

Cloudera Runtime Spark 3 support in Oozie

 <spark3 xmlns="uri:oozie:spark3-action:1.0">
 <resource-manager>${resourceManager}</resource-manager>
 <name-node>${nameNode}</name-node>
 <master>${master}</master>
 <mode>${mode}</mode>
 <name>JavaSpark-Example</name>
 <class>com.company.spark.JavaSpark</class>
 <jar>${nameNode}/user/${wf:user()}/javaspark_lib/JavaSparkForOo
zie.jar</jar>
 <arg>${inputFile}</arg>
 </spark3>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>Workflow failed, error
 message[${wf:errorMessage(wf:lastErrorNode())}]
 </message>
 </kill>
 <end name="end"/>
</workflow-app>

Spark3 with a Python application with Hive2 credentials

<workflow-app name="PySpark" xmlns="uri:oozie:workflow:1.0">
 <credentials>
 <credential name="hive-credential" type="hive2">
 <property>
 <name>hive2.jdbc.url</name>
 <value>jdbc:hive2://...</value>
 </property>
 <property>
 <name>hive2.server.principal</name>
 <value>...</value>
 </property>
 </credential>
 </credentials>
 <start to="spark-node-pyspark"/>
 <action name="spark-node-pyspark" cred="hive-credential">
 <spark3 xmlns="uri:oozie:spark3-action:1.0">
 <resource-manager>${resourceManager}</resource-manager>
 <name-node>${nameNode}</name-node>
 <master>${master}</master>
 <mode>${mode}</mode>
 <name>PySpark-Example</name>
 <jar>${pythonScript}</jar>
 <arg>${inputFile}</arg>
 </spark3>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>Workflow failed, error
 message[${wf:errorMessage(wf:lastErrorNode())}]
 </message>
 </kill>
 <end name="end"/>
</workflow-app>

49

Cloudera Runtime Spark 3 support in Oozie

Shell action for Spark 3
Learn about how to execute Spark 3's spark3-submit through Oozie's Shell action.

Similar to the support for executing Spark 2's spark-submit through Oozie's Shell action, Cloudera also provides full
support for executing Spark 3's spark3-submit through Oozie's Shell action.

As Oozie utilizes delegation tokens instead of Kerberos tickets in its YARN applications, it is recommended to unset
the HADOOP_TOKEN_FILE_LOCATION environment variable in your Shell script before executing spark3-
submit, if you intend to use spark3-submit without relying on Oozie's default delegation tokens. This is because
spark3-submit might not function properly with both delegation tokens and Kerberos tickets. However, to ensure the
successful completion of your Shell action, please ensure that you reset the HADOOP_TOKEN_FILE_LOCATION
environment variable after the execution of your custom Shell script segment. The following example illustrates how
you can accomplish this:

#!/usr/bin/env bash
By executing the commands within brackets,
we can ensure that the parent environment remains untouched
(
 unset HADOOP_TOKEN_FILE_LOCATION

 kinit -kt /var/keytabs/user.keytab user
 /usr/bin/spark3-submit --master yarn --deploy-mode cluster \
 create_table_with_data_spark3.py tableUsingSpark3FromShellAction
 /usr/bin/spark3-submit --master yarn --deploy-mode cluster \
 read_created_table.py tableUsingSpark3FromShellAction
)

Migration of Spark 2 applications
To ensure a smooth migration of your underlying Spark 2 application when using Oozie's Spark 3 action, it is highly
recommended to follow the official Spark 2 to Spark 3 migration guide. Specifically, refer to the Cloudera runtime
documentation's comprehensive resource titled Updating Spark 2 applications for Spark3.

This guide provides you with detailed instructions and best practices specifically tailored to the migration process. By
adhering to this guide, you can effectively transition your Spark 2 application and leverage the capabilities of Spark 3
seamlessly within Oozie.

It is highly advised to first test your migrated Spark 3 applications directly using the official Spark 3 runtime. By
executing your applications with spark3-submit before running them as Oozie actions, you can identify any potential
issues and find the root cause. This approach enables you to determine whether any problems arise from Oozie, Spark
3 itself, or the compatibility of your migrated application. Taking this proactive step assists you in troubleshooting
and resolving any potential obstacles during the migration process.

Migrating Java applications

If you are currently running Java applications with Oozie's Spark action, there are several important considerations
and steps to follow:

• Recompile your application using Spark 3 dependencies instead of Spark 2 dependencies.
• If you are using Scala, it may be necessary to migrate from Scala 2.11 to Scala 2.12 according to the official Spark

migration guide.
• If your application relies on the Scala module of the Jackson library, you might need to replace the Scala 2.11

flavor with the Scala 2.12 flavor.
• Ensure that your 3rd-party runtime dependencies align with the versions used by Spark 3 and Oozie's Spark 3

action.
• Since Spark 3 has transitioned from log4j to log4j2, you might need to adjust the logging library and/or logging

configuration used in your application. Additionally, ensure that all necessary logging frameworks are present

50

Cloudera Runtime Oozie High Availability

in the classpath. Note that Oozie's Spark 3 action executor configures log4j2 instead of log4j, meaning that log4j
runtime libraries are no longer included in the classpath by default, only log4j2 libraries are.

By following these guidelines, you can successfully migrate your Java applications to work seamlessly with Oozie's
Spark 3 action.

Migrating Python applications

When upgrading PySpark applications from Spark 2 to Spark 3, it is important to consider not only the framework
migration but also the compatibility of your Python application with Python 3. If your Python application is not
compatible, you need to perform a migration from Python 2 to Python 3 as well.

Given that Spark 2 is now deprecated and Python 2 has reached its end of life, Cloudera strongly advise migrating
your PySpark applications from Python 2 and Spark2 simultaneously. This approach ensures that your application
runs on up-to-date frameworks and avoids potential security vulnerabilities.

However, depending on the nature of your applications (such as their size or quantity), you might want to take the
following steps:

1. Follow the instructions in the Enable Spark actions section to re-enable Spark actions.
2. Install Python 2 to a custom location to prevent interference with other services and avoid its usage by other

services.
3. Configure Oozie's Spark action globally to use this custom Python 2 installation. Refer to the Using Spark actions

with a custom Python executable section for guidance.
4. Additionally, install Python 3.7 to a custom location.
5. Begin migrating your PySpark applications to ensure compatibility with Python 3.
6. For workflows where you have already made the underlying PySpark application Python 3 compatible, enable

them to run with the custom Python 3 installation instead of Python 2. Refer to the Using Spark actions with a
custom Python executable section for detailed instructions.

7. After all the Spark actions in a workflow are compatible with Python 3, start migrating the Spark actions to Spark
3 actions.

By following these steps, you can successfully migrate your PySpark applications from Python 2 and Spark 2 to
Python 3 and Spark 3.

Related Information
Enable Spark actions

Use Spark actions with a custom Python executable

Updating Spark 2 applications for Spark3

Hue support for Oozie
As Hue's Oozie designer feature is not currently being enhanced, there are no plans to provide support for Oozie
Spark 3 actions within the Hue platform at this time.

Oozie High Availability

Oozie High Availability is "active-active" so that both Oozie servers are active at the same time, with no failover.
High availability for Oozie is supported in both MRv1 and MRv2 (YARN).

Requirements for Oozie High Availability
You must ensure your cluster meets all the requirements for configuring Oozie High Availability (HA).

• Multiple active Oozie servers, preferably identically configured.

51

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/cds-3/topics/spark-migrate-spark2-spark3.html

Cloudera Runtime Oozie High Availability

• JDBC JAR in the same location across all Oozie hosts (for example, /var/lib/oozie/).
• External database that supports multiple concurrent connections, preferably with HA support.
• ZooKeeper ensemble with distributed locks to control database access, and service discovery for log aggregation.
• Load balancer (preferably with HA support, for example HAProxy), virtual IP, or round-robin DNS to provide a

single entry point (of the multiple active servers), and for callbacks from the Application Master or JobTracker.

Configuring Oozie High Availability using Cloudera Manager
You can use Cloudera Manager to enable or disable Oozie High Availability (HA).

Important: Enabling or disabling HA makes the previous monitoring history unavailable.

Oozie Load Balancer configuration
To enable Oozie High Availability, you must manually configure a Load Balancer.

About this task
Cloudera recommends using the HAProxy Load Balancer. These steps explain how to configure the HAProxy load
balancer. However, you can choose to configure a different Load Balancer.

Procedure

1. Install HAProxy on the host where you are setting up and configuring the Oozie load balancer. For more
information, see the HAProxy documentation.

2. You must configure the Oozie load balancer for both HTTP and HTTPS ports.

This is an example:
global
 log 127.0.0.1 local2
 pidfile /var/run/haproxy.pid
 maxconn 4000
 user haproxy
 group haproxy
 daemon
 stats socket /tmp/haproxy

defaults
 mode http
 log global
 option httplog
 option dontlognull
 option forwardfor except 127.0.0.0/8
 option redispatch
 retries 3
 timeout http-request 10s
 timeout queue 1m
 timeout connect 10s
 timeout client 10m
 timeout server 10m
 timeout check 10s
 maxconn 3000

listen admin
 bind *:8000
 stats enable

#---
main frontend which proxys to the backends

52

https://www.haproxy.org/
https://www.haproxy.org/

Cloudera Runtime Oozie High Availability

#---
frontend oozie_front
 bind *:5000 ssl crt /var/lib/cloudera-scm-agent
/agent-cert/cdep-host_key_cert_chain_decrypted.pem
 default_backend oozie

#---
round robin balancing between the various backends
#---
backend oozie
 balance roundrobin
 server oozie1 my-oozie-host-1:11443/oozie check ssl ca-file /var/lib/
cloudera-scm-agent/agent-cert/cm-auto-global_cacerts.pem
 server oozie2 my-oozie-host-2:11443/oozie check ssl ca-file /var/lib/
cloudera-scm-agent/agent-cert/cm-auto-global_cacerts.pem
 server oozie3 my-oozie-host-3:11443/oozie check ssl ca-file /var/lib/
cloudera-scm-agent/agent-cert/cm-auto-global_cacerts.pem

#---
main frontend which proxys to the http backends
#---
frontend oozie_front_http
 bind *:5002
 default_backend oozie_http

#---
round robin balancing between the various http backends
#---
backend oozie_http
 balance roundrobin
 server oozie_http1 my-oozie-host-1:11000/oozie check
 server oozie_http2 my-oozie-host-2:11000/oozie check
 server oozie_http3 my-oozie-host-3:11000/oozie check

Using the example, the load balancer is setup for three Oozie instances. The load balancer listens on port 5002
for HTTP connections and forwards it to Oozie’s port 11000. The load balancer listens on port 5000 for HTTPS
connections and forwards it to Oozie’s port 11443.

If you not enabled SSL in Oozie, then you do not need the HTTPS load balancer. For HTTPS load balancing,
ensure that you set up the certificate.

3. Continue to configure the load balancer by enabling Oozie High Availability. For information about enabling
Oozie High Availability, see Enabling Oozie High Availability .

Enabling Oozie High Availability
You must select the host on which to install the additional Oozie server and specify the required property values to
install Oozie High Availability (HA).

Before you begin
Ensure that the requirements are satisfied.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Select Actions Enable High Availability to see eligible Oozie server hosts. The host running the current Oozie
server is not eligible.

3. Select the host on which to install an additional Oozie server and click Continue.

53

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/configuring-oozie/topics/oozie-load-balancer-config.html

Cloudera Runtime Scheduling in Oozie using cron-like syntax

4. Update the following fields for the Oozie load balancer:

• Hostname

For example:

nightly6x-1.vpc.cloudera.com

• HTTP Port

For example:

5002

• HTTPS Port

For example:

5000

5. Click Continue.

Cloudera Manager stops the Oozie servers, adds another Oozie server, initializes the Oozie server High
Availability state in ZooKeeper, configures Hue to reference the Oozie load balancer, and restarts the Oozie
servers and dependent services. In addition, Cloudera Manager generates Kerberos credentials for the new Oozie
server and regenerates credentials for existing servers.

Disabling Oozie High Availability
Based on your requirements, you can disable Oozie High Availability (HA) using Cloudera Manager.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Select Actions Disable High Availability to see all hosts currently running Oozie servers.

3. Select the one host to run the Oozie server and click Continue.

Cloudera Manager stops the Oozie service, removes the additional Oozie servers, configures Hue to reference the
Oozie service, and restarts the Oozie service and dependent services.

Scheduling in Oozie using cron-like syntax

Most Linux distributions include the cron utility, which is used for scheduling time-based jobs. You can schedule
Oozie using Cron-like syntax.

Location

Set the scheduling information in the frequency attribute of the coordinator.xml file. A simple file looks like the
following example. The frequency attribute and scheduling information appear in bold.

<coordinator-app name="MY_APP" frequency="30 14 * * *"
start="2009-01-01T05:00Z" end="2009-01-01T06:00Z" timezone="UTC" xmlns="ur
i:oozie:coordinator:0.5">
 <action>
 <workflow>
 <app-path>hdfs://localhost:8020/tmp/workflows</app-path>
 </workflow>
 </action>
</coordinator-app>

54

http://en.wikipedia.org/wiki/Cron

Cloudera Runtime Scheduling in Oozie using cron-like syntax

Syntax and structure

The cron-like syntax used by Oozie is a string with five space-separated fields:

• minute
• hour
• day-of-month
• month
• day-of-week

The structure takes the form of * * * * *. For example, 30 14 * * * means that the job runs at at 2:30 p.m. everyday.
The minute field is set to 30, the hour field is set to 14, and the remaining fields are set to *.

Allowed values and special characters

The following table describes special characters allowed and indicates in which fields they can be used.

Table 1: Special characters

Character Fields Allowed Description

* (asterisk) All Match all values.

, (comma) All Specify multiple values.

- (dash) All Specify a range.

/ (forward slash) All Specify an increment.

? (question mark) Day-of-month, day-of-week Indicate no specific value (for example, if you want to specify one but not
the other).

L Day-of-month, day-of-week Indicate the last day of the month or the last day of the week (Saturday). In
the day-of-week field, 6L indicates the last Friday of the month.

W Day-of-month Indicate the nearest weekday to the given day.

(pound sign) Day-of-week Indicate the nth day of the month

The following table summarizes the valid values for each field.

Field Allowed Values Allowed Special Characters

Minute 0-59 , - * /

Hour 0-23 , - * /

Day-of-month 0-31 , - * ? / L W

Month 1-12 or JAN-DEC , - * /

Day-of-week 1-7 or SUN-SAT , - * ? / L #

Important: Some cron implementations accept 0-6 as the range for days of the week. Oozie accepts 1-7
instead.

Oozie scheduling examples
You can use cron scheduling in Oozie to ensure that the jobs run according to the criteria that you specify.

The following examples show cron scheduling in Oozie. Oozie's processing time zone is UTC. If you are in a
different time zone, add to or subtract from the appropriate offset in these examples.

Run at the 30th minute of every hour

55

Cloudera Runtime Scheduling in Oozie using cron-like syntax

Set the minute field to 30 and the remaining fields to * so they match every value.

frequency="30 * * * *"

Run at 2:30 p.m. every day

Set the minute field to 30, the hour field to 14, and the remaining fields to *.

frequency="30 14 * * *"

Run at 2:30 p.m. every day in February

Set the minute field to 30, the hour field to 14, the day-of-month field to *, the month field to 2
(February), and the day-of-week field to *.

frequency="30 14 * 2 *"

Run every 20 minutes between 5:00-10:00 a.m. and between 12:00-2:00 p.m. on the fifth day of each
month

Set the minute field to 0/20, the hour field to 5-9,12-13, the day-of-month field to 0/5, and the
remaining fields to *.

frequency="0/20 5-9,12-13 0/5 * *"

Run every Monday at 5:00 a.m.

Set the minute field to 0, the hour field to 5, the day-of-month field to ?, the month field to *, and
the day-of-week field to MON.

frequency="0 5 ? * MON"

Note: If the ? was set to *, this expression would run the job every day at 5:00 a.m.,
not just Mondays.

Run on the last day of every month at 5:00 a.m.

Set the minute field to 0, the hour field to 5, the day-of-month field to L, the month field to *, and
the day-of-week field to ?.

frequency="0 5 L * ?"

Run at 5:00 a.m. on the weekday closest to the 15th day of each month

Set the minute field to 0, the hour field to 5, the day-of-month field to 15W, the month field to *,
and the day-of-week field to ?.

frequency="0 5 15W * ?"

Run every 33 minutes from 9:00-3:00 p.m. on the first Monday of every month

Set the minute field to 0/33, the hour field to 9-14, the day-of-week field to 2#1 (the first Monday),
and the remaining fields to *.

frequency="0/33 9-14 ? * 2#1"

Run every hour from 9:00 a.m.-5:00 p.m. on weekdays

Set the minute field to 0, the hour field to 9-17, the day-of-month field to ?, the month field to *, and
the day-of-week field to 2-6.

frequency="0 9-17 ? * 2-6"

56

Cloudera Runtime Configuring an external database for Oozie

Run on the second-to-last day of every month

Set the minute field to 0, the hour field to 0, the day-of-month field to L-1, the month field to *, and
the day-of-week field to ?.

frequency="0 0 L-1 * ?"

Note: “L-1# means the second-to-last day of the month.

Oozie uses Quartz, a job scheduler library, to parse the cron syntax. For more examples, go to the CronTrigger
Tutorial on the Quartz website. Quartz has two fields (second and year) that Oozie does not support.

Configuring an external database for Oozie

Oozie is a stateless web application by design. All information about running and completed workflows, coordinators,
and bundle jobs are stored in a relational database. Oozie supports an embedded PostgreSQL database; however,
Cloudera strongly recommends that you use an external database for production systems.

Related Information
Oozie database configurations

Configuring PostgreSQL for Oozie
You must install PostgreSQL, create the Oozie user and database, and configure PostgreSQL to accept network
connections for the Oozie user.

Procedure

1. Install PostgreSQL

See the PostgreSQL documentation to install it.

2. Create the Oozie User and Oozie Database.

For example, using the PostgreSQL psql command-line tool:

$ psql -U postgres
Password for user postgres: *****

postgres=# CREATE ROLE oozie LOGIN ENCRYPTED PASSWORD 'oozie'
 NOSUPERUSER INHERIT CREATEDB NOCREATEROLE;
CREATE ROLE

postgres=# CREATE DATABASE "oozie" WITH OWNER = oozie
 ENCODING = 'UTF8'
 TABLESPACE = pg_default
 LC_COLLATE = 'en_US.UTF-8'
 LC_CTYPE = 'en_US.UTF-8'
 CONNECTION LIMIT = -1;
CREATE DATABASE

postgres=# \q

57

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/documentation/quartz-2.1.7/tutorials/tutorial-lesson-06.html
http://www.quartz-scheduler.org/documentation/quartz-2.1.7/tutorials/tutorial-lesson-06.html

Cloudera Runtime Configuring an external database for Oozie

3. Configure PostgreSQL to Accept Network Connections for the Oozie User.

a) Edit the postgresql.conf file and set the listen_addresses property to *, to make sure that the PostgreSQL server
starts listening on all your network interfaces. Also make sure that the standard_conforming_strings property is
set to off.

b) Edit the PostgreSQL data/pg_hba.conf file as follows:

host oozie oozie 0.0.0.0/0 md5

4. Reload the PostgreSQL Configuration.

sudo -u postgres pg_ctl reload -s -D /opt/PostgreSQL/8.4/data

Configuring MariaDB for Oozie
You must install MariaDB, create the Oozie database and MariaDB user, and add the MariaDB JDBC driver jar file to
Oozie.

Procedure

1. Install and Start MariaDB.

2. Create the Oozie Database and Oozie MariaDB User.

For example, using the MariaDB mysql command-line tool:

$ mysql -u root -p
Enter password:

MariaDB [(none)]> create database oozie default character set utf8;
Query OK, 1 row affected (0.00 sec)
MariaDB [(none)]> grant all privileges on oozie.* to 'oozie'@'localhost'
 identified by 'oozie';
Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> grant all privileges on oozie.* to 'oozie'@'%' identi
fied by 'oozie';
Query OK, 0 rows affected (0.00 sec)

MariaDB [(none)]> exit
Bye

3. Add the MariaDB JDBC Driver JAR to Oozie.

Cloudera recommends that you use the MySQL JDBC driver for MariaDB. Copy or symbolically link the MySQL
JDBC driver JAR to the /var/lib/oozie/ directory.

Note: You must manually download the MySQL JDBC driver JAR file.

Configuring MySQL 5 for Oozie
You must install MySQL 5, create the Oozie database and MySQL user, and add the MySQL JDBC driver jar file to
Oozie.

Procedure

1. Install and Start MySQL 5.

58

Cloudera Runtime Configuring an external database for Oozie

2. Create the Oozie Database and Oozie MySQL User.

For example, using the MySQL mysql command-line tool:

$ mysql -u root -p
Enter password:

mysql> create database oozie default character set utf8;
Query OK, 1 row affected (0.00 sec)

mysql> grant all privileges on oozie.* to 'oozie'@'localhost' identified
by 'oozie';
Query OK, 0 rows affected (0.00 sec)

mysql> grant all privileges on oozie.* to 'oozie'@'%' identified by 'oozi
e';
Query OK, 0 rows affected (0.00 sec)

mysql> exit

3. Add the MySQL JDBC Driver JAR to Oozie.

Copy or symbolically link the MySQL JDBC driver JAR into one of the following directories:

• For installations that use packages: /var/lib/oozie/
• For installations that use parcels: /opt/cloudera/parcels/CDH/lib/oozie/lib/

Note: You must manually download the MySQL JDBC driver JAR file.

Configuring MySQL 8 for Oozie
You must install MySQL 8, create the Oozie database and MySQL user, and add the MySQL JDBC driver jar file to
Oozie.

Procedure

1. Install and Start MySQL 8.

2. Create the Oozie Database and Oozie MySQL User.

For example, using the MySQL mysql command-line tool:

$ mysql -u root -p
 Enter password:
mysql> create database oozie default character set utf8;
 Query OK, 1 row affected (0.00 sec)
mysql> CREATE USER 'oozie'@'localhost' IDENTIFIED BY 'oozie';
 Query OK, 0 rows affected (0.00 sec)
mysql> GRANT ALL PRIVILEGES ON oozie.* TO 'oozie'@'localhost';
 Query OK, 0 rows affected (0.00 sec)
mysql> CREATE USER 'oozie'@'%' IDENTIFIED BY 'oozie';
 Query OK, 0 rows affected (0.01 sec)
mysql> GRANT ALL PRIVILEGES ON oozie.* TO 'oozie'@'%';
 Query OK, 0 rows affected (0.00 sec)
mysql> exit

59

Cloudera Runtime Working with the Oozie server

3. Add the MySQL JDBC Driver JAR to Oozie.

Copy or symbolically link the MySQL JDBC driver JAR into one of the following directories:

• For installations that use packages: /var/lib/oozie/
• For installations that use parcels: /opt/cloudera/parcels/CDH/lib/oozie/lib/

Note: You must manually download the MySQL JDBC driver JAR file.

Configuring Oracle for Oozie
You must install Oracle 12.2, create the Oozie Oracle user and grant privileges, and add the Oracle JDBC driver jar
file to Oozie.

Procedure

1. Install and Start Oracle 12.2

Use Oracle's instructions.

2. Create the Oozie Oracle User and Grant Privileges.

The following example uses the Oracle sqlplus command-line tool, and shows the privileges Cloudera
recommends. Oozie needs CREATE SESSION to start and manage workflows. The additional roles are needed
for creating and upgrading the Oozie database.

sqlplus system@localhost/<SERVICE_NAME>

SQL> create user <user> identified by <password> default tablespace <ta
blespace> temporary tablespace temp;
 User created.
SQL> grant create sequence to <user>;
 Grant succeeded.
SQL> grant create session to <user>;
 Grant succeeded.
SQL> grant create table to <user>;
 Grant succeeded.
SQL> alter user <user> quota unlimited on <tablespace>;
 User altered.
SQL> exit

Important:

For security reasons, do not make the following grant:

grant select any table to oozie;

3. Add the Oracle JDBC Driver JAR to Oozie.

Copy or symbolically link the Oracle JDBC driver JAR into the /var/lib/oozie/ directory.

Note: You must manually download the Oracle JDBC driver JAR file.

Working with the Oozie server

You can use the command-line interface to start or stop the Oozie server. In addition, you can access the Oozie server
with the Oozie client or with a browser.

60

https://docs.oracle.com/en/database/oracle/oracle-database/12.2/install-and-upgrade.html

Cloudera Runtime Working with the Oozie server

Starting the Oozie server
You can use the service oozie start command to start Oozie.

Before you begin
Ensure that you have performed all the required configuration steps.

Procedure

• Use the service oozie start command to start Oozie.

If you see the message Oozie System ID [oozie-oozie] started in the oozie.log log file, the system has started
successfully.

Note: By default, Oozie server runs on port 11000 and its URL is http://<OOZIE_HOSTNAME>:11000/
oozie. If SSL is enabled, then Oozie server runs on port 11443 by default.

Stopping the Oozie server
Use the sudo service oozie stop command to stop a running Oozie server.

Accessing the Oozie server with the Oozie Client
The Oozie client is a command-line utility that interacts with the Oozie server using the Oozie web-services API.

Procedure

• Use the /usr/bin/oozie script to run the Oozie client.

For example, if you want to invoke the client on the same machine where the Oozie server is running:

$ oozie admin -oozie https://<oozie_server>:11443/oozie -status
System mode: NORMAL

• To make it convenient to use this utility, set the environment variable OOZIE_URL to point to the URL of the
Oozie server. Then you can skip the -oozie option.

For example, if you want to invoke the client on the same machine where the Oozie server is running, set the
OOZIE_URL to https://<oozie_server>:11443/oozie.

$ export OOZIE_URL=https://<oozie_server>:11443/oozie
$ oozie admin -version
Oozie server build version: 4.0.0-cdh5.0.0

Important: If Oozie is configured with Kerberos Security enabled:

• You must have a Kerberos session running. For example, you can start a session by running the kinit
command.

• Do not use localhost.

As with every service that uses Kerberos, Oozie has a Kerberos principal in the form <SERVICE>/<H
OSTNAME>@<REALM>. In a Kerberos configuration, you must use the <HOSTNAME> value in the
Kerberos principal to specify the Oozie server; for example, if the <HOSTNAME> in the principal is
myoozieserver.mydomain.com, set OOZIE_URL as follows:

export OOZIE_URL=https://myoozieserver.mydomain.com:11443/oozie

If you use an alternate hostname or the IP address of the service, Oozie will not work properly.

61

Cloudera Runtime Working with the Oozie server

• If you want to access Oozie client through Knox:

export OOZIE_URL=https://<knox_host>:<knox_port>/gateway/cdp-proxy-api/o
ozie

When you access Oozie client through Knox, you need to specify a username and password in the command line
as Knox needs it:

export OOZIE_URL=https://<knox_host>:<knox_port>/gateway/cdp-proxy-api/o
ozie
oozie admin -version -auth BASIC -username <username> -password <password>

• When the Oozie server has SSL enabled, the Oozie client does not automatically set the necessary trust-store
properties to form a connection. You can set these properties using the following methods:

• Add them as system properties immediately after the oozie command. For instance:

oozie \
 "-Djavax.net.ssl.trustStore={trustStorePath}" \
 "-Djavax.net.ssl.trustStorePassword={trustStorePassword}" \
 "-Djavax.net.ssl.trustStoreType={trustStoreType}" \
 {oozieCommand} \
 -oozie "{oozieUrl}" \
 ...

• You can also set these properties by defining the OOZIE_CLIENT_OPTS environment variable before
running the Oozie command. For instance:

export OOZIE_CLIENT_OPTS="-Djavax.net.ssl.trustStore={trustStorePath} -D
javax.net.ssl.trustStorePassword={trustStorePassword} -Djavax.net.ssl.tr
ustStoreType={trustStoreType}"

• If you prefer, you can also utilize the -insecure argument with the Oozie command line to prevent the client
from validating the certificates:

oozie \
 {oozieCommand} \
 -oozie "{oozieUrl}" \
 -insecure \
 ...

Accessing the Oozie server with a browser
If you have enabled the Oozie web console by adding the ExtJS library, you can connect to the console at http://<
OOZIE_HOSTNAME>:11000/oozie.

Note: If the Oozie server is configured to use Kerberos HTTP SPNEGO Authentication, you must use a web
browser that supports Kerberos HTTP SPNEGO (for example, Firefox or Internet Explorer).

For information on how to enable the Oozie web console on managed clusters by adding the ExtJS library, see
Enabling the Oozie web console on managed clusters.

Related Information
Enabling the Oozie web console on managed clusters

62

Cloudera Runtime Adding schema to Oozie using Cloudera Manager

Adding schema to Oozie using Cloudera Manager

Cloudera Manager automatically configures Oozie with all available official schemas, and corresponding tables. You
can manually add a schema (official or custom) with Cloudera Manager.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Click the Configuration tab.

3. Select Scope Oozie Server .

4. Select Category Advanced .

5. Locate the Oozie SchemaService Workflow Extension Schemas property or search for it by typing its name in the
Search box.

6. Enter the desired schema from the following schema list appending .xsd to each entry.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.

7. Enter a Reason for change, and then click Save Change to commit the changes.

8. Restart the Oozie service.

Table 2: Oozie schema

Schema CDP

distcp distcp-action-0.1

distcp-action-0.2

distcp-action-1.0

email email-action-0.1

email-action-0.2

git git-action-1.0

hive hive-action-0.2

hive-action-0.3

hive-action-0.4

hive-action-0.5

hive-action-0.6

hive-action-1.0

HiveServer2 hive2-action-0.1

hive2-action-0.2

 hive2-action-1.0

oozie-bundle oozie-bundle-0.1

oozie-bundle-0.2

oozie-coordinator oozie-coordinator-0.1

oozie-coordinator-0.2

oozie-coordinator-0.3

oozie-coordinator-0.4

oozie-coordinator-0.5

63

Cloudera Runtime Enabling the Oozie web console on managed clusters

Schema CDP

oozie-sla oozie-sla-0.1

oozie-sla-0.2

oozie-common oozie-common-1.0

oozie-workflow oozie-workflow-0.1

oozie-workflow-0.2

oozie-workflow-0.2.5

oozie-workflow-0.3

oozie-workflow-0.4

oozie-workflow-0.4.5

oozie-workflow-0.5

oozie-workflow-1.0

shell shell-action-0.1

shell-action-0.2

shell-action-0.3

shell-action-1.0

spark spark-action-0.1

spark-action-0.2

spark-action-1.0

sqoop sqoop-action-0.2

sqoop-action-0.3

sqoop-action-0.4

sqoop-action-1.0

ssh ssh-action-0.1

ssh-action-0.2

Enabling the Oozie web console on managed clusters

You must extract the ext-2.2 libraries to your Oozie server host and enable the Oozie web console.

Procedure

1. Download ext-2.2.

2. Extract the contents of the file to /var/lib/oozie on the same host as the Oozie Server.
After extraction, the content of the directories is as follows:

ls -ltr /var/lib/oozie/

total 984
drwxr-xr-x 9 oozie oozie 4096 Aug 4 2008 ext-2.2
-rw-r--r-- 1 systest root 999635 Jan 23 23:24 mysql-connector-java.jar

ls -ltr /var/lib/oozie/ext-2.2/

total 1752

64

http://tiny.cloudera.com/oozie-ext-2.2

Cloudera Runtime Enabling Oozie SLA with Cloudera Manager

-rw-r--r-- 1 oozie oozie 893 Feb 24 2008 INCLUDE_ORDER.txt
drwxr-xr-x 33 oozie oozie 4096 Aug 4 2008 examples
drwxr-xr-x 4 oozie oozie 49 Aug 4 2008 resources
drwxr-xr-x 10 oozie oozie 148 Aug 4 2008 source
drwxr-xr-x 10 oozie oozie 120 Aug 4 2008 build
-rw-r--r-- 1 oozie oozie 87524 Aug 4 2008 ext-core.js
-rw-r--r-- 1 oozie oozie 163794 Aug 4 2008 ext-core-debug.js
-rw-r--r-- 1 oozie oozie 974145 Aug 4 2008 ext-all-debug.js
drwxr-xr-x 6 oozie oozie 55 Aug 4 2008 adapter
-rw-r--r-- 1 oozie oozie 11548 Aug 4 2008 CHANGES.html
-rw-r--r-- 1 oozie oozie 538956 Aug 4 2008 ext-all.js
-rw-r--r-- 1 oozie oozie 1513 Aug 4 2008 license.txt
drwxr-xr-x 4 oozie oozie 108 Aug 4 2008 docs
drwxr-xr-x 5 oozie oozie 94 Jan 24 15:49 air

For example:

unzip ext-2.2.zip -d /var/lib/oozie
chown -R oozie:oozie /var/lib/oozie/ext-2.2

3. In Cloudera Manager Admin Console, go to the Oozie service.

4. Restart the Oozie service.

Enabling Oozie SLA with Cloudera Manager

You can use Oozie to define SLA limits for critical applications and actively monitor these jobs.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Click the Configuration tab.

3. Locate the Enable SLA Integration property or search for it by typing its name in the Search box.

4. Select Enable SLA Integration. This sets the required values for oozie.services.ext and oozie.service.EventHandl
erService.event.listeners in oozie-site.xml.

5. Enter a Reason for change, and then click Save Changes to commit the changes.

6. Restart the Oozie service.

What to do next

The following properties are set by default when you enable Oozie SLA in Cloudera Manager. You do not have to
explicitly define them, unless you want to modify any of these parameters:

 oozie.service.SchemaService.wf.schemas
 oozie.service.SchemaService.coord.schemas
 oozie.service.SchemaService.sla.schemas
 oozie.service.ELService.groups
 oozie.service.ELService.constants.wf-sla-submit
 oozie.service.ELService.ext.constants.coord-sla-create
 oozie.service.ELService.functions.coord-sla-create
 oozie.service.ELService.constants.coord-sla-submit
 oozie.service.ELService.functions.coord-sla-submit
 oozie.service.EventHandlerService.filter.app.types
 oozie.service.EventHandlerService.event.queue
 oozie.service.EventHandlerService.queue.size
 oozie.service.EventHandlerService.worker.interval
 oozie.service.EventHandlerService.batch.size
 oozie.service.EventHandlerService.worker.threads

65

Cloudera Runtime Disabling Oozie UI using Cloudera Manager

 oozie.sla.service.SLAService.alert.events
 oozie.sla.service.SLAService.capacity
 oozie.sla.service.SLAService.calculator.impl
 oozie.sla.service.SLAService.job.event.latency
 oozie.sla.service.SLAService.check.interval

For oozie.sla.service.SLAService.alert.events, only END_MISS is configured by default. To change the alert events,
explicitly set END_MISS, START_MISS, or DURATION_MISS, in Oozie Server Advanced Configuration Snippet
(Safety Valve) for oozie-site.xml.

Disabling Oozie UI using Cloudera Manager

From the Cloudera 7.1.7 SP1 release onwards, the Oozie UI is enabled by default. You can disable it by setting a new
property in the Oozie site configuration.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Click the Configuration tab.

3. Locate the Oozie Server Advanced Configuration Snippet (Safety Valve) for oozie-site.xml property or search for
it by typing its name in the Search box.

4. Add the following property:

Name: oozie.ui.enabled
Value: false

5. Enter a Reason for change, and then click Save Changes to commit the changes.

6. Restart the Oozie service.

To enable the Oozie UI again, delete the oozie.ui.enabled property set using the safety valve.

Moving the Oozie service to a different host

To move the Oozie service to a new host, do the following:

Procedure

1. Stop the current Oozie service.

2. Add the Oozie service to the desired new host using Add Service wizard in Cloudera Manager. The wizard
configures and starts Oozie and its dependent services.

3. Add the role specific configurations for the previous host to the new host, if any.

4. Restart the Oozie service.

Oozie database configurations

You can use Cloudera Manager to configure data purge settings, loading, and dumping the Oozie database.
Depending on the database that you are using with Oozie, you can set the timezone for the database.
Related Information
Configuring an external database for Oozie

66

Cloudera Runtime Oozie database configurations

Configuring Oozie data purge settings using Cloudera Manager
You can change your Oozie configuration to control when data is purged to improve performance, reduce database
disk usage, or keep the history for a longer period of time. Limiting the size of the Oozie database can also improve
performance during upgrades.

About this task
All Oozie workflows older than 30 days are purged from the database by default. However, actions associated with
long-running coordinators do not purge until the coordinators complete. If, for example, you schedule a coordinator to
run for a year, all those actions remain in the database for the year.

Procedure

1. In the Cloudera Manager Admin Console, go to the Oozie service.

2. Click the Configuration tab.

3. Type purge in the Search box.

4. Set the following properties as required for your environment:

• Enable Purge for Long-Running Coordinator Jobs

Select this property to enable purging of long-running coordinator jobs for which the workflow jobs are older
than the value you set for the Days to Keep Completed Workflow Jobs property.

• Days to Keep Completed Workflow Jobs
• Days to Keep Completed Coordinator Jobs
• Days to Keep Completed Bundle Jobs

5. Enter a Reason for change, and then click Save Changes to commit the changes.

6. Select Actions Restart to restart the Oozie Service.

Loading the Oozie database
You must configure the database in which to load your Oozie data, create the required database tables, and then load
the Oozie database.

Procedure

1. Stop the Oozie server (in HA mode, stop all Oozie servers).

2. Install and configure the empty database in which to load your Oozie data.

The db.version of the database must match the db.version of the dump file.

3. Select Actions Create Oozie Database Tables .

Confirm you want to create the database tables by clicking Create Oozie Database Tables.

4. Verify Database Dump File is set correctly.

a) In the Cloudera Manager Admin Console, click the Oozie service.
b) Go to the Configuration page.
c) Select Scope Oozie Server .
d) Select Category Database .

5. Select Actions Load Database .

Confirm you want to dump the database to the specified location by clicking Load Database.

6. Select Actions Start .

Confirm you want to start the service by clicking Start.

67

Cloudera Runtime Oozie database configurations

Dumping the Oozie database
You must stop the Oozie server, specify the location to which you want to dump the Oozie database, and then
perform the dumping operation.

Procedure

1. Stop the Oozie server (in HA mode, stop all Oozie servers).

2. In the Cloudera Manager Admin Console, go to the Oozie service status page.

3. Select Actions Stop .

Confirm you want to stop the service by clicking Stop.

4. Specify Database Dump File.

a) Go to the Configuration page.
b) Select Scope Oozie Server .
c) Select Category Database .
d) Set a file location for the Database Dump File.

5. Select Actions Dump Database .

Confirm that you want to dump the database to the specified location by clicking Dump Database.

During the export process, Cloudera Manager fetches and writes the database content a compressed zip specified
by the Database Dump File property.

Setting the Oozie database timezone
Depending on the type of database you are using with Oozie, you must configure specific properties for setting the
database timezone.

Cloudera recommends that you set the timezone in the Oozie database to GMT. Databases do not handle Daylight
Saving Time (DST) shifts correctly. There might be problems if you run any Coordinators with actions scheduled to
materialize during the one-hour period that gets lost in DST.

Important: Changing the timezone on an existing Oozie database while Coordinators are already running
might cause Coordinators to shift by the offset of their timezone from GMT one time after you make this
change.

For more information about how to set your database's timezone, see your database's documentation.

Fine-tuning Oozie's database connection
Learn how you can configure Oozie to use its database well.

About this task

When it comes to configuring database connections, simply providing a hostname, port, username, and password may
not be sufficient. In order to optimize Oozie's database connection, you might need to manually construct lengthy
connection and configuration strings using safety-valve settings. To simplify this process and enable finer control
over Oozie's database connection, you can use several enhancements, as described in this section.

The following properties allow you to configure how Oozie uses its database:

• oozie_database_connection_properties

You can use this property to directly configure the database connection. For example, if you need to pass a
trustStore path to the connection, you can add a property named javax.net.ssl.trustStore and with a value to your
trustStore file.

68

Cloudera Runtime Oozie database configurations

• oozie_datasource_properties

You can use this property to configure the datasource object created by OpenJPA. For example, if you would like
to finetune how many idle connections the datasource instance should keep, you can set the maxIdle property.

Note: These configurations do not configure the underlying database connection, but the commons-dbcp
datasource instance. For more details, see BasicDataSource Configuration Parameters.

With the help of the values set for both the properties, Cloudera Manager assembles one single configuration which
will be set in oozie-site.xml. The name of this single configuration is, oozie.service.JPAService.connection.properties,
and it is assembled in the following way:

• Whatever you specify in oozie_database_connection_properties, is concatenated with a semicolon, and available
under the ConnectionProperties property in the final configuration.

• Whatever you specify in oozie_datasource_properties, is directly set in the final configuration.

For example, if you set the following properties in oozie_database_connection_properties, because your database
JDBC driver accepts them,

• javax.net.ssl.trustStore=/path/to/trustStore.jks
• ssl.enabled=true

And you set the following properties in oozie_datasource_properties:

• MaxIdle=10
• DefaultQueryTimeout=120

Then the final value of oozie.service.JPAService.connection.properties will be:

ConnectionProperties="javax.net.ssl.trustStore=/path/to/trustStore.jks;ssl.e
nabled=true", MaxIdle=10, DefaultQueryTimeout=120

Important: Kindly be aware that the properties mentioned above (such as javax.net.ssl.trustStore, ssl.enab
led, and so on) are provided merely as an example. The specific properties that need configuration should
align with the JDBC driver you use to connect to the underlying Oozie database.

Perform the following steps after you configure the correct properties:

Procedure

1. In Cloudera Manager, click the Oozie service.

2. Click the Configuration tab.

3. Search for and set the oozie_database_connection_properties property.

69

https://commons.apache.org/proper/commons-dbcp/configuration.html

Cloudera Runtime Oozie database configurations

4. Search for and set the oozie_datasource_properties property.

5. Click Save Changes, and allow Cloudera Manager some time to recognize the changes.

6. Follow the instructions provided by Cloudera Manager to redeploy Oozie.

Assembling a secure JDBC URL for Oozie
Learn how to assemble a secure JDBC URL for Oozie.

Procedure

1. In Cloudera Manager, click the Oozie service.

2. Click the Configuration tab.

3. Search and enable the oozie_database_is_secure property.

If you enable this property, then Cloudera Manager assembles a secure JDBC URL for Oozie based on the
selected database types.

4. Click Save Changes, and allow Cloudera Manager some time to recognize the changes.

5. Follow the instructions provided by Cloudera Manager to redeploy Oozie.

Oracle TCPS
Learn how to establish a connection to a secure Oracle database.

If the oozie_database_is_secure property is enabled, then the JDBC URL generated for Oracle looks like:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=<HOST>)(PORT=<P
ORT>))(CONNECT_DATA=(SERVICE_NAME=<DB_NAME>)))

The values of <HOST>, <PORT>, and <DB_NAME> come from the following Oozie properties set in Cloudera
Manager:

• <HOST> and <PORT> – oozie_database_host
• <DB_NAME> – oozie_database_name

70

Cloudera Runtime Prerequisites for configuring TLS/SSL for Oozie

While the above specifies the protocol as TCPS, this JDBC URL on its own might not be enough to establish a
connection to a secure Oracle database. If you need to specify a trustStore, keyStore, or Oracle wallet properties for
the connection, please use the oozie_database_connection_properties and/or oozie_datasource_properties properties.

For example,

Prerequisites for configuring TLS/SSL for Oozie

There are certain prerequisites that must be fulfilled for configuring TLS/SSL for Oozie.

• Keystores for Oozie must be readable by the oozie user. This can be a copy of the Hadoop services' keystore with
permissions set to 0440 and owned by the oozie group.

• Truststores must have permissions set to 0444, which means that all users can read them.
• Specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which daemon roles

of the Oozie service run so the paths you choose must be valid on all hosts.
• If there is a DataNode and an Oozie server running on the same host, they can use the same certificate.

Configure TLS/SSL for Oozie

You can edit properties to enable TLS/SSL for Oozie, specify the keystore file location on the local file system, and
set the password for the keystore.

Procedure

1. In Cloudera Manager, select the Oozie service.

2. Click the Configuration tab.

3. In the Search field, type TLS/SSL to show the Oozie TLS/SSL properties.

71

Cloudera Runtime Oozie Java-based actions with Java 17

4. Edit the following TLS/SSL properties according to your cluster configuration.

Property Description

Enable TLS/SSL for Oozie Check this field to enable TLS/SSL for Oozie.

Oozie TLS/SSL Server JKS Keystore
File Location

Path to the keystore file on the local file system.

Oozie TLS/SSL Server JKS Keystore
File Password

Password for the keystore file.

Oozie TLS/SSL Client Trust Store
File

Path to the client truststore file.

Oozie TLS/SSL Client Trust Store
Password

Password for the truststore file.

5. If SSL is enabled for ZooKeeper, edit the following SSL properties:

Property Description

Oozie ZooKeeper TLS/SSL Server JKS Keystore File Location Path to the keystore file.

Oozie ZooKeeper TLS/SSL Server JKS Keystore File Password Password for the keystore file.

Oozie ZooKeeper TLS/SSL Client Trust Store File Path to the client truststore file.

Oozie ZooKeeper TLS/SSL Client Trust Store Password Password for the truststore file.

6. Optionally, you can modify the values of the following properties:

• Enabled TLS Protocols - List of Cipher Suite names that should be excluded.
• Excluded Cipher Suites - TLS protocols accepted by the Oozie Server.

7. Click Save Changes.

8. Restart the Oozie service.

Related Information
Oozie security enhancements

Oozie Java-based actions with Java 17

In relation to Java 17, certain applications might require reflective access to internal Java classes, packages, or
modules. This section describes how to gain reflective access to these with Oozie.

To enable reflective access, use the --add-opens Java parameter. If your applications executed with Oozie need
reflective access, you can use the following properties to specify the required --add-opens arguments:

• oozie.launcher.yarn.app.mapreduce.am.command-opts
• oozie.launcher.mapreduce.map.java.opts
• oozie.launcher.mapred.child.java.opts

For example, in your workflow's configuration, you can set the property as follows:

<property>
 <name>oozie.launcher.yarn.app.mapreduce.am.command-opts</name>
 <value>--add-opens=java.base/java.lang=ALL-UNNAMED</value>
</property>

The Spark and Spark 3 applications inherently require reflective access. Consequently, Oozie automatically adds the
following --add-opens properties by default for Spark and Spark 3 actions:

--add-opens=java.base/java.io=ALL-UNNAMED
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED

72

Cloudera Runtime Oozie Java-based actions with Java 17

--add-opens=java.base/java.lang=ALL-UNNAMED
--add-opens=java.base/java.net=ALL-UNNAMED
--add-opens=java.base/java.nio=ALL-UNNAMED
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED
--add-opens=java.base/java.util=ALL-UNNAMED
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED
--add-opens=java.base/sun.security.action=ALL-UNNAMED

It is important to note that this behavior can be overridden for Spark actions by using the oozie.action.spark.launc
her.jdk17.opens property, and for Spark3 actions by using the oozie.action.spark3.launcher.jdk17.opens property. By
specifying Java modules, packages, or classes in a comma-separated list with these properties, Oozie can configure
the appropriate access permissions when launching a Spark or Spark 3 application. Each item in the list should be in a
format compatible with the Java --add-opens parameter, such as java.base/java.lang=ALL-UNNAMED.

The following comma-separated list shows the default values of these properties. These are derived from the default
values in Spark and Spark 3:

java.base/java.io=ALL-UNNAMED,java.base/java.lang.invoke=ALL-UNNAMED,java.ba
se/java.lang=ALL-UNNAMED,java.base/java.net=ALL-UNNAMED,java.base/java.nio=A
LL-UNNAMED,java.base/java.util.concurrent=ALL-UNNAMED,java.base/java.util=AL
L-UNNAMED,java.base/sun.nio.ch=ALL-UNNAMED,java.base/sun.nio.cs=ALL-UNNAMED,
java.base/sun.security.action=ALL-UNNAMED

However, you have the flexibility to customize the values of these properties by adding a safety-valve setting for the
corresponding property on the Oozie configuration page in Cloudera Manager by using the oozie_config_safety_
valve setting.

For other Oozie Java-based actions (simple Java action, Distcp, Git, Map-Reduce, Hive2, Shell, Sqoop), Oozie does
not add any --add-opens values by default. Nevertheless, you have the option to specify custom --add-opens overrides
for each action using the corresponding properties:

• oozie.action.distcp.launcher.jdk17.opens
• oozie.action.git.launcher.jdk17.opens
• oozie.action.hive2.launcher.jdk17.opens
• oozie.action.java.launcher.jdk17.opens
• oozie.action.map-reduce.launcher.jdk17.opens
• oozie.action.shell.launcher.jdk17.opens
• oozie.action.sqoop.launcher.jdk17.opens

These properties can be specified globally through a safety-valve configuration, in the job.properties file, in the
workflow's global configuration, or inside the workflow as a specific action's configuration. The order of precedence
for these configurations is as follows:

1. If you have configured the property at the action level, it takes precedence over all other settings, and the
remaining configurations are disregarded.

2. If you have configured the property in the global configuration of the workflow, the value from there is used.
3. If the setting is not available in either of the previous locations, the value configured in your job.properties file is

used instead.
4. Lastly, the global setting in Cloudera Manager comes into effect.

Note: These properties only have an effect on the Launcher application created by Oozie.

73

Cloudera Runtime Oozie security enhancements

Oozie security enhancements

Learn about Oozie security enhancements related to callback, callback endpoint, FIPS compliance, and SMTP
(Simple Mail Transfer Protocol). Oozie will be notified about completion of tasks through HTTPS.

Callback

• Prior to this enhancement, even though SSL was enabled for Oozie, the callback mechanism – which notifies the
Oozie server after an action finished (success/failed) – was going through HTTP. With the enhanced callback
feature if TLS/SSL is enabled for Oozie, the callback invocation goes through HTTPS. This applies to all Oozie
actions, including map-reduce actions. For map-reduce actions, as always, the Oozie Application Master (AM)
container does not wait for the map-reduce Job to complete, but YARN makes a callback to Oozie when the map-
reduce Job completes. This callback goes through HTTPS as well when TLS/SSL is enabled for Oozie. When
TLS/SSL is enabled for Oozie, Oozie listens only on the HTTPS port and not on the HTTP port as the HTTP port
was only needed for the callback mechanism. Oozie will not explicitly upload the truststore file required for the
HTTPS connection to the YARN applications launched by Oozie and neither should you, but Oozie will pass the
location of the file used by Oozie itself to the callback mechanism running inside the YARN container. Hence, the
truststore file used by Oozie needs to be available on all NodeManager Hosts and accessible by YARN containers.

Note: Until now, the default callback command for SSH actions was curl. If you have enabled TLS/
SSL for Oozie, Cloudera Manager will change this to curl -k. If you have added a custom callback
command setup for SSH actions through a safety valve, that setup will not be overridden by Cloudera
Manager. You must make sure that your command supports TLS/SSL.

Callback Endpoint

• Along with the callback mechanism, you can also enable authentication for the callback endpoint. If you
have Kerberos configured on your cluster, authentication is enabled for all endpoints of Oozie by default
except for the callback endpoint. You can enable authentication for the callback endpoint by setting the
oozie.servlet.CallbackServlet.authentication.required property to true as a safety-valve in Cloudera Manager.

Note: After the release of Cloudera Manager 7.3.0, you do not need to configure the callback endpoint
authentication through a safety-valve because Cloudera is introducing the Oozie Callback Servlet
Authentication property. After the release of Cloudera Manager 7.3.0, upgrade Cloudera Manager,
and search and select the new Oozie Callback Servlet Authentication option. If you have set the above
property using safety-valve, you can remove it and instead enable it through the new checkbox. No new
configuration is required in Cloudera Runtime. When callback authentication is enabled, Oozie does not
allow an unauthenticated invocation to the endpoint. Before starting the AM container, Oozie generates a
new type of delegation token and when the Job finishes and the AM container notifies the Oozie server.
This new Oozie delegation token is used to make the callback.

Note: If you enable authentication on the callback endpoint, when you are executing an SSH action, make
sure your SSH command will create a Kerberized environment. Otherwise, the callback will fail.

FIPS Compliance

To make Oozie FIPS compliant, the following changes are introduced:

• When TLS/SSL is enabled for Oozie, apart from setting the trustStore, trustStorePassword,
keyStore, and keyStorePassword properties, Cloudera Manager adds two new properties
oozie.https.truststore.type and oozie.https.keystore.type in the oozie-site.xml file.
These properties will contain the value of the globally configured keyStore type in Cloudera Manager.

• When TLS/SSL is enabled for ZooKeeper and Oozie runs with High-Availability, Cloudera Manager sets the
oozie.zookeeper.https.truststore.type and oozie.zookeeper.https.keystore.type
properties along with the existing oozie.zookeeper.https.truststore/keystore.file/
password property in the oozie-site.xml file.

74

Cloudera Runtime Additional considerations when configuring TLS/SSL for Oozie HA

SMTP

To configure custom TLS/SSL protocols when executing an email action, add the new
oozie.email.smtp.ssl.protocols property using a safety valve in Cloudera Manager.

Related Information
Configure TLS/SSL for Oozie

Installing and Configuring CDP with FIPS

Additional considerations when configuring TLS/SSL for
Oozie HA

To enable clients to connect to Oozie servers (the target servers) through the load balancer using TLS/SSL, configure
the load balancer for TLS/SSL pass-through.

This means that the load balancer does not perform encryption or decryption but instead passes traffic from clients
and servers to the appropriate target host. See the documentation for your load balancer for details.

Related Information
Configuring Oozie to use HDFS HA

Configure Oozie client when TLS/SSL is enabled

You must configure the Oozie client if TLS/SSL is enabled in your cluster. You can configure the Oozie command
line client using either the JDK certificate store or using the trust-store file.

Procedure

Using JDK Certificate Store

• Import the certificate into the JDK certificate store. For example,

keytool -keystore </usr/java/default/lib/security/cacerts> -import -trus
tcacerts -alias autotls -file </opt/cloudera/CMCA/trust-store/cm-auto-gl
obal_cacerts.pem> --storepass changeit -noprompt

You must specify the JDK/JRE certificate file location with the -keystore parameter and the certificate you want
to import with the -file parameter.

Using Trust Store

• Manually specify the trust-store and trust-store password for the Oozie command line client. For example,

oozie -Djavax.net.ssl.trustStore={trustStoreFile} -Djavax.net.ssl.trustS
torePassword={trustStorePassword} jobs -oozie https://{oozieHost}:{oozie
Port}/oozie

Using insecure SSL connnection

• From the Cloudera Runtime 7.1.7 SP1 release onwards, you can manually set the SSL connection to insecure. For
example,

oozie jobs -oozie https://{oozieHost}:{ooziePort}/oozie -insecure

This causes Oozie to allow certificate errors while the data remains encrypted. With this, there is no need to
import the certificate into the JDK certificate store or specify the trust-store and trust-store password manually for
the Oozie command line client.

75

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/installation/topics/cdpdc-fips-install-configure.html

Cloudera Runtime Configuring custom Kerberos principal for Oozie

Configuring custom Kerberos principal for Oozie

The Kerberos principal for Ozone is configured by default to use the same service principal as the default process
user. However, you can change the default setting by providing a custom principal in Cloudera Manager.

Procedure

1. In Cloudera Manager, click Clusters > Oozie .

2. Go to the Configuration tab

3. Search for the Kerberos Principal by entering "kerberos" in the search field.

4. For Kerberos Principal, enter your custom principal value.

5. Click Save Changes.

6. Click Actions and select Restart to restart the service.

76

	Contents
	Overview of Oozie
	Adding the Oozie service using Cloudera Manager
	Considerations for Oozie to work with AWS
	Adding file system credentials to an Oozie workflow
	Credentials for token delegation
	File System Credentials
	Setting file system credentials for Oozie through hadoop properties using Hue Editor
	Setting default credentials using Cloudera Manager
	Advanced settings: Overriding default configurations
	Modifying the workflow file manually
	Hue Limitation

	User authorization configuration for Oozie
	Redeploying the Oozie ShareLib
	Redeploying the Oozie sharelib using Cloudera Manager

	Oozie configurations with CDP services
	Using Sqoop actions with Oozie
	Deploying and configuring Oozie Sqoop1 Action JDBC drivers
	Configuring Oozie Sqoop1 Action workflow JDBC drivers

	Configuring Oozie to enable MapReduce jobs to read or write from Amazon S3
	Configuring Oozie to use HDFS HA
	Using Oozie with Ozone
	Uploading Oozie ShareLib to Ozone
	Enabling Oozie workflows that access Ozone storage
	Oozie Fs action
	Oozie Hive2 action
	Oozie Spark action

	Using Hive Warehouse Connector with Oozie Spark Action
	Appendix - Creating a new ‘hwc’ ShareLib
	Example for using HWC with Oozie Spark action

	Oozie and client configurations

	Spark 3 support in Oozie
	Enable Spark actions
	Use Spark actions with a custom Python executable
	Spark 3 Oozie action schema
	Differences between Spark and Spark 3 actions
	Upgrade Spark3 within Oozie
	Use Spark 3 actions with a custom Python executable
	Spark 3 compatibility action executor
	Spark 3 examples with Python or Java application
	Shell action for Spark 3
	Migration of Spark 2 applications
	Hue support for Oozie

	Oozie High Availability
	Requirements for Oozie High Availability
	Configuring Oozie High Availability using Cloudera Manager
	Oozie Load Balancer configuration
	Enabling Oozie High Availability
	Disabling Oozie High Availability

	Scheduling in Oozie using cron-like syntax
	Oozie scheduling examples

	Configuring an external database for Oozie
	Configuring PostgreSQL for Oozie
	Configuring MariaDB for Oozie
	Configuring MySQL 5 for Oozie
	Configuring MySQL 8 for Oozie
	Configuring Oracle for Oozie

	Working with the Oozie server
	Starting the Oozie server
	Stopping the Oozie server
	Accessing the Oozie server with the Oozie Client
	Accessing the Oozie server with a browser

	Adding schema to Oozie using Cloudera Manager
	Enabling the Oozie web console on managed clusters
	Enabling Oozie SLA with Cloudera Manager
	Disabling Oozie UI using Cloudera Manager
	Moving the Oozie service to a different host
	Oozie database configurations
	Configuring Oozie data purge settings using Cloudera Manager
	Loading the Oozie database
	Dumping the Oozie database
	Setting the Oozie database timezone
	Fine-tuning Oozie's database connection
	Assembling a secure JDBC URL for Oozie
	Oracle TCPS

	Prerequisites for configuring TLS/SSL for Oozie
	Configure TLS/SSL for Oozie
	Oozie Java-based actions with Java 17
	Oozie security enhancements
	Additional considerations when configuring TLS/SSL for Oozie HA
	Configure Oozie client when TLS/SSL is enabled
	Configuring custom Kerberos principal for Oozie

