
Cloudera Runtime 7.3.1

Configuring Cruise Control
Date published: 2019-08-22
Date modified: 2024-12-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Adding Cruise Control as a service..4

Setting capacity estimations and goals... 4
Configuring capacity estimations... 4
Configuring goals... 5

Example of Cruise Control goal configuration..7
Multi-level rack-aware distribution goal..7

Configuring Metrics Reporter in Cruise Control... 8

Enabling self-healing in Cruise Control...8
Changing the Anomaly Notifier Class value to self-healing... 8
Enabling self-healing for all or individual anomaly types.. 9

Adding self-healing goals to Cruise Control in Cloudera Manager...................13

Cloudera Runtime Adding Cruise Control as a service

Adding Cruise Control as a service

You need to use the Add Service wizard in Cloudera Manager to have Cruise Control service on your cluster. After
selecting the host you want to add the Cruise Control role to, you need to review the default configurations. These
configurations can also be set later after adding Cruise Control as a service.

About this task

Note: It is recommended to add Cruise Control on the same CDP cluster as Kafka.

Procedure

1. Open Cloudera Manager.

2. Select the drop-down menu to the right of your cluster on the Home screen.

3. Select Add Service.
The Add Service wizard starts.

4. Select Cruise Control as the type of service from the list of services, then click Continue.

5. Assign roles to Cruise Control, then click Continue.

6. Check the default and suggested settings for configuration parameters on the Review Changes page, and set if
needed.

7. Click Continue and wait until the first run of the Cruise Control service is completed.

8. Click Continue and then Finish.

Results

You have added Cruise Control as a service in Cloudera Manager.

Setting capacity estimations and goals

Cruise Control rebalancing works using capacity estimations and goals. You need to configure the capacity estimates
based on your resources, and set the goals for Cruise Control to achieve the Kafka partition rebalancing that meets
your requirements.

When configuring Cruise Control, you need to make sure that the Kafka topics and partitions, the capacity estimates,
and the proper goals are provided so the rebalancing process works as expected.

You can find the capacity estimate and goal configurations at the following location in Cloudera Manager:

1. Access Cloudera Manager for the Cruise Control configurations.

a. Go to your cluster in Cloudera Manager.
b. Select Cruise Control from the list of Services.

2. Click Configuration.
3. Select Main from the Filters.

Configuring capacity estimations
The values for capacity estimation needs to be provided based on your available resources for CPU and network.
Beside the capacity estimation, you also need to provide information about the broker and partition metrics. You can
set the capacity estimations and Kafka properties in Cloudera Manager.

4

Cloudera Runtime Setting capacity estimations and goals

For the rebalancing, you need to provide the capacity values of your resources. These values are used for specifying
the rebalancing criteria for your deployment. The following capacity values must be set:

Capacity Description

capacity.default.cpu 100 by default

capacity.default.network-in

capacity.default.network-out

Given by the internet provider

Note: For the capacity estimates, the disk capacity value is also needed. However, Cruise Control
automatically retrieves the disk capacity value from the kafka_log_directory_disk_total_space Kafka metric.

The optimizers in Cruise Control use the network incoming and outgoing capacities to define a boundary for
optimization. The capacity estimates are generated and read by Cruise Control. A capacity.json file is generated
when Cruise Control is started. When a new broker is added, Cruise Control uses the default broker capacity values.
However, in case disk related goals are used, Cruise Control must be restarted to load the actual disk capacity metrics
of the new broker.

The following table lists all the configurations that are needed to configure Cruise Control specifically to your
environment:

Note: The security settings are not listed in the table below.

Configuration Description

num.metric.fetchers Parallel threads for fetching metrics from the Cloudera Manager
database

partition.metric.sample.store.topic Storing Cruise Control metrics

broker.metric.sample.store.topic Storing Cruise Control metircs

partition.metrics.window.ms Time window size for partition metrics

broker.metrics.window.ms Time window size for broker metrics

num.partition.metrics.windows Number of stored partition windows

num.broker.metrics.windows Number of stored broker windows

Configuring goals
After setting the capacity estimates, you can specify which goals need to be used for the rebalancing process in
Cloudera Manager. The provided goals are used for the optimization proposal of your Kafka cluster.

Procedure

1. Access Cloudera Manager for the Cruise Control configurations.

a) Go to your cluster in Cloudera Manager.
b) Select Cruise Control from the list of Services.
c) Click on Configuration tab.

2. Search for goals using the search bar.
The list of goals are displayed based on the goal sets.

5

Cloudera Runtime Setting capacity estimations and goals

3. Add goals using the property name to the Default, Supported, Hard, Self-healing and Anomaly detection lists
based on your requirements, and click Save Changes.

The following table lists the goals that can be used:

Goal Property name Description

RackAwareDistributionGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.RackAwareDistributionGoal

As long as replicas of each partition can
achieve a perfectly even distribution across
the racks, this goal lets placement of multiple
replicas of a partition into a single rack.

ReplicaCapacityGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.ReplicaCapacityGoal

Attempt to make all the brokers in a cluster
to have less than a given number of replicas.

com.linkedin.kafka.cruisecontrol.analyzer.go
als.DiskCapacityGoal

com.linkedin.kafka.cruisecontrol.analyzer.go
als.NetworkInboundCapacityGoal

com.linkedin.kafka.cruisecontrol.analyzer.go
als.NetworkOutboundCapacityGoal

CapacityGoals

com.linkedin.kafka.cruisecontrol.analyzer.go
als.CpuCapacityGoal

Goals that ensure the broker resource
utilization is below a given threshold for the
corresponding resource.

ReplicaDistributionGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.ReplicaDistributionGoal

Attempt to make all the brokers in a cluster
to have a similar number of replicas.

PotentialNwOutGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.PotentialNwOutGoal

A goal that ensures the potential network
output (when all the replicas become leaders)
on each of the brokers do not exceed the
broker’s network outbound bandwidth
capacity.

com.linkedin.kafka.cruisecontrol.analyzer.go
als.DiskUsageDistributionGoal

com.linkedin.kafka.cruisecontrol.analyzer.go
als.NetworkInboundUsageDistributionGoal

com.linkedin.kafka.cruisecontrol.analyzer.go
als.NetworkOutboundUsageDistributionGoal

ResourceDistributionGoals

com.linkedin.kafka.cruisecontrol.analyzer.go
als.CpuUsageDistributionGoal

Attempt to make the resource utilization
variance among all the brokers are within a
certain range. This goal does not do anything
if the cluster is in a low utilization mode
(when all the resource utilization of each
broker is below a configured percentage.)
This is not a single goal, but consists of the
following separate goals for each of the
resources.

TopicReplicaDistributionGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.TopicReplicaDistributionGoal

Attempt to make the replicas of the same
topic evenly distributed across the entire
cluster.

LeaderReplicaDistributionGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.LeaderReplicaDistributionGoal

Attempt to make all the brokers in a cluster
to have the similar number of leader replicas.

LeaderBytesInDistributionGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.LeaderBytesInDistributionGoal

Attempt to make the leader bytes in rate on
each host to be balanced.

PreferredLeaderElectionGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.PreferredLeaderElectionGoal

Attempt to make the first replica in the
replica list leader replica of the partition for
all topic partitions.

MinTopicLeadersPerBrokerGoal com.linkedin.kafka.cruisecontrol.analyzer.go
als.MinTopicLeadersPerBrokerGoal

Ensures that each alive broker has at least a
certain number of leader replica of each topic
in a configured set of topics

KafkaAssignerGoals1 com.linkedin.kafka.cruisecontrol.analyzer.ka
fkaassigner.KafkaAssignerDiskUsageDistri
butionGoal

A goal that ensures all the replicas of each
partition are assigned in a rack aware
manner.

1 These goals are used to make Cruise Control behave like a Kafka assigner tool. These goals will be picked up if kafk
a_assigner parameter is set to true in the corresponding request (for example, with the rebalance request as shown in
the Cruise Control documentation).

6

https://github.com/linkedin/kafka-tools/wiki/Kafka-Assigner
https://github.com/linkedin/cruise-control/wiki/REST-APIs#trigger-a-workload-balance

Cloudera Runtime Setting capacity estimations and goals

Goal Property name Description

com.linkedin.kafka.cruisecontrol.analyzer.ka
fkaassigner.KafkaAssignerEvenRackAwa
reGoal

Attempt to make all the brokers in a cluster
to have the similar number of replicas

Example of Cruise Control goal configuration
By default, Cruise Control is configured with a set of Default, Supported, Hard, Self-healing and Anomaly detection
goals in Cloudera Manager. The default configurations can be changed based on what you would like to achieve with
the rebalancing.

The following example details how to configure Cruise Control to achieve the following:

• Find dead/failed brokers and create an anomaly to remove load from them (self.healing.broker.failure.enabled)
• Move load back to the brokers when the brokers are available again (self.healing.goal.violation.enabled and added

goals)
• Prevent too frequent rebalances to reduce cluster costs (incremented thresholds, reduced self.healing.goals set)
• Have an always balanced cluster from the replicas and leader replicas point of view
• Not enable every type of self-healing methods if it is not required (only two type of self-healing is enabled)

Configurations that need to be added to the Cruise Control Server Advanced Configuration Snippet (Safety Valve) for
cruisecontrol.properties property:

• self.healing.goal.violation.enabled=true
• self.healing.broker.failure.enabled=true
• self.healing.exclude.recently.removed.brokers=false

Configurations that need to be set (and available explicitly among properties):

• anomaly.notifier.class=com.linkedin.kafka.cruisecontrol.detector.notifier.SelfHealingNotifier
• replica.count.balance.threshold=1.25
• leader.replica.count.balance.threshold=1.25

Goals that need to be added to Hard goals:

• com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal
• com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderReplicaDistributionGoal

Goals that need to be added to Self-healing goals:

• com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal
• com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderReplicaDistributionGoal

Goals that need to be added to Anomaly detection goals:

• com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal
• com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderReplicaDistributionGoal

Other configurations can remain as set by default.

Multi-level rack-aware distribution goal
You can use the MultiLevelRackAwareDistributionGoal to ensure rack awareness on a higher level than for the
standard rack aware goal for Kafka clusters using Cruise Control.

The MultiLevelRackAwareDistributionGoal behaves differently than the default RackAwareGoal or RackAwar
eDistributionGoal in Cruise Control. The standard goals have lighter requirements on rack awareness, and always
optimize based on the current state of the cluster and with the priority on making all replicas come back online.

This means that in case a network partition failure occurs, and a data center goes offline, a Cruise Control rebalance
operation using a standard rack-aware goal ignores the data center that is not working, and moves replicas around as
if there were one fewer data center in the cluster. For example, if a Kafka cluster has three data centers and one goes

7

Cloudera Runtime Configuring Metrics Reporter in Cruise Control

offline, the standard goals are not aware of the existence of the third data center, and act as if only two data centers
are used in the cluster.

The MultiLevelRackAwareDistributionGoal acts differently in the following aspects:

• Handles rack IDs as multi-level rack IDs, respecting the hierarchy of racks when distributing replicas
• Keeps track of the whole state of the cluster with caching previous states to make sure that all racks are visible
• Prioritizes multi-level rack awareness guarantees over bringing all replicas back online

In the same failure situation, where one data center is offline out of three, the multi-level rack-aware goal is still
aware of the existence of the third data center. This means that the offline replicas are not moved from the third data
center if the migration violates the multi-level rack awareness guarantees. The goal allows optimizations to pass even
in the presence of offline replicas, which can be configured with cloudera.multi.level.rack.awareness.ensure.no.offlin
e.replicas property. If the cloudera.multi.level.rack.awareness.ensure.no.offline.replicas is set to true, the goal causes
the rebalance operation to fail if the replicas would stay offline after the optimizations are implemented.

Configuring Metrics Reporter in Cruise Control

You can choose between using the default Cruise Control Metrics Reporter or using the Cloudera Manager Metrics
Reporter for fetching metrics in Cruise Control. Cloudera recommends using the Cloudera Manager solution with
light installation, and the default solution with heavy installations of Kafka deployments.

Procedure

1. Access Cloudera Manager for the Cruise Control configurations.

a) Go to your cluster in Cloudera Manager.
b) Select Cruise Control from the list of Services.
c) Click on Configuration tab.

2. Search for Metrics Reporter.

3. Select CM metrics reporter or Cruise Control metrics reporter based on your requirements.

4. Click Save changes.

5. Click on Action > Restart next to the Cruise Control service name to restart Cruise Control.

Enabling self-healing in Cruise Control

To enable Cruise Control self-healing, you need to set the Anomaly Notifier Class, enable the self-healing for the
anomaly types using the REST API and add self-healing goals in Cloudera Manager.

Changing the Anomaly Notifier Class value to self-healing
You need to change the default anomaly notifier class to self-healing to enable the internal notification in Cruise
Control that triggers the automatic self-healing.

Procedure

1. Go to your cluster in Cloudera Manager.

2. Select Cruise Control from the list of Services.

3. Click on Configuration tab.

4. Search for the Cruise Control Server Advanced Configuration Snippet (Safety Valve) for cruisecontrol.properties
setting.

8

Cloudera Runtime Enabling self-healing in Cruise Control

5. Add the following parameter to the Safety Valve field:

anomaly.notifier.class=com.linkedin.kafka.cruisecontrol.detector.notifie
r.SelfHealingNotifier

6. Click Save changes.

7. Click on Action > Restart next to the Cruise Control service name to restart Cruise Control.

Enabling self-healing for all or individual anomaly types
Self-healing is disabled for Cruise Control by default. You can enable self-healing in Cloudera Manager using the
cruisecontrol.properties configuration, or with a curl POST request and the corresponding anomaly type.

Enabling self-healing in Cloudera Manager

1. Access Cloudera Manager for the Cruise Control configurations.

a. Go to your cluster in Cloudera Manager.
b. Select Cruise Control from the list of Services.

2. Click on Configuration tab.
3. Search for the Cruise Control Server Advanced Configuration Snippet (Safety Valve) for cruisecontrol.properties

setting.
4. Choose to enable self-healing for all or only specific anomaly types, and add the corresponding parameter to the

Safety Valve field based on your requirements.

a. To enable self-healing for all anomaly types, add self.healing.enabled=true configuration parameter to the
Safety Valve.

b. To enable self-healing for specific anomaly types, add the corresponding configuration parameter to the Safety
Valve:

• self.healing.broker.failure.enabled=true
• self.healing.goal.violation.enabled=true
• self.healing.disk.failure.enabled=true
• self.healing.topic.anomaly.enabled=true
• self.healing.slow.broker.removal.enabled=true
• self.healing.metric.anomaly.enabled=true
• self.healing.maintenance.event.enabled=true

5. Provide additional configuration to self-healing.

There are additional configurations that you can use to further customize the self-healing process.

Configuration Value Description

anomaly.notifier.class com.linkedin.kafka.cruisecontrol.detector.notifier.SelfHealingNotifierThe notifier class to trigger an alert when an
anomaly is violated. The notifier class must
be configured to enable self-healing. For
more information, see Enabling self-healing
in Cruise Control.

broker.failure.alert.threshold.ms 900,000 Defines the threshold to mark a broker
as dead. If a non-empty broker leaves the
cluster at time T and did not join the cluster
before T + broker.failure.alert.threshold.ms,
the broker is defined as dead broker since T.
An alert will be triggered in this case.

broker.failure.self.healing.threshold.ms 1,800,000 If self-healing is enabled and a broker is dead
at T,,self-healing will be triggered at T +
broker.failure.self.healing.threshold.ms.

For more information about the Self- healing configurations, see the Cruise Control documentation.

9

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/cctrl-configuration/topics/cctrl-enabling-self-healing.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/cctrl-configuration/topics/cctrl-enabling-self-healing.html
https://github.com/linkedin/cruise-control/wiki/Configurations#selfhealingnotifier-configurations

Cloudera Runtime Enabling self-healing in Cruise Control

6. Provide additional configuration to the anomaly types.

There are additional configurations that you can provide for the anomaly types.

Anomaly type Configuration Value Description

broker.failures.class com.linkedin.kafka.cruisecontrol.detector.BrokerFailuresfailed.brokers.file.pathThe name of the class that
extends broker failures.

failed.brokers.file.path fileStore/failedBrokers.txt The file path to store the failed
broker list. This is to persist the
broker failure time in case Cruise
Control failed and restarted when
some brokers are down.

fixable.failed.broker.count.thre
shold

10 The upper boundary of
concurrently failed broker counts
that are taken as fixable. If too
many brokers are failing at the
same time, it is often due to
something more fundamental
going wrong and removing
replicas from failed brokers
cannot alleviate the situation.

fixable.failed.broker.percentage
.threshold

0.4 The upper boundary of
concurrently failed broker
percentage that are taken as
fixable. If a large portion of
brokers are failing at the same
time, it is often due to something
more fundamental going wrong
and removing replicas from
failed brokers cannot alleviate
the situation.

broker.failure.detection.backoff
.ms

300000 The backoff time in millisecond
before broker failure detector
triggers another broker failure
detection if currently detected
broker failure is not ready to fix.

kafka.broker.failure.detection.e
nable

false Whether to use the Kafka API to
detect broker failures instead of
ZooKeeper. When enabled, zook
eeper.connect does not need to
be set.

Broker failure

broker.failure.detection.interva
l.ms

null The interval in millisecond that
broker failure detector will run
to detect broker failures. If this
interval time is not specified, the
broker failure detector will run
with interval specified in anom
aly.detection.interval.ms. This
is only used when kafka.broker
.failure.detection.enable is set to
'true'.

goal.violations.class com.linkedin.kafka.cruisecontrol.detector.GoalViolationsThe name of the class that
extends goal violations.

anomaly.detection.goals For the list of available goals, see
the Configuring goals section.

The goals that the anomaly
detector should detect if they are
violated.

Goal violation

goal.violation.detection.interva
l.ms

value of anomaly.detection.interv
al.ms

The interval in millisecond that
goal violation detector will run
to detect goal violations. If this
interval time is not specified,
goal violation detector will run
with interval specified in anom
aly.detection.interval.ms.

10

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/cctrl-configuration/topics/cctrl-configuration.html#cctrl-goal-configuration

Cloudera Runtime Enabling self-healing in Cruise Control

Anomaly type Configuration Value Description

disk.failures.class com.linkedin.kafka.cruisecontrol.detector.DiskFailuresThe name of the class that
extends disk failures anomaly.

Disk failure

disk.failure.detection.interval.ms value of anomaly.detection.interv
al.ms

The interval in millisecond that
disk failure detector will run
to detect disk failures. If this
interval time is not specified,
disk failure detector will run with
interval specified in anomaly.
detection.interval.ms.

topic.anomaly.detection.interval
.ms

value of anomaly.detection.interv
al.ms

The interval in millisecond that
topic anomaly detector will run
to detect topic anomalies. If this
interval time is not specified,
topic anomaly detector will run
with interval specified in anom
aly.detection.interval.ms.

Topic anomaly

topic.anomaly.finder.class com.linkedin.kafka.cruisecontrol.detector.NoopTopicAnomalyFinderA list of topic anomaly finder
classes to find the current state to
identify topic anomalies.

slow.broker.bytes.in.rate.detect
ion.threshold

1024.0 The bytes in rate threshold in
units of kilobytes per second to
determine whether to include
brokers in slow broker detection.

slow.broker.log.flush.time.thres
hold.ms

1000.0 The log flush time threshold in
units of millisecond to determine
whether to detect a broker as a
slow broker.

slow.broker.metric.history.perce
ntile.threshold

90.0 The percentile threshold used to
compare the latest metric value
against historical value in slow
broker detection.

slow.broker.metric.history.m
argin

3.0 The margin used to compare
the latest metric value against
historical value in slow broker
detection.

slow.broker.peer.metric.percenti
le.threshold

50.0 The percentile threshold used to
compare last metric value against
peers' latest value in slow broker
detection.

slow.broker.peer.metric.margin 10.0 The margin used to compare last
metric value against peers' latest
value in slow broker detection.

slow.broker.demotion.score 5 The score threshold to trigger a
demotion for slow brokers.

slow.broker.decommission.score 50 The score threshold to trigger a
removal for slow brokers.

Slow broker

slow.broker.self.healing.unfixab
le.ratio

0.1 The maximum ratio of slow
brokers in the cluster to trigger
self-healing operation.

metric.anomaly.class com.linkedin.kafka.cruisecontrol.detector.KafkaMetricAnomalyThe name of class that extends
metric anomaly.

Metric anomaly

metric.anomaly.detection.interva
l.ms

value of anomaly.detection.interv
al.ms

The interval in millisecond that
metric anomaly detector will run
to detect metric anomalies. If
this interval time is not specified,
the metric anomaly detector will
run with the interval specified in
anomaly.detection.interval.ms.

11

Cloudera Runtime Enabling self-healing in Cruise Control

Anomaly type Configuration Value Description

maintenance.event.reader.class com.linkedin.kafka.cruisecontrol.detector.NoopMaintenanceEventReaderA maintenance event reader class
to retrieve maintenance events
from the user-defined store.

maintenance.event.class com.linkedin.kafka.cruisecontrol.detector.MaintenanceEventThe name of the class that
extends the maintenance event.

maintenance.event.enable.ide
mpotence

true The flag to indicate whether
maintenance event detector will
drop the duplicate maintenance
events detected within the
configured retention period.

maintenance.event.idempotenc
e.retention.ms

180000 The maximum time in ms to
store events retrieved from
the MaintenanceEventReader.
Relevant only if idempotency is
enabled (see maintenance.even
t.enable.idempotence).

maintenance.event.max.idempo
tence.cache.size

25 The maximum number of
maintenance events cached by
the MaintenanceEventDetector
within the past
maintenance.event.idempotence.retention.ms
ms. Relevant only if
idempotency is enabled (see
maintenance.event.enable.ide
mpotence).

Maintenance event

maintenance.event.stop.ongoi
ng.execution

true The flag to indicate whether
a maintenance event will
gracefully stop the ongoing
execution (if any) and wait
until the execution stops before
starting a fix for the anomaly.

For more information about the Anomaly detector configurations, see the Cruise Control documentation.
7. Click Save changes.
8. Click on Action > Restart next to the Cruise Control service name to restart Cruise Control.

Enabling self-healing using REST API

1. Open a command line tool.
2. Use ssh and connect to your cluster running Cruise Control.

ssh root@<your_hostname>

You will be prompted to provide your password.

12

https://github.com/linkedin/cruise-control/wiki/Configurations#anomalydetector-configurations

Cloudera Runtime Adding self-healing goals to Cruise Control in Cloudera Manager

3. Enable self-healing for the required anomaly types using the following POST command:

POST /kafkacruisecontrol/admin?enable_self_healing_for=[anomaly_type]

The following parameters must be used for anomaly_type:

• GOAL_VIOLATION
• BROKER_FAILURE
• METRIC_ANOMALY
• DISK_FAILURE
• TOPIC_ANOMALY

Note: In case you do not want to enable self-healing for certain anomaly types, you can disable them by
using the following command:

POST /kafkacruisecontrol/admin?disable_self_healing_
for=[anomaly_type]

4. Check which anomalies are currently in use, and which are detected with the following GET command:

GET /kafkacruisecontrol/state

When reviewing the state of Cruise Control, you can check the status of Anomaly Detector at the following
parameters:

• selfHealingEnabled - Anomaly type for which self-healing is enabled
• selfHealingDisabled - Anomaly type for which self healing is disabled
• recentGoalViolations - Recently detected goal violations
• recentBrokerFailures - Recently detected broker failures
• recentDiskFailures - Recently detected disk failures
• recentMetricAnomalies - Recently detected metric anomalies

Adding self-healing goals to Cruise Control in Cloudera
Manager

As self-healing is enabled by default for Cruise Control, you only need to specify the actions Cruise Control should
take when detecting anomaly types by providing self-healing goals in Cloudera Manager.

Procedure

1. Access Cloudera Manager for the Cruise Control configurations.

a) Go to your cluster in Cloudera Manager.
b) Select Cruise Control from the list of Services.
c) Click on Configuration tab.

2. Search for Self-Healing Goals.

3. Add the required self-healing goals to the corresponding field.

4. Click Save changes.

5. Click on Action > Restart next to the Cruise Control service name to restart Cruise Control.

13

	Contents
	Adding Cruise Control as a service
	Setting capacity estimations and goals
	Configuring capacity estimations
	Configuring goals
	Example of Cruise Control goal configuration
	Multi-level rack-aware distribution goal

	Configuring Metrics Reporter in Cruise Control
	Enabling self-healing in Cruise Control
	Changing the Anomaly Notifier Class value to self-healing
	Enabling self-healing for all or individual anomaly types

	Adding self-healing goals to Cruise Control in Cloudera Manager

