Using Apache Iceberg

Date published: 2022-03-15
Date modified: 2023-11-20

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

| Contents | iii

APACHE 1 CEDEI G TEALUINES......oeieie ettt sttt st sa et e seesae e aeeneenre s 5
ATLEr TI01E FEALUIE. ...ttt e bbbt e st e st b et bt R e e b e seer e ne b e nnebennene 5
Creale taDIE TEAIUNE.......e ittt h bt b e bt e b bt e et n bt b et n s 6
Create table as SEIECE TEALUIE...........c it 8
Create partitioned table 8S SElECE FEALUNE.........c.oii i e 8
Create tahle ... [1KE FEBIUIE........cuieeeice bbbttt 9
DElEE AAA FEAIUIE.........ceeieeeiieeet ettt et b et b bbbt bt b e 9
Describe table Metadatal fFEBIUIE..........c.cireeirece ettt r e r e er e 11
Drop Partition FEALUE..........eii ittt sttt h e a et b e s b e sb e sb et e b e re et e e et e neebeeneeaesbeseeee 12
Drop ta1€ FEBLUIE.........eoeiieie ettt bttt s e et b st e e et et e a e e aeeaeeheeb e beebeebenbesee b e b s 12
EXPIre SNBPSNOLS FEBLUIE.........eoeeieeeieeeeet ittt ettt b e b bt s ae b e b e e st et e seese e e e e e e et eneeneeneanen 13
INSErt tablE aEA FEBIUNE.......c.e ittt r et et et r et r e 14
Load data iNPEth fEALUIE..........couiieeiee et b b et b e b et e e e e e e se e it ebeebesaeenen 15
Load or replace partition data FEAIUNE............oiiiiie ettt ae e eae 15
MaLErTaliZEA VIBW FEEIUE.......veeiteecterecte ettt b et 16
Materialized VIew rebUIld FEEIUE...........ooveireicee et 17
L o TR L= LU= SRR 19
Migrate Hive table tO 1CEDEIg FEAIUIE.........oiu ittt en 20

Changing the table metadata [OCALTON...........coiiiiiriiie e e e 20
LS (T o L= 7= (] (e 01 o USRS 21

Partition @VOIULION TEAIUNE..........ceiriiieiieice et 21

Partition transform FEAIUME.............ciieiieer bbb 22
Query metadata tableS FEALUIE..........ccciiiieeie et et e e e e st sbesbesaesae 23
ROIDACK A€ FEBIUNE. ettt p et r e bt e 26
SeleCt 1CEDErg data FEAIUIE........ .ot e ettt b e b sbe e 26
SChEMA EVOIULION FEALUIE. ...ttt ettt e et bt r et r et r e 26
SChEMA INFEIENCE TEALUNE.......coviiiteectee ettt b e bbbt e bt e et b et b e e n e b s er e 27
SNAPSNOL MEBNBGEIMENL.tete ettt ettt eb et sbe et e tese e e e e et e st ebeeaeeaeebesbeseeseenbeseeseenseneeneeneeresaesaesbesbees 28
THIME TrAVEL TEALUIE. ...ttt bbb bbbt et b et bt b e e 29
TrUNCEALE A1 TEAIUNE.......c.eceieeeii ettt bbb e e n et 29

Best practices fOr TCEDEIT IN ... r e 30
Making row-level changes 0N V2 tablES ONlYoouo i s 30

Per fOr MANCE TUNING. .. cotiiieiie ettt s b et e e be et e saeesbeeeeeneesbeeneeeneene 31
CaChiNg MANITESE FIIES.... .ot bbbt bbb e e e et e e s e e aeeaesneebe e e 31
Configuring manifest caching in Cloudera Manager...........ooueeeirirere e 31

Unsupported features and [IMiItations..........ccooiiieririinieneee e 32

ACCESSING [CEDEN G LADIES. ...ttt re e e 33
Opening RANGEr iN Data HUD........o.oi bbb sttt e e ae b sae b 34
Editing a storage handler policy to access Iceberg files on the file System..........coverencieicicceeeee, 35
Creating a SQL policy to query an [Ceberg table..........ooi i 38

Accessing [ceberg filleS IN OZONE.......ccoiiiiiieee e 39

Creating an 1CebEr g tabIE.........oo e er e 41

Creating an Iceberg partitioned table...........ooeoiiiiii e 42

EXPITING SNAPSNOLS......eiiiiieieeee et sttt et ne e s neene s 43

Inserting data iNt0 @ tADIE.......c.oiiee e e nae s 43

Migrating a Hive table tO I CEDEI Q.. .ciiiiieieiee et 43

Selecting an 1ceerg tabIE........c.ee e s 45

RUNNING tIME traVEl QUENTES..... .ottt e st b e nns 45

Updating an 1Ceberg PartitioN.........ccoeieeiinieseere ettt sae e sneeeas 46

Test driving [ceberg from IMPala.........cooieiiie e e 46
[AV 2SN 0 [0 0T R b L= TSRS 48
Test driving 1CeDErg from HiVe.........ooii e s 51
Kol o1 o o F= 1= T 4 1= SRS 52

Apache | ceberg features

Y ou can quickly build on your past experience with SQL to analyze |ceberg tables.

From Hive or Impala, you run SQL queriesto create and query |ceberg tables. Impala queries are table-format
agnostic. For example, Impala options are supported in queries of Iceberg tables. Y ou can run nested, correlated, or
analytic queries on all supported table types. Most Hive queries are also table-format agnostic.

This documentation does not attempt to show every possible query supported from Impala. Many examples of how to
run queries on Iceberg tables from Impala are covered.

| ceberg supports atomic and isolated database transaction properties. Writers work in isolation, not affecting the live
table, and perform a metadata swap only when the write is complete, making the changes in one atomic commit.

| ceberg uses snapshots to guarantee isolated reads and writes. Y ou see a consistent version of table data without
locking the table. Readers always see a consistent version of the data without the need to lock the table. Writers work
in isolation, not affecting the live table, and perform a metadata swap only when the write is complete, making the
changes in one atomic commit.

The | ceberg partitioning technique has performance advantages over conventional partitioning, such as Apache Hive
partitioning. Iceberg hidden partitioning is easier to use. Iceberg supports in-place partition evolution; to change a
partition, you do not rewrite the entire table to add a new partition column, and queries do not need to be rewritten
for the updated table. Iceberg continuously gathers data statistics, which supports additional optimizations, such as
partition pruning.

| ceberg uses multiple layers of metadata files to find and prune data. Hive and Impala keep track of data at the folder
level and not at the file level, performing file list operations when working with data in a table. Performance problems
occur during the execution of multiple list operations. | ceberg keeps track of a complete list of fileswithin atable
using a persistent tree structure. Changes to an | ceberg table use an atomic object/file level commit to update the path
to a new snapshot file. The snapshot points to the individual data files through manifest files.

The manifest files track several datafiles across many partitions. These files store partition information and column
metrics for each datafile. A manifest list is an additional index for pruning entire manifests. File pruning increases
efficiency.

I ceberg relieves Hive metastore (HMS) pressure by storing partition information in metadata files on the file system/
object store instead of within the HMS. This architecture supports rapid scaling without performance hits.

In Hive or Impala, you can use ALTER TABLE to set table properties. From Impala, you can use ALTER TABLE
to rename atable, to change the table owner, or to change the role of the table owner. From Hive, you can alter the
metadata location of the table if the new metadata does not belong to another table; otherwise, an exception occurs.

Y ou can convert an Iceberg vl table to v2 by setting atable property as follows: format-version' = '2'.

ALTER TABLE t abl e _nane SET TBLPROPERTI ES t abl e _properti es;

Apache | ceberg features

» table properties

A list of properties and values using the following syntax:

('key' = "'value', '"key' = 'value', ...)

ALTER TABLE t abl e_name RENAME TO new_t abl e_nane;
ALTER TABLE t abl e _name SET OMNER USER user _nane;

ALTER TABLE t abl e name SET OWNER RCOLE rol e_nane;

ALTER TABLE test_table SET TBLPROPERTI ES(' net adata | ocation' =" hdfs://ice_tab
| e/ net adat a/ v1. net adat a. j son');
ALTER TABLE test table2 SET TBLPROPERTI ES(' fornmat-version' = "'2");

ALTER TABLE t1 RENAME TO t 2;
ALTER TABLE i ce_tabl el set OMER USER j ohn_doe;

ALTER TABLE ice_tabl e2 set OMER RCLE sone_rol e;
ALTER TABLE ice_8 SET TBLPROPERTIES ('read.split.target-size' =" 268435456');

ALTER TABLE ice_tabl e3 SET TBLPROPERTI ES(' format -version' = '2');

You use CREATE TABLE from Impalaor CREATE EXTERNAL TABLE from Hive to create an external tablein
Iceberg. You learn the subtle differences in these features for creating I ceberg tables from Hive and Impala. Y ou aso
learn about partitioning.

Hive and Impala handle external table creation alittle differently, and that extends to creating tablesin Iceberg. By
default, Iceberg tables you create are v1. To create an Iceberg v2 table from Hive or Impala, you need to set atable
property as follows:'format-version' = ‘2.

From Hive, CREATE EXTERNAL TABLE isrecommended to create an | ceberg tablein CDP.

When you use the EXTERNAL keyword to create the |ceberg table, by default only the schemais dropped when you
drop the table. The actual datais not purged. Conversely, if you do not use EXTERNAL, by default the schema and
actual datais purged. Y ou can override the default behavior. For more information, see the Drop table feature.

From Hive, you can create atable that reuses existing metadata by setting the metadata |ocation table property to
the object store path of the metadata. The operation skips generation of new metadata and re-registers the existing
metadata. Use the following syntax:

CREATE EXTERNAL TABLE ice_fmhive (i int) STORED BY | CEBERG TBLPROPERTI ES ('
nmet adat a_| ocati on' =' <obj ect store or file system path>')

See exampl es below.

Apache | ceberg features

From Impala, CREATE TABLE is recommended to create an | ceberg table in CDP. Impala creates the | ceberg table
metadata in the metastore and also initializes the actual 1ceberg table datain the object store.

The difference between Hive and Impala with regard to creating an Iceberg table is related to Impala compatibility
with Kudu, HBase, and other tables. For more information, see the Apache documentation, "Using Impalawith
Iceberg Tables'.

When you create an I ceberg table using CREATE EXTERNAL TABLE in Hive or using CREATE TABLE in
Impala, HiveCatalog creates an HM S table and al so stores some metadata about the table on your object store, such
as S3. Creating an | ceberg table generates a metadata.json file, but not a snapshot. In the metadata.json, the snapshot-
id of anew tableis-1. Inserting, deleting, or updating table data generates a snapshot. The |ceberg metadata files and
datafiles are stored in the table directory under the warehouse folder. Any optional partition datais converted into

| ceberg partitions instead of creating partitions in the Hive Metastore, thereby removing the bottleneck.

To create an |ceberg table from Hive or from Impala, you associate the | ceberg storage handler with the table using
one of the following clauses, respectively:

* Hive: STORED BY ICEBERG
* Impala STORED ASICEBERG or STORED BY ICEBERG

Y ou can write I ceberg tablesin the following formats:

e From Hive: Parquet (default), Avro, ORC
e From Impala: Parquet

Impala supports writing Iceberg tablesin only Parquet format. Impala does not support defining both file format and
storage engine. For example, CREATE TABLE thl ... STORED ASPARQUET STORED BY |ICEBERG works
from Hive, but not from Impala.

Y ou can read | ceberg tables in the following formats:

* From Hive: Parquet, Avro, ORC
e From Impala: Parquet, Avro, ORC

Note: Reading Iceberg tablesin Avro format from Impalais available as atechnical preview. Cloudera
IE recommends that you use this feature in test and development environments. It is not recommended for
production deployments.

CREATE [EXTERNAL] TABLE [I F NOT EXI STS] [db_nane.]tabl e _nane
[(col _nane data_type, ...
[PARTI TI ONED BY [SPEC] ([col _nane] [, spec(value)][, spec(value)]...)]]
[STORED AS file_format]
STORED BY | CEBERG
[TBLPROPERTI ES (' key' ="' value', 'key'="value', ...)]

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
[(col _name data_type, ...
[PARTI TI ONED BY [SPEC] ([col _nane] [, spec(value)][, spec(value)]...)]]
STORED {AS | BY} | CEBERG
[TBLPROPERTI ES (property nane=property value, ...)]

https://impala.apache.org/docs/build/html/topics/impala_iceberg.html
https://impala.apache.org/docs/build/html/topics/impala_iceberg.html

Apache | ceberg features

CREATE EXTERNAL TABLE ice_1 (i INT, t TIMESTAMP, j BIG NI) STORED BY | CEBERG

CREATE EXTERNAL TABLE ice_2 (i INT, t TIMESTAWP) PARTITIONED BY (j B
| G NT) STORED BY | CEBERG

CREATE EXTERNAL TABLE ice_4 (i int) STORED AS ORC STORED BY | CEBERG,

CREATE EXTERNAL TABLE ice_ 5 (i int) STORED BY | CEBERG TBLPROPERTI ES (
'metadata_| ocation' =" hdfs://ice_tabl e/ netadata/vl. netadata.json')

CREATE EXTERNAL TABLE ice 6 (i int) STORED AS ORC STORED BY | CEBERG
TBLPROPERTI ES (' format-version' = '2');

CREATE TABLE ice 7 (i INT, t TIMESTAMP, j BIG NT) STORED BY | CEBERG //creat

es only the schema

CREATE TABLE ice_8 (i INT, t TIMESTAMP) PARTI TI ONED BY (j BIG NT) STORED BY
| CEBERG //creates schema and initializes data

CREATE TABLE ice_v2 (i INT, t TIMESTAMP) PARTI TI ONED BY (j BI G NT) STORED BY
| CEBERG TBLPROPERTI ES (' format-version' = '2"); //creates a v2 table

Drop table feature
Partition transform feature

Y ou can create an | ceberg table based on an existing Hive or Impalatable.
The create table as select (CTAS) query can optionally include a partitioning spec for the table being created.

CREATE EXTERNAL TABLE ctas STORED BY | CEBERG AS SELECT i, t, j FROMice_1;

CREATE TABLE ctas STORED BY | CEBERG AS SELECT i, b FROMice_11;

Y ou can create a partitioned | ceberg table by selecting another table. Y ou see an example of how to use
PARTITIONED BY and TBLPROPERTIES to declare the partition spec and table properties for the new table.

Y ou see an example of using a partition transform with the PARTITIONED BY SPEC clause.

The newly created table does not inherit the partition spec and table properties from the source table in SELECT.
The I ceberg table and the corresponding Hive tableis created at the beginning of the query execution. The datais
inserted / committed when the query finishes. So for atransient period the table exists but contains no data.

CREATE [EXTERNAL] TABLE prod. db. sanpl e
USI NG i ceberg

https://docs.cloudera.com/cdw-runtime/1.5.4/iceberg-how-to/topics/iceberg-partition-transformation.html

Apache | ceberg features

PARTI TI ONED BY (part)
TBLPROPERTI ES (' key' =" val ue')
AS SELECT ...

CREATE EXTERNAL TABLE ctas STORED BY | CEBERG AS SELECT i, t, j FROMice_1;

CREATE EXTERNAL TABLE ctas_part PARTI TI ONED BY(z) STORED BY | CEBERG TBLPROPE
RTIES (' format-version' = 2")

AS SELECT x, ts, z FROM t;

CREATE EXTERNAL TABLE ctas_part_spec PARTI TI ONED BY SPEC (nont h(d)) STORED
BY | CEBERG TBLPROPERTI ES (' fornmat-version' = 2")

AS SELECT x, ts, d FROM source_t;

CREATE TABLE ctas STORED BY | CEBERG AS SELECT i, b FROMice_11;

CREATE TABLE ctas_part PARTI TI ONED BY(b) STORED BY | CEBERG AS SELECT i, s, b
FROM i ce_11;

CREATE TABLE ctas_part_spec PARTI TI ONED BY SPEC (nonth(d)) STORED BY | CEBERG
TBLPROPERTI ES (' format-version' ='2")

AS SELECT x, ts, d FROM source_t;

Y ou learn by example how to create an empty table based on another table.

From Hive or Impala, you can create an | ceberg table schema based on another table. The table contains no data. The
table properties of the original table are carried over to the new table definition. The following examples show how to
use this feature:

CREATE EXTERNAL TABLE target LIKE source STORED BY | CEBERG

CREATE TABLE target LIKE source STORED BY | CEBERG

Cloudera supports row-level deletesin Iceberg V2 tables.
From Hive and Impala, you can use the following formatting types defined by the Iceberg Spec:

e position deletes
e equality deletes

Note: The equality deletes featureisin technical preview and not recommended for use in production
deployments. Cloudera recommends that you try this feature in test and development environments.

For equality deletes, you must be aware of the following considerations:

https://iceberg.apache.org/spec/#row-level-deletes
https://iceberg.apache.org/spec/#delete-formats
https://iceberg.apache.org/spec/#row-level-deletes

Apache | ceberg features

» If you are using Apache Flink or Apache NiFi to write equality deletes, then ensure that you provide a PRIMARY
KEY for thetable. Thisisrequired for engines to know which columns to write into the equality deletefiles.

« |f thetableis partitioned then the partition columns have to be part of the PRIMARY KEY
» For Apache Flink, the table should be in 'upsert-mode' to write equality deletes
« Partition evolution is not allowed for Iceberg tables that have PRIMARY KEY's

Position delete files contain the following information:

« file_path, whichisafull URI
* pos, thefile position of the row

Delete files are sorted by file_path and pos. The following table shows an example of delete filesin a partitioned
table:

YEAR(ts)=2022 ts year=2022/data-abcd. parquet ts year=2022/del ete-wxyz.parquet
ts_year=2022/data-bcde.parquet

YEAR(ts)=2023 ts_year=2023/data-efgh.parquet ts_year=2023/del ete-hxkw.parquet
MONTH(ts)=2023-06 ts_month=2023-06/data-ijkl.parquet ts_month=2023-06/del ete-uzwd.parquet
MONTH(ts)=2023-07 ts_month=2023-07/data-mnop.parquet ts_month=2023-07/del ete-udgx. parquet

Inserting, deleting, or updating table data generates a snapshot.
Y ou use aWHERE clause in your DELETE statement. For example:

delete fromtbl ice where a <= 2,1,

Hive and Impala evaluate rows from one table against a WHERE clause, and delete all the rows that match WHERE
conditions. If you want delete all rows, use the Truncate feature. The WHERE expression is similar to the WHERE
expression used in SELECT. The conditions in the WHERE clause can refer to any columns.

Concurrent operations that include DELETE do not introduce inconsistent table states. |ceberg runs validation
checksto check for concurrent modifications, such as DELETE+INSERT. Only one will succeed. On the other hand,
DELETE+DELETE, and INSERT+INSERT can both succeed, but in the case of a concurrent DELETE+UPDATE,
UPDATE+UPDATE, DELETE+INSERT, UPDATE+INSERT from Hive, only the first operation will succeed.

From joined tables, you can delete all matching rows from one of the tables. Y ou can join tables of any kind, but
the table from which the rows are deleted must be an Iceberg table. The FROM keyword is required in this case, to
separate the name of the table whose rows are being deleted from the table names of the join clauses.

del ete fromtabl enane [where expression]

del ete joined_tabl enanme from[joi ned_tabl ename, joined_tablename2, ...] [wh
ere expression |

create external table tbhl _ice(a int, b string, ¢ int) stored by iceberg thlp
roperties ('format-version' = 2");

insert into tbl _ice values (1, 'one', 50), (2, '"tw', 51), (3, 'three', 5
2), (4, '"four', 53), (5, 'five', 54), (111, 'one', 55), (333, 'tw', 56);

10

Apache | ceberg features

delete fromthbl ice where a <= 2, 1;

The following example deletes O, 1, or more rows of thetable. If coll isaprimary key, O or 1 rows are deleted:

delete fromice table where coll = 100;

Describe table metadata feature

Y ou can use certain Hive and Impala show and describe commands to get information about table metadata. Y ou can

also query metadata tables.

The following table lists SHOW and DESCRIBE commands supported by Hive and Impala.

Command Syntax Description

SHOW CREATE TABLE table_name

Reveals the schemathat created the table.

SQL Engine Support

Hive and Impala

WEEN timestampl AND timestamp2]

of time.

SHOW FILESIN table_name Liststhe filesrelated to the table. Impala
SHOW PARTITIONS table_name Returns the | ceberg partition spec, just the Impala

column information, not actual partitions or

files.
DESCRIBE [EXTENDED] table name The optional EXTENDED shows all the Hive and Impala

- metadata for the table in Thrift serialized form,

which is useful for debugging.

DESCRIBE [FORMATTED] table_name The optional FORMATTED shows the Hive
B metadata in tabular format.

DESCRIBE HISTORY table name [BET Optionally limits the output history to aperiod | Impala

Hive example

DESCRI BE t;

Hive output includes the following information:

col_name data_type

X

int

comment

y int

NULL NULL
Partition Transform Information NULL NULL
col_name transform_type NULL
y IDENTITY NULL

The output of DESCRIBE HISTORY includes the following columns about the snapshot. The first three are self-
explanatory. Theis_current_ancestor column value is TRUE if the snapshot is the ancestor of the table:

e creation_time

e snapshot_id

e parent_id

e is current_ancestor

11

Apache | ceberg features

DESCRI BE HI STORY ice_t FROM'2022-01-04 10: 00:00';

DESCRI BE HI STORY ice_t FROM now() - interval 5 days;

DESCRI BE HI STORY ice_t BETWEEN '2022-01-04 10: 00: 00" AND ' 2022-01-05 10: 00:0
0";

Y ou can easily remove a partition from an | ceberg partition using an alter table statement from Impala.

Removing a partition does not affect the table schema. The column is not removed from the schema.

* Thefilter expression in the drop partition syntax below is a combination of, or at least one of, the following
predicates:
e Minimum of one binary predicate
e IN predicate
e ISNULL predicate

« Theargument of the predicate in the filter expression must be a partition transform, such as ‘Y EARS(col-name)’
or ‘column’.

e Any non-identity transform must be included in the select statement. For example, if you partition a column by
days, the filter must be days.

alter table table-nane drop partition (<filter expression>)

The following operators are supported in the predicate: =, I=,<, >, <=, >=

CREATE TABLE ice_tabl e PARTI TI ONED BY SPEC (day(d)) STORED BY | CEBERG TBLPRO
PERTIES (' format-version'='2') AS SELECT x, ts, d FROM source_t;

I NSERT | NTO i ce_tabl e(d) VALUES (' 2024- 04-30');

ALTER TABLE i ce_tabl e DROP PARTI TION (day(d) = '2024-04-30');

The syntax you use to create the table determines the default behavior when you drop the | ceberg table from Hive or
Impala

If you use CREATE TABLE, the external .table.purge flag is set to true. When the table is dropped, the contents

of the table directory (actual data) are removed. If you use CREATE EXTERNAL TABLE from Hive, the

external .table.purge flag is set to false. Dropping atable purges the schema only. The actual datais not removed. You
can explicitly set the external .table.purge property to true to drop the data as well as the schema.

To prevent data loss during migration of atable to I ceberg, do not drop or move the table during migration.
Exception: If you set the table property ‘external .table.purge’="FAL SE', no data loss occurs if you drop the table.

12

Apache | ceberg features

DROP TABLE [I F EXI STS] tabl e_name

ALTER TABLE t SET TBLPROPERTI ES(' ext ernal . tabl e. purge' =" true');
DROP TABLE t;

Create table feature

Y ou can expire snapshots that | ceberg generates when you create or modify atable. During the lifetime of atable the
number of snapshots of the table accumulate. Y ou learn how to remove snapshots you no longer need.

Y ou should periodically expire snapshots to delete data files that are no longer needed, and to reduce the size of
table metadata. Each write to an | ceberg table from Hive creates a new snapshot, or version, of atable. Snapshots
accumulate until expired.

Y ou can expire snapshots based on the following conditions:

« All snapshots older than a timestamp or timestamp expression
* A snapshot having agiven ID

e Snapshots having IDs matching a given list of IDs

* Snapshots within the range of two timestamps

Y ou can keep snapshots you are likely to need, for example recent snapshots, and expire old snapshots. For example,
you can keep daily snapshots for the last 30 days, then weekly snapshots for the past year, then monthly snapshots for
thelast 10 years. Y ou can remove specific snapshots to meet GDPR “right to be forgotten” requirements.

ALTER TABLE <t abl e Nane> EXECUTE EXPlI RE_SNAPSHOTS(<t i nest anp expressi on>)
ALTER TABLE <t abl e Nane> EXECUTE EXPI RE_SNAPSHOTS(' <Snapshot 1d>")

ALTER TABLE <t abl e Nane> EXECUTE EXPlI RE_SNAPSHOTS(' <Snapshot |d1>, <Snapshot
1d2>... ")

ALTER TABLE <t abl e Nanme> EXECUTE EXPI RE_SNAPSHOTS BETWEEN (<ti mestanp exp
ression>) AND (<tinmestanp expression>)

The first example removes snapshots having atimestamp older than August 15, 2022 1:50 pm. The second example
removes snapshots from 10 days ago and before.

ALTER TABLE ice_11 EXECUTE EXPI RE_SNAPSHOTS(' 2022- 08- 15 13: 50: 00');
ALTER TABLE ice_t EXECUTE EXPI RE_SNAPSHOTS(now() - interval 10 days);

Y ou can prevent expiration of recent snapshots by configuring the history.expire.min-snapshots-to-keep table
property. You can use the alter table feature to set a property. The history.expire.min-snapshots-to-keep property
refersto anumber of snapshots, not atime delta. For example, assume you always want to keep all snapshots of your

13

Apache | ceberg features

table for the last 24 hours. Y ou configure history.expire.min-snapshots-to-keep as a safety mechanism to enforce

this. If your table receives only one modification (insert / update / merge) per hour, then setting history.expiremin-
snapshots-to-keep = 24 is sufficient to meet your requirement. However, if your table was consistently receiving
updates every minute, then the last 24 hour period would entail 1440 snapshots, and the history.expire.min-snapshots-
to-keep setting would need to be configured appropriately.

The contents of the table directory (actual data) might, or might not, be removed when you drop the table. An orphan
data file can remain when you drop an |ceberg table, depending on the external .table.purge flag table property. An
orphaned datafileis one that has contents in the table directory, but no snapshot.

Expiring a snapshot does not remove old metadata files by default. Y ou must clean up metadata files using writ
e.metadata.del ete-after-commit.enabled=true and write.metadata.previous-versions-max table properties. For more
information, see "lceberg table properties” below. Setting this property controls automatic metadata file removal after
metadata operations, such as expiring snapshots or inserting data.

I ceberg table properties

From Hive and Impala, you can insert data into | ceberg tables using the standard INSERT INTO asingle table.
INSERT statements work for V1 and V2 tables.

Y ou can replace data in the table with the result of aquery. To replace data, Hive and Impala dynamically overwrite
partitions that have rows returned by the SELECT query. Partitions that do not have rows returned by the SELECT
query, are not replaced. Using INSERT OVERWRITE on tables that use the BUCKET partition transform is not
recommended. Results are unpredictabl e because dynamic overwrite behavior would be too random in this case.

From Hive, CDP aso supports inserting into multiple tables as atechnical preview; however, this operation is not
atomic, so data consistency of Iceberg tablesis equivalent to that of Hive external tables. Changes within asingle
table will remain atomic.

Inserting, deleting, or updating table data generates a snapshot. A new snapshot corresponds to a new manifest list.
Manifest lists are named snap-*.avro.

| ceberg specification defines sort orders. At this point, Hive doesn’t support defining sort orders. But if there are sort
orders defined by using other engines Hive can utilize them on write operations. For more information about sorting,
see sort orders specification.

| NSERT | NTO TABLE t abl enane VALUES val ues_row [, values_row ...]
I NSERT | NTO TABLE t abl enanel sel ect _statenent1l FROM t abl enane2

| NSERT OVERWRI TE TABLE t abl enanel sel ect _statenent1l FROM t abl enane2

CREATE TABLE ice_10 (i INT, s STRING b BOOLEAN) STORED BY | CEBERG
I NSERT I NTO i ce_10 VALUES (1, 'asf', true);

CREATE TABLE ice_11 (i INT, s STRING b BOOLEAN) STORED BY | CEBERG
I NSERT I NTO ice_11 VALUES (2, 'apache', false);

I NSERT I NTO ice_11 SELECT * FROM ice_ 10;

SELECT * FROM ice_11;

| NSERT OVERWRI TE ice_11 SELECT * FROM i ce_10;

14

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/iceberg-how-to/topics/iceberg-table-properties.html
https://iceberg.apache.org/spec/#sort-orders

Apache | ceberg features

FROM cust omer s
I NSERT | NTO targetl SELECT custoner _id, first_naneg;
I NSERT | NTO target2 SELECT | ast_nane, custoner i d;

From Impala, you can load Parquet or ORC data from afilein adirectory on your file system or object store into an
I ceberg table. Y ou might need to set the mem_limit or pool configuration (max-query-mem-limit, min-query-mem-
limit) to accommodate the |oad.

LOAD DATA I NPATH ‘<path to file> INTO table t;

In this example, you create a table using the LIKE clause to point to atable stored as Parquet. Thisisrequired for
Iceberg to infer the schema. Y ou a'so load data stored as ORC.

CREATE TABLE test _iceberg LIKE my_parquet table STORED AS | CEBERG
SET MEM LI M T=1MB;

LOAD DATA | NPATH '/t np/ some_db/ parquet _files/' | NTO TABLE iceberg_thbl;
LOAD DATA I NPATH '/t np/ sonme_db/orc_files/' | NTO TABLE iceberg2 thl;

Thereis no difference in the way you insert data into a partitioned or unpartitioned | ceberg table.
Working with partitions is easy because you write the query in the same way for the following operations:

* Insert into, or replace, an unpartitioned table
e |nsertinto, or replace, an identity partitioned table
« Insertinto, or replace, atransform-partitioned table

Do not use INSERT OVERWRITE on tables that went through partition evolution. Truncate such tablesfirst, and
then INSERT the tables.

CREATE TABLE ice 12 (i int, s string, t tinmestanp, t2 tinestanp) STORED BY |
CEBERG

I NSERT I NTO ice_ 12 VALUES (42, 'inpala', now), to_date(now)));
| NSERT OVERWRI TE ice_t VALUES (42, 'inpala', nowm), to_date(now)));

15

Apache | ceberg features

Using amaterialized view can accelerate query execution. Creating a materialized view on top of Iceberg tablesin
CDP can further accelerate the performance. Y ou can create a materialized view of an Iceberg V1 or V2 table based
on an existing Hive or Iceberg table.

The materialized view is stored in Hive ACID or Iceberg format. Materialized view source tables either must be
native ACID tables or must support table snapshots. Automatic rewriting of a materialized view occurs under the
following conditions:

« Theview definition contains the following operators only:

e TableScan
e Project
e Filter
e Join(inner)
e Aggregate
» Sourcetables are native ACID or Iceberg v1 or v2
» Theview isnot based on time travel queries because those views do not have up-to-date data by definition.

The following example creates a materialized view of an Iceberg table from Hive.

drop table if exists tbl _ice;
create external table tbl _ice(a int, b string, ¢ int) stored by iceberg st
ored as orc thlproperties ('format-version' ='2");

create materialized view matl as
select b, ¢ fromtbl _ice for systemversion as of 5422037307753150798;

The following example creates a materialized view of two |ceberg tables. Joined tables must be in the same table
format, either Iceberg or Hive ACID.

drop table if exists thl _ice2;

create table thl _ice2(a int, b string, ¢ int) stored as orc TBLPROPERTIES ('
transactional'="true');

I NSERT | NTO tbl ice2 VALUES (2, 'apache', 3);

drop table if exists tbl _ice;

create external table tbl _ice(a int, b string, c¢c int) stored by iceberg sto
red as orc tblproperties ('format-version' = 2');

I NSERT | NTO tbl _acid VALUES (4, 'iceberg', 5);

create materialized view matl as

select tbl _ice2.b, tbl _ice2.c fromtbl _ice join tbl _ice2 on tbhl ice.a =1tb
| ice2. a;

The following example uses explain to examine a materialized view and then creates a materialized view of an
Iceberg V1 table from Hive.

drop materialized viewif exists matl;
drop table if exists tbl_ice;

create table tbl _ice(a int, b string, c int) stored by iceberg stored as orc
t bl properties (' format-version' ="1");

insert into tbl _ice values (1, 'one', 50), (2, "tw', 51), (3, '"three', 52),
(4, 'four', 53), (5, 'five', 54);

explain create materialized view matl stored by iceberg stored as orc tblpr

operties ('format-version' ='1') as

16

Apache | ceberg features

select tbl _ice.b, thl _ice.c fromtbl _ice where tbl _ice.c > 52;

create materialized view natl stored by iceberg stored as orc tbl properties
('format-version' ='1') as
select tbl _ice.b, tbl _ice.c fromtbl _ice where tbl _ice.c > 52;

Materialized view rebuild feature

Updates to materialized view contents when new data is added to the underlying table are critical; otherwise, queries
can return stale data.

An update can occur under the following conditions:
» Asarow-level incremental rebuild of the view after inserting data into atable

Source tables can be Iceberg V2 or Hive full ACID.
» Asafull rebuild of the view

A full rebuild can be expensive. An incremental rebuild updates only the affected parts of the materialized view,
decreasing rebuild step execution time.

An incremental rebuild occurs automatically when you insert (append) data into a source table; otherwise, after you
make some other type of change, for example a delete, you must manually start a full rebuild.

Y ou use the ALTER command to manually start afull rebuild of the materialized view from Hive as follows:

ALTER MATERI ALI ZED VI EW <nane of vi ew> REBUI LD;

In this example, first you set required properties. Next, you create |ceberg tables, aV1 table and a V2 table, from
Hive. You insert datainto the tables and create a materialized view of the joined tables. Y ou insert some new values
into one of the source tables, rendering the materialized view stale. Finally, you rebuild the materialized view using
explain cho to show the rebuild plan The rebuild plan indicates a full rebuild will occur, which means the definition
query will be executed.

drop table if exists tbl _ice;

drop table if exists thl _ice_v2;

create external table tbl _ice(a int, b string, c¢c int) stored by iceberg sto
red as orc tblproperties ('format-version' = 1');

create external table tbl _ice v2(d int, e string, f int) stored by iceberg

stored as orc tblproperties ('format-version' = 2");

insert into tbl _ice v2 values (1, 'one v2', 50), (4, 'four v2', 53), (5, 'f
ive v2', 54);

create materialized view mat1l as

select thl _ice.b, tbl ice.c, tbl ice v2.e fromthl ice

join tbl ice v2 on thl _ice.a=tbl _ice v2.d where tbl _ice.c > 52;
group by tbhl ice.b tbl _ice.c;

-- view should be enpty
select * from mat 1;

-- viewis up-to-date, use it

17

Apache | ceberg features

expl ain cbho
select tbl _ice.b, tbl_ice.c, tbl _ice_v2.e fromtbl_ice join tbhl _ice_v2 on
tbl ice.a=tbl _ice v2.d where tbl _ice.c > 52;

-- insert sonme new val ues to one of the source tables
insert into tbl _ice values (1, 'one', 50), (2, "tw', 51), (3, 'three', 52),
(4, 'four', 53), (5, 'five', 54);

-- view is outdated, cannot be used

expl ain cbo

select tbl _ice.b, tbhl _ice.c, tbl _ice v2.e fromtbl _ice join tbl _ice v2 ontb
| ice.a=tbl _ice v2.d where tbl _ice.c > 52;

expl ain cbho
alter materialized view matl rebuil d;

-- view should contain data
select * from mat 1;

-- viewis up-to-date again, use it

expl ain cbo

select thl ice.b, thl ice.c, tbl ice v2.e fromtbl _ice join tbl _ice v2 ontbh
| ice.a=tbl _ice_v2.d where tbhl _ice.c > 52;

group by tbl ice.b tbl _ice.c;

In this example, you create an |ceberg table, insert some values, and create the materialized view. The view is
partitioned using a partition specification and stored in the I ceberg ORC format. The v1 format version is specified
in this example (the v2 format is also supported). Y ou then look at a description of the view and see that the query
rewrite option is enabled by default. An automatic incremental rebuild is possible when this option is enabled.

drop table if exists tbl _ice;
create external table tbl _ice(a int, b string, ¢ int) stored by iceberg
stored as orc tblproperties ('format-version'="1");

-- insert sone new val ues into one of the source tables

insert into tbl _ice values (1, 'one', 50), (2, 'tw', 51), (3, "three', 5
2), (4, 'four', 53), (5, 'five', 54);

expl ai n

create materialized view natl partitioned on spec (bucket (16, b), trunc
ate(3, c)) stored by lceberg stored as orc thl properties(‘'format-version’ =1
")as

select tbl _ice.b, thl)ice.c fromtbl ice where tbl _ice.c > 52;

-- the output query plan query indicates a rewite is enabl ed

POSTHOOK: query: explain
create materialized view matl ...

STAGE PLANS
——”fn stage one, the materialized viewis created by calling the Iceberg

APl to create the table object.
rewite enabl ed

18

Apache | ceberg features

Y ou use the DESCRIBE command to see the output query plan, which shows details about the view, including if it
can be used in automatic query rewrites.

-- check the materialized view details
descri be formatted mat 1;

#col _name data_type conment
b string
c i nt

#Partition Transform | nformati on

#col _name transformtype
b bucket (16)
c TRUNCATE] 3]

#detail ed tabl e i nformati on

Tabl e_t ype: MATERI ALI ZED VI EW
Tabl e Par anet er s:

current-snapshot-id 563939E424367334713
ﬁ.ét adata_| ocati on
"I:ébl e_type | ceberg

#Materi ali zed View I nformation
Oiginal Qery: ..
Expanded Query: ...
Rewite Enabl ed: Ye

With the query rewrite option enabled, you insert data into the source table, and incremental rebuild occurs
automatically. Y ou do not need to rebuild the view manually before running queries.

Materialized view feature

Y ou can perform actions on an | ceberg table based on the results of ajoin with av2 Iceberg table.

MERGE | NTO <target table> AS T USI NG <source expression/table> AS S

ON <bool ean expressi onl>

WHEN MATCHED [AND <bool ean expressi on2>] THEN UPDATE SET <set cl ause |ist>
WHEN MATCHED [AND <bool ean expressi on3>] THEN DELETE

VHEN NOT MATCHED [AND <bool ean expressi on4>] THEN | NSERT VALUES <val ue |ist>

Use the MERGE INTO statement to update an | ceberg table based on a staging table;

MERGE | NTO cust onmer USI NG (SELECT * FROM new_cust onmer _stage) sub ON sub.id =
customer.id
WHEN MATCHED THEN UPDATE SET nane = sub. nane, state = sub.new state
WHEN NOT MATCHED THEN | NSERT VALUES (sub.id, sub.name, sub.state);

19

Apache | ceberg features

Create an | ceberg table and merge it with a non-1ceberg table.

create external table target ice(a int, b string, c¢c int) partitioned by spec
(bucket (16, a), truncate(3, b)) stored by iceberg stored as orc tblproperti
es ('format-version' ='2");

create table source(a int, b string, ¢ int);

nmerge into target_ice as t using source src ONt.a = src.a

when matched and t.a > 100 THEN DELETE
when mat ched then update set b = '"Merged', ¢ =t.c + 10
when not natched then insert values (src.a, src.b, src.c);

CDP supports Hive table migration from Hive to | ceberg tables using ALTER TABLE to set the table properties.

Note: Do not drop or move the old table during a migration operation. Doing so will delete the data files of
E the old and new tables. Exception: If you set the table property 'external .table.purge’="FALSE', no dataloss
occurs when you drop the table.

In-place table migration saves time generating | ceberg tables. Thereis no need to regenerate data files. Only
metadata, which points to source datafiles, is regenerated.

To convert aHive table to an Iceberg V1 table, use the following syntax:
ALTER TABLE t abl e_nanme CONVERT TO | CEBERG
To convert aHive table to an Iceberg V2 table, you must run two queries. Use the following syntax:

ALTER TABLE t abl e_nane CONVERT TO | CEBERG

ALTER TABLE t abl e name SET TBLPROPERTIES (' format-version' = "'2'
ca)

In-place table migration saves time generating | ceberg tables. Thereis no need to regenerate data files. Only
metadata, which points to source datafiles, is regenerated.

From Hive and Impala, you can change the table metadata location, also known as the snapshot location.

Inthisrelease, you can prevent overrides of the I ceberg file metadata location by unauthorized users. If you do not
prevent overrides, an unauthorized party who knows the underlying schema and file location outside the table location
can rewrite the manifest files within one table location to point to the data files in another table location to read your
data. Y ou accept the default (true), or set a property in the Virtual Warehouse to true to prevent overrides:

« Hive property: hive.iceberg.alow.datafiles.in.table.location.only

SET hive.iceberg.allow datafiles.in.table.location.only = true;

» Impalaproperty: iceberg _restrict_data file location

SET iceberg restrict _data file |ocation = true;

20

Apache | ceberg features

» The new location must contain exactly the same metadata json file as the old location.
« Before changing the metadata | ocation, you must migrate the table to Iceberg.

After migrating atable to Iceberg, you can change the metadata location using ALTER TABLE as shown below:

ALTER TABLE test_table SET TBLPROPERTI ES(' net adat a_I| ocati on' =" s3a: //bucket N
ame/ i ce_t abl e/ net adat a/ v1. net adat a. j son');

| ceberg partition evolution, which is a unique Iceberg feature, and the partition transform feature, greatly simplify
partitioning tables and changing partitions.

Partitions based on transforms are stored in the | ceberg metadata layer, not in the directory structure. Y ou can change
the partitioning completely, or just refine existing partitioning, and write new data based on the new partition layout--
no need to rewrite existing data files. For example, change a partition by month to a partition by day.

Use partition transforms, such as IDENTITY, TRUNCATE, BUCKET, YEAR, MONTH, DAY, HOUR. Iceberg
solves scalability problems caused by having too many partitions. Partitioning can also include columns with alarge
number of distinct values. Partitioning is hidden in the Iceberg metadata layer, eliminating the need to explicitly write
partition columns (Y EAR, MONTH for example) or to add extra predicates to queries for partition pruning.

SELECT * FROM tbl WHERE ts = ‘ 2023-04-21 20: 56: 08’
AND YEAR = 2023 AND MONTH = 4 AND DAY = 21

Y ear, month, and day can be automatically extracted from *2023-04-21 20:56:08' if the table is partitioned by
DAY (ts)

Partition evolution means you can change the partition layout of the table without rewriting existing datafiles. Old
data files can remain partitioned by the old partition layout, while newly added data files are partitioned based on the
new layout.

You can usethe ALTER TABLE SET PARTITION SPEC statement to change the partition layout of an Iceberg
table. A change to the partition spec results in a new metadata.json and a commit, but does not create a new snapshot.

ALTER TABLE t abl e name SET PARTI TI ON SPEC ([col _nane] [, spec(value)][, spec(
value)]...)]

. S)ec
The specification for atransform listed in the next topic, "Partition transform feature”.

ALTER TABLE t

SET PARTI TI ON SPEC (TRUNCATE(5, |evel), HOUR(event_tine),

BUCKET(15, nessage), price);

ALTER TABLE ice_p

SET PARTI TION SPEC (VA D(i), VO D(d), TRUNCATE(3, s), HOUR(t), i);

21

Apache | ceberg features

Partition transform feature

From Hive or Impala, you can use one or more partition transforms to partition your data. Each transform is applied
to asingle column. ldentity-transform means no transformation; the column values are used for partitioning. The
other transforms apply a function to the column values and the data is partitioned by the transformed values.

Using CREATE TABLE ... PARTITIONED BY you create identity-partitioned | ceberg tables. |dentity-partitioned

| ceberg tables are similar to the Hive or Impala partitioned tables, which are stored in the same directory structure
asthe datafiles. |ceberg stores the partitioning columns of identity-partitioned |ceberg tables in a different directory
structure from the data files if the tables are migrated to | ceberg from Hive external tables. |ceberg handles the tables
and files regardless of the location.

Hive and Impala support |ceberg advanced partitioning through the PARTITION BY SPEC clause. Using this clause,
you can define the | ceberg partition fields and partition transforms.

The following table lists the available transformations of partitions and corresponding transform spec.

Partition by year years(time_stamp) | year(time_stamp) Hive and Impala
Partition by month months(time_stamp) | month(time_stamp) Hive and Impala
Partition by a date value stored as int (dateint) | days(time_stamp) | date(time_stamp) Hive
Partition by hours hours(time_stamp) Hive
Partition by a dateint in hours date_hour(time_stamp) Hive
Partition by hashed value mod N buckets bucket(N, col) Hive and Impala
Partition by value truncated to L, whichisa truncate(L, col) Hive and Impala

number of characters

Strings are truncated to length L. Integers and longs are truncated to bins. For example, truncate(10, i) yields
partitions 0, 10, 20, 30 ...

The idea behind transformation partition by hashed value mod N buckets is the same as hash bucketing for Hive
tables. A hashing algorithm calculates the bucketed column value (modulus). For example, for 10 buckets, datais
stored in column value % 10, ranging from 0-9 (0 to n-1) buckets.

You use the PARTITIONED BY SPEC clause to partition atable by an identity transform.

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
[(col _name data_type][, time_stanp TI MESTAMP])]
[PARTI TI ONED BY SPEC([col nane][, spec(value)][, spec(value)]...)]
[STORED AS file fornmat]
STORED BY | CEBERG
[TBLPROPERTI ES (property_nanme=property_value, ...)]

Where spec(value)represents one or more of the following transforms:

* YEARS(col_name)

« MONTHS(col_name)

e DAY S(col_name)

e BUCKET(bucket_num,col _name)
* TRUNCATE(length, col_name)

22

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables

Apache | ceberg features

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nanme
[(col _name data_type, ...)]
[PARTI TI ONED BY SPEC([col nane][, spec(value)][, spec(value)]...)]
STORED (AS | BY) | CEBERG
[TBLPROPERTI ES (property_nanme=property_value, ...)]

Where spec(value) represents one or more of the following transforms:

¢ YEARS(col_name)

« MONTHS(col_name)

* DAY S(col_name)

e BUCKET(bucket_num,col _name)
« TRUNCATE(length, col_name)

The following example creates atop level partition based on column i, a second level partition based on the hour part
of the timestamp, and athird level partition based on the first 1000 charactersin column j.

CREATE EXTERNAL TABLE ice 3 (i INT, t TIMESTAMP, j BI G NT) PARTI TI ONED BY SP
EC (i, HOUR(t), TRUNCATE(1000, j)) STORED BY | CEBERG

CREATE TABLE ice 13 (i INT, t TIMESTAMP, | BI G NT) PARTI TI ONED BY SPEC (i, H
OUR(t), TRUNCATE(1000, j)) STORED BY | CEBERG

The following examples show how to use the PARTITION BY SPEC clausein a CREATE TABLE query from
Impala.The same transforms are availablein a CREATE EXTERNAL TABLE query from Hive.

CREATE TABLE ice t(id INT, nane STRING dept STRI NG
PARTI TI ONED BY SPEC (bucket (19, id), dept)

STORED BY | CEBERG

TBLPROPERTI ES (' format-version' ='2");

CREATE TABLE ice_ctas

PARTI TI ONED BY SPEC (truncat e(1000, id))

STORED BY | CEBERG

TBLPROPERTI ES (' format-version' ='2")

AS SELECT id, int_col, string_col FROM source_table;

Creating an I ceberg partitioned table
Create table feature
Partition evolution feature

Apache | ceberg stores extensive metadata for its tables. From Hive and Impala, you can query the metadata tables as
you would query aregular table. For example, you can use projections, joins, filters, and so on.

| ceberg metadata tables include information that is useful for efficient table maintenance (about snapshots, manifests,
data, deletefiles, etc.) aswell as statistics that help query engines plan and execute queries more efficiently (value
count, min-max values, number of NULLS, etc.).

23

Apache | ceberg features

Note: Iceberg metadata tables are read-only. Y ou cannot add, remove, or modify recordsin the tables. Also,
you cannot drop or create new metadata tables.

For more information about the A pache | ceberg | ceberg metadata table types, see the Apache Iceberg
MetadataTableType enumeration.

For more information about querying | ceberg metadata, see the Apache Iceberg Spark documentation.

The following sections describe how you can interact with and query |ceberg metadata tables:

The SHOW METADATA TABLES statement lists all metadata tables belonging to an | ceberg table. Y ou can also
filter the tables according to a specific pattern.

Note: The SHOW METADATA TABLES statement is only availablein Impalaand is not supported in
Hive.

Impala Syntax:
SHOW METADATA TABLES | N [dat abase_nane.]tabl e_nane [[LIKE] "pattern"];
Impala Example:

SHOW METADATA TABLES I N defaul t.ice_table;

CQut put

fococococococococoooooe +
| nane |
doocococococooocooocoooooo oo +

| all _data files |
| all _delete files |
| all _entries |
| all _files [
| all_manifests |
| data files [
| delete files |
| entries |
| files |
| history [
| manifests |
| netadata_ | og entries
| partitions |
| position_deletes |
| refs |
| snapshots [

Y ou can use the regular SELECT statement from Hive or Impalato query |ceberg metadata tables. To reference a
metadata table, use the fully qualified path as shown in the syntax.

Hive or Impala Syntax:
SELECT ... FROM dat abase_nan®e. t abl e_nane. net adat a_t abl e_nane;
Hive or Impala Example:

SELECT * FROM default.ice table.files;

24

Apache | ceberg features

Y ou can select any subset of the columns or all of them using ‘*’. In comparison to regular tables, running a SELE
CT * from Impala on metadata tables always includes complex-typed columns in the result. The Impala query option,
EXPAND_COMPLEX_TYPES only appliesto regular tables. However, Hive always includes complex columns
irresepctive of whether SELECT queries are run on regular tables or metadata tables.

For Impala queries that have amix of regular tables and metadata tables, a SELECT * expression where the sources
are metadata tables always includes complex types, whereas for SELECT * expressions where the sources are regular
tables, complex types are included only if the EXPAND_COMPLEX_TYPES query option is set to 'true'.

In the case of Hive, columns with complex types are aways included.

Y ou can also filter the result set using a WHERE clause, use aggregate functions such as MAX or SUM, JOIN
metadata tables with other metadata tables or regular tables, and so on.

Example:

SELECT
s. operation,
h.is_current_ancestor,
S. sunmary
FROM default.ice_table. history h
JO N default.ice_table.snapshots s
ON h. snapshot _id = s.snapshot _id
WHERE s. operation = 'append'
ORDER BY nmde_current at;

* Impaladoes not support the DATE and BINARY datatypes. NULL isreturned instead of their actual values.
* Impaladoes not support unnesting collections from metadata tables.

Like regular tables, | ceberg metadata tables have schemas that can be explored using the DESCRIBE statement. The
DESCRIBE statement displays metadata about a table, such as the column names and their data types.

To reference the metadata table, use the fully qualified path as shown in the syntax.

Note: DESCRIBE FORMATTED|EXTENDED is not available for metadata tables. In Impala, using this
statement results in an error whereas Hive displays the same output as the regular DESCRIBE statement.

Hive or Impala Syntax:
DESCRI BE dat abase _nane. t abl e_nane. net adat a_t abl e_nane;
Hive or Impala Example:

DESCRI BE default.ice_table. history;

Cut put :

Focococococcoccocococooooe Fococcoccocoooe Focococoooe Focococococ +
| name | type | corment | nullable |
feccoococccooocococooooc feccoococooc feccooocooc feccoococooc +
made_current at	tinmestanp		true
snapshot _id	bigint		true
parent_id	bigint		true
is_current_ancestor	bool ean [true [
feccoococcooocococooooc feccoococooc foccooocooc feccoococooc +

Apache | ceberg MetadataT ableType
Apache Spark documentation

25

https://github.com/apache/iceberg/blob/main/core/src/main/java/org/apache/iceberg/MetadataTableType.java
https://iceberg.apache.org/docs/latest/spark-queries/#inspecting-tables

Apache | ceberg features

In the event of a problem with your table, you can reset atable to a good state as long as the snapshot of the good
tableisavailable. You can roll back the table data based on a snapshot id or a timestamp.

When you modify an Iceberg table, a new snapshot of the earlier version of the table is created. When you roll back a
table to a snapshot, a new snapshot is created. The creation date of the new snapshot is based on the Timezone of your
session. The snapshot id does not change.

ALTER TABLE test tabl e EXECUTE rol | back(snapshot|D);
ALTER TABLE test table EXECUTE rol | back('ti mestanp');

The following example rolls back to an earlier table, creating a new snapshot having a new creation date timestamp,
but keeping the same snapshot id 3088747670581784990.

ALTER TABLE ice_t EXECUTE ROLLBACK(3088747670581784990);

The following example rolls the table back to the latest snapshot having a creation timestamp earlier than '2022-08-08
00:00:00.

ALTER TABLE ice_7 EXECUTE ROLLBACK(' 2022-08-08 00: 00: 00')

Y ou can read | ceberg tables from Impala as you would any table. Joins, aggregations, and analytical queries, for
example, are supported.

Impala supports reading V2 tables with position deletes.

SELECT * FROM ice_t;

SELECT count (*) FROMice_t i LEFT OUTER JO N other_t b
ON (i.id = other_t.fid)
VWHERE i.col = 42;

Y ou learn that the Hive or Impala schema changes when the associated | ceberg table changes. Y ou see examples of
changing the schema.

Although you can change the schema of your table over time, you can still read old data files because | ceberg
uniquely identifies schema elements. A schema change results in a new metadata.json and a commit, but does not
create a new snapshot.

The | ceberg table schemais synchronized with the Hive/lmpala table schema. A change to the schema of the Iceberg
table by an outside entity, such as Spark, changes the corresponding Hive/lmpalatable. Y ou can change the Iceberg
table using ALTER TABLE to make the following changes:

From Hive:

26

https://iceberg.apache.org/spec/#row-level-deletes

Apache | ceberg features

e Addacolumn
* Replace acolumn
e Change acolumn type or its position in the table

From Impala:

¢ Addacolumn
* Rename acolumn

e Dropacolumn

« Change acolumn type

An unsafe change to a column type, which would require updating each row of the table for example, is not allowed.
The following type changes are safe;

e inttolong

+ float to double

e decima(P, S) todecimal (P, S) if precision isincreased

Y ou can drop a column by changing the old column to the new column.

ALTER
ALTER

ALTER
AFTER

ALTER

ALTER

ALTER
ALTER

ALTER

ALTER
ALTER

ALTER
ALTER

ALTER

TABLE
TABLE

tabl e_name ADD COLUWNS (col _name type[, .])
tabl e_nane CHANGE COLUWN col ol d_nane col new nane type

TABLE t abl e_name CHANGE COLUWN col _ol d_nane col _new _nane type [Fl RST|
col _nane] [existing_col _name

TABLE

TABLE

TABLE
TABLE

TABLE

TABLE
TABLE

TABLE
TABLE

TABLE

tabl e_nane REPLACE COLUWNS (col nane type)

tabl e_nane ADD COLUWNS(col _nane type[, .])

tabl e_nane CHANGE COLUWN col ol d_nane col new nane type
tabl e_nane DROP COLUW col nane

t ADD COLUWNS(nessage STRING price DECH MAL(8,1));

t REPLACE COLUWMNS (i int comment ‘...’', a string, ...);
t CHANGE COLUWN col _x col _x DECI MAL (22, 3) AFTER col _y;

ice 12 ADD COLUWNS(nessage STRING price DECI MAL(8,1));
ice 12 DROP COLUW i ;

ice_12 CHANGE COLUMN s str STRING

From Hive or Impala, you can base anew |ceberg table on a schemain a Parquet file. Y ou see adifferencein the
Hive and Impala syntax and examples.

27

Apache | ceberg features

From Hive, you must use FILE inthe CREATE TABLE LIKE ... statement. From Impala, you must omit FILE in the
CREATE TABLE LIKE ... statement. The column definitions in the Iceberg table are inferred from the Parquet data
file when you create atable like Parquet from Hive or Impala. Set the following table property for creating the table:

hi ve. parquet . infer.binary.as = <val ue>

Where <value> is binary (the default) or string.

This property determines the interpretation of the unannotated Parquet binary type. Some systems expect binary to be
interpreted as string.

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane LI KE FILE PARQU
ET 'obj ect_storage_path_of _parquet _file'

[PARTI TI ONED BY [SPEC] ([col _nane] [, spec(value)][, spec(value)]...)]]

[STORED AS file_format]

STORED BY | CEBERG

[TBLPROPERTI ES (property_nane=property value, ...)]

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e nane LI KE PARQUET ' obj ect _stora
ge_path_of parquet file'

[PARTI TI ONED BY [SPEC] ([col _nane][, spec(value)][, spec(value)]...)]]

STORED (AS | BY) | CEBERG

[TBLPROPERTI ES (property_name=property_value, ...)]

CREATE TABLE ctlf_table LIKE FILE PARQUET ' hdfs://fil es/schema. parq'
STORED BY | CEBERG

CREATE TABLE ctlf_table LIKE PARQUET ' hdfs://fil es/schema. parq'
STORED BY | CEBERG

In addition to time travel queries, expiring a snapshot, and using a snapshot to rollback to aversion of atable, you can
also set any snapshot to be the current snapshot from Hive.

ALTER TABLE TBL_| CEBERG PART EXECUTE SET_CURRENT_SNAPSHOT (<snapshot | D>)

ALTER TABLE TBL_| CEBERG PART EXECUTE SET_CURRENT SNAPSHOT (75212489901265493
11)

28

Apache | ceberg features

From Hive or Impala, you can run point in time queries for auditing and regulatory workflows on Iceberg tables.
Time travel queries can be time-based or based on a snapshot ID.

I ceberg generates a snapshot when you create, or modify, atable. A snapshot stores the state of atable. You can
specify which snapshot you want to read, and then view the data at that timestamp. In Hive, you can use projections,
joins, and filtersin time travel queries. Y ou can add expressions to the timestamps, as shown in the examples. You
can expire snapshots.

Snapshot storage is incremental and dependent on the frequency and scale of updates. By default, Hive and Impala
use the latest snapshot. Y ou can query an earlier snapshot of Iceberg tables to get historical information. Hive and
Impala use the latest schemato query an earlier table snapshot even if it has a different schema.

SELECT * FROM tabl e nane FOR SYSTEM TIME AS OF 'tinme_stanp' [expression]
SELECT * FROM tabl e_nane FOR SYSTEM VERSI ON AS OF snapshot _id [expression]

e time_stamp

The state of the Iceberg table at the time specified by the UTC timestamp.
e snapshot_id

The ID of the | ceberg table snapshot from the history output.

SELECT * FROMt FOR SYSTEM TI ME AS OF ' 2021-08-09 10:35:57' LIMT 100;

SELECT * FROMt FOR SYSTEM VERSI ON AS OF 3088747670581784990 limt 100;
SELECT * fromice_11 FOR SYSTEM TIME AS OF now() - interval 30 ninutes;

Truncating an | ceberg table removes all rows from the table. A new snapshot is created. Truncation works for
partitioned and unpartitioned tables.

Although the table data and the table and column stats are cleared, the old snapshots and their datafiles continue to
exist to support time travel in the future.

TRUNCATE t abl e_nane

TRUNCATE [TABLE] tabl e name

TRUNCATE t;

29

Best practices for Iceberg in

Based on large scale TPC-DS benchmark testing, performance testing and real-world experiences, recommends
several best practices when using | ceberg.

Follow these key best practices listed below when using | ceberg:
e Uselceberg asintended for analytics.

The table format is designed to manage a large, slow-changing collection of files. For more information, see the
| ceberg spec.
* Reduce read amplification

Monitor the growth of positional deltafiles, and perform timely compactions.
» Speed up drop table performance, preventing deletion of data files by using the following table properties:

Set external .table. purge=fal se and gc. enabl ed=f al se

« Tunethefollowing table properties to improve concurrency on writes and reduce commit failures: commit.retry
.num-retries (default is4), commit.retry.min-wait-ms (default is 100)

e Maintain arelatively small number of data files under the iceberg table/partition directory for efficient reads. To
aleviate poor performance caused by too many small files, run the following queries:

TRUNCATE TABLE t arget;
| NSERT OVERWRI TE TABLE target select * fromtarget FOR SYST
EM VERSI ON AS OF <preTruncat eSnapshot | d>;

* To minimize the number of delete files and file handles and improve performance, ensure that the Spark
write.distribution.mode table property valueis “hash” (the default setting for Spark Iceberg 1.2.0 onwards).

Learn the types of workloads best suited for Iceberg. Under certain conditions, using V2 tables versus V1 tables
might improve query response.

| ceberg atomic DELETE and UPDATE operations resemble traditional RDBM S systems, but are not suitable for
OLTP workloads. Iceberg is not designed to handle high frequency transactions. To handle very large datasets and
frequent updates, use Apache Kudu.

Use Iceberg for managing large, infrequently changing datasets. Y ou can update and del ete | ceberg V2 tables at the
row-level and not incur the overhead of rewriting the data files of V1 tables. Iceberg stores information about the
deleted recordsin position delete files. These files store the file paths and positions of the deleted records, eliminating
the need to rewrite the files. Iceberg performs a DELETE plus an INSERT operation in asingle transaction. This
technique speeds up queries. Query engines scan the data files and del ete files associated with a snapshot and merge
them, removing the deleted rows. For example, to remove all data belonging to a single customer:

DELETE FROM ice_thl WHERE user_id = 1234;
To update a column value in a specific record:
UPDATE ice_tbl SET col_v =col_v + 1 WHERE id = 4321;

Y ou can convert an Iceberg v1 table to v2 by setting atable property as follows:'format-version' = '2'.

30

https://iceberg.apache.org/spec/
https://iceberg.apache.org/spec/#row-level-deletes
https://iceberg.apache.org/spec/#position-delete-files

Performance tuning

Impala usesits own C++ implementation to deal with Iceberg tables. Thisimplementation provides significant
performance advantages over other engines.

To tune performance, try the following actions:

» Speed up drop table performance, preventing deletion of data files by using the following table properties:

Set external .tabl e. purge=fal se and gc. enabl ed=f al se

« Tunethe following table properties to improve concurrency on writes and reduce commit failures: commit.retry
.num-retries (default is4), commit.retry.min-wait-ms (default is 100)

» Read Iceberg V2 tables from Hive using vectorization when heavy table scanning occurs asin SELECT
COUNT(*) FROM TBL_ICEBERG_PART.

e set hivellap.io.memory.mode=cache;
* set hivellap.io.enabled=true;
» set hive.vectorized.execution.enabled=true;
« Uselceberg from Impalafor querying Iceberg tables when latency is a concern.

The massively parallel SQL query engine, backend executors written in C++, and frontend (analyzer, planner)
written in Java delivers query results fast.

e Cache manifest files as described in the next topic.

Apache | ceberg provides a mechanism to cache the contents of Iceberg manifest filesin memory. The manifest
caching feature helps to reduce repeated reads of small |ceberg manifest files from remote storage by Impala
Coordinators and Catalogd.

Impala caches table metadata in CatalogD and the local Coordinator’s catalog, making table metadata analysis fast if
the targeted table metadata and files were previously accessed. Impala might analyze the same table multiple times
across concurrent query planning and also within single query planning, so caching is very important.

Having afrontend written in Java, Impala can directly analyze many aspects of the | ceberg table metadata through
the Java Library provided by Apache Iceberg. Metadata analysis such aslisting the table data file, selecting the table
snapshot, partition filtering, and predicate filtering is delegated through | ceberg Java API.

To use the Iceberg Java APl while still maintaining fast query planning, Iceberg implements caching strategiesin the
Iceberg Java Library similar to those used by Apache Impala. The |ceberg manifest caching feature constitutes these
caching strategies. For more information about manifest caching, see the I ceberg Manifest Caching Blog.

Y ou can enable or disable manifest caching for Impala Coordinators and Catalogd by setting propertiesin Cloudera
Manager.

By default, only 8 catalogs can have their manifest cache active in memory.

To connect to more than 8 HDFS clusters, in Cloudera Manager, configure iceberg.io.manifest.cache.fileio-max in
catalogd_java opts and the coordinator impalad_embedded java opts.

In the following task, you enable | ceberg manifest caching for the Impala Coordinator and Catalog Server.

31

Unsupported features and limitations

1. Navigateto Cloudera Manager. .
2. Search for Iceberg.

Enable Iceberg manifest caching IMPALA-1 (Service-Wide) '

iceberg_manifest_cache_enabled
£} iceberg_manifest_cache_enabled

By default, manifest caching is enabled, but if you have turned it off, check Impala-1 (Service-Wide) to re-enable.

Cloudera does not support all featuresin Apache Iceberg. Thelist of unsupported features for Cloudera Data Platform
(CDP) differs from release to release. Also, Apache Iceberg in CDP has some limitations you need to understand.

The following table presents feature limitations or unsupported features:
means not yet tested
N/A meanswill never be tested, not a GA candidate

|ceberg Feature Hive Impala Spark
Branching/Tagging # # #
Read equality deletes for Flink # # #
upserts

Read equality deletes for NiFi # # #
Write equality deletes N/A N/A N/A
Read outside files N/A N/A N/A
Bucketing # # #

The table above shows that the following features are not supported in this release of CDP:
» Tagging and branching

A technical preview is supported from Hive (not Impala or Spark) in Cloudera Data Warehouse Public Cloud.
» Reading files outside the table directory

Reading outside files is not supported due to the security risk. An unauthorized party who knows the underlying
schema and file location outside the table location can rewrite the manifest files within one table location to point
to the data files in another table location to read your data.

» Buckets defined from Hive do not create like buckets in | ceberg.

For more information, see "Bucketing workaround" below.
» Using Iceberg tables as Spark Structured Streaming sources or sinks
e Pylceberg
« Migration of Delta Lake tablesto Iceberg

32

Accessing | ceberg tables

The following features have limitations or are not supported in this release:

* Multipleinsert overwrite queries that read data from a source table.

* When the underlying table is changed, you need to rebuild the materialized view manually, or use the Hive query
scheduling to rebuild the materialized view.
* You must be aware of the following considerations when using equality deletes:

e Equality updates and deletes are not supported.

« |f you are using Apache Flink or Apache NiFi to write equality deletes, then ensure that you provide a
PRIMARY KEY for thetable. Thisisrequired for engines to know which columns to write into the equality
deletefiles.

« |f thetableis partitioned then the partition columns have to be part of the PRIMARY KEY
» For Apache Flink, the table should be in 'upsert-mode' to write equality deletes
» Partition evolution is not allowed for |ceberg tables that have PRIMARY KEY's

« Anequdity deletefilein thetableisthe likely cause of a problem with updates or deletes in the following
situations:

« In Change Data Capture (CDC) applications
e Inupserts from Apache Flink
* From athird-party engine

* You must be aware of the following:

e AnIceberg table that points to another | ceberg table in the HiveCatalog is not supported.

For example:

CREATE EXTERNAL TABLE ice_t
STORED BY | CEBERG
TBLPROPERTI ES ('iceberg.table_identifier'="db.tbh");

e Seeadso Iceberg datatypes.

A query from Hive to define buckets/folders in Iceberg do not create the same number of buckets/folders as the
same query creates in Hive. In Hive bucketing by multiple columns using the following clause creates 64 buckets
maximum inside each partition.

| CLUSTERED BY (|
| id, |
[partition_id) [
| I NTO 64 BUCKETS

Defining bucketing from Hive on multiple columns of an Iceberg table using this query creates 64* 64 buckets/
folders; consequently, bucketing by group does not occur as expected. The operation will create many small files at
scale, adrag on performance.

Add multiple bucket transforms (partitions) to more than one column in the current version of Iceberg as follows:

bucket (p, col1, col2) =[bucket(m coll) , bucket(n, col2)] where p = m?* n

CDP uses Apache Ranger to provide centralized security administration and management. The Ranger Admin Ul is
the central interface for security administration. Y ou can use Ranger to create two policies that allow users to query
| ceberg tables.

33

Accessing | ceberg tables

How you open the Ranger Admin Ul differs from one CDP service to another. In Management Console, you can
select your environment, and then click Environment Details Quick Links Ranger .

Y ou log into the Ranger Admin Ul, and the Ranger Service Manager appears.

%/ Ranger UAccessManager [Audit (DSecurityZone & Settings

Last Response Time : 12/20/2022 02:16:44 PM
Service Manager Security Zone: * @import B Expot

[~ HDFS +0 8 [~ HBASE + 08 [~ HADOOP SQL + 8

hdfs - g n cm_hbase - F u Hadoop 501 - r.g u

The default policies that appear differ from service to service. You need to set up two Hadoop SQL policiesto query
| ceberg tables:

e Oneto authorize users to access the I ceberg files

Follow stepsin "Editing apolicy to access Iceberg files' below.
* Oneto authorize usersto query Iceberg tables

Follow stepsin "Creating a policy to query an Iceberg table" below.

e Obtain the RangerAdmin role.
e Get the user name and password your Administrator set up for logging into the Ranger Admin.

The default credentials for logging into the Ranger Admin Web Ul are admin/admin123.

Y ou need to navigate to Ranger Admin Ul to create a policy for users to access | ceberg tables. How you navigate to
the Ranger Admin Ul differs from one CDP service to another, and typically there is more than one path. Y ou learn
one way to navigate to the Ranger Admin Ul from Data Hub.

Accessing | ceberg tables

1. Loginto CDP, and in Cloudera Management Console, click Data Hubs Clusters.

CLOUDZRA
Managemeant Console

2. In Data Hubs, select the name of your Data Hub from the list.

3. In Environment Details, click thelink to your Data L ake.
For example, click dlscale8-bc8bgz.

dWS Environment Details

MAME DATA LAKE

discale8-bc3bgz discale8-bc3bqgz

In Data Lake Details, in Quick Links, Ranger appears:

QUICE LINKES
O atlas ©Q Ranger © Data
Catalog

You learn how to edit the existing default Hadoop SQL Storage Handler policy to accessfiles. This policy is one of

the two Ranger policies required to use | ceberg.

35

Accessing | ceberg tables

The Hadoop SQL Storage Handler policy allows references to | ceberg table storage location, which is required for
creating or altering atable. Y ou use a storage handler when you create afile stored as Iceberg on the file system or

object store.

In thistask, you specify | ceberg as the storage-type and allow the broadest access by setting the URL to *.

The Hadoop SQL Storage Handler policy supports only the RW Storage permission. A user having the required RW
Storage permission on aresource, such as | ceberg, that you specify in the storage-type properties, is alowed only

to reference the table location (for create/alter operations) in Iceberg. The RW Storage permission does not provide
access to any table data. Y ou need to create the Hadoop SQL policy described in the next topic in addition to this

Hadoop SQL Storage Handler policy to access datain tables.

For more information about these policy settings, see Ranger Storage Handler documentation.

1. Loginto Ranger Admin Web UI.
The Ranger Service Manager appears.

:'ﬁ'"ﬂanger UAccess Manager [Audit ()Security Zone & Settings
Service Manager Security Zone:
[~ HDFS + 64 [~ HBASE + 064
em_hdfs - i n em_hbase . ra u

2. InPolicy Name, enable the all - storage-type, storage-url policy.

List of Policies : Hadoop SQL

&, Search for your palicy

Palicy ID Palicy Mane
2} all - glokal
9 all - database, takbls, column
10 all - databass, tabls

all - staracge-Type, storage-url

3.

Palicy Labels

% admin ~

Last Response Time @ 12/20V2022 02:16:44 PM

A Import B Export
[~ HADOOP SQL + 608
Hadoop SOL - ry n

Status

008

In Service Manager, in Hadoop SQL, select Edit 4 and edit the all storage-type, storage-url policy.

36

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Accessing I ceberg tables

4. Below Policy Label, select storage-type, and enter iceberg..
5. In Storage URL, enter the value *, enable Include.

Policy Type (i
Policy D* (i

Policy Name® all - storage-type, storage-url o Enabled @)
Policy Label Select...
Storage Type iceberg X

* ™

.

Description Policy for all - storage-type, storage-url

Audit Logging”*

For more information about these policy settings, see Ranger storage handler documentation.
6. In Allow Conditions, specify roles, users, or groups to whom you want to grant RW storage permissions.

Y ou can specify PUBLIC to grant access to |ceberg tables permissionsto all users. Alternatively, you can grant
access to one user. For example, add the systest user to the list of users who can access | ceberg:

Allow Conditions:

Select Role Select Group Select User

hive | |x beacon | | x dpprofiler |
s hue | |« admin | | x impala |

» systest

For more information about granting permissions, see Configure a resource-based policy: Hadoop-SQL.
7. Addthe RW Storage permission to the policy.
8. Saveyour changes.

37

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Accessing | ceberg tables

Y ou learn how to set up the second required policy for using Iceberg. This policy manages SQL query access to
I ceberg tables.

Y ou create a Hadoop SQL policy to allow roles, groups, or usersto query an Iceberg table in a database. In thistask,

you see an exampl e of just one of many ways to configure the policy conditions. Y ou grant (allow) the selected roles,
groups, or users the following add or edit permissions on the table: Select, Update, Create, Drop, Alter, and All. You
can also deny permissions.

For more information about creating this policy, see Ranger documentation.

1. Loginto Ranger Admin Web Ul.
The Ranger Service Manager appears.
2. Click Add New Palicy.

3. Fill inrequired fields.
For example, enter the following required settings:

« InPolicy Name, enter the name of the policy, for example IcebergPolicyl.

* Indatabase, enter the name of the database controlled by this policy, for exampleicedb.

« Intable, enter the name of the table controlled by this policy, for exampleicetable.

« In columns, enter the name of the column controlled by this policy, for example enter the wildcard asterisk (*)
to allow access to al columns of icetable.

* Accept defaults for other settings.

Create Policy

Policy Details:
lcebergPolicy1 o m

lcedb

i

icetable

4, Scroll down to Allow Conditions, and select the roles, groups, or users you want to access the table.

Y ou can use Deny All Other Accessesto deny accessto all other roles, groups, or users other than those specified
in the allow conditions for the policy.

38

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Accessing Iceberg filesin Ozone

5. Select permissionsto grant.
For example, select Create, Select, and Alter. Alternatively, to provide the broadest permissions, select All.

add/edit permissions

Allow Conditions:

Saloct Aolo Salect Group

Ignore RW Storage and other permissions not named after SQL queries. These are for future implementations.
6. Click Add.

Learn how to set up policies to give users access to I ceberg filesin Ozone. For example, if you query Iceberg tables
from Impala, you must set up a Hadoop SQL access policy and Ozone file system access policy.

When Ranger is enabled in the cluster, any user other than the default admin user, "om" requires the necessary Ranger
permissions and policy updates to access the Ozone filesystem. To create an | ceberg table on the Ozone file system,
you need Ranger permissions.

In this task, you first enable Ozone in the Ranger service, and then set up the required policies.

1. In ClouderaManager, click Clusters Ozone Configuration to navigate to the configuration page for Ozone.
2. Search for ranger_service, and enable the property.

39

Accessing | ceberg filesin Ozone

3. Click Clusters Ranger Ranger Admin Web Ul , enter your user name and password, then click Sign In.

The Service Manager for Resour ce Based Policies pageis displayed in the Ranger console.

Service Manager Security Zone: Saloct Zone Name « | mimoot @ Edport

[=HDFs + [=HBASE + [= HADOOP SQL

+
arm_hdfs - I3 n am_hbase - r s n
Hedoop SCL @ | n

=YARN + 0 B = KNOX + @ B (~SOLR + @8

cm_yam & | Z n cm_knox = & B cm_solr & @ n

= KAFKA + 0B E=NF o+ [= NIFI-REGISTRY
+

cm_kafka - n

= ATLAS + B B8 =aADLS + 88 EKuDu + @8

em_atlas - 'rs n em_kudu - # n

[= OZONE + [= SCHEMA-

REGISTRY + a

CIT_ozone & | @z n

om_schema-registry

k2 : |
. Click the cm_ozone prel oaded resource-based service to modify an Ozone policy.

In the cm_ozone policies page, click the Policy ID or click) Edit against the "all - volume, bucket, key"
policy to modify the policy details.

. Inthe Allow Conditions pane, add roles, groups, or users, choose the necessary permissions, and then click Save.
Policy

Select User . Permissions
Conditions

Al | Read | write | create
S Cofjﬁm List | Delete | Read_AcL
£ om £ Nive L NTLANT

. Click the Service Manager link in the breadcrumb trail and then click the Hadoop SQL prel oaded resource-based
service to update the Hadoop SQL URL policy.

% Ranger UAccessManager

Sarvice Manager cmi_ozong Policies

In the Hadoop SQL policies page, click the Policy ID or click Edit against the "all - url" policy to modify
the policy details.

40

Creating an Iceberg table

9. Select roles, users, or groups in addition to the default.

By default, "hive", "hue", "impaad’, "admin” and afew other users are provided accessto all the Ozone URLs. To
grant everyone access, add the "public" group to the group list. Every user is then subject to your allow conditions.

Select Group Select User Permissions
 select | update | Create | orop | ater | index
e [Lock] an | Read | write
% public [Retresh
® hue x admin * impala

A step-by-step procedure describes how to create an Apache | ceberg table from a client connection to Hive or Impala,
or from Hue in Data Hub. Y ou see how to access and use the query editor Hue to create an | ceberg table.

In this task, from a Data Hub cluster, you open Hue, and use Hive or Impalato create atable.

e You must meet the prerequisites to query |ceberg tables, including obtaining Ranger access permissions.

1. Loginto CDP, and click Data Hub.

CLOUDERA
Managament Consola

Data Hubs = ba

CLUSTER TEMPLATE

7.2.15 - Real-time Data Mart: Apache Impala, Hi
.A'_"'-. Environments STATUS REASOM

Cluster infrastructure is now stopping.

& Dat

- 2r Management

aWs Environment Details

NAME DATA LAKE
jsifontes-env jsifantes-d
@ Services

& cmul @ Hue

2. Click Hue.
3. Select adatabase.

4. Enter aquery to create asimple Iceberg table in the default Parquet format.
Hive example:

CREATE EXTERNAL TABLE ice tl1 (i int, s string, ts tinestanp, d date)
STORED BY | CEBERG

Impala example:

CREATE TABLE ice t2 (i int, s string, ts tinestanp, d date)

41

Creating an Iceberg partitioned table

STORED BY | CEBERG
In CDP, CREATE EXTERNAL TABLE, and just CREATE TABLE, arevalid from Hive. Y ou use the

EXTERNAL keyword from Hive to create the | ceberg table to purge the data when you drop the table. In CDP,
from Impala, you must use CREATE TABLE to initialize the | ceberg table.

Click > to run the query.

The ease of use of the Iceberg partitioning is clear from an example of how to partition a table using the backward
compatible, identity-partition syntax. Alternatively, you can partition an | ceberg table by column values from Hive or
Impala.

Y ou can specify partitioning that is backward compatible with Iceberg V1 using the PARTITION BY clause. This
type of table is called an identity-partitioned table. For more information about partitioning, see the Apache Iceberg
documentation.

1
2.

3.

Select, or use, a database.

Create an identity-partitioned table and run the query.
Hive:

CREATE EXTERNAL TABLE ice extl (i int, s string, ts tinmestanp, d date) P
ARTI TI ONED BY (state string)

STORED BY | CEBERG

STORED AS ORC;

Impala

CREATE TABLE ice_ext2 (i int, s string, ts tinestanp, d date) PARTI TI ONED
BY (state string)
STORED BY | CEBERG,

Create atable and specify an identity transform, such as bucket, truncate, or date, using the Iceberg V2
PARTITION BY SPEC clause.
Hive:

CREATE TABLE ice_t _transforns (i int, s string, ts tinestanp, d date)
PARTI TI ONED BY SPEC (TRUNCATE(10, i), BUCKET(11, s), YEAR(ts))
STORED BY | CEBERG

Impaa

CREATE TABLE ice t transforns (i int, s string, ts tinestanp, d date)
PARTI TI ONED BY SPEC (TRUNCATE(10, i), BUCKET(11, s), YEAR(ts))
STORED AS | CEBERG

Partition transform feature

42

https://iceberg.apache.org/spec/?h=partitioning#partition-transforms
https://iceberg.apache.org/spec/?h=partitioning#partition-transforms

Expiring snapshots

Y ou can expire snapshots of an Iceberg table using an ALTER TABLE query. Y ou should periodically expire
snapshots to delete data files that are no longer needed, and reduce the size of table metadata.

Each write to an | ceberg table creates a new snapshot, or version, of atable. Y ou can use snapshots for time-
travel queries, or to roll back atable to avalid snapshot. Snapshots accumulate until they are expired by the
expire_snapshots operation.

1. Enter aquery to expire snapshots older than the following timestamp: '2021-12-09 05:39:18.689000000'

ALTER TABLE test_table EXECUTE EXPI RE_SNAPSHOTS(' 2021-12- 09 05: 39: 18. 689
000000');

2. Enter aquery to expire snapshots having between December 10, 2022 and November 8, 2023.

ALTER TABLE test_tabl e EXECUTE EXPlI RE_SNAPSHOTS BETWEEN (' 2022-12-10 00:
00: 00. 000000000) AND (' 2023-11-08 00: 00: 00. 000000000") ;

Y ou can append data to an Iceberg table by inserting values or by selecting the data from another table. Y ou can
update data, replacing the old data.

Y ou use the INSERT command in one of the following ways to popul ate an Iceberg table from Hive:

* INSERT INTOtVALUES (1, ‘asf’, true);
* INSERT INTOt SELECT * FROM s,
* INSERT OVERWRITE t SELECT * FROM s;

I NSERT I NTO t VALUES (1, ‘asf’, true);
I NSERT INTO t SELECT * FROM s;
| NSERT OVERWRI TE t SELECT * FROM s;

Y ou see how to use asimple ALTER TABLE statement from Hive or Impalato migrate an external Hive table to an
| ceberg table. Y ou see how to configure table input and output by setting table properties.

Note: To prevent loss of new and old table data during migration of atable to Iceberg, do not drop, move, or
B change the old table during migration.

In thistask, from a Data Hub cluster, you open Hue, and use Hive or Impalato create atable. In Impala, you can
configurethe NUM_THREADS FOR_TABLE _MIGRATION query option to tweak the performance of the table

43

Migrating a Hive table to Iceberg

migration. It sets the maximum number of threads to be used for the migration process but could also be limited

by the number of CPUs. If set to zero then the number of available CPUs on the coordinator node is used as the
maximum number of threads. Parallelism occurs on the basis of data files within a partition, which means one
partition is processed at atime with multiple threads processing the files inside the partition. In case thereis only one
file in each partition, sequential execution occurs.

Y ou must meet the prerequisites to query |ceberg tables, including obtaining Ranger access permissions.

1. Loginto CDP, and click Data Hub.

CLOUDZRA

yata Hubs / ba
Management Console Data Hubs

CLUSTER TEMPLATE

7.2.15 - Real-time Data Mart: Apache Impala, Ht

(7 Dashboard

£ Environments STATUS REASON

Cluster infrastructure is now stopping.

nagement
aWs Environment Details

NAME DATA LAKE
jsifontes-env jsifontes-d
@ Services

B cM-ul @y HuE

2. Click Hue.
3. Select adatabase.

4. Enter aquery to use a database.
For example:

USE nydb;

5. Enter aquery to migrate an existing external Hive table to an Iceberg v2 table.
Hive example:

ALTER TABLE t bl
SET TBLPROPERTI ES (' storage_handl er' =" org. apache. i ceberg. nr. hi ve. H vel c
eber gSt or ageHand! er ',
‘format-version' ="'2");
Impala example, which requires two queries:

ALTER TABLE t abl e _nane CONVERT TO | CEBERG
ALTER TABLE t abl e nane SET TBLPROPERTIES (' fornmat-version' ='2");

Thefirst ALTER command converts the Hive table to an Iceberg V1 table.

Click > to run the queries.
An Iceberg V2 tableis created, replacing the Hive table.

Selecting an Iceberg table

Y ou see an exampl e of how to read an Apache Iceberg table, and understand the advantages of 1ceberg.

Working with timestamps in Iceberg, you do not need to know whether the table is actually partitioned by month,

day or hour, based on the timestamp value. Y ou can simply supply a predicate for the timestamp value and | ceberg
converts the timestamp to month/day/hour transparently. Hive/lmpala must maintain actual partition valuesin a
separate column (for example, ts month or ts_day). Forgetting to reference the derived partition column in your query
can lead to inadvertent full table scans.

By default iceberg.table_identifier is not set in CDP, so you can use the familiar <db_name.<table_name> in queries.

1. Useadatabase.
For example:

USE nydat abase;

2. Query an lceberg table partitioned by city.
For example:

SELECT * FROM ice_t2 WHERE city="Bangal ore";

Y ou query historical snapshots of data using the FOR SYSTEM_TIME AS OF '<timestamp>' FOR
SYSTEM_VERSION AS OF <snapshot_id> clausesin a select statement. Y ou see how to use AS OF to specify a
snapshot of your |ceberg data at a certain time.

Y ou can inspect the history of an Iceberg table to see the snapshots. Y ou can query the metadata of the Iceberg table
using a SELECT ... AS OF statement to run time travel queries. Y ou use history information from a query of the
database to identify and validate snapshots, and then query a specific snapshot AS OF a certain Timestamp value.

¢ You must be aware of the table history.

However, this can include commits that have been rolled back.
* You must have access to valid snapshots.

1. View thetable history.

SELECT * FROM db. t abl e. hi story;
2. Check the valid snapshots of the table.

SELECT * FROM db. t abl e. snapshot s;

45

Updating an I ceberg partition

3. Query aspecific snapshot by providing the timestamp and snapshot_id.
SELECT * FROM T
FOR SYSTEM Tl ME AS OF <TI MESTAMP>;

SELECT * FROM t
FOR SYSTEM VERSI ON AS OF <SNAPSHOT_I D>;

Y ou see how to update | ceberg table partitioning in an existing table and then how to change the partitioning to be
more granular.

Partition information is stored logically, and only in table metadata. When you update a partition spec, the old data
written with an earlier spec remains unchanged. New data is written using the new spec in anew layout. Metadata for
each of the partition versionsis separate.

1. Create atable partitioned by year.
Hive

CREATE EXTERNAL TABLE ice_t (i int, j int, ts tinestanp)
PARTI TI ONED BY SPEC (truncate(5, j), year(ts))
STORED BY | CEBERG

Impala

CREATE TABLE ice_t (i int, j int, ts tinestnap)
PARTI TI ONED BY SPEC (truncate(5, j), year(ts))
STORED BY | CEBERG

2. Split the datainto manageable files using buckets.

ALTER TABLE ice_t SET PARTI TION SPEC (bucket (13, i));

3. Partition the table by month.

ALTER TABLE ice_t SET PARTITION SPEC (truncate(5, j), nonth(ts));

Y ou complete atask that creates Iceberg tables from Impala with mock data that you can test drive using your own
queries. You learn how to work with partitioned tables.

* You must obtain Ranger access permissions.

1. Inlmpala, use a database.

46

Test driving Iceberg from Impala

2. Create an Impalatable to hold mock data for this task.

create external table nock rows stored as parquet as
select x from (

with v as (values (1 as x), (1), (1), (1), (1))
select v.x fromv, v v2, v v3, v v4, v v5, Vv v6

) &

3. Create another Impala table based on mock_rows.

create external table custoner_deno stored as parquet as

sel ect

FROM Tl MESTAMP(DAYS_SUB(now() , cast (TRUNC(RAND(7)*365*1) as bigint)),
yyyy-MM) as year nonth,

DAYS SUB(now() , cast (TRUNC(RAND(7)*365*1) as bigint)) as ts,

CONCAT(

2) as string), '.' ,

2) as string), '.',

2) as string), '.',

cast (TRUNC(RAND(1) * 250

cast (TRUNC(RAND(2) * 250

cast (TRUNC(RAND(3) * 250
*

+ + + +

cast (TRUNC(RAND(4) 250 2) as string)
) as ip,
CONCAT("USER ", cast (TRUNC(RAND(4) * 1000) as string),' @omedonmai n. com)
as emil,

CONCAT("USER ", cast (TRUNC(RAND(5) * 1000) as string)) as usernane,
CONCAT("USER ", cast (TRUNC(RAND(6) * 100) as string)) as country,
cast (RAND(8)*10000 as double) as netric_1,

cast (RAND(9)*10000 as double) as metric_2,

cast (RAND(10)*10000 as double) as netric_3,

cast(RAND(11)*10000 as double) as netric_4,

cast (RAND(12)*10000 as double) as netric 5

from nock_rows

4. Create another Impala table based on mock_rows.

create external table custoner_denp2 stored as parquet as

sel ect

FROM Tl MESTAMP(DAYS_SUB(now() , cast (TRUNC(RAND(7)*365*1) as bigint)),
'yyyy-MM) as year_nonth,

DAYS SUB(now() , cast (TRUNC(RAND(7)*365*1) as bigint)) as ts,

CONCAT(

2) as string), '.' ,

2) as string), '.',

2) as string), '.',

cast (TRUNC(RAND(1) * 250

cast (TRUNC(RAND(2) * 250

cast (TRUNC(RAND(3) * 250
*

+ + + +

cast (TRUNC(RAND(4) 250 2) as string)
) as ip,
CONCAT("USER ", cast (TRUNC(RAND(4) * 1000) as string),' @onmedonai n.comni)
as emil,

CONCAT("USER ", cast (TRUNC(RAND(5) * 1000) as string)) as usernane,
CONCAT("USER ", cast (TRUNC(RAND(6) * 100) as string)) as country,
cast (RAND(8)*10000 as double) as nmetric_1,

cast (RAND(9)*10000 as double) as netric_2,

cast (RAND(10)*10000 as double) as netric_3,

cast(RAND(11)*10000 as double) as netric_4,

cast (RAND(12)*10000 as double) as netric_5

from nmock _rows

5. Create an |ceberg table from the customer_demo table.

CREATE TABLE cust onmer _deno_i ceberg STORED BY | CEBERG AS SELECT * FROM cu
st oner _deno;

47

Hive demo data

6. Insert into the customer_demo_iceberg table the results of selecting all data from the customer_demo? table.

I NSERT | NTO cust onmer _deno_i ceberg sel ect * from cust oner _deno2;
I NSERT | NTO cust oner _deno_i ceberg sel ect * from cust oner _deno2;
I NSERT | NTO cust oner _deno_i ceberg sel ect * from cust oner _deno2;

7. Create an |ceberg table partitioned by the year_month column and based on the customer_demo_iceberg table.

CREATE TABLE cust oner_deno_i ceberg_part PARTI TI ONED BY(year _nont h) STORED
BY | CEBERG

AS SELECT ts, ip, enmil, usernane , country, netric_1 , netric_2 , netric

3, netric_ 4, netric_5, year_nonth

FROM cust oner _deno_i ceber g;

8. Split the partitioned data into manageable files.

ALTER TABLE customer _deno_i ceberg part SET PARTI TI ON SPEC (year _nont h, BU
CKET(15, country));

9. Insert the results of reading the customer_demo_iceberg table into the partitioned table.

I NSERT | NTO cust oner _deno_i ceberg _part (year_nonth, ts, ip, enmail, usern
ane, country, netric_1, nmetric_2, netric_3, nmetric_4, metric_5)
SELECT year _nonth, ts, ip, email, usernane, country, netric_1, netric_2,

metric_3, nmetric_4, nmetric_5
FROM cust oner _deno_i ceber g;

10. Run timetravel queries on the Iceberg tables, using the history output to get the snapshot id, and substitute the id
in the second SELECT query.

SELECT * FROM cust oner _deno_i ceberg FOR SYSTEM TI ME AS OF ' 2021-12-09 05
: 39: 18. 689000000" LIMT 100;

DESCRI BE HI STORY cust onmer _deno_i ceber g;

SELECT * FROM cust oner _deno_i ceberg FOR SYSTEM VERSI ON AS OF <snapshot
id>LIMT 100;

To test drive Iceberg from Hive, you use demo datain the airline_online_iceberg database. To test drive Iceberg from
Hive, you need to set up Hive demo data

The Airlines demo data for Iceberg is stored in the airline_online_iceberg database. The following queries created and
set up this database.

create database if not exists airline_ontinme_iceberg;
use airline_ontinme_iceberg;

set hive.vectorized. execution. enabl ed=f al se;

set hive. stats.col um. aut ogat her =f al se;

The following Hive external tables were created in the airline_online_iceberg database:
e arports

o arlines

e planes

48

Hive demo data

create externa

flights

iata string,

ai rport string,
city string,
state doubl e,
country string,
| at doubl e,

| on doubl e

stored as orc;

create external table if not

code string,
description string

stored as orc;
create external table if not

tail num string,

owner _type string
manuf act urer string,
i ssue_date string
nodel string,

status string,
aircraft _type string,
engi ne_type string,
year int

stored as orc;

create external table if not

)

nonth int,

dayof nonth int,

dayof week i nt,
deptine int,
crsdeptinme int,
arrtinme int,
crsarrtine int,

uni quecarrier string,
flightnumint,
tail num string,

act ual el apsedti me int,
crsel apsedtine int,
airtine int,

arrdel ay int,
depdel ay int,

origin string,

dest string,

di stance int,

taxiin int,

taxi out int,
cancel | ed int,
cancel | ati oncode stri ng,
diverted string,
carrierdel ay int,
weat her del ay int,
nasdel ay int,
securitydel ay int,

| at eai rcraftdelay int

partitioned by (year int)
stored as orc;

table if not exists airports (

exists airlines

exi sts planes (

exists flights (

49

Hive demo data

| oad data inpath '${datapath}/airline_ontine_i
ai rports;

| oad data inpath '${datapath}/airline_ontine_i
airlines;

| oad data inpath '${datapath}/airline_ontine_i
| anes;

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=1995);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1996);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1997);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1998);

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=1999);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2000);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2001);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2002);

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=2003);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2004);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2005);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2006);

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=2007);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2008);

ceberg.

ceberg.

ceberg.

ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.

ceberg.

db/ ai r ports'

db/airlines'

db/ pl anes'

db/ flights/year=1995'
db/flights/year=1996
db/ flights/year=1997
db/ flights/year=1998'
db/flights/year=1999
db/ flights/year=2000'
db/ flights/year=2001"'
db/flights/year=2002
db/ flights/year=2003'
db/ flights/year=2004
db/flights/year=2005
db/ flights/year=2006'
db/ flights/year=2007"
db/flights/year=2008

into tabl e

into table

into table p

ALTER TABLE pl anes ADD CONSTRAI NT pl anes_pk PRI MARY KEY (tail num DI SABLE NO

VALI| DATE;

ALTER TABLE flights ADD CONSTRAI NT pl anes_fk FOREI GN KEY (tailnum) REFEREN

CES pl anes(tail num) DI SABLE NOVALI DATE RELY

ALTER TABLE airlines ADD CONSTRAI NT airlines_pk PRI MARY KEY (code) DI SABLE

NOVALI DATE

ALTER TABLE flights ADD CONSTRAI NT airlines_fk FOREI GN KEY (uni quecarrier)

REFERENCES ai rli nes(code) DI SABLE NOVALI DATE RELY;

ALTER TABLE airports ADD CONSTRAI NT airports pk PRI MARY KEY (iata) DI SABLE N

OVALI| DATE;

ALTER TABLE flights ADD CONSTRAI NT airports_orig_fk FOREI GN KEY (origin)
REFERENCES ai rports(iata) DI SABLE NOVALI DATE RELY;
ALTER TABLE flights ADD CONSTRAI NT airports_dest_fk FOREI GN KEY (dest) RE
FERENCES ai rports(iata) DI SABLE NOVALI DATE RELY

ALTER TABLE airports SET TBLPROPERTIES (' storage_handl er' = org. apache. i ceb

erg. nr. hi ve. H vel cebergSt orageHandl er') ;

50

Test driving Iceberg from Hive

ALTER TABLE airlines SET TBLPROPERTIES ('storage_handl er' =" org. apache. i cebe
rg.nr. hive. Hi vel ceber gSt orageHandl er ') ;

ALTER TABLE pl anes SET TBLPROPERTI ES (' st orage_handl er' =' or g. apache. i ceber g.
nr . hi ve. Hi vel ceber gSt orageHandl er') ;

ALTER TABLE flights SET TBLPROPERTIES (' storage_handl er' =" org. apache. i ceber
g. nr. hi ve. H vel ceber gSt or ageHandl er') ;

Y ou learn how to access the Hive demo data, which you can use to get hands-on experience running Iceberg queries.

Query sample airline demo datain Hue.

* You must meet the prerequisites to query |ceberg tables.
* You obtained the Ranger permissions to run Hive queries.

1. Connect to Hive running in a Data Hub cluster.

2. Runthe queriesin the previous topic, "Hive demo data" to set up the following databases: airline_ontime_iceberg,
airline_ontime_orc, airline_ontime_parquet.

3. Usetheairline_ontime_iceberg database.
4. Takealook at the tablesin the airline_ontime_iceberg database.

USE airline_ontine_iceberg;
SHOW TABLES;

Flightsisthe fact table. It has 100M rows and three dirmensions, ariline, airports, and planes. This records flights
for more than 10 yearsin the US, and includes the following details:

e origin
e dedtination
e delay
e artime
5. Query the demo data from Hive.

For example, find the flights that departed each year, by IATA code, airport, city, state, and country. Find the
average departure delay.

SELECT f.nmonth, a.iata, a.airport, a.city, a.state, a.country
FROM flights f,

airports a

WHERE f.origin = a.iata

GROUP BY

f . nmont h,

a.iata,

a.airport,

a.city,

a.state,

a.country

HAVI NG COUNT(*) > 10000

ORDER BY AV f . DepDel ay) DESC

51

| ceberg data types

LIMT 10;

Output appears as follows:

feccoccococodmoocoonoo feccoccococooccococoococccocoocococooooooo feccoccocoooococo
feoccoocococodmoocoooonoocs +
| f.nonth a.iata | a. airport | a.city
| a.state | a.country |
Focococococdmocococoo FococococococococoCcoCoCoOCoOCoCoOCoCoooo Fococcoccococooooooo
feccoocococodmooccocoonoocs +
| 12 ORD Chi cago O Hare International | Chicago
| NULL | USA |
| 6 EVIR Newar k | ntl | Newar k
| NULL | USA |
| 7 JFK John F Kennedy Intl | New York
| NULL | USA
| 6 | AD Washi ngton Dull es | nternational | Chantilly
| NULL | USA |
| 7 EVIR Newar k | ntl | Newar k
| NULL | USA [
| 6 PHL Phi | adel phia Intl | Phil adel phia
| NULL | USA
| 1 ORD Chi cago O Hare International | Chicago
| NULL | USA |
6 ORD Chi cago O Hare International | Chicago
| NULL | USA [
7 ATL WIlliamB Hartsfield-Atlanta Intl | Atlanta
| NULL | USA [
| 12 MDW Chi cago M dway | Chicago
| NULL | USA |
e L L T L L T T TR R r=r= fooccocooococoooooo
Fococococococoodmoocooooooooo +
10 rows selected (103.812 seconds)
6. Split the partitioned data into manageable files.
ALTER TABLE airports SET PARTI TI ON SPEC (i at a, BUCKET(15, country));

Iceberg data types

References include | ceberg data types and atable of equivalent SQL data types by Hive/lmpala SQL engine types.

Iceberg supported data types

Table 2:

| ceberg data type SQL datatype Hive Impala

binary BINARY BINARY
boolean BOOLEAN BOOLEAN BOOLEAN

date DATE DATE DATE
decimal(P, S) DECIMAL(P, S) DECIMAL (P, S) DECIMAL (P, S)
double DOUBLE DOUBLE DOUBLE
fixed(L) BINARY Not supported
float FLOAT FLOAT FLOAT

52

| ceberg data types

| ceberg data type SQL data type Hive Impala

TINYINT, SMALLINT, INT INTEGER INTEGER
list ARRAY ARRAY Read only
long BIGINT BIGINT BIGINT
map MAP MAP Read only
string VARCHAR, CHAR STRING STRING
struct STRUCT STRUCT Read only
time STRING Not supported
timestamp TIMESTAMP TIMESTAMP TIMESTAMP (see limitation
below)
timestamptz TIMESTAMPWITH LOCAL Use TIMESTAMP WITH Read timestamptz into
TIME ZONE LOCAL TIMEZONE for handling | TIMESTAMP values
thesein queries .
Writing not supported
uuid none STRING Not supported
Writing to Parquet is not
supported

Data type limitations

An implicit conversion to an Iceberg type occurs only if thereis an exact match; otherwise, a cast is needed. For
example, toinsert aVARCHAR(N) column into an Iceberg table you need a cast to the VARCHAR type as | ceberg
does not support the VARCHAR(N) type. Toinsert aSMALLINT or TINYINT into an I ceberg table, you need a cast
tothe INT type as | ceberg does not support these types.

| ceberg supports two timestamp types:

o timestamp (without timezone)
e timestamptz (with timezone)
With Spark 3.4, Spark SQL supports atimestamp with local timezone (TIMESTAMP_LTZ) type and atimestamp

without timezone (TIMESTAMP_NTZ) type, with TIMESTAMP defaulting to the TIMESTAMP_LTZ type.
However, this can be configured by setting the spark.sql.timestampType (the default valueis TIMESTAMP_LTZ).

When creating an | ceberg table using Spark SQL, if spark.sql.timestampTypeissetto TIMESTAMP _LTZ,
TIMESTAMP is mapped to | ceberg's timestampz type. If spark.sgl.timestampTypeis set to TIMESTAMP_NTZ, then
TIMESTAMP is mapped to | ceberg's timestamp type.

Impalais unable to write to |ceberg tables with timestamptz columns. For interoperability, when creating | ceberg
tables from Spark, you can use the Spark configuration, spark.sgl.timestampType=TIMESTAMP_NTZ.

For consistent results across query engines, al the engines must be running in UTC.

Unsupported data types
Impala does not support the following I ceberg data types:

e TIMESTAMPTZ (only read support)

e TIMESTAMPIntablesin AVRO format
* FIXED

e UUID

53

| ceberg table properties

The CDP environment for querying tables from Hive overrides some I ceberg table properties. Y ou learn which table
properties are supported for querying tables from Impala.

| ceberg documentation describes all the properties for configuring tables. This documentation focuses on key
properties for working with Iceberg tablesin CDP.

| ceberg supports concurrent writes by default. Y ou can tune Iceberg v2 table properties for concurrent writes. Y ou set
the following properties if you plan to have concurrent writers on Iceberg v2 tables:

e commit.retry.min-wait-ms
e commit.retry.num-retries

CDP supports adding the Parquet compression type using table properties. For more information, see Iceberg
documentation about Compression Types.

Y ou can use the Alter Table feature to set a property. From Hive, the following | ceberg table property overrides arein
effect:

* iceberg.mr.split.size overrides read.split.target-size.
 read.split.open-file-cost is overridden.

Y ou can tune | ceberg v2 table properties for concurrent writes. From Impala, the following subset of Iceberg table
properties are supported:

* history.expire.min-snapshots-to-keep
Valid values: integers. Default = 1
e write.format.default

Valid value: Parquet
* write.metadata.del ete-after-commit.enabled

Valid values: true or false.
* write.metadata.previous-versions-max

Valid values: integers. Default = 100.
* write.parquet.compression-codec

Valid values. GZIP, LZ4, NONE, SNAPPY (default value), ZSTD
e write.parquet.compression-level

Validvaues: 1 - 22. Default =3
e write.parquet.row-group-size-bytes

Valid values: 8388608 (or 8 MB) - 2146435072 (or 2047MB). Overiden by PARQUET_FILE_SIZE.
* write.parquet.page-size-bytes

Valid values: 65536 (or 64KB) - 1073741824 (or 1GB).
e writeparquet.dict-size-bytes

Valid values: 65536 (or 64KB) - 1073741824 (or 1GB)

https://iceberg.apache.org/docs/latest/configuration/
https://spark.apache.org/docs/2.4.3/sql-data-sources-parquet.html#configuration

	Contents
	Apache Iceberg features
	Alter table feature
	Create table feature
	Create table as select feature
	Create partitioned table as select feature
	Create table … like feature
	Delete data feature
	Describe table metadata feature
	Drop partition feature
	Drop table feature
	Expire snapshots feature
	Insert table data feature
	Load data inpath feature
	Load or replace partition data feature
	Materialized view feature
	Materialized view rebuild feature
	Merge feature
	Migrate Hive table to Iceberg feature
	Changing the table metadata location

	Flexible partitioning
	Partition evolution feature
	Partition transform feature

	Query metadata tables feature
	Rollback table feature
	Select Iceberg data feature
	Schema evolution feature
	Schema inference feature
	Snapshot management
	Time travel feature
	Truncate table feature

	Best practices for Iceberg in
	Making row-level changes on V2 tables only

	Performance tuning
	Caching manifest files
	Configuring manifest caching in Cloudera Manager

	Unsupported features and limitations
	Accessing Iceberg tables
	Opening Ranger in Data Hub
	Editing a storage handler policy to access Iceberg files on the file system
	Creating a SQL policy to query an Iceberg table

	Accessing Iceberg files in Ozone
	Creating an Iceberg table
	Creating an Iceberg partitioned table
	Expiring snapshots
	Inserting data into a table
	Migrating a Hive table to Iceberg
	Selecting an Iceberg table
	Running time travel queries
	Updating an Iceberg partition
	Test driving Iceberg from Impala
	Hive demo data
	Test driving Iceberg from Hive
	Iceberg data types
	Iceberg table properties

