Cloudera Runtime 7.3.1

Apache Impala SQL Reference

Date published: 2020-11-30
Date modified: 2024-12-10

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Apache Impala SQL OVEN VIEW........coiiiiiieieee ettt s sneesbeeeesneenes 6
IMpPala SChEM@ ODJECES.......eiiieieeie ettt b e s ae e e e nee e 6
R0 e U TS SO 6
IMPAIA JBLBIDESES. ... oottt h et b e e bt bt s et bt e e e et et et e s e e Re e Rt e Rt ebesbesaeehenbesee et e e s 7
Overview Of IMPala FUNCHIONS.... ..ot b e b bbb e e b et e e e e e e e e e e eneas 8

Lo (= 0L ETT= T TSSOSO PP 9
IMPBIA TBIDIES........eee bbbt R et R et et e 10
TIMPBIA VIBWS......ceetest ettt ettt h et b e bt b e s e b e se bt e e bt e e st R st e R et e b et e R et b et b e b e b e 12
IMpala SQL dALA TYPES......oiieiieiiiiieeieeie sttt sttt sttt se e b et e s e e sseebesseesreesennee e 13
ARRAY COMPIEX LY.ttt ettt sttt sttt se ettt aeebesbe s bt sbeebesbesaesb e bese e e easeseemeeseebesaeabesbesbeseesbenbeseans 13
BIGINT a8 LY. tueveeeeerirtete sttt sttt sttt et b et bbbt e bbb bt b bt s e bbb st bbbt et b et e s b 17
BINARY Q8LA TYPE.....cveeuiueririeteit sttt sttt ettt bbb bt se bkt e bbbt s e b b et st b b e bt b et bt s rnebas 17
BOOLEAN B8 LY. eueveeereieteieresiste ettt sttt sttt e b b st s se b bt st e b bt £ b b e b e bbbt e e b ket e bt e e b 19
(01 N e - 7= 1LY o= USSR 21
DNl = = = T 1Y 0= OSSPSR 22
DECIMAL QA8 LY. eeerieteieeresieiese sttt sttt sttt st etk e bbb e e b b et se bk e e ee s b b e b et s e b e b e st se bbb et b b enene 23
DOUBLE GBEA TYPE......cueeeeietierisieieiese sttt ettt ettt b ekt b bt e bkt e b bt b bbbttt b et 28

L IO N I P = T 1Y o= USSR 30

LAV 0= = A oSSR 31

N e 0102 G 1Y o OSSR 32

T IR0 = = A LSRR 37
SIMALLINT 8EA LY. ettt sttt ettt b et b bbbt bbbkt b bt e et ene s 37

Sl R\ e = = T 1 o USSR 38
STRUCT COMPIEX TYPB...neeueeuieierieeteeterte st st te e ste e seeseeseesse e e e esesaesaeabesbesaesaeebesbeseesenbesee e enseneeneeneesesaesaesbeseees 40
TIMESTAMP QB8 LY. ceveeeeiirerieteerest ettt ettt b b ae e bbbt se bk e et bbbt s bbb et st bbbt e ebenas 46
CUSLOMIZING TIME ZOMES..... ..ttt ettt sttt e e e e e e e ebeebe s st ebeebesbeseeebe b se e e entenee e eneenenneane 51

TINY INT Q8EA TYPE...c. ettt b etk e b s bbbt b b bR e bbbt st se bt e et 52
VARCHAR 088 LY.ttt sttt sttt ettt e bt st e bbbt e e b b e e s e b b et e b b e st e bbb et e bt e e s 53
(0010112 R 1 oSO SRS R 55
QUETYING BITAYS. ... veueeueeeeeeueeeeeeseeuessesaeatesteseestesbeseesseseease e aaeeseeaeaaeebeeheeaesbeebesbeseeabeseeseensante e eneenenneanenrens 88

Zipping UNNESt ON array'S frOM VIBWS.......oouiiiieeeieereeert ettt et ne e sre s 89

gl or= 1= TS @ I T = = RSP R 90
IMPAlA SQL OPEN GLOT S.....eeeiieiiirtieiieeie sttt seeeee e e b eesaeesbeeasease e beeseesaeesseeneesbeebesneenees 93
IMpala SQL COMMENTS.. ..ottt b e eesae et e s e e saeebeeneesreenes 105
IMpala SQL SEALEMENTS......cceiiiiie ettt sbe et s ne e beeeesneenns 105
ROLE statements in Impala integrated With RaNGEN..........cccooiiiiirriie e 105

DL SEBIEMENES. .. .cveueeteteieeriete ettt e et e st b et e b e b et sesbeb e st e s b b e b e st se e e b e R e se A e b e b et s b b e b e ne e e b e b e b et s e et et e e e ee 106

DML SEBEEIMENES......ceeteteueerietetenere sttt sttt bt a ettt b b bt s e e e b bt se s e s b e b et e e b b e st e s et e b e st se st e b e bt st bt ebeneneneenas 108
ALTER DATABASE SBEMENE.cuiiiereeieienerieietee sttt ettt sttt sttt st b e nn bt ne st 108
ALTER TABLE SEBEMENT.......cuiiiiieietririeiee sttt b e et eb ekt b bbb e bbb e e e b 109
ALTER VIEW SEEEMENL......oititiiriiteteiisist ettt ettt e ss ettt b bt se bbbt se s b ettt be e e bt 123
COMMENT SEBEEIMENL. ...ttt ettt et b b b et s b b se b b e et s b b et s e b e b e bt st bbb e st e b b 124
COMPUTE STATS SEAEEMENL......etitiiieieteieesisieiee ettt e bt e e bbbt se st bbb snnaenas 125
CREATE DATABASE SEAEMENT. ..ottt sttt s et s bbbt snnenas 133
CREATE FUNCTION SEBIEMENL.......ciieetetirireetetiesesieieieseses et st sesiesesese s s se e sesssseesessese e sesassesanessssssesesessssesens 135
CREATE ROLE SEBEMEN.cuiuiierteteieresieteeesesie ettt sttt st sttt b bbbt ss bbbt es 141
CREATE TABLE SABLEIMENE......c.ciiititiiiiieeieireriet ettt sttt sttt ss bt s b b e rnenas 142
CREATE VIEW SEBEIMENE. ...ttt ettt s sttt b bbb e bt ne bt es 157
DELETE SEBLEIMENL......cciiiteteiieeieieieesesieie sttt bbbt b bt s o b bt s b b et bbbt et e b e b s bbb 159

DESCRIBE SEEMENT.......ccviiieieeieeieee s st e e e r e srenes 160

Cloudera Runtime | Contents | iv

DROP DATABASE SEEEMENL. .. .c.eiiiiiteieieieieieesirie ettt sttt ettt ettt b bbb e e 173
DROP FUNCTION SEBEEIMENT.....c.coteviuiirireeieesesieteese sttt st st b sttt ss b b e st be st s et ebe e sesbebese e ssenes 175
DROP ROLE SEBLEIMIENE.......c.cueiiiteiiiririeieie sttt bebe sttt se s b e et b e s bt e st st bbb e e s s b ebesese s ebene s 176
DROP STATS SEAEEMENL.cucuiiirieieieriseeiete sttt se b b et ettt b b e s e e e b e b et se s b ek e st se s b b e et s e b ebenesesbebe s 177
DROP TABLE SEBIEIMENL......ccitititirireetetenesesieiee sttt sttt b b e e bt st se bk e e bbb e e se bt e st se bt e e e e 181
DROP VIEW SEBLEITIENE.c.cueiiteieiirereeteie sttt se sttt se bt st se b b e e sttt se b b et bbb ne s e bt ene st s et s s 183
EXPLAIN SEBIEIMENL......ccititeiiieisieieeses ettt bbb bt se b b s b b et b b e bt s bbb be et be s 184
GRAINT SEBEEIMENL. ...ttt ettt st b et b et e b be st s e b e b e b et s e b e b e Rt se e e b e bt sese e b e ket s e et e b e ne e et 186
GRANT ROLE SEBEEMENL......covcuiiiiirieteteeresieteerese sttt sttt st ss b b sese b b e e e b b e e se st et et sesbebesenennas 189
INSERT SEAEEIMENL......cvitiuiirerieieiereriete ettt ettt b bt e bbbt se b e b bt s e s b b et e s b b e b et se s b et et e et et e et e 189
INVALIDATE METADATA SEBIEMENL......coiiuiuiiiririeieerisieieese st seie et st bbb be s snebenas 198
LOAD DATA SEBEIMIENE.cciteteiierieieieesisie ettt sttt se et ss ettt e bkt s b b st e bbb et se bk e bbb e e e b 200
REFRESH SLAEEMENE.......cueuiiiirieieierireetet ettt ettt b et s e et b b bt se e b bt e bbbt e bbb et et be e s 204
REFRESH AUTHORIZATION SEEEMENL.......c.cuiiirieieieirieieiesesesieteesesisbe et s 206
REFRESH FUNCTIONS SEBEMENE.cueuiririeeeienerisieieesesesieie st se bbb e bbbt sssssese s ssesene s 206
REVOKE SEBLEMENE........cutieeteteireeieteesesiete sttt sttt sttt bbbt £ bt e b b et se b b e b et se b b et e e b 206
REVOKE ROLE SEBLEMENE........ciiiiteueiiririeieiiesesiseeie sttt se bt ss st se s s b be e se bt e e sesbebesenesnas 207
SELECT SEAIEMENT.cvctiieeteteitrereet ettt ettt re bbbt b ekt e e b bt e s bk et s e b b et E b e b et se st et et bebenas 207
Joins in Impala SELECT SEABEMENTS.........ooiiieieeiieieeeeeeeer et s sne s 210
ORDER BY ClAUSE......uteutiriteietreste ettt bttt b bbb bt e b b ae e e b bt nn s 216
GROUP BY ClAUSE.......vveutireteietseste ettt ettt bbbt s b bbb bt e bbbt st ne bt nn e 220
HAVING ClAUSE....c.cieeiiiieieie sttt bbb bbbt b ekt e bbbt e s b 224
LIIMIT ClBUSE. ottt bbbt b et e bbbt E b bt b bttt b e 224
OFFSET ClAUSE....ce vttt etttk b ket b b e b b et se bbbt e bbbt se bt es 226
UNTON CIAUSE. ...ttt sttt sttt bbbt e b bbbkt b bt e b et se bbbt b e 227
UNION, INTERSECT, and EXCEPT ClaLSES.......cccrrueteiriririeiiesisieieie st iese e sesenesesnns 229
Subqueries in Impala SELECT StAEMENTS........coiiiriiiereeieeeee ettt s ene 232
TABLESAMPLE ClAUSE. ..ottt sttt ettt b 235
WWITH ClAUSE. ..o ceeeeeeee ettt e et bbb ne b se b e bt e st nesesne e nnene s 241
DISTINCT OPEIELOLcctieueeteeeeseeeee et e ree st ete st et ss e e besae e st eeesaeesesaeeseesaeeabesaeesbesaseabeessenbeenseeneenseeas 241

SET SEAEEMENL. ...ttt bbb bt b bt e bbbt e bkt e bk e e bbbt e b b et e 242
SHOW SEBEEIMENL. ...ttt ettt ettt ettt bbb et se b b e bt s bbbt s e bbbt st e et e b et e b e b bene e bt 243
SHOW ROLES SEBLEIMIENE........cueererteteiresieieeesisieiee sttt s e se b bt s bt e et bbb e e se s ebe st se b ebese e seebenas 248
SHOW CURRENT ROLES SEBEEMENL.....c.citieiteuiiireeieieniresieie sttt sessesee e ssebe s s bt ses b s ss s s ssssesanas 248
SHOW ROLE GRANT GROUP SEGLEIMENL......ccoviuiuiiririeieiresisieee sttt es 248
SHUTDOWN SEREEMENE.......cvetiiirteteieirisieeee sttt sttt sttt et b b se st b e se b b et st s b et e b et ssssebebe e seenas 249
TRUNCATE TABLE SBEMENE........cuiiiiieteieriresietee sttt sttt 250
UPDATE SEBEEIMIENE. ...ttt ettt bbb s bt e bk e bbbt e bt e et b b 252
UPSERT SEBLEMENL.cueuteteteereeteteee sttt ettt ettt b b st e bk et e b b e bt e e b b et s e e bk et b et be e se bt 254
USE SEBLEIMIENE. ...ttt bbbk b et E bt £ e b bt e b bt e bkt e bbbt 255
VALUES SEBEEMENL. ...ttt ettt b et b bbbt e bbbt st stk e et b e bbbt e e b 255
Optimizer NINES TN TMP@IAL.......e ettt b et b e bbbt bt st e e e e e e et eneebeeae e 256
(@81 Yoo 1 o] o< SO SRSSR 262
VITEUBL COIUMIN. ...ttt b et h e b e bt e b e st R et e R et b et b e neeb e se b e se b e naebennesenreneas 305
BUITT-TN FUNCLIONS......eeieee ettt st s r et ae et e e e e sbeeeesneens 305
Impala MmathematiCal FUNCLIONS...........coiiiiiii et et e et be b saesae s 311
IMPAIA DIt FUNCLIONS.......eeeeeee bbb b et bt e e e e e et et b e e be s bt sbesbeseeseeean 329
CONVESION FUNCLIONS......c.viuitiiitie sttt st b bt b et e bt e et bbbt r e r s 339
Impala date and tiMe FUNCLIONS..........ooiiiiiie et bbb ettt e aeeaeebeenas 346
Impala conditioNal FUNCLIONS........co.iiuiiie e ettt b bbb sb e et e e e e e e 365
IMPAl@ StHNG FUNCHIONS.. ...ttt b e bbb b b s a et e e se e s e e e e e eneeneeneabea 370
Impala MiSCEIlANEOUS FUNCLIONS.........couiiiiiieite et st b ettt a e sae b e 387
IMpala aggregate fUNCLIONS.o ettt et e b e bbb e b b se et e e e se e e e e e e e e eneas 390
APPX_MEDIAN FUNCHON......cutittetiiristeteeses ettt bbbt sttt 390

AV G FUNCHION. ...ttt bbbt b et bt r et r e 392

Cloudera Runtime | Contents | v

GROUPING() and GROUPING_ID() fUNCHONS.......cciueueiriririeieisirieiee sttt 400
GROUP_CONCAT fUNCHON. ...ttt sttt et s 403

IMAX FUNCHION. ...ttt b et bbb e b e bttt n et n e nnene 404

IMITIN FUNCEION. ...t b et e et bt n s 408

NDV FUNCHION. ...ttt ettt b et b e et b et b et et bbbt b 412

STDDEV, STDDEV_SAMP, STDDEV_POP fUNCLIONS......cccouiteiiiririnieieneresieieneses e 415

SUM FUNCHION. ...ttt b ettt e et n et r et n e 417

VARIANCE, VARIANCE_SAMP, VARIANCE_POP, VAR_SAMP, VAR_POP functions............ 421

IMPaAl@ BNAIYLIC FUNCLIONS.......eiii ettt e b e s b b se et et e e se et e e e e e ene e ene 423

OV ER.... ettt bbb bbb b e e b bR £ b bR A A bR E bRt e bbbt s 423

WWIINDOW ...ttt ettt bbb bbbkt oAb e e b bt et bbbttt a et 425

AV Gt b b AR e A bR £ A A b et £ R b e Rt e A bRt e b bRt e bt ne e 427

COUNT -ttt b et bbb b s £ b h £t e e b bt R4 £ E b b e e s e e b b et e e b b e be e se e b e b et se et et e e e e 427

CUMEL_DIST ..ttt b bbbt e b Rt b b bt e bbbt et skt e b ne e et 427
DENSE_RANK ...ttt etttk bbb e b b et et bk e bt b et b et se b b 429

FIRST _VALUE. ..ottt st b ettt e bbbt bbb 431

LA G, ettt b £ AR £ A bR £ b bR e R AR R b b e e e b b e Rt e E bRt et b 433

LAST _VALUE. ..ottt b bbbt b bt sn bt 435

LEAD ettt b R bR A AR R £ A bR AR AR b bRt e R b b e ne e b n s 436

IMLAX etttk bbb bR A AR £ A bR e £ bR R AR R e A bR et e bkt e e bR 437

IVHEIN bbbt b b £ bR e A bR £ Rk £ AR AR A bR e e b bt e b bt n b 437

N T I etttk bbbt s b bRt £ b ke Rt E A bR e e e e b bt e b bt et b e 437
PERCENT_RANK ...ttt bbbt b et b bbbt b b s 438

RAINK L.ttt bbb bbb £ b4 E £ bR £ e E b bt e E R bR e A b b et e bkt e bR 439
ROW_NUMBER.......cooiiitittitiitet ettt sttt et e bbb bbb bt s bbbt e e b b 442

SUM bbb A bR e A b £ R bR R AR R e e e A bR R b bt E b b R e et 443

IMPAlA NBSN FUNCLIONS........oiiiee bbb e e e et e e aeeb e s bt bt sbesbesae b e b s 443
Creating an Impala user-defined fUNCHION. ..o 443
UDFF COMCEPLS.......eeiueeeeiieetesiee ettt ettt et ae e et s heeseeeaeesbeeaeeshe e st e eb £ ea b e eb e e ab e eh e e et eaeeaee e ae e eaeemeesheenbesaeanbesneenbenneanes 444
Runtime environmMeNt FOr UDFS........coiiiiiieinierese et 448
Installing the UDF devel opment PacKagE.ooeriiiriiieie et 448
WWITEING UDFS.....tctiiiiict ettt b e s b bt E bRt e e bbbt s e bbbt et e b bt ne bt 448
Writing user-defined aggregate funNCtionS (UDAFS)......coi ittt e 452
Building and deploying UDFS.... ...ttt sbe b b sa et b se e e e e e e e ene e 453
Performance considerations fOr UDFS..........ociiiicierene s 454
Examples of creating and USING UDFS.........coiiiiiieieiee ettt st sbeenas 454
Security CONSIAErationS fOr UDFS........c.oiiiiiiiie ettt e st e e aeene e ebe 461
Limitations and restrictions for IMPala UDFS...........ooiieeeereneeiene e s e 461

SQL transactions iN IMPala.......ccccoieiiieeeee et 462
MUILI-T OW tFANSACLTIONS.......eeiiiiieitie ettt sttt r et et e bt ettt e s b e et e e st e sseenbeeneesreeneas 462
IMPAIA T ESEN VEA WOI US.....coiieiieiiieiieeie ettt sttt b et st be et e se e beeneesaeenaenneens 463
SQL differences between Impala and HIVe...........cooiiiiiiiiniine e 478
Porting SQL from other database systems to Impala..........cccceveeiiieeninieneeneee e 479

UT F=8 SUPPIONT ...ttt ettt ettt e e ae e e s e e s ae e e abeebe e e aeeeaseesaneeneesnneeaseesaneenns 484

Cloudera Runtime Apache Impala SQL Overview

Y ou can use Apache Impala SQL to manage and access datain Hadoop storage. Review the basic concepts related to
Apache Impala SQL such as schema objects you can use to store and manipulate data, supported data types, literals,
operators, built-in functions, and so on.

Impala provides a high degree of compatibility with the Hive Query Language. |mpal a uses the same metadata
store as Hive to record information about table structure and properties. Therefore, Impala can access tables defined
through the built-in Impala CREATE TABLE command, or tables created using the Hive data definition language
(DDL).

Y ou must understand what schema objects are, what they include, and where they are stored. The conceptual
information related to these objects help you to understand the various ways to specify their names and work with
them.

Schema objects are logical structures that you use to store and manipulate data. Schema objects include databases,
tables, views, functions, and so on.

Y ou must be aware of certain guidelines and rules about assigning an alias to the names of tables, columns, or column
expressionsin SQL statements and using the alias when referencing the table or column in the same statement.

The following rules apply to aliases:

* Youtypicaly specify aliases that are shorter, easier to remember, or both than the original names. The aliases are
printed in the query header, making them useful for self-documenting output.

To set up an dias, add the AS alias clause immediately after any table, column, or expression namein the SELE
CT list or FROM list of aquery. The AS keyword is optional.

Y ou can specify the alias immediately after the original name.

* You can specify column aliases with or without the AS keyword, and with no quotation marks, single quotation
marks, or double quotation marks.

» Aliases are not case sensitive.

« Aliases can be up to the maximum length of a Java string, 2147483647.

» Aliases can include additional characters such as spaces and dashes when they are quoted using backtick
characters ().

» Tousean dias name that matches one of the Impala reserved keywords, surround the identifier with either single
or double quotation marks, or backtick characters.

e Aliasesare alowed at the top level of the GROUP BY, HAVING, and ORDER BY clauses, e.g. GROUP BY

alias.
« Aliases are not allowed in subexpressions of the GROUP BY, HAVING, and ORDER BY clauses, e,g. GROUP
BY aliag/s.

Cloudera Runtime Impala schema objects

From Impala 3.0, the alias substitution logic in the GROUP BY, HAVING, and ORDER BY clauses has become
more consistent with standard SQL behavior, as follows. Aliases are now only legal at the top level, and not in
subexpressions. The following statements are allowed:

SELECT int_col / 2 AS x
FROM t
GROUP BY x;

SELECT int_col / 2 AS x
FROM t

ORDER BY x;

SELECT NOT bool col AS nb
FROM t

GROUP BY nb

HAVI NG nb;

And the following statements are NOT allowed:

SELECT int_col / 2 AS x
FROM t
GROUP BY x / 2;

SELECT int _col / 2 AS x
FROM t
ORDER BY -Xx;

SELECT int_col / 2 AS x
FROM t

GROUP BY x

HAVI NG x > 3;

B Note: Impaladoes not allow column aliasesin the WHERE clause.

Impalareserved words
Querying arrays

Provides information about how to manage Impala databases that are logical containers for a group of tables.

Each database defines a separate namespace. Creating a database is alightweight operation. There are minimal
database-specific properties to configure, such as LOCATION and COMMENT.

Y ou can change the owner of a database with the ALTER DATABASE statement.

Typically, you create a separate database for each project or application, to avoid naming conflicts between tables and
to make clear which tables are related to each other.

The USE statement lets you switch between databases. Unqualified references to tables, views, and functions refer to
objects within the current database. Y ou can also refer to objects in other databases by using qualified names of the
form dbname.object_name.

Each database is physically represented by a directory in HDFS. When you do not specify a LOCATION attribute,
the directory islocated in the Impala data directory with the associated tables managed by Impala. When you do
specify aLOCATION attribute, any read and write operations for tables in that database are relative to the specified
HDFS directory.

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-sql-reference/topics/impala-queryingarrays.html

Cloudera Runtime Impala schema objects

Impalaincludes two predefined databases:
e default

By default, you use the default database when you connect to Impala. Tables created in the default database are
physicaly located at one level higher in HDFS than all the user-created databases.

e _impaa_builtins

All Impalabuilt-in functions reside in this database.

CREATE DATABASE statement

Provides information about using Functions to apply arithmetic, string, or other computations and transformations to
Impala data.

Y ou can use Functionsin SELECT lists and WHERE clausesto filter and format query results so that the result set is
exactly what you want, with no further processing needed on the application side.

Scalar functions return asingle result for each input row.
[l ocal host:21000] > sel ect nane, population fromcountry where continent ="

North America' order by popul ation desc linmt 4;
[l ocal host:21000] > sel ect upper(nane), population from country where conti

nent = 'North Anerica' order by popul ation desc limt 4;
. R +
| upper(nane) | popul ation |
foocooccooosoe foococcoconoe +
| USA | 320000000 |
| MEXI CO | 122000000 |
| CANADA | 25000000 [
| GUATEMALA | 16000000 [
RS EEE S E RS S S +

Aggregate functions combine the results from multiple rows: either asingle result for the entire table, or a separate
result for each group of rows. Aggregate functions are frequently used in combination with GROUP BY and HAVI
NG clausesin the SELECT statement.

[l ocal host:21000] > sel ect continent, sum(popul ation) as howrany from cou
ntry group by continent order by howrany desc;

Fococcoccoccoocooooe Fococococoococ +
| continent | howmany [
S S +
Asia	4298723000
Africa	1110635000
Europe	742452000
North America	565265000
South America	406740000
Cceania	38304000
TSRS S S RS S S +

User-defined functions (UDFs) let you code your own logic. They can be either scalar or aggregate functions. UDFs
let you implement important business or scientific logic using high-performance code for Impalato automatically
parallelize. Y ou can also use UDFs to implement convenience functions to simplify reporting or porting SQL from
other database systems.

[l ocal host:21000] > select rotl13('Hello world!') as 'Wak obfuscation';

| weak obfuscation |

Cloudera Runtime Impala schema objects

[l ocal host:21000] > select likelihood of new subatom c_particl e(sensor1,
sensor 2, sensor3) as probability
> from experinmental _results group by experinent;

Each function is associated with a specific database. For example, if you issue a USE somedb statement followed
by CREATE FUNCTION somefunc, the new function is created in the somedb database, and you could refer to
it through the fully qualified name somedb.somefunc. Y ou could then issue another USE statement and create a
function with the same name in a different database.

Impala built-in functions are associated with a special database named _impala_builtins, which lets you refer to them
from any database without qualifying the name.

[l ocal host:21000] > show dat abases;

| _inpala_builtins |
| anal ytic_functions |
| avro_testing [
| data _file_size |

[I 6cal host: 21000] > show functions in _inpala builtins |ike '*subs*';

feococococcooccooc fococococcoccoccoccooccooococoocoocoooooc +
| return type | signature |
dommemeeeeaaas domm e e eeeieeeeiieiaaaoaaa- +
| STRI NG | substr(STRI NG BI G NT) [
| STRI NG | substr(STRING BIG NT, BIG NT) [
| STRI NG | substring(STRING BI G NT) [
| STRI NG | substring(STRING BIG NT, Bl G NT) |
Fococcoccoccooooe Fococococcocococcococoococoocoocoocooooooe +

Impala built-in functions
Creating an Impala user-defined function

Provides information about using Identifiers as the names of databases, tables, or columns when creating the objects.

The following rules apply to identifiersin Impala:

e The minimum length of an identifier is 1 character.
« The maximum length of an identifier is currently 128 characters, enforced by the Metastore database.

e Anidentifier must start with an aphanumeric or underscore character. The remainder can contain any
combination of alphanumeric characters and underscores.

Quoting the identifier with backticks has no effect on the allowed charactersin the name.
e Anidentifier can contain only ASCII characters.

e Touseanidentifier name that matches one of the Impalareserved keywords, surround the identifier with ™
characters (backticks). Quote the reserved word even if it is part of afully qualified name.

The following example shows how areserved word can be used as a column nameiif it is quoted with backticksin
the CREATE TABLE statement, and how the column name must also be quoted with backticksin a query:

[l ocal host: 21000] > create table reserved (data string);

Cloudera Runtime Impala schema objects

[l ocal host:21000] > sel ect data from reserved;
ERROR: Anal ysi sException: Syntax error in |line 1:

sel ect data fromreserved
VAN

Encount ered: DATA

Expected: ALL, CASE, CAST, DI STINCT, EXISTS, FALSE, |F, |NTERVAL, NOT, NUL
L, STRAIGAT_JAO N, TRUE, |DENTIFIER

CAUSED BY: Exception: Syntax error

[l ocal host:21000] > sel ect reserved.data fromreserved;
ERROR: Anal ysi sexception: Syntax error in |line 1:

sel ect reserved.data fromreserved
N

Encount ered: DATA

Expect ed: | DENTI FI ER

CAUSED BY: Exception: Syntax error

[l ocal host:21000] > sel ect reserved. data’ fromreserved;

[l ocal host: 21000] >

Important: Becausethe list of reserved words grows over time as new SQL syntax is added, consider
adopting coding conventions (especially for any automated scripts or in packaged applications) to aways
quote all identifiers with backticks. Quoting all identifiers protects your SQL from compatibility issues if
new reserved words are added in later releases.

* Impaaidentifiers are case-insensitive.

Impala reserved words

Provides information about Tables that are the primary containers for datain Impala.

Logically, each table has a structure based on the definition of its columns, partitions, and other properties.

Physically, each table that uses HDFS storage is associated with a directory in HDFS. The table data consists of all
the data files underneath that directory:

» Interna tables are managed by Impala, and use directories inside the designated Impala work area.
« External tables use arbitrary HDFS directories, where the data files are typically shared between different Hadoop
components.

» Large-scaledataisusually handled by partitioned tables, where the data files are divided among different HDFS
subdirectories.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions .tmp or .copying are not considered part of the Impalatable. The suffix matching is case-insensitive, so for
example Impalaignores both .copying and .COPY ING suffixes.

When you create atable in Impala, you can create an internal table or an external table.

To see whether atableisinternal or external, and its associated HDFS location, issue the statement DESCRIBE FOR
MATTED table name. The Table Typefield displays MANAGED_TABLE for internal tables and EXTERNAL
_TABLE for external tables. The Location field displays the path of the table directory as an HDFS URI.

Internal Tables

The default kind of table produced by the CREATE TABLE statement is known as an internal
table.

» Impalacreates adirectory in HDFSto hold the datafiles.
e You can create datain internal tables by issuing INSERT or LOAD DATA statements.

10

Cloudera Runtime Impala schema objects

» |If you add or replace data using HDFS operations, issue the REFRESH command ini npal a-
shel | sothat Impalarecognizes the changesin datafiles, block locations, and so on.

* When you issue aDROP TABLE statement, Impala physically removes al the data files from
the directory.

* Toseewhether atableisinternal or external, and its associated HDFS location, issue the
statement DESCRIBE FORMATTED table_name. The Table Type field displays MANAGED _
TABLE for internal tablesand EXTERNAL_TABLE for externa tables. The Location field
displays the path of the table directory as an HDFS URI.

e Whenyouissuean ALTER TABLE statement to rename an internal table, all datafiles are
moved into the new HDFS directory for the table. The files are moved even if they were
formerly in a directory outside the Impala data directory, for example in an internal table with a
LOCATION attribute pointing to an outside HDFS directory.

External Tables

The syntax CREATE EXTERNAL TABLE sets up an Impalatable that points at existing datafiles,
potentially in HDFS locations outside the normal Impala data directories.. This operation saves

the expense of importing the data into a new table when you already have the data filesin aknown
location in HDFS, in the desired file format.

e You can use Impaato query the datain this table.

* You can create datain external tables by issuing INSERT or LOAD DATA statements.

» If you add or replace data using HDFS operations, issue the REFRESH command ini npal a-
shel | sothat Impalarecognizes the changes in data files, block locations, and so on.

* When you issue aDROP TABLE statement in Impala, that removes the connection that Impala
has with the associated data files, but does not physically remove the underlying data. Y ou can
continue to use the data files with other Hadoop components and HDFS operations.

e Whenyouissuean ALTER TABLE statement to rename an external table, all datafiles are left
in their original locations.

Y ou can switch atable between internal to external by using the ALTER TABLE statement withthe SET TBLPRO
PERTIES clause. For example:

ALTER TABLE tabl e_nane SET TBLPROPERTI ES(' EXTERNAL' =' TRUE') ;

If the Kudu service isintegrated with the Hive Metastore, the above operations are not supported.

Each table has an associated file format, which determines how Impalainterprets the associated data files.

You set the file format during the CREATE TABLE statement, or change it later using the ALTER TABLE
statement.

Partitioned tables can have a different file format for individual partitions, allowing you to change the file format used
inyour ETL process for new data without going back and reconverting all the existing datain the same table.

Any INSERT statements produce new data files with the current file format of the table.

For existing data files, changing the file format of the table does not automatically do any data conversion. Y ou must
use TRUNCATE TABLE or INSERT OVERWRITE to remove any previous datafiles that use the old file format.
Then you use the LOAD DATA statement, INSERT ... SELECT, or other mechanism to put datafiles of the correct
format into the table.

The default file format, Parquet, offers the highest query performance and uses compression to reduce storage
reguirements; therefore, where practical, use Parquet for Impala tables with substantial amounts of data. Also, the
complex types (ARRAY, STRUCT, and MAP) available in Impala 2.3 and higher are currently only supported with
the Parquet file type.

11

Cloudera Runtime Impala schema objects

By default, tables stored in Apache Kudu are treated specially, because Kudu manages its data independently of
HDFSfiles.

All metadata that Impala needsis stored in the HMS.

When Kudu is not integrated with the HM S, when you create a Kudu table through Impala, the table is assigned an
internal Kudu table name of the form impala::db_name.table_name. Y ou can see the Kudu-assigned name in the
output of DESCRIBE FORMATTED, in the kudu.table_name field of the table properties.

For Impala-Kudu managed tables, ALTER TABLE ... RENAME renames both the Impala and the Kudu table.

For Impala-Kudu external tables, ALTER TABLE ... RENAME renames just the Impalatable. To change the Kudu
table that an Impala external table pointsto, use ALTER TABLE impala_name SET TBLPROPERTIES('kudu.t
able name = ‘different_kudu_table name’). The underlying Kudu table must already exist.

In practice, external tables are typically used to access underlying Kudu tables that were created outside of Impala,
that is, through the Kudu API.

The SHOW TABLE STATS output for a Kudu table shows Kudu-specific details about the layout of the table.

Instead of information about the number and sizes of files, the information is divided by the Kudu tablets. For each
tablet, the output includes the fields # Rows (although this number is not currently computed), Start Key, Stop Key,
Leader Replica, and # Replicas. The output of SHOW COLUMN STATS, illustrating the distribution of values within
each column, is the same for Kudu tables as for HDFS-backed tables.

If the Kudu service is not integrated with the Hive Metastore, the distinction between internal and external tables has
some special details for Kudu tables. Tables created entirely through Impala are internal tables. The table name as
represented within Kudu includes notation such as an impala:: prefix and the Impal a database name. External Kudu
tables are those created by a non-Impala mechanism, such as a user application calling the Kudu APIs. For these
tables, the CREATE EXTERNAL TABLE syntax lets you establish a mapping from Impalato the existing Kudu
table:

CREATE EXTERNAL TABLE i npal a_nanme STORED AS KUDU
TBLPROPERTI ES(' kudu. t abl e_nane' = 'origi nal kudu_nane');

External Kudu tables differ in one important way from other external tables: adding or dropping a column or range
partition changes the data in the underlying Kudu table, in contrast to an HDFS-backed external table where existing
datafiles are left untouched.

Hadoop file formats supported
Storage systems supported

Provides information about using Views as lightweight logical constructs that can act as aliases for queries. Using
aview, you can issue complicated reporting queries with compact and simple syntax and reduce maintenance by
avoiding the duplication of complicated queries across multiple applications in multiple languages.

Y ou can specify aview namein aquery (a SELECT statement or the SELECT portion of an INSERT statement)
where you would usually specify atable name.

CREATE VIEWv2 AS SELECT tl.cl1, tl1.c2, t2.c3 FROMt1l JONt2 ON (tl.id = t2.
id);

-- This sinple query is safer to enbed in reporting applications than the |
onger query above.

-- The view definition can renmain stable even if the structure of the und
erlying tabl es changes.

SELECT c1, c2, c3 FROM v2;

12

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-file-formats.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-storage.html

Cloudera Runtime Impala SQL data types

A view letsyou to:

« Build anew, more refined query on top of the original query by adding new clauses, select-list expressions,
function calls, and so on: This technique lets you build up several more or less granular variations of the same
query, and switch between them when appropriate.

» Set up aliases with intuitive names for tables, columns and result sets from joins.

« Avoid coding lengthy subqueries and repeating the same subquery text in many other queries.

To create, ater, or drop views, usethe CREATE VIEW, the ALTER VIEW, and the DROP VIEW statements
respectively.

Y ou cannot insert into views.

To see the definition of aview, issue a DESCRIBE FORMATTED statement, which shows the query from the
original CREATE VIEW statement

Impala supports a set of data types that you can use for table columns, expression values, and function arguments
and return values. Y ou must be aware of the supported data types, the purpose each data type serves, and the casting
behaviour for each data type, prior to using them.

Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing atable
B containing any columns with unsupported types causes an error.

For the notation to write literals of each of these data types, see Literals.
Impala supports alimited set of implicit caststo avoid undesired results from unexpected casting behavior.

» Impaladoes not implicitly cast between string and numeric or Boolean types. Always use CAST() for these
conversions.

« Impaladoes perform implicit casts among the numeric types, when going from a smaller or less precise typeto a
larger or more precise one. For example, Impalawill implicitly convert a SMALLINT to aBIGINT or FLOAT,
but to convert from DOUBLE to FLOAT or INT to TINYINT requiresacall to CAST() in the query.

» Impaladoes perform implicit casts from STRING to TIMESTAMP. Impala has a restricted set of literal formats
for the TIMESTAMP data type and the FROM_UNIXTIME() format string; see TIMESTAMP data type on page
46 for details.

See the topics under this section for full details on implicit and explicit casting for each data type, and see Impalatype
conversion functions on page 339 for details about the CAST() function.

Impala SQL literals
SQL differences between Impalaand Hive

Review the syntax, usage, and restrictions related to the ARRAY data type which is acomplex data type that can
represent an arbitrary number of ordered elements. The elements can be scalars or another complex type (ARRAY,
STRUCT, or MAP).

Syntax:

col unm_nane ARRAY < type >

type ::= primtive_type | conplex_type
Usage:

13

Cloudera Runtime Impala SQL data types

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex types for background information and usage examples.

The elements of the array have no names. Y ou refer to the value of the array item using the ITEM pseudocolumn, or
its position in the array with the POS pseudocolumn.

Each row can have a different number of elements (including none) in the array for that row.

When an array contains items of scalar types, you can use aggregation functions on the array elements without using
join notation. For example, you can find the COUNT(), AVG(), SUM(), and so on of numeric array elements, or the
MAX() and MIN() of any scalar array elements by referring to table_name.array_column in the FROM clause of

the query. When you need to cross-reference values from the array with scalar values from the same row, such as by
including a GROUP BY clause to produce a separate aggregated result for each row, then the join clauseis required.

A common usage pattern with complex typesisto have an array as the top-level type for the column: an array of
structs, an array of maps, or an array of arrays. For example, you can model a denormalized table by creating a
column that isan ARRAY of STRUCT elements; each item in the array represents a row from atable that would
normally be used in ajoin query. Thiskind of data structure lets you essentially denormalize tables by associating
multiple rows from one table with the matching row in another table.

Y ou typically do not create more than one top-level ARRAY column, because if there is some relationship between
the elements of multiple arrays, it is convenient to model the data as an array of another complex type element (either
STRUCT or MAP).

Y ou can pass amulti-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were atable. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al. If table T1 contained a STRUCT column S1, and afield F1 within the STRUCT
was aMAP, you could issue the statement DESCRIBE t1.s1.f1. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as atable with each field representing a column in the table. A MAP
is shown as atwo-column table, with KEY and VALUE columns.

Restrictions:

e Columnswith this data type can be used in tables or partitions with the Parquet and ORC file formats.

« Columnswith this data type cannot be used as partition key columns in a partitioned table.

e« The COMPUTE STATS statement does not produce any statistics for columns of this data type.

« The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» Seethe Limitations and restrictions for complex types topic for afull list of limitations and associated guidelines
about complex type columns.

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from
E the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with Impala
Complex Typesfor the table definitions.

The following example shows how to construct a table with various kinds of ARRAY columns, both at the top level
and nested within other complex types. Whenever the ARRAY consists of ascalar value, such asin the PETS column
or the CHILDREN field, you can see that future expansion is limited. For example, you could not easily evolve the
schemacto record the kind of pet or the child's birthday alongside the name. Therefore, it is more common to use an
ARRAY whose elements are of STRUCT type, to associate multiple fields with each array element.

Note: Practicethe CREATE TABLE and query notation for complex type columns using empty tables, until
you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE array_deno
(

14

Cloudera Runtime Impala SQL data types

id Bl G NT,
name STRI NG

-- An ARRAY of scalar type as a top-Ilevel columm.
pets ARRAY <STRI NG,

-- An ARRAY with el enments of conplex type (STRUCT).
pl aces_l|ived ARRAY < STRUCT <
pl ace: STRI NG
start_year: |NT
>>
-- An ARRAY as a field (CH LDREN) wi thin a STRUCT
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-Ilevel columm.)
mar ri ages ARRAY < STRUCT <
spouse: STRI NG
chil dren: ARRAY <STRI NG>
>>
-- An ARRAY as the value part of a MAP.
-- The first MAP field (the key) would be a val ue such as
-- '"Parent' or 'Gandparent', and the corresponding array woul d
-- represent 2 parents, 4 grandparents, and so on
ancestors MAP < STRI NG ARRAY <STRI NG >

)
STORED AS PARQUET;

The following example shows how to examine the structure of atable containing one or more ARRAY columns by
using the DESCRIBE statement. Y ou can visualize each ARRAY as its own two-column table, with columns ITEM

and POS.
DESCRI BE array_deno;
feococococcooccooas foccococccoccoccooccocoocoocooos +
| nane | type |
feccoocooccooooc fccoocococcooocococooococooooc +
id bi gi nt
nane string
pets array<string>

I I
I I
_ I I
marri ages | array<struct< |
| spouse: string, |
| chi l dren: array<stri ng>

| >> I
| array<struct< |
[pl ace: string, [
| start_year:int |
| >> I
I I

map<string, array<string>>

pl aces | ived

ancestors

Focococ Fococococ +
| name | type |

feoocooc feccoocooc +

| item| string |

| pos | bigint |

Focoooc Fococoooc +

DESCRI BE array_deno. marri ages;
Fooocooc dooccoococooocooccooocooooooooc +
| nanme | type |
e ccooc feccoccococoococcooococooooc +

| item| struct< |
[[spouse: stri ng, [

15

Cloudera Runtime Impala SQL data types

I I

I | >

| pos | bigint

Focoooc Frcocococococococoococoooooe +
DESCRI BE array_deno. pl aces_Ii ved;
Fooocooc Fooccocococooocoooooooe +

| nanme | type |

e ccooc feccoocococcoococooc +

item| struct< |
[pl ace:string, |
start_year:int |
I

I

foocoooc fococococcooccoooos +
| name | type |
fecooooc feccoccocooooooc +
| key | string [
| value | array<string> |
fooocoooc fecococoococooocoooos +

The following example shows queriesinvolving ARRAY columns containing elements of scalar or complex types.
You “unpack” each ARRAY column by referring to it in ajoin query, asif it were a separate table with ITEM and
POS columns. If the array element is a scalar type, you refer to its value using the ITEM pseudocolumn. If the array
element isa STRUCT, you refer to the STRUCT fields using dot notation and the field names. If the array element is
another ARRAY or aMAP, you use another level of join to unpack the nested collection elements.

-- Array of scal ar val ues.

-- Each array elenment represents a single string, plus we know its position
in the array.

SELECT id, nane, pets.pos, pets.item FROM array_deno, array_deno. pets;

-- Array of structs.

-- Now each array el enent has nanmed fields, possibly of different types.

-- You can consider an ARRAY of STRUCT to represent a table inside another
tabl e.

SELECT id, name, places_lived.pos, places |lived.itemplace, places lived.it

em start_year

FROM array_denop, array_deno. pl aces_|i ved;

-- The .ITEMnanme is optional for array elenents that are structs.

-- The following query is equivalent to the previous one, with .ITEM

-- renoved fromthe col um references.

SELECT id, name, places_lived. pos, places_lived.place, places |ived.start_ye

ar

FROM array_denp, array_deno. pl aces_|i ved;

-- To filter specific items fromthe array, do conpari sons agai nst the .PCS
or .ITEM
-- pseudocol uims, or names of struct fields, in the WHERE cl ause.
SELECT id, nane, pets.item FROM array_denp, array_denp. pets
WHERE pets.pos in (0, 1, 3);

SELECT id, nanme, pets.item FROM array_deno, array_deno. pets
WHERE pets.itemLIKE ' M. %;

SELECT id, nane, places lived.pos, places lived.place, places |lived.start_ye
ar

FROM array_deno, array_deno. pl aces_lived
WHERE pl aces_lived. pl ace like '%California%;

16

Cloudera Runtime Impala SQL data types

Complex types

An 8-byte integer datatype used in CREATE TABLE and ALTER TABLE statements.

Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane Bl G NT

Range: -9223372036854775808 .. 9223372036854775807. Thereis no UNSIGNED subtype.

Conversions: Impala automatically converts to a floating-point type (FLOAT or DOUBLE) automatically. Use CAST
() toconvert to TINYINT, SMALLINT, INT, STRING, or TIMESTAMP. Casting an integer or floating-point value
N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1, 1970). By default,
the result value represents a date and time in the UTC time zone. If the setting ##use_local_tz_for_unix_timestam
p_conversions=trueisin effect, the resulting TIMESTAMP represents a date and time in the local time zone.

Examples:

CREATE TABLE t1 (x Bl G NT);
SELECT CAST(1000 AS Bl G NT);

Usage notes:

BIGINT isaconvenient type to use for column declarations because you can use any kind of integer valuesin INSE
RT statements and they are promoted to BIGINT where necessary. However, BIGINT also requires the most bytes
of any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possibleif you
overuse thistype. Therefore, prefer to use the smallest integer type with sufficient range to hold al input values, and
CAST() when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the BIGINT type, call the functions MIN_BIGINT() and
MAX_BIGINT().

If an integer value istoo large to be represented asa BIGINT, use a DECIMAL instead with sufficient digits of
precision.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use thistype for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This datatypeis fully compatible with HBase tables.

Text table considerations: Values of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as an 8-byte value.
Added in: Availablein all versions of Impala.

Column statistics considerations. Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

This release adds support for BINARY columns for all table formats with the exception of Kudu.

17

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-sql-reference/topics/impala-complex-types.html

Cloudera Runtime Impala SQL data types

The BINARY datatypeis an arbitrary-length byte array datatype that can be used in CREATE TABLE and SELECT
statements. This data type can contain data like images. The BINARY datatype isvery similar to the STRING data
type except that the BINARY datatypeis not affected by UTF8_mode.

Syntax
The BINARY datatypeis defined in the column as shown here:

create table binary_table (v varchar, b binary);

Length
Take the following considerations for BINARY lengths:

e Thehard limit on the size of aBINARY and the total size of arow is512KB. If aquery triesto process or create a
BINARY larger than this limit, it will return an error to the user.

e Thelimitis1 GB on BINARY when writing to Parquet files.

e Queriesoperating on BINARY swith 32 KB or less will work reliably and will not cause significant performance
or memory problems (unless you have very complex queries, very many columns, etc.)

» Performance and memory consumption may degrade with BINARY s larger than 32 KB.

* Therow size, i.e. thetotal size of all BINARY and other columns, is subject to lower limits at various pointsin
query execution that support spill-to-disk. A few examples for lower row size limits are:

* Rows coming from the right side of any hash join

« Rows coming from either side of a hash join that spillsto disk

* Rows being sorted by the SORT operator without a limit

* Rowsin agrouping aggregation
Conversions: The only possible conversion for binary is explicit CAST from/to STRING.
Supported built-in functions
The following list contains some of the supported built-in functions.

» Scalar functions: length, concat, typeof, murmur_hash
» Conditional functions: if, coalesce
» Aggregate functions: min, max, count

Note: If the query option UTF8_MODE is set to FAL SE, then the built-ins function the same way for
STRING and BINARY .
Restrictions on BINARY columns

» For both table types PARQUET and ORC min/max stat filtering can not be used for BINARY columns, whileit
can be used for STRING columns.

e Currently, this data type cannot be used with Kudu tables.
Text table considerations:In textfiles Impalawrites BINARY columns base64 encoded.

PARQUET considerations:BINARY columns are stored asBY TE_ARRAY in Parquet similar to string. For
BINARY columns converted_type/logical type are never set, while they are set for STRINGs if the query option
parquet_annotate strings utf8 is set to true.

ORC considerations:In ORC file format, there is an exclusive BINARY column type but Impala reads STRING/
VARCHAR/CHAR ORC columns also as BINARY.

KUDU considerations:Currently, this data type cannot be used with Kudu tables.

18

Cloudera Runtime

Impala SQL data types

As part of thisrelease, behavior for Impala BINARY type is made to be consistent with Hive in most cases. However,
some differences were not resolved to be backward compatible with older releases. Y ou must be aware of these
changes to run Hive queries, if needed, without modifying them.

Impala

Impaladoesn't treat STRINGs as UTF8, so BINARY and STRING
become nearly identical.

The only possible conversion for binary is explicit CAST from/to
STRING.

INSERT ... VALUES () string literals need to be explicitly cast to
BINARY in Impaa

Impala supports a small subset of built-in STRING functions for the
BINARY type.

If the query option UTF8_MODE is set to FALSE, then the STRING
values behave like BINARY values. So you can store binary values as
STRINGs and have al built-in functions available for them.

In textfiles Impalawrites BINARY columns base64 encoded

No NDV is calculated during COMPUTE STATISTICS.

All kinds of UDFs (native, Hive legacy, Hive generic) support
BINARY

Hive

In Hive, the main difference between STRING and BINARY is that
STRING is assumed to be UTF8 encoded, while BINARY can be any
byte array.

BINARY can be only implicitly cast from/to STRING

In Hive, no explici t conversion needed

Only asmall subset of built-in STRING functions support BINARY .

In severa file formats (e.g. text) BINARY is base64 encoded.

No NDV is caculated during COMPUTE STATISTICS.

In Hive UDFsisonly supported if the argument and return types are set
explicitly

The following example demonstrates calls to string manipulation functions to concatenate binary columns.

sel ect concat(cast("a" as binary),

cast("b" as binary));

The following examples demonstrate how to use the aggregate functions. These functions calculate a return value
across all theitemsin aresult set, so they require a FROM clause in the query.

sel ect count(a) from product _cat al og;

sel ect max(hei ght),

avg(hei ght) from census_data where age > 20;

A datatype used in CREATE TABLE and ALTER TABLE statements, representing a single true/false choice.
Syntax: In the column definition of a CREATE TABLE statement:

col unm_nane BOOLEAN

Range: TRUE or FALSE. Do not use quotation marks around the TRUE and FAL SE literal values. Y ou can write
the literal valuesin uppercase, lowercase, or mixed case. The values queried from atable are aways returned in

lowercase, true or false.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an

explicit call to the CAST() function.

19

Cloudera Runtime Impala SQL data types

Y ou can use CAST() to convert any integer or floating-point type to BOOLEAN: avalue of O represents false, and
any non-zero valueis converted to true.

SELECT CAST(42 AS BOOLEAN) AS nonzero_int, CAST(99.44 AS BOOLEAN) AS nonzero

_deci mal ,

CAST(000 AS BOOLEAN) AS zero_int, CAST(0.0 AS BOOLEAN) AS zero_deci nal ;
Foccococosaoos Foccoccocococosaoos Focococoooc Fococococoocnooc +
| nonzero_int | nonzero_decimal | zero_int | zero_decimal |
doococcooocoooooc dooccocococooocooooooc Foocoocoooc dooccooocooooooc +
| true | true | false | false |
feccoococooooc feccoccocooocosooc feccococooc feccoocooccooooc +

When you cast the opposite way, from BOOLEAN to a numeric type, the result becomes either 1 or O:

SELECT CAST(true AS INT) AS true_int, CAST(true AS DOUBLE) AS true_doubl e,
CAST(false AS INT) AS false int, CAST(fal se AS DOUBLE) AS fal se_doubl e;

feoococooccoac feococococcooccooc feocococooccooac feococococcooccooas +
| true_int | true_double | false_int | false_double |
S e S doemeemeeaeaaas +
| 1 | 1 | 0 | 0 I
S S SRS S S oo S S +

Y ou can cast DECIMAL valuesto BOOLEAN, with the same treatment of zero and non-zero values as the other
numeric types. Y ou cannot cast a BOOLEAN to aDECIMAL.

Y ou cannot cast a STRING value to BOOLEAN, athough you can cast aBOOLEAN valueto STRING, returning '1'
for true values and '0' for false values.

Although you can cast aTIMESTAMP to aBOOLEAN or aBOOLEAN to a TIMESTAMP, the results are unlikely
to be useful. Any non-zero TIMESTAMP (that is, any value other than 1970-01-01 00:00:00) becomes TRUE when
converted to BOOLEAN, while 1970-01-01 00:00:00 becomes FALSE. A value of FAL SE becomes 1970-01-01 00:
00:00 when converted to BOOLEAN, and TRUE becomes one second past this epoch date, that is, 1970-01-01 00:00
:01.

NULL considerations: An expression of this type produces a NULL value if any argument of the expressionis NULL.
Partitioning:

Do not use aBOOLEAN column as a partition key. Although you can create such atable, subsegquent operations
produce errors:

[l ocal host:21000] > create table truth_table (assertion string) partitioned

by (truth bool ean);

[l ocal host:21000] > insert into truth table values ('Pigs can fly',false);

ERROR: Anal ysi sException: INSERT into table with BOOLEAN partition columm
(truth) is not supported: partitioning.truth_table

Examples:
SELECT 1 < 2;
SELECT 2 = 5;

SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING really BOOLEAN);
I NSERT | NTO assertions VALUES
("1l is less than 2", 1 < 2),
("2 is the sanme as 5", 2 = 5),
("Grass is green", true),
("The nmoon is made of green cheese", false);
SELECT cl ai m FROM assertions WHERE real | y = TRUE;

HBase considerations: This datatypeis fully compatible with HBase tables.
Parquet considerations: Thistypeis fully compatible with Parquet tables.

20

Cloudera Runtime Impala SQL data types

Text table considerations: Values of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Column statistics considerations. Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

BOOLEAN literals
Impala SQL operators
Impala conditional functions

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are
longer than the specified length, Impala truncates any trailing characters.

Note: For performance consideration, we recommend using VARCHAR or STRING over CHAR asthe
Ij performance gain of Codegen outweighs the benefits of fixed width CHAR. The CHAR type currently does
not have the Impala Codegen support.

Syntax: In the column definition of a CREATE TABLE statement:
col unmm_nane CHAR(| engt h)

The maximum length you can specify is 255.
Semantics of trailing spaces:

« When you store a CHAR value shorter than the specified length in atable, queries return the value padded with
trailing spaces if necessary; the resulting value has the same length as specified in the column definition.

» Leading spacesin CHAR are preserved within the datafile.

« |If you store a CHAR value containing trailing spaces in atable, those trailing spaces are not stored in the datafile.
When the value isretrieved by a query, the result could have a different number of trailing spaces. That is, the
value includes however many spaces are needed to pad it to the specified length of the column.

e |If you compare two CHAR values that differ only in the number of trailing spaces, those values are considered
identical.
* When comparing or processing CHAR values:

e CAST() truncates any longer string to fit within the defined length. For example:

SELECT CAST(' x' AS CHAR(4)) = CAST('x " AS CHAR(4)); -- Returns T
RUE.

« |If aCHAR valueis shorter than the specified length, it is padded on the right with spaces until it matches the
specified length.

¢ CHAR_LENGTH() returnsthe length including any trailing spaces.

e LENGTHY() returnsthe length excluding trailing spaces.

¢ CONCATY() returnsthe length including trailing spaces.

Partitioning: Thistype can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.

21

Cloudera Runtime Impala SQL data types

Parquet considerations:

* Thistype can beread from and written to Parquet files.
* Thereisno requirement for a particular level of Parquet.

« Parquet files generated by Impala and containing this type can be freely interchanged with other components such
as Hive and MapReduce.

« Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.

» Parquet data files might contain values that are longer than allowed by the CHAR(n) length limit. Impalaignores
any extratrailing characters when it processes those values during a query.

Text table considerations: Text data files might contain values that are longer than allowed for a particular CHAR(n)
column. Any extratrailing characters are ignored when Impala processes those values during a query. Text datafiles
can also contain values that are shorter than the defined length limit, and Impala pads them with trailing spaces up to
the specified length. Any text datafiles produced by Impala INSERT statements do not include any trailing blanks for
CHAR columns.

Avro considerations: The Avro specification allows string values up to 2**64 bytesin length. Impala queries for Avro
tables use 32-bit integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR
valuesin Avro tablesto (2**31)-1 bytes. If aquery encounters a STRING value longer than (2**31)-1 bytesin an
Avro table, the query fails. In earlier releases, encountering such long valuesin an Avro table could cause a crash.

Compatibility: Thistypeis available using Impala 2.0.0 or higher.
Some other database systems make the length specification optional. For Impala, the length is required.

Internal details: Represented in memory as a byte array with the same size as the length specification. Vauesthat are
shorter than the specified length are padded on the right with trailing spaces.

Added in: Impala2.0.0

Column statistics considerations. Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions: Because the blank-padding behavior requires allocating the maximum length for each value in memory,

for scalability reasons, you should avoid declaring CHAR columns that are much longer than typical valuesin that
column.

All datain CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you
have binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

When an expression compares a CHAR with a STRING or VARCHAR, the CHAR value isimplicitly converted to
STRING first, with trailing spaces preserved.

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions
on both sides to CHAR values of the appropriate length. For example:

SELECT CAST("foo " AS CHAR(5)) = CAST('foo' AS CHAR(3)); -- Returns TRUE.

This behavior is subject to change in future rel eases.

Use the DATE data type to store date values.
Use the DATE data typeto store date values. The DATE type is supported for HBase, Text, Avro, and Parquet.

22

Cloudera Runtime Impala SQL data types

Range:

0001-01-01 to 9999-12-31

Literals and expressions:

The DATE literals arein the form of DATEYYYY-MM-DD'. For example, DATE '2013-01-01'
Parquet and Avro considerations:

Parquet and Avro use DATE logical type for dates. The DATE logical type annotates an INT32 that stores the
number of days from the Unix epoch, January 1, 1970. This representation introduces an interoperability issue
between Impala and older versions of Hive:

If Hive versions lower than 3.1 wrote dates earlier than 1582-10-15 to a Parquet or Avro table, those dates will be
read back incorrectly by Impala and vice versa. In Hive 3.1 and higher, thisis no longer an issue.

Explicit casting between DATE and other data types:
DATE type can only be converted to/from DATE, TIMESTAMP, or STRING types as described below.

TIMESTAMP DATE The date component of the TIMESTAMP is returned, and the time of the day component
of the TIMESTAMP isignored.

STRING DATE The DATE value of yyyy-MM-dd is returned.
The STRING value must be in the yyyy-MM-dd or yyyy-MM-dd ~ HH:mm:ss.SSSS
SSSSS pattern.

If the time component is present in STRING, it is silently ignored.

If the STRING value does not match the above formats, an error is returned.

DATE TIMESTAMP The year, month, and day of the DATE is returned along with the time of day component
set to 00:00:00.
DATE STRING The STRING value, 'yyyy-MM-dd', is returned.

Implicit casting between DATE and other types:
Implicit casting is supported:

e From STRING to DATE if the source STRING valueisin the yyyy-MM-dd or yyyy-MM-dd HH:mm:ss.SSSS
SSSSS pattern.
e From DATE to TIMESTAMP.

Added in:
The DATE typeisavailable in Impala 3.3 and higher.
Kudu considerations:

Y ou can read and write DATE values to Kudu tables. For example:

create tabl e kudu_date_key (fdatekey date primary key, val string)

stored as kudu

insert into kudu_date_key val ues (DATE '1970-01-01', 'Unix epoch'), (DATE
'2019-12-12', 'today')

The DECIMAL datatype is anumeric data type with fixed scale and precision. The data type is useful for storing and
doing operations on precise decimal values.

23

Cloudera Runtime Impala SQL data types

Syntax:
DECI MAL[(preci sion[, scale])]

Precision:

precision represents the total number of digits that can be represented regardless of the location of the decimal point.
This value must be between 1 and 38, specified as an integer literal.

The default precisionis 9.

Scale:

scal e represents the number of fractional digits.

This value must be less than or equal to the precision, specified as an integer literal.

The default scaleis 0.

When the precision and the scale are omitted, a DECIMAL istreated as DECIMAL(9, 0).
Range:

The range of DECIMAL typeis-10"38 +1 through 1038 —1.

The largest value is represented by DECIMAL (38, 0).

The most precise fractional value (between 0 and 1, or 0 and -1) is represented by DECIMAL (38, 38), with 38 digits
to the right of the decimal point. The value closest to 0 would be .0000...1 (37 zeros and the final 1). The value closest
to 1 would be .999... (9 repeated 38 times).

Memory and disk storage:

Only the precision determines the storage size for DECIMAL values, and the scale setting has no effect on the storage
size. The following table describes the in-memory storage once the values are loaded into memory.

1-9 4bytes
10- 18 8 bytes
19- 38 10 bytes

The on-disk representation varies depending on the file format of the table.
Text, RCFile, and SequenceFile tables use ASCI1-based formats as below:

» Leading zeros are not stored.
e Trailing zeros are stored.
» Each DECIMAL value takes up as many bytes as the precision of the value, plus:

* Oneextrabyteif the decimal point is present.
* Oneextrabyte for negative values.

Parquet and Avro tables use binary formats and offer more compact storage for DECIMAL values. In these tables,
Impala stores each value in fewer bytes where possible depending on the precision specified for the DECIMAL
column. To conserve space in large tables, use the smallest-precision DECIMAL type.

Precision and scale in arithmetic operations:
For all arithmetic operations, the resulting precision is at most 38.

If the resulting precision would be greater than 38, Impala truncates the result from the back, but keeps at least 6
fractional digitsin scale and rounds.

24

Cloudera Runtime Impala SQL data types

For example, DECIMAL (38, 20) * DECIMAL(38, 20) returns DECIMAL (38, 6). According to the table below, the
resulting precision and scale would be (77, 40), but they are higher than the maximum precision and scale for DECI
MAL. So, Impala sets the precision to the maximum allowed 38, and truncates the scale to 6.

When you use DECIMAL valuesin arithmetic operations, the precision and scale of the result value are determined
asfollows. For better readability, the following terms are used in the table below:

e P1, P2: Input precisions
e S1, S2: Input scales
e L1,L2: Leadingdigitsininput DECIMALSs,i.e,L1=Pl-SlandL2=P2-S2

Addition and Subtraction max (L1, L2) + max (S1, S2) + 1 max (S1, S2)

lisfor carry-over.

Multiplication PL+P2+1 S1+82
Division L1+S2+max (S1+P2+1,6) max (S1+ P2 + 1, 6)
Modulo min (L1, L2) + max (S1, S2) max (S1, S2)

Precision and scale in functions:

When you use DECIMAL valuesin built-in functions, the precision and scale of the result value are determined as
follows:

* Theresult of the SUM aggregate function on aDECIMAL vaueis:

* Precision: 38
o Scale: The same scale as the input column
» Theresult of AVG aggregate function on aDECIMAL valueis:

e Precision: 38
« Scale max(Scale of input column, 6)
Implicit conversionsin DECIMAL assignments:

Impalaenforces strict conversion rules in decimal assignments likein INSERT and UNION statements, or in
functions like COALESCE.

If there is not enough precision and scale in the destination, Impala fails with an error.

Impala performs implicit conversions between DECIMAL and other numeric types as below:

e DECIMAL isimplicitly converted to DOUBLE or FLOAT when necessary even with aloss of precision. It can be
necessary, for example when inserting a DECIMAL value into a DOUBLE column. For example:

CREATE TABLE flt(c FLOAT):
I NSERT I NTO flt SELECT CAST(1e37 AS DECI MAL(38, 0));
SELECT CAST(c AS DECI MAL(38, 0)) FROM flt;

Resul t: 9999999933815812510711506376257961984

Theresult has aloss of information due to implicit casting. Thisiswhy we discourage using the DOUBLE and
FLOAT typesin general.

« DOUBLE and FLOAT cannot be implicitly converted to DECIMAL. An error is returned.

« DECIMAL isimplicitly converted to DECIMAL if all digitsfit in the resulting DECIMAL.

For example, the following query returns an error because the resulting type that guarantees that all digits fit
cannot be determined .

SELECT GREATEST (CAST(1 AS DECI MAL(38, 0)), CAST(2 AS DECI MAL(38, 37)));

25

Cloudera Runtime Impala SQL data types

» Integer values can be implicitly converted to DECIMAL when there is enough room in the DECIMAL to
guarantee that all digitsfit. The integer types require the following numbers of digits to the left of the decimal
point when converted to DECIMAL:

« BIGINT: 19 digits

e INT: 10 digits

e« SMALLINT: 5digits
e TINYINT: 3 digits

For example:

CREATE TABLE decinmals_10 8 (x DECI MAL(10, 8));
| NSERT | NTO deci mal's_10_8 VALUES (CAST(1 AS TINYINT));

The above INSERT statement fails because TINY INT requires room for 3 digits to the left of the decimal point in
the DECIMAL.

CREATE TABLE decinmals_11 8(x DECI MAL(11, 8));
I NSERT | NTO deci mal's_11_8 VALUES (CAST(1 AS TINYINT));

The above INSERT statement succeeds because there is enough room for 3 digits to the left of the decimal point
that TINYINT requires.

In UNION, the resulting precision and scales are determined as follows.

e Precision: max (L1, L2) + max (S1, S2)

If the resulting type does not fit in the DECIMAL type, an error isreturned. See the first example below.
e Scale max (S1, S2)

Examples for UNION:

e DECIMAL(20, 0) UNION DECIMAL (20, 20) would require a DECIMAL (40, 20) to fit al the digits. Since this
is larger than the max precision for DECIMAL, Impalareturns an error. One way to fix the error isto cast both
operands to the desired type, for example DECIMAL (38, 18).

« DECIMAL(20, 2) UNION DECIMAL(8, 6) returns DECIMAL (24, 6).

e INT UNION DECIMAL(9, 4) returns DECIMAL (14, 4).

INT has the precision 10 and the scale 0, so it is treated as DECIMAL (10, 0) UNION DECIMAL(9. 4).
Casting between DECIMAL and other data types:

To avoid potential conversion errors, use CAST to explicitly convert between DECIMAL and other typesin decimal
assignments likein INSERT and UNION statements, or in functions like COALESCE:

* You can cast the following types to DECIMAL: FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING
* You can cast DECIMAL to the following types: FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING,
BOOLEAN, TIMESTAMP

Impalaperforms CAST between DECIMAL and other numeric types as below:

« Precision: If you cast avalue with bigger precision than the precision of the destination type, Impalareturns an
error. For example, CAST (123456 AS DECIMAL(3,0)) returns an error because al digits do not fit into DECI
MAL(3, 0)

« Scae If you cast avalue with more fractional digits than the scale of the destination type, the fractional digits are
rounded. For example, CAST(1.239 ASDECIMAL(3, 2)) returns 1.24.

Casting STRING to DECIMAL:

You can cast STRING of numeric charactersin columns, literals, or expressionsto DECIMAL as long as number fits
within the specified target DECIMAL type without overflow.

26

Cloudera Runtime Impala SQL data types

e If scalein STRING > scalein DECIMAL, the fractional digits are rounded to the DECIMAL scale.

For example, CAST('98.678912' AS DECIMAL(15, 1)) returns 98.7.
* If #leading digitsin STRING > # leading digitsin DECIMAL, an error is returned.

For example, CAST('123.45' ASDECIMAL(2, 2)) returns an error.
Exponentia notation is supported when casting from STRING.
For example, CAST('1.0e6' AS DECIMAL (32, 0)) returns 1000000.
Casting any non-numeric value, such as'ABC' to the DECIMAL type returns an error.
Casting DECIMAL to TIMESTAMP:

Casting a DECIMAL value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970).

DECIMAL vs FLOAT consideration:

The FLOAT and DOUBLE types can cause problems or unexpected behavior due to inability to precisely represent
certain fractional values, for example dollar and cents values for currency. Y ou might find output values slightly
different than you inserted, equality tests that do not match precisely, or unexpected values for GROUP BY
columns. The DECIMAL type can help reduce unexpected behavior and rounding errors, but at the expense of some
performance overhead for assignments and comparisons.

Literals and expressions:
* Numeric literals without a decimal point

e Theliteras aretreated as the smallest integer that would fit the literal. For example, 111isaTINYINT, and
1111 isaSMALLINT.

« Largeliteralsthat do not fit into any integer type are treated as DECIMAL.
e Theliterastoo large to fit into aDECIMAL(38, 0) are treated as DOUBLE.
e Numeric literals with adecimal point

* Theliteral with lessthan 38 digits are treated as DECIMAL.
e Theliteraswith 38 or more digits are treated as a DOUBLE.
» Exponentia notation is supported in DECIMAL literals.

e Torepresent avery large or precise DECIMAL value as aliteral, for example one that contains more digits than
can be represented by a BIGINT literal, use a quoted string or afloating-point value for the number and CAST the
string to the desired DECIMAL type.

For example: CAST('999999999999999999999999999999' ASDECIMAL (38, 5)))
File format considerations:
The DECIMAL datatype can be stored in any of the file formats supported by Impala:

e Impalacan query Avro, RCFile, or SequenceFile tables that contain DECIMAL columns, created by other Hadoop
components.

* Impalacan query and insert into Kudu tables that contain DECIMAL columns. Kudu supports the DECIMAL
type.

e TheDECIMAL datatypeisfully compatible with HBase tables.

e TheDECIMAL datatypeisfully compatible with Parquet tables.

« Values of the DECIMAL datatype are potentially larger in text tables than in tables using Parquet or other binary
formats.

UDF consideration:
When writing a C++ UDF, use the DecimalVal data type defined in /usr/include/impala_udf/udf.h.

Changing precision and scale:

27

Cloudera Runtime Impala SQL data types

You canissuean ALTER TABLE ... REPLACE COLUMNS statement to change the precision and scale of an
existing DECIMAL column.

» For text-based formats (text, RCFile, and SequenceFile tables)

« |If the valuesin the column fit within the new precision and scale, they are returned correctly by a query.
» If any values that do not fit within the new precision and scale:

* Impalareturns an error if the query option ABORT_ON_ERROR is set to true.
e |ImpaareturnsaNULL and warning that conversion failed if the query option ABORT_ON_ERROR is set
to false.
» Leading zeros do not count against the precision value, but trailing zeros after the decimal point do.
* For binary formats (Parquet and Avro tables)

e Although an ALTER TABLE ... REPLACE COLUMNS statement that changes the precision or scale of a
DECIMAL column succeeds, any subsequent attempt to query the changed column resultsin afatal error. This
is because the metadata about the columnsis stored in the data files themselves, and ALTER TABLE does not
actually make any updates to the data files. The other unaltered columns can still be queried successfully.

» If the metadata in the data files disagrees with the metadata in the metastore database, Impala cancelsthe
query.

Partitioning:
Using aDECIMAL column as a partition key provides you a better match between the partition key values and the
HDFS directory names than using a DOUBLE or FLOAT partitioning column.

Column statistics considerations:

Because the DECIMAL type has afixed size, the maximum and average size fields are awaysfilled in for column
statistics, even before you run the COMPUTE STATS statement.

Compatibility with older version of DECIMAL:

Thisversion of DECIMAL typeisthe default in Impala 3.0 and higher. In Impala 2.12 and lower, decimal_v2=false.
And in Impala 3.0 or higher, decimal_v2=true. The key differences between this version of DECIMAL and the
previous DECIMAL V1in Impala2.x include the following:

Overall behavior Returns either the result or an error. Returns either the result or NULL with a
warning.

Overflow behavior Aborts with an error. Issues awarning and returns NULL.

Truncation / rounding behavior in arithmetic | Truncates and rounds digits from the back. Truncates digits from the front.

String cast Truncates from the back and rounds. Truncates from the back.

If you need to continue using the first version of the DECIMAL type for the backward compatibility of your queries,
set the DECIMAL_V2 query option to FALSE:

SET DECI MAL_V2=FALSE;

Compatibility with other databases:

Use the DECIMAL datatype in Impalafor applications where you used the NUMBER data type in Oracle.
The Impala DECIMAL type does not support the Oracleidioms of * for scale.

The Impala DECIMAL type does not support negative values for precision.

A double precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.

28

Cloudera Runtime Impala SQL data types

Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane DOUBLE

Range: 4.94065645841246544e-324d .. 1.79769313486231570e+308, positive or negative

Precision: 15 to 17 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 8 bytes, using the |[EEE 754 Double Precision Binary Floating Point format.

Conversions: Impala does not automatically convert DOUBLE to any other type. Y ou can use CAST() to convert
DOUBLE valuesto FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You
can use exponentia notation in DOUBLE literals or when casting from STRING, for example 1.0e6 to represent one
million. Casting an integer or floating-point value N to TIMESTAMP produces avalue that is N seconds past the start
of the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If
the setting ##use _local_tz_for_unix_timestamp_conversions=true isin effect, the resulting TIMESTAMP represents
adate and time in the local time zone.

Usage notes:
The datatype REAL isan aliasfor DOUBLE.

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns false:

SELECT CAST(' nan' AS DOUBLE)=CAST(' nan' AS DOUBLE);
Examples:

CREATE TABLE t1 (x DOUBLE);
SELECT CAST(1000.5 AS DOUBLE);

Partitioning: Because fractional values of thistype are not always represented precisely, when thistypeis used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

HBase considerations: This datatype isfully compatible with HBase tables.
Parquet considerations: Thistypeis fully compatible with Parquet tables.

Text table considerations. Values of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics considerations. Because this type has afixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBL E columns uses high-performance hardware instructions, and
distributed queries can perform these operations in different order for each query, results can vary dlightly for
aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data
sets where millions or billions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL datatype for such operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice
than DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems
that use different representations or file formats.

Kudu considerations:

29

Cloudera Runtime Impala SQL data types

Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu
tables.

Impala mathematical functions
FLOAT datatype
Impala SQL literals

A single precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme FLOAT

Range: 1.40129846432481707e-45 .. 3.40282346638528860e+38, positive or negative

Precision: 6 to 9 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 4 bytes, using the IEEE 754 Single Precision Binary Floating Point format.

Conversions: Impala automatically converts FLOAT to more precise DOUBLE values, but not the other way around.
Y ou can use CAST() to convert FLOAT valuesto TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP,
or BOOLEAN. Y ou can use exponential notation in FLOAT literals or when casting from STRING, for example
1.0e6 to represent one million. Casting an integer or floating-point value N to TIMESTAMP produces avalue that is
N seconds past the start of the epoch date (January 1, 1970). By default, the result value represents a date and time
inthe UTC time zone. If the setting ##use_local_tz_for_unix_timestamp_conversions=trueisin effect, the resulting
TIMESTAMP represents a date and time in the local time zone.

Usage notes:

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns false:

SELECT CAST(' nan' AS FLOAT) =CAST(' nan' AS FLQAT);
Examples:

CREATE TABLE t1 (x FLOAT);
SELECT CAST(1000.5 AS FLOAT);

Partitioning: Because fractional values of this type are not always represented precisely, when this typeis used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on aDECIMAL column instead.

HBase considerations: This datatypeis fully compatible with HBase tables.
Parquet considerations: Thistypeisfully compatible with Parquet tables.

Text table considerations: Values of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics considerations. Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

30

Cloudera Runtime Impala SQL data types

Restrictions:

Due to the way arithmetic on FLOAT and DOUBL E columns uses high-performance hardware instructions, and
distributed queries can perform these operationsin different order for each query, results can vary slightly for
aggregate function calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data
sets where millions or hillions of values are summed or averaged. For perfect consistency and repeatability, use the
DECIMAL datatype for such operations instead of FLOAT or DOUBLE.

Theinability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice
than DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems
that use different representations or file formats.

Kudu considerations:

Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu
tables.

|EEE 754 Single Precision Binary Floating Point
Impala mathematical functions
Impala SQL literals

A 4-byte integer datatype used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane | NT

Range: -2147483648 .. 2147483647. Thereis no UNSIGNED subtype.

Conversions: Impala automatically convertsto alarger integer type (BIGINT) or afloating-point type (FLOAT or
DOUBLE) automatically. Use CAST() to convert to TINYINT, SMALLINT, STRING, or TIMESTAMP. Casting an
integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting ##use |o
cal_tz_for_unix_timestamp_conversions=trueisin effect, the resulting TIMESTAMP represents a date and time in
the local time zone.

Usage notes:
The datatype INTEGER isan aiasfor INT.

For a convenient and automated way to check the bounds of the INT type, call the functions MIN_INT() and MAX_
INT().

If an integer value istoo large to be represented asaINT, use aBIGINT instead.
NULL considerations: Casting any non-numeric value to this type producesa NULL value.
Examples:

CREATE TABLE t1 (x INT);
SELECT CAST(1000 AS INT);

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This datatypeis fully compatible with HBase tables.

31

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Cloudera Runtime Impala SQL data types

Text table considerations: Values of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 4-byte value.
Added in: Availablein all versions of Impala.

Column statistics considerations. Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

A complex datatype representing an arbitrary set of key-value pairs. The key part is a scalar type, while the value part
can be ascalar or another complex type (ARRAY, STRUCT, or MAP).

Syntax:
columm_nane MAP < prinmitive type, type >
type ::= primtive_type | conplex_type
Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex types for background information and usage exampl es.

The MAP complex datatype represents a set of key-value pairs. Each element of the map isindexed by a primitive
type such as BIGINT or STRING, letting you define sequences that are not continuous or categories with arbitrary
names. Y ou might find it convenient for modelling data produced in other languages, such as a Python dictionary or
Java HashMap, where a single scalar val ue serves as the lookup key.

In abig data context, the keysin a map column might represent a numeric sequence of events during a manufacturing
process, or TIMESTAMP values corresponding to sensor observations. The map itself isinherently unordered, so you
choose whether to make the key values significant (such as arecorded TIMESTAMP) or synthetic (such as arandom

global universal ID).

Note: Behind the scenes, the MAP typeisimplemented in asimilar way asthe ARRAY type. Impala does

IE not enforce any uniqueness constraint on the KEY values, and the KEY values are processed by looping
through the elements of the MAP rather than by a constant-time lookup. Therefore, thistypeis primarily for
ease of understanding when importing data and algorithms from non-SQL contexts, rather than optimizing the
performance of key lookups.

Y ou can pass a multi-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were atable. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al. If table T1 contained a STRUCT column S1, and afield F1 within the STRUCT
was a MAP, you could issue the statement DESCRIBE t1.s1.f1. An ARRAY is shown as atwo-column table, with
ITEM and POS columns. A STRUCT is shown as atable with each field representing a column in the table. A MAP
is shown as atwo-column table, with KEY and VALUE columns.

Added in: Impala2.3.0
Restrictions:

¢ Columns with this data type can be used in tables or partitions with the Parquet and ORC file formats.

» Columns with this data type cannot be used as partition key columns in a partitioned table.

e« The COMPUTE STATS statement does not produce any statistics for columns of this data type.

e The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

« Seethe Limitations and restrictions for complex types topic for afull list of limitations and associated guidelines
about complex type columns.

32

Cloudera Runtime Impala SQL data types

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from
E the tables used in the TPC-H benchmark.

The following example shows a table with various kinds of MAP columns, both at the top level and nested within
other complex types. Each row represents information about a specific country, with complex type fields of various
levels of nesting to represent different information associated with the country: factual measurements such as area
and population, notable people in different categories, geographic features such as cities, points of interest within
each city, and mountains with associated facts. Practice the CREATE TABLE and query notation for complex type
columns using empty tables, until you can visualize a complex data structure and construct corresponding SQL
statements reliably.

create TABLE map_deno

(
country_id BI G NT,

-- Nuneric facts about each country, |ooked up by nane.

-- For exanple, 'Area':1000, 'Popul ation':999999.

-- Using a MAP instead of a STRUCT because there could be

-- adifferent set of facts for each country.
nmetri cs MAP <STRI NG BI @ NT>,

-- MAP whose val ue part is an ARRAY.

-- For exanple, the key 'Fanous Politicians' could represent an array of 10
el ement s,

-- while the key ' Fanpbus Actors' could represent an array of 20 el enents.
not abl es MAP <STRI NG ARRAY <STRI NG>>,

-- MAP that is a field within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-Ilevel columm.)
-- For exanple, city #1 m ght have points of interest with key 'Zoo',
-- representing an array of 3 different zoos.
-- City #2 might have conpletely different kinds of points of interest.
-- Because the set of field nanes is potentially |arge, and nost entries ¢
oul d be bl ank,
-- a MAP nakes nore sense than a STRUCT to represent such a sparse data s
tructure.

cities ARRAY < STRUCT <

name: STRI NG
poi nts_of _interest: MAP <STRI NG ARRAY <STRI NG>

>>
-- MAP that is an elenent within an ARRAY. The MAP is inside a STRUCT field
to associate
-- the mountain name with all the facts about the nountain.
-- The "key" of the map (the first STRING field) represents the nane of s
ome fact whose val ue
-- can be expressed as an integer, such as 'Height', 'Year First dinbed',
and so on.

mount ai ns ARRAY < STRUCT < nane: STRING facts: MAP <STRING INT > > >

)
STORED AS PARQUET;

DESCRI BE nap_deno;

33

Cloudera Runtime Impala SQL data types

country id | bigint

metrics map<st ri ng, bi gi nt >

not abl es map<string, array<stri ng>>

cities array<struct<

nane: string,

poi nts_of _i nterest: map<string, array<stri ng>>
nount ai ns array<struct<

nane: string,

facts: map<string,int>

I
|
I
I
I
| >>
I
|
I
I

>>

fooocoooc fooocooooc +
| name | type |
Focoocooe Fococococ +
| key | string

| value | bigint |
focccoac focccooac +

Focoocooe Fococcoccoccococooooe +
| nane | type [
fecooooc feccoccocoooooac +
| key | string |
| value | array<string>

foocoooc fococococcooccoooos +

| pos | bigint |

item| struct< [
[name: string, [

poi nts_of interest: map<string, array<string>>
I
|

ool SIS S S +
| name | type I
foocoooc fococococcooccoooos +
| key | string |
| value | array<string>

demmaoo- S +

| item| string |
| pos | bigint |

Cloudera Runtime

item| struct< [
| nane: string, [
facts: map<string,int> |
I

|

demmaoo- deemoaoo- +
| name | type |
Feoccooas Fococoooc +
| key | string |
| value | int |
emmaaa- R +

The following example shows atable that uses a variety of datatypes for the MAP “key” field. Typically, you use
BIGINT or STRING to use numeric or character-based keys without worrying about exceeding any size or length
constraints.

CREATE TABLE nap_denop_obscure
(
id Bl G NT,
MAP <| NT, | NT>,
MAP <SMALLI NT, | NT>,
MAP <TI NYI NT, | NT>,
MAP <TI MESTAMP, | NT>,
<BOOLEAN, | NT>,
MAP <CHAR(5), | NT>,
MAP <VARCHAR(25), | NT>,
MAP <FLOAT, | NT>,
MAP <DOUBLE, | NT>,
nl0 MAP <DECI MAL(12,2), |NT>

EEEEEEEEE
=
U

)
STORED AS PARQUET;

CREATE TABLE celebrities (name STRING birth_year MAP < STRING SMALLINT >)
STORED AS PARQUET;

-- Atypical row night represent values with 2 different birth years, such
as:

-- ("Joe Mowvie Star", { "real": 1972, "clained": 1977 })

CREATE TABLE countries (nane STRING fanous_| eaders MAP < INT, STRING >) STO
RED AS PARQUET;

-- Atypical row nmight represent values with different |eaders, with key val
ues corresponding to their nuneric sequence, such as:

-- ("United States", { 1: "Ceorge Washington", 3: "Thomas Jefferson", 16:

" Abr aham Li ncol n" })

CREATE TABLE airlines (name STRING special _neals MAP < STRING MAP < STRI
NG STRING > >) STORED AS PARQUET;

-- Atypical row nmight represent values with nultiple kinds of neals, each
wi th several conponents:

-- ("Elegant Airlines",

35

Impala SQL data types

Cloudera Runtime Impala SQL data types

-- "vegetarian": { "breakfast": "pancakes", "snack": "cookies", "dinne
r': "rice pilaf" },

-- "gluten free": { "breakfast": "oatneal", "snack": "fruit", "dinner":
"chi cken" }

-- 1)

You can use a SELECT statement to run queries on the keys and values of maps. However, you cannot have mixed
complex typesin the select list such as collections (arrays or maps) in structs or structsin collections. Also sorting is
not supported if the select list contains collection columns.

When you query the MAP datatype using a SELECT statement, it returns a JSON string. MAP keys can be non-
string types but JSON objects can only have string keys. Therefore when a SELECT statement returns a MAP with
non-string (for example integer) keys, the resulting JSON is technically invalid.

For example, in Impalathe following two maps are not the same:
{1:"a", 2:"b"}
{"1":"a","2": "b"}
Thefirst map has INT keys, the second has STRING keys. Only the second oneisvalid json.
Examples of using MAPsin the SELECT list
---- QUERY

select id, int_map from conpl ext ypest bl
---- RESULTS

2,' {

3, {}

4, {}

5 ' {}

6, ' NULL

7, {"Kk1": NULL, "k3": NULL}'
8, ' {"k1": -1}

---- TYPES

bi gint,string

---- QUERY

select id, int_map from conpl extypestbl where id=1
---- RESULTS

1, {"k1":1,"k2":100}"

---- TYPES

bi gint,string

---- QUERY

select id, int_map, int_map_array from conpl extypest bl
---- RESULTS

1, {"k1":1,"k2":100}", " [{"k1":1}]"

"k1":2,"k2": NULL}', " [{"k3":NULL, "k1": 1}, NULL, {}]"'
', [NULL, NULL]'

L

}, U NULL

, " NULL', " NULL'

7," {"k1":NULL, "k3": NULL}"," NULL'

8, " {"k1": -1}, " [{}, {"k1":1},{} {}]
---- TYPES

bigint,string,string

o
:l{
o
{

36

Cloudera Runtime Impala SQL data types

select id, int_map from conpl extypestbl union all select id, int_map from
conpl ext ypest bl

---- RESULTS

1,"{"k1":1,"k2":100}"

2, {"k1": 2, "k2": NULL}"
3, {}
4, {}
5, {}
6, NULL'
7, {"k1": NULL, "k3": NULL}'
8,' {"k1":-1}'
1,' {"k1":1,"k2": 100}
2, {"k1": 2, "k2": NULL}"
3, {}
4, {}
5 ' {}
6, NULL'
. {"K1": NULL, "k3": NULL}'
8, ' {"k1":-1}'
---- TYPES

bi gint,string

An diasfor the DOUBLE data type.

Examples:

These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes
Impalatreats them always as DOUBLE.

[l ocal host:21000] > create table r1 (x real);
[l ocal host:21000] > describe r1;

Focococ Fococococ Foccocaoos +
| nanme | type | coment |
S T H--m - Hmmmmmm- - +
| x | double | |
C T CT T +

[l ocal host:21000] > insert into rl values (1.5), (cast (2.2 as double));
[l ocal host:21000] > sel ect cast (1le6 as real);

Focococcococcoccococoocoocooooooe +
| cast(1000000.0 as double) |
foocccocccocccocccosccosooos +
| 1000000 [
feccococccoccoccoococooocoooooas +

DOUBLE datatype

A 2-byteinteger datatype used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_name SMALLI NT

Range: -32768 .. 32767. Thereis no UNSIGNED subtype.

37

Cloudera Runtime Impala SQL data types

Conversions: Impala automatically convertsto alarger integer type (INT or BIGINT) or afloating-point type
(FLOAT or DOUBLE) automatically. Use CAST() to convert to TINYINT, STRING, or TIMESTAMP. Casting an
integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting ##use |o
cal_tz_for_unix_timestamp_conversions=trueisin effect, the resulting TIMESTAMP represents a date and time in
the local time zone.

Usage notes:

For a convenient and automated way to check the bounds of the SMALLINT type, call the functions MIN_SMAL
LINT() and MAX_SMALLINT().

If an integer value istoo large to be represented asa SMALLINT, use an INT instead.
NULL considerations: Casting any non-numeric value to this type producesa NULL value.
Examples:

CREATE TABLE t1 (X SMALLINT);
SELECT CAST(1000 AS SMALLI NT);

Parquet considerations:

Physically, Parquet files represent TINY INT and SMALLINT values as 32-bit integers. Although Impalarejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ... LIK
E PARQUET syntax, any TINYINT or SMALLINT columnsin the original table turn into INT columnsin the new
table.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This datatypeis fully compatible with HBase tables.

Text table considerations: Vaues of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 2-byte value.
Added in: Availablein al versions of Impala.

Column statistics considerations. Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

A datatype used in CREATE TABLE and ALTER TABLE statements.

Syntax:
In the column definition of a CREATE TABLE and ALTER TABLE statements:

col unm_nane STRI NG

Length:

If you need to manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare
columns as VARCHAR(max_length) or CHAR(length), but for best performance use STRING where practical.

Take the following considerations for STRING lengths:
¢ Thehard limit on the size of a STRING and the total size of arow is2 GB.

If aquery triesto process or create a string larger than this limit, it will return an error to the user.
e Thelimitis1 GB on STRING when writing to Parquet files.

38

Cloudera Runtime Impala SQL data types

* Queries operating on strings with 32 KB or less will work reliably and will not cause significant performance or
memory problems (unless you have very complex queries, very many columns, etc.)

» Performance and memory consumption may degrade with strings larger than 32 KB.

e Therow size, i.e. thetotal size of all string and other columns, is subject to lower limits at various pointsin query
execution that support spill-to-disk. A few examples for lower row size limits are:

* Rows coming from the right side of any hash join

« Rows coming from either side of a hash join that spillsto disk

* Rows being sorted by the SORT operator without a limit

* Rowsin agrouping aggregéation

The max row size is configurable on a per-query basis with the MAX_ROW_SIZE query option. Rows up to

MAX_ROW_SIZE (which defaults to 512 KB) can aways be processed in the above cases. Rows larger than
MAX_ROW_SIZE are processed on a best-effort basis.

Character sets;

For full support in al Impala subsystems, restrict string valuesto the ASCII character set. Although some UTF-8
character data can be stored in Impala and retrieved through queries, UTF-8 strings containing non-ASCI| characters
are not guaranteed to work properly in combination with many SQL aspects, including but not limited to:

String manipulation functions.

e Comparison operators.

*+ The ORDERBY clause.

* Valuesin partition key columns.

For any national language aspects such as collation order or interpreting extended ASCII variants such as | SO-8859-1
or 1SO-8859-2 encodings, |mpala does not include such metadata with the table definition. If you need to sort,
manipulate, or display data depending on those national language characteristics of string data, use logic on the
application side.

Conversions:

» Impaladoes not automatically convert STRING to any numeric type. Impala does automatically convert STRING
to TIMESTAMP if the value matches one of the accepted TIMESTAMP formats.

* You can use CAST() to convert STRING valuesto TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, or
TIMESTAMP.

* You cannot directly cast a STRING value to BOOLEAN. Y ou can use a CASE expression to evaluate string
values such as T, 'true’, and so on and return Boolean true and fal se values as appropriate.

e You can cast aBOOLEAN valueto STRING, returning '1' for true values and '0' for false values.

Partitioning:

Although it might be convenient to use STRING columns for partition keys, even when those columns contain
numbers, for performance and scalability it is much better to use numeric columns as partition keys whenever
practical. Although the underlying HDFS directory name might be the same in either case, the in-memory storage
for the partition key columnsis more compact, and computations are faster, if partition key columns such as YEAR,
MONTH, DAY and so on are declared as INT, SMALLINT, and so on.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length
strings (*"), NULL, and space to al be different values.

Text table considerations: Vaues of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Avro considerations: The Avro specification allows string values up to 2**64 bytesin length. Impala queries for Avro
tables use 32-hit integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR
valuesin Avro tablesto (2**31)-1 bytes. If aquery encounters a STRING value longer than (2**31)-1 bytesin an
Avro table, the query fails. In earlier releases, encountering such long valuesin an Avro table could cause a crash.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics
fields arefilled in until you run the COMPUTE STATS statement.

39

Cloudera Runtime Impala SQL data types

Examples:

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for
quotation marks within string literals:

SELECT '|I am a single-quoted string';

SELECT "I am a doubl e-quoted string";

SELECT 'I\'m a single-quoted string with an apostrophe';

SELECT "I\'m a doubl e-quoted string with an apostrophe”;

SELECT 'I ama "short" single-quoted string containing quotes';
SELECT "I ama \"short\" doubl e-quoted string containing quotes";

The following examples demonstrate calls to string manipul ation functions to concatenate strings, convert numbers to
strings, or pull out substrings:

SELECT CONCAT("Once upon a tinme, there were ", CAST(3 AS STRING, ' little p
igs.');
SELECT SUBSTR("hello world", 7,5);

The following examples show how to perform operations on STRING columns within atable:

CREATE TABLE t1 (sl STRING s2 STRING;
I NSERT INTO t1 VALUES ("hello", "world'), (CAST(7 AS STRING, "wonders");
SELECT s1, s2, length(sl) FROMt1l WHERE s2 LIKE ' w6 ;

MAX_ROW_SIZE query option

TIMESTAMP datatype

A complex datatype, representing multiple fields of a single item. Frequently used as the element type of an ARRAY
or the VALUE part of aMAP.

Syntax:
col utm_nanme STRUCT < name : type [COMWENT 'comment_string'], ... >
type ::=printive type | conplex_type

The names and number of fields within the STRUCT are fixed. Each field can be a different type. A field within a
STRUCT can aso be another STRUCT, or an ARRAY or aMAP, alowing you to create nested data structures with a
maximum nesting depth of 100.

A STRUCT can be the top-level type for acolumn, or can itself be an item within an ARRAY or the value part of the
key-value pair inaMAP.

When a STRUCT isused asan ARRAY element or aMAP value, you use ajoin clause to bring the ARRAY or
MAP elementsinto the result set, and then refer to array_name. I TEM .field or map_name.VALUE field. In the case
of aSTRUCT directly inside an ARRAY or MAP, you can omit the .ITEM and .VALUE pseudocolumns and refer
directly to array_name.field or map_name.field.

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are
unfamiliar with the Impala complex types, start with Complex types for background information and usage examples.

40

Cloudera Runtime Impala SQL data types

A STRUCT issimilar conceptualy to atable row: it contains afixed number of named fields, each with a predefined
type. To combine two related tables, while using complex types to minimize repetition, the typical way to represent
that datais asan ARRAY of STRUCT elements.

Because a STRUCT has a fixed number of named fields, it typically does not make sense to have a STRUCT asthe
type of atable column. In such a case, you could just make each field of the STRUCT into a separate column of the
table. The STRUCT type is most useful as an item of an ARRAY or the value part of the key-value pair inaMAP. A
nested type column with a STRUCT at the lowest level lets you associate a variable number of row-like objects with
each row of the table.

The STRUCT typeis straightforward to reference within a query. Y ou do not need to include the STRUCT columnin
ajoin clause or giveit atable alias, asisrequired for the ARRAY and MAP types. You refer to theindividual fields
using dot notation, such as struct_column_name.field_name, without any pseudocolumn such asI TEM or VALUE.

Y ou can pass amulti-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure asif it were atable. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al. If table T1 contained a STRUCT column S1, and afield F1 within the STRUCT
was aMAP, you could issue the statement DESCRIBE t1.s1.f1. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as atable with each field representing a column in the table. A MAP
is shown as atwo-column table, with KEY and VALUE columns.

Internal details:

Within the Parquet data file, the values for each STRUCT field are stored adjacent to each other, so that they can be
encoded and compressed using all the Parquet techniques for storing sets of similar or repeated values. The adjacency
applies even when the STRUCT values are part of an ARRAY or MAP. During a query, Impala avoids unnecessary |/
O by reading only the portions of the Parquet data file containing the requested STRUCT fields.

Added in: Impala2.3.0
Restrictions:

e Columnswith this data type can be used in tables or partitions with the Parquet and ORC file formats.
« Columnswith this data type cannot be used as partition key columns in a partitioned table.
e« The COMPUTE STATS statement does not produce any statistics for columns of this data type.

« The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

» Seethe Limitations and restrictions for complex types topic for afull list of limitations and associated guidelines
about complex type columns.

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:
Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted from
E the tables used in the TPC-H benchmark.

The following example shows a table with various kinds of STRUCT columns, both at the top level and nested within
other complex types. Practice the CREATE TABLE and query notation for complex type columns using empty
tables, until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE struct _denp

id Bl G NT,
name STRI NG

-- A STRUCT as a top-level colum. Denonstrates how the table I D col um
-- and the IDfield within the STRUCT can coexi st w thout a name conflict.
enpl oyee_info STRUCT < enployer: STRING id: BlIG NI, address: STRI NG >,

-- A STRUCT as the el enent type of an ARRAY.

41

Cloudera Runtime Impala SQL data types

pl aces_l i ved ARRAY < STRUCT <street: STRING city: STRING country: STR
I NG >>,
-- A STRUCT as the value portion of the key-value pairs in a MAP.

menor abl e_nonents MAP < STRING STRUCT < year: |INT, place: STRING deta
ils: STRING >>,
-- A STRUCT where one of the fields is another STRUCT.

current address STRUCT < street address: STRUCT <street nunber: |NT, stree
t _name: STRING street type: STRING, country: STRING postal code: STRI NG >

)
STORED AS PARQUET;

The following example shows how to examine the structure of atable containing one or more STRUCT columns by
using the DESCRIBE statement. Y ou can visualize each STRUCT asits own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY/, you can extend
the qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRI BE struct _deno;

foocccocccscccosooos focccocccooccooccooccoooons +
| name | type |
foccccocccocccosooos docccooccooccooccooccnooons +
id bi gi nt
name string
enpl oyee_info struct<
enpl oyer: string,
i d: bi gi nt,

| |

| |

| |

I I

I I

| | address: string
| _ | >

| places_lived | array<struct<

| | street:string,

| | city:string,

| | country:string

| | >>

| menorabl e_nonents | map<string, struct<

| | year:int,

| | pl ace: string,

| | details:string

| | >>

| | struct<

[[street _address: struct<
| | street _nunber:int,
| | street_nane: string,
[[street _type:string
I I
I I
| |
| |

current _address

>1
country:string,
postal code: string

Thetop-level column EMPLOYEE_INFO isa STRUCT. Describing table_name.struct_name displays the fields of
the STRUCT asif they were columns of atable:

DESCRI BE struct _deno. enpl oyee_i nfo;

C T H- - - - +
| nane | type |
Focococoooc Fococoooc +
| enployer | string |
id | bigint |
| address | string |
C T H- - - - +

42

Cloudera Runtime

Because PLACES LIVED isaSTRUCT inside an ARRAY, the initial DESCRIBE shows the structure of the
ARRAY:

DESCRI BE struct_deno. pl aces_l i ved;

item| struct< |
| street:string, |
[city:string, |
[country:string |
I I
I I

Ask for the details of the ITEM field of the ARRAY to see just the layout of the STRUCT:

DESCRI BE struct_deno. pl aces_lived.item

R eemeaaa- +
| nane | type |
TS SRS oo +
street	string
city	string
country	string
D eemeaaa- +

Likewise, MEMORABLE_MOMENTS has a STRUCT inside aMAP, which requires an extra level of qualified
name to seejust the STRUCT part:

DESCRI BE struct_deno. nenor abl e_nonent s;

- fhcoocooocooooooooooc +
| name | type I
foocoooc focococoococococooccoocos +
key string
val ue struct<

pl ace: string,

I I
| _ |
[year:int, [
I I
[details:string |
I I

For aMAP, ask to seethe VALUE field to see the corresponding STRUCT fieldsin atable-like structure:

DESCRI BE struct_deno. nenor abl e_nonent s. val ue;

S R R +
| nane | type |
feocococooooc fooocooooc +
year	int
place	string
details	string
R deemaaoo- +

For aSTRUCT inside a STRUCT, we can see the fields of the outer STRUCT:

DESCRI BE struct_deno. current _address;

street_address	struct<
	street _nunber:int,
	street _nane:string,

43

Impala SQL data types

Cloudera Runtime Impala SQL data types

I I I
I | > I
| country | string |
| postal _code | string [
fococococcoccoocooce foccocoocococcoccoocoocooos +

Then we can use afurther qualified name to see just the fields of the inner STRUCT:

DESCRI BE struct deno. current address. street address;

. eemeaaa- +
| nane | type |
TSRS S S oo +
| street_nunmber | int [
| street_name | string |
| street_type | string |
S eemeaaa- +

The following example shows how to examine the structure of atable containing one or more STRUCT columns by
using the DESCRIBE statement. Y ou can visualize each STRUCT asits own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend
the qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRI BE struct_denv;

feccoccoccooococooooc foccoccococoococcooococooooc Foccooocooc +
| nane | type | comment |
fococcocococcooccoocooc focccoococoocococcoccooccoocooos feoococooooc +
id bi gi nt
name string
enpl oyee_info struct<
enpl oyer: string,
i d: bi gint,
address: string
>

| | |
I I I
I I I
I I I
pl aces_	ived
street:string,	
city:string,	
[country:string [[
>> _	
menor abl e_nonents	map<string, struct<
year:int, [[
pl ace: string,	
details:string	
>>	
struct<	
street_address:struct<	
[street _nunber:int, [[
street _nane:string,	
street _type:string	
I I I

current _address

>!
country:string,
postal code: string

|
I
I
I
|
|
|
I
I
I
|
|
|
I
I
I
|
|
|
I
I
I
|
|
|
I
+
SELECT id, enployee info.id FROM struct _deno;

SELECT id, enployee_info.id AS enpl oyee_id FROM struct _deno;

SELECT id, enployee_ info.id AS enpl oyee_id, enployee_info.enployer
FROM st ruct _deno;

SELECT id, nane, street, city, country
FROM st ruct _denp, struct_deno. pl aces_|Iived;

44

Cloudera Runtime Impala SQL data types

SELECT id, name, places_lived. pos, places |lived.street, places_lived.city, p
| aces_lived. country
FROM struct denp, struct_deno. pl aces_|ived;

SELECT id, name, pl.pos, pl.street, pl.city, pl.country
FROM st ruct _denp, struct_deno. pl aces_|ived AS pl;

SELECT id, nane, places lived.pos, places lived.street, places lived.city, p
| aces_lived. country
FROM st ruct _denp, struct_deno. pl aces_Iived;

SELECT id, nanme, pos, street, city, country
FROM st ruct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, nenorabl e nonents. key,
menor abl e_nonent s. val ue. year,
menor abl e_nonent s. val ue. pl ace,
nmenor abl e_nonent s. val ue. detail s
FROM st ruct _denp, struct_deno. nenor abl e_nonent s
WHERE nenorabl e _nonents. key IN ('Birthday','Anniversary',' Graduation');

SELECT id, nanme, nm key, nm val ue.year, mm val ue. pl ace, nm val ue.details
FROM struct _deno, struct_ denp. nenorabl e _nonents AS mm

VWHERE mm key IN (' Birthday',' Anniversary',' Graduation');

SELECT id, name, nenorabl e nonments. key, nenorabl e _nonents. val ue. year,
menor abl e_nonent s. val ue. pl ace, nenorabl e _nonents. val ue. detail s

FROM struct _denp, struct_denp. nenor abl e_nonent s

WHERE key IN ('Birthday',' Anniversary',' G aduation');

SELECT id, nane, key, value.year, value.place, value.details

FROM st ruct _denp, struct_deno. menor abl e_nonent s
WHERE key IN ('Birthday','Anniversary',' G aduation');
SELECT id, nane, key, year, place, details

FROM struct _deno, struct_deno. nenorabl e_nonent s
WHERE key IN ('Birthday',"'Anniversary',' Graduation');
SELECT id, nane,

current _address. street_address. street_nunber,

current address. street_address. street_ nane,

current address. street_address. street _type,

current _address. country,

current _address. postal _code
FROM st ruct deno;

For example, this table uses a struct that encodes several data values for each phone number associated with a person.
Each person can have avariable-length array of associated phone numbers, and queries can refer to the category field
to locate specific home, work, mobile, and so on kinds of phone humbers.

CREATE TABLE contact i nfo_many_structs
id BIG NT, nanme STRI NG
phone_nunbers ARRAY < STRUCT <cat egory: STRING country_code: STRING are

a_code: SMALLI NT, full _nunber: STRING nobil e: BOOLEAN, carrier: STRING > >
) STORED AS PARQUET;

Because structs are naturally suited to composite values where the fields have different data types, you might use
them to decompose things such as addresses:

CREATE TABLE contact _info_detail ed_address

id BIlA NT, nane STRI NG

45

Cloudera Runtime Impala SQL data types

address STRUCT < house_nunber: | NT, street: STRING street_type: STRING a
partment: STRING city: STRING region: STRING country: STRI NG >
)

In abig data context, splitting out data fields such as the number part of the address and the street name could let
you do analysis on each field independently. For example, which streets have the largest number range of addresses,
what are the statistical properties of the street names, which areas have a higher proportion of “Roads’, “Courts’ or
“Boulevards’, and so on.

In Impala, the TIMESTAMP data type holds avalue of date and time. It can be decomposed into year, month, day,
hour, minute and seconds fields, but with no time zone information available, it does not correspond to any specific
point in time.

Internally, the resolution of the time portion of a TIMESTAMP value is in nanoseconds.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane TI MESTAWP

timestanp [+ | -] I NTERVAL interval
DATE_ADD (tinmestanp, |NTERVAL interval tinme_unit)

Range: 1400-01-01 to 9999-12-31

Out of range TIMESTAMP values are converted to NULL.

The range of Impala TIMESTAMP is different from the Hive TIMESTAMP type.
INTERVAL expressions:

Y ou can perform date arithmetic by adding or subtracting a specified number of time units, using the INTERVAL
keyword and the + operator, the - operator, date_add() or date_sub().

The following units are supported for time_unit in the INTERVAL clause:

« YEAR[S

« MONTH[S]

« WEEK][S]

.+ DAYIS]

« HOUR[S]

« MINUTE[S]

. SECONDIS]
 MILLISECONDIS]
« MICROSECONDIS]
« NANOSECONDIS]

Y ou can only specify one time unit in each interval expression, for example INTERVAL 3 DAY Sor INTERVAL
25 HOURS, but you can produce any granularity by adding together successive INTERVAL values, such as
timestamp_value + INTERVAL 3WEEKS- INTERVAL 1 DAY +INTERVAL 10 MICROSECONDS.

Internal details: Represented in memory as a 16-byte value.
Time zones:

By default, Impala stores and interprets TIMESTAMP values in UTC time zone when writing to data files, reading
from datafiles, or converting to and from system time values through functions.

46

Cloudera Runtime Impala SQL data types

When you set the --use_local_tz_for_unix_timestamp_conversions startup flag to TRUE, Impalatreats the TIME
STAMP values specified in the local time zone. The local time zone is determined in the following order with the
TIMESTAMP query option takes the highest precedence:

1. The TIMESTAMP query option
2. $TZ environment variable
3. System time zone where the impalad coordinator runs

The--use _local_tz for_unix_timestamp_conversions setting can be used to fix discrepancy in INTERVAL
operations. For example, aTIMESTAMP + INTERVAL n-hours can be affected by Daylight Saving Time, which
Impala does not consider by default as these operations are applied asif the timestamp wasin UTC. Y ou can use the
--use local_tz for_unix_timestamp_conversions setting to fix the issue.

See Customizing time zones on page 51 for configuring to use custom time zone database and aliases.

See Impala date and time functions for the list of functions affected by the --use _local_tz_for_unix_timestamp_co
nversions setting.

Time zone handling between Impala and Hive:
Interoperability between Hive and Impalais different depending on the file format.
e Text

For text tables, TIMESTAMP values can be written and read interchangeably by Impalaand Hive as Hive reads
and writes TIMESTAMP values without converting with respect to time zones.

e Parquet
IE Note: Thissection only appliesto INT96 TIMESTAMP.

When Hive writesto Parquet data files, the TIMESTAMP va ues are normalized to UTC from the local time zone
of the host where the data was written. On the other hand, Impala does not make any time zone adjustment when
it writes or reads INT96 TIMESTAMP valuesto Parquet files. This difference in time zone handling can cause
potentially inconsistent results when Impala processes TIMESTAMP values in the Parquet files written by Hive.

To avoid incompatibility problems or having to code workarounds, you can specify one or both of these impalad
startup flags:

e --use local_tz for_unix_timestamp_conversions=true
e --convert_legacy hive parquet_utc timestamps=true

When the ##convert_legacy hive parquet_utc_timestamps setting is enabled, | mpala recognizes the Parquet data
files written by Hive, and applies the same UTC-to-local-timezone conversion logic during the query as Hive
does.

In Impala 3.0 and lower, the ##convert legacy hive parquet_utc_timestamps setting had a severe impact on
multi-threaded performance. The new time zone implementation in Impala 3.1 eliminated most of the performance
overhead and made Impala scale well to multiple threads. The ##convert_legacy hive parquet _utc_timestamps
setting is turned off by default for a performance reason. To avoid unexpected incompatibility problems, you
should turn on the option when processing TIMESTAMP columnsin Parquet files written by Hive.

Hive currently cannot write INT64 TIMESTAMP values.

InImpala 3.2 and higher, INT64 TIMESTAMP values annotated with the TIMESTAMP_MILLISor TIME
STAMP_MICROS Original Type are assumed to be aways UTC normalized, so the UTC to local conversion will
be aways done. INT64 TIMESTAMP annotated with the TIMESTAMP Logical Type specifies whether UTC to
local conversion is necessary depending on the Parquet metadata.

Conversions:

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp values are
accepted in the format 'yyyy#MM#dd HH:mm:ss.SSSSSS, and can consist of just the date, or just the time, with or

47

Cloudera Runtime Impala SQL data types

without the fractional second portion. For example, you can specify TIMESTAMP values such as '1966#07#30', '08:
30:00', or '1985#09#25 17:45:30.005'.

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the time
component, such as hour, minute, and second. For example, Impala accepts both '2018#1#1 01:02:03' and '2018-01
-01 1:2:3' asvalid.

In STRING to TIMESTAMP conversions, leading and trailing white spaces, such as a space, atab, anewline, or
acarriage return, are ignored. For example, Impalatreats the following as equivalent: '1999#12#01 01:02:03 ',
' 1999#12#01 01:02:03', '1999#12#01 01:02:03\r\n\t".

When you convert or cast a STRING literal to TIMESTAMP, you can use the following separators between the date
part and the time part:

+ One or more space characters

Example: CAST('2001-01-09 01:05:01' AS TIMESTAMP)
¢ Thecharacter “T”"

Example: CAST('2001-01-09T01:05:01' AS TIMESTAMP)

Casting an integer or floating-point value N to TIMESTAMP produces avalue that is N seconds past the start of the
epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the
setting ##use local_tz for_unix_timestamp_conversions=true isin effect, the resulting TIMESTAMP represents a
date and time in the local time zone.

In Impala 1.3 and higher, the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions allow awider range of
format strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. In
Impala 2.3 and higher, the UNIX_TIMESTAMP() function also allows a numeric timezone offset to be specified as
part of the input string. See Impala date and time functions on page 346 for details.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values use the
BIGINT type for parameters and return values, rather than INT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known asthe “Y ear 2038 problem” or “Y 2K 38
problem™). This change affects the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions. Y ou might need to
change application code that interacts with these functions, change the types of columnsthat store the return values,
or add CAST() callsto SQL statements that call these functions.

Partitioning:

Although you cannot use a TIMESTAMP column as a partition key, you can extract the individual years, months,
days, hours, and so on and partition based on those columns. Because the partition key column values are represented
in HDFS directory names, rather than asfieldsin the data files themselves, you can also keep the origina TIME
STAMP values if desired, without duplicating data or wasting storage space. See Partition Key Columns for more
details on partitioning with date and time values.

[l ocal host:21000] > create table tineline (event string) partitioned by (hap
pened ti mestanp);

ERROR: Anal ysi sException: Type 'TlI MESTAMP' is not supported as partition-c
olum type in colum: happened

NULL considerations: Casting any unrecognized STRING value to thistype producesa NULL value.
HBase considerations: This datatype is fully compatible with HBase tables.

Parquet consideration: INT96 and INT64 encoded Parquet timestamps are supported in Impala.
Parquet considerations: Thistypeis fully compatible with Parquet tables.

Text table considerations: Vaues of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Column statistics considerations. Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

48

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

Cloudera Runtime Impala SQL data types

Kudu considerations:

In Impala 2.9 and higher, you can include TIMESTAMP columnsin Kudu tables, instead of representing the date and
time asaBIGINT value. The behavior of TIMESTAMP for Kudu tables has some special considerations:

* Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/
time columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
TIMESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a
query.

» The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TIMESTAMP columns. Y ou can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continue to use a BIGINT column to represent date/time values in performance-critical applications.

e ThelmpaaTIMESTAMP type has a narrower range for years than the underlying Kudu data type. Impala can
represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impalaclient,
Impalareturns NULL by default when reading those TIMESTAMP values during a query. Or, if the ABORT_ON
_ERROR query option is enabled, the query fails when it encounters a value with an out-of-range year.

Restrictions:

If you cast a STRING with an unrecognized format to a TIMESTAMP, the result is NULL rather than an error. Make
sure to test your data pipeline to be sure any textual date and time values arein aformat that Impala TIMESTAMP
can recognize.

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time valuesin Avro
tables, as aworkaround you can use a STRING representation of the values, convert the values to BIGINT with the
UNIX_TIMESTAMP() function, or create separate numeric columns for individual date and time fields using the
EXTRACT() function.

Examples:
The following examples demonstrate using TIMESTAMP values with built-in functions:
sel ect cast('1966-07-30" as tinestanp);

sel ect cast('1985-09-25 17:45:30. 005" as tinestanp);
sel ect cast('08:30: 00" as tinestanp);

sel ect hour('1970-01-01 15: 30: 00'); -- Succeeds, returns 15.

sel ect hour('1970-01-01 15:30'); -- Returns NULL because seconds

field required.

sel ect hour('1970-01-01 27: 30: 00'); -- Returns NULL because hour val

ue out of range.

sel ect dayof week(' 2004-06-13"); -- Returns 1, representing Sund

ay.

sel ect daynane(' 2004-06-13'); -- Returns 'Sunday'.

sel ect date_add(' 2004-06-13', 365); -- Returns 2005-06-13 with zeros
for hh:mmss fields.

sel ect day(' 2004-06-13"); -- Returns 13.

sel ect datediff('1989-12-31','1984-09-01'); -- How many days between these 2
dat es?

sel ect now); -- Returns current date and tine

in local tinmezone.
The following examples demonstrate using TIMESTAMP values with HDFS-backed tables:

create table dates _and tines (t tinestanp);
insert into dates_and_tines val ues
('1966-07-30"), ('1985-09-25 17:45:30.005'), ('08:30:00"), (now));

The following examples demonstrate using TIMESTAMP values with Kudu tables:

Create table timestanp_t (x int primary key, s string, t timestanp, b bigint

)

49

Cloudera Runtime Impala SQL data types

partition by hash (x) partitions 16
stored as kudu;

-- The default value of now) has nicrosecond precision, so the final 3 d
igits

-- representing nanoseconds are all zero.

insert into tinmestanp_t values (1, cast(now) as string), now), unix_tinest

anp(now()));

-- Values with 1-499 nanoseconds are rounded down in the Kudu TI MESTAMP co

| umm.

insert into timestanp_t values (2, cast(now) + interval 100 nanoseconds as
string), now() + interval 100 nanoseconds, unix_timestanmp(now() + interval

100 nanoseconds));

insert into tinmestanp_t values (3, cast(now) + interval 499 nanoseconds as
string), now() + interval 499 nanoseconds, unix_tinmestanp(now() + interval 4
99 nanoseconds));

-- Values with 500-999 nanoseconds are rounded up in the Kudu TI MESTAWP c
ol um.

insert into tinmestanp_t values (4, cast(now) + interval 500 nanoseconds as
string), now() + interval 500 nanoseconds, unix_tinmestanp(now) + interval
500 nanoseconds));

insert into timestanp_t values (5, cast(now) + interval 501 nanoseconds as
string), now() + interval 501 nanoseconds, unix_timestanmp(now() + interval
501 nanoseconds));

-- The string representation shows how underlying |npala TI MESTAMP can have
nanosecond preci sion.
-- The TI MESTAMP col utm shows how tinmestanps in a Kudu table are rounded to
m cr osecond preci sion.
-- The BIG NT column represents seconds past the epoch and so if not affect
ed nmuch by nanoseconds.
select s, t, b fromtinestanp_ t order by t;

+

S
| 2017-05-31 15:30: 05.107157000 | 2017-05-31 15:30: 05.107157000 | 1496244605

|
| 2017-05-31 15:30:28. 868151100 | 2017-05-31 15: 30: 28. 868151000 | 1496244628

I
| 2017-05-31 15:34: 33. 674692499 | 2017-05-31 15:34: 33. 674692000 | 1496244
873 |
| 2017-05-31 15:35: 04. 769166500 | 2017-05-31 15:35: 04. 769167000 | 1496244904

|
| 2017-05-31 15:35:33. 033082501 | 2017-05-31 15: 35: 33. 033083000 | 1496244933

Added in: Availablein all versions of Impala.
Related information:

« To convert to or from different date formats, or perform date arithmetic, use the date and time functions described
in Impala date and time functions on page 346. In particular, the from_unixtime() function requires a case-
sensitive format string such as"yyyy-MM-dd HH:mm:ss.SSSS", matching one of the allowed variations of a
TIMESTAMP value (date plus time, only date, only time, optional fractional seconds).

* See SQL differences between Impala and Hive on page 478 for details about differencesin TIMESTAMP
handling between Impala and Hive.

50

Cloudera Runtime Impala SQL data types

Hive data types
DATE datatype
Partitioning

Impala 3.1 onward, you can customize the time zone definitions used in Impala.

» By default, Impala uses the OS' s time zone database |ocated in /usr/share/zoneinfo. This directory contains the
IANA timezone database in a compiled binary format. The contents of the zoneinfo directory is controlled by the
OS's package manager.

« Usethefollowing start-up flags managed as impalad safety valves in Cloudera Manager.

« ##hdfs zone info_zip: Thisflag allows Impala administrators to specify a custom timezone database. The flag
should be set to a shared (not necessarily HDFS) path that points to a zip archive of a custom IANA timezone
database. The timezone database is expected to be in a compiled binary format. If the startup flag is set, Impala
will use the specified timezone database instead of the default /usr/share/zoneinfo database. The timezone db
upgrade process is described in detail below.

« #hdfs zone dias conf: Thisflag allows Impala administrators to specify definitions for custom timezone
diases. The flag should be set to a shared (not necessarily HDFS) path that specifies a config file containing
custom timezone alias definitions. This config file can be used as a workaround for users who want to keep
using their legacy timezone names. Configuring custom aliases is described in detail below.

Upgrading custom IANA time zone database;
1. Download latest IANA time zone database distribution:

git clone https://github.conl eggert/tz
Alternatively, download a specific tzdb version from:

https://wwv. i ana. org/ti ne-zones/repository

2. Build timezone tools:

cd tz
make TOPDI R=t zdat a i nst al |

3. Generate the compiled binary time zone database:

.lzic -d ./tzdata/etc/zoneinfo africa antarctica asia austral asi a backward
backzone etcetera europe factory northamerica pacificnew sout hanmerica sys
t env

4. Create zip archive:

pushd ./tzdatal/etc
zip -r zoneinfo.zip zoneinfo

popd
5. Copy the time zone database to HDFS:

hdfs dfs -nkdir -p /tzdb/| at est
hdf s dfs -copyFroniocal ./tzdatal/etc/zoneinfo.zip /tzdb/I| atest

6. Set the##hdfs zone info_zip startup flag to /tzdb/latest/zoneinfo.zip as an impalad safety valve.
7. Perform afull restart of Impala service.

Configuring custom time zone aliases.

51

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-timestamp
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-partition.html

Cloudera Runtime Impala SQL data types

1. Create atzalias.conf config file that contains time zone alias definitions formatted asALIAS = DEFINITION.
For example:

#

Define aliases for existing tinezone nanes:
#

Uni versal Coordinated Tine = UTC

M deast/ R yadh89 = Asi a/ Ri yadh

PDT = Americal/ Los_Angel es

#

Define aliases as UTC offsets in seconds:
#

GMr-01: 00 = 3600

GMr+01: 00 = -3600

2. Copy the config file to HDFS:

hdfs dfs -nkdir -p /tzdb
hdf s df s - copyFronlLocal tzalias.conf /tzdb

3. Setthe##hdfs zone alias conf startup flag to /tzdb/tzalias.conf as an impalad safety valve.
4. Perform afull restart of Impala service.

Added in: Impala 3.1.

A 1-byteinteger datatype used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane TI NYI NT

Range: -128 .. 127. Thereis no UNSIGNED subtype.

Conversions: Impala automatically convertsto alarger integer type (SMALLINT, INT, or BIGINT) or afloating-
point type (FLOAT or DOUBLE) automatically. Use CAST() to convert to STRING or TIMESTAMP. Casting an
integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting ##use |o
cal_tz for_unix_timestamp_conversions=trueisin effect, the resulting TIMESTAMP represents a date and time in
thelocal time zone.

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and
overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest
value in the range for the type. For example, valid values for atinyint range from -128 to 127. In Impala, atinyint
with avalue of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns 127.

Usage notes:

For a convenient and automated way to check the bounds of the TINYINT type, call the functions MIN_TINYINT()
and MAX_TINYINT().

If an integer value istoo large to be represented asa TINYINT, use a SMALLINT instead.
NULL considerations: Casting any non-numeric value to this type producesa NULL value.
Examples:

CREATE TABLE t1 (x TINYINT);
SELECT CAST(100 AS TI NYI NT);

52

Cloudera Runtime Impala SQL data types

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impalarejects
attempts to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ... LIK
E PARQUET syntax, any TINYINT or SMALLINT columns in the original table turninto INT columnsin the new
table.

HBase considerations: This datatype is fully compatible with HBase tables.

Text table considerations: Values of thistype are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 1-byte value.
Added in: Availablein all versions of Impala.

Column statistics considerations. Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

A variable-length character type, truncated during processing if necessary to fit within the specified length.
Syntax:
In the column definition of a CREATE TABLE statement:

col umm_nane VARCHAR(max_| engt h)

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:

* Thistype can beread from and written to Parquet files.

* Thereisno requirement for a particular level of Parquet.

« Parquet files generated by Impala and containing this type can be freely interchanged with other components such
as Hive and MapReduce.

» Parquet datafiles can contain values that are longer than allowed by the VARCHAR(N) length limit. Impala
ignores any extratrailing characters when it processes those values during a query.

Text table considerations:

Text datafiles can contain values that are longer than allowed by the VARCHAR(N) length limit. Any extratrailing
characters are ignored when Impala processes those values during a query.

Avro considerations: The Avro specification allows string values up to 2**64 bytesin length. Impala queries for Avro
tables use 32-hit integers to hold string lengths. In Impala 2.5 and higher, Impala truncates CHAR and VARCHAR
valuesin Avro tablesto (2**31)-1 bytes. If aquery encounters a STRING value longer than (2**31)-1 bytesin an
Avro table, the query fails. In earlier releases, encountering such long valuesin an Avro table could cause a crash.

Schema evolution considerations:

You canuse ALTER TABLE ... CHANGE to switch column data types to and from VARCHAR. Y ou can convert
from STRING to VARCHAR(n), or from VARCHAR(N) to STRING, or from CHAR(n) to VARCHAR(n), or from
VARCHAR(Nn) to CHAR(n). When switching back and forth between VARCHAR and CHAR, you can also change
the length value. This schema evolution works the same for tables using any file format. If atable contains values

53

Cloudera Runtime Impala SQL data types

longer than the maximum length defined for aVARCHAR column, Impala does not return an error. Any extratrailing
characters are ignored when Impala processes those values during a query.

Compatibility:

Thistypeisavailablein Impalaversion 2.0 or higher.

Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics
fieldsarefilled in until you run the COMPUTE STATS statement.

Kudu considerations:
Currently, the data types CHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions:

All datain CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you
have binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

Examples:

The following examples show how long and short VARCHAR values are treated. VValues longer than the maximum
specified length are truncated by CAST(), or when queried from existing datafiles. Values shorter than the maximum
specified length are represented as the actual length of the value, with no extra padding as seen with CHAR values.

create table varchar_1 (s varchar(1));
create table varchar_4 (s varchar(4));
create table varchar 20 (s varchar(20));

insert into varchar_1 values (cast('a as varchar(1l))), (cast('b' as varchar
(1))), (cast('hello" as varchar(1))), (cast('world" as varchar(1)));

insert into varchar_4 values (cast('a'" as varchar(4))), (cast('b' as varcha
r(4))), (cast('hello" as varchar(4))), (cast('world" as varchar(4)));

insert into varchar 20 values (cast('a' as varchar(20))), (cast('b' as var
char(20))), (cast('hello' as varchar(20))), (cast('world" as varchar(20)));
select * fromvarchar_1;

+-- -+

| s |

+---+

| a |

| b |

| h|

| w|

+-- -+

sel ect * fromvarchar 4,
foccooc +

| s |

Focococ +

| a |

| b I

| hell |

| worl |

Focoooc +

[l ocal host:21000] > select * from varchar_20;
Foococooc +

| s I

fecooooc +

| a I

| b |

| hello |

| world |

fecooooc +

select concat('[',s,']"') as s from varchar_20;
Foccooocooc +

54

Cloudera Runtime Impala SQL data types

| s I
T cooooooc +
| [a] I
| [b] I
| [hello] |
| [world] |
focooooooc +

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined
with different maximum lengths. Both tables contain 'a’ and 'b' values. The longer 'hello’ and ‘world' values from the
VARCHAR_20 table were truncated when inserted into the VARCHAR _1 table.

select s fromvarchar_1 join varchar_ 20 using (s);

R +
| s |
focooooc +
| a I
| b I
foccococ +

The following examples show how VARCHAR values are freely interchangeable with STRING valuesin contexts
such as comparison operators and built-in functions:

sel ect I ength(cast('foo' as varchar(100))) as | ength;

fooocooooc +
| length |
Fococococ +
| 3 I
feccoococac +
sel ect cast('xyz' as varchar(5)) > cast('abc' as varchar(10)) as greater;
feocococooooc +
| greater |
Fococooooe +
| true [
feccoocooc +

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Complex types (also referred to as nested types) let you represent multiple data values within a single row/column
position. They differ from the familiar column types such as BIGINT and STRING, known as scalar types or
primitive types, which represent a single data value within a given row/column position. Impala supports the complex
types ARRAY, MAP, and STRUCT in Impala 2.3 and higher. The Hive UNION type is not currently supported.

Once you understand the basics of complex types, refer to the individual type topics when you need to refresh your
memory about syntax and examples:

 ARRAY complex type on page 13
e STRUCT complex type on page 40
* MAP complex type on page 32

The reasons for using Impala complex types include the following:

* You dready have data produced by Hive or other non-Impala component that uses the complex type column
names. Y ou might need to convert the underlying data to Parquet to use it with Impala.

55

Cloudera Runtime Impala SQL data types

* Your data model originates with anon-SQL programming language or a NoSQL data management system.
For example, if you are representing Python data expressed as nested lists, dictionaries, and tuples, those data
structures correspond closely to Impala ARRAY, MAP, and STRUCT types.

* Your anaytic queries involving multiple tables could benefit from greater locality during join processing. By
packing more related data items within each HDFS data block, complex types let join queries avoid the network
overhead of the traditional Hadoop shuffle or broadcast join techniques.

The Impala complex type support produces result sets with all scalar values, and the scalar components of complex
types can be used with all SQL clauses, such as GROUP BY, ORDER BY, dl kinds of joins, subqueries, and inline
views. The ahility to process complex type data entirely in SQL reduces the need to write application-specific codein
Javaor other programming languages to deconstruct the underlying data structures.

The ARRAY and MAP types are closely related: they represent collections with arbitrary numbers of elements, where
each element is the same type. In contrast, STRUCT groups together a fixed number of itemsinto asingle element.
The parts of a STRUCT element (the fields) can be of different types, and each field has a name.

The elements of an ARRAY or MAP, or the fields of a STRUCT, can also be other complex types. Y ou can construct
elaborate data structures with up to 100 levels of nesting. For example, you can make an ARRAY whose elements are
STRUCTS. Within each STRUCT, you can have some fields that are ARRAY, MAP, or another kind of STRUCT.
The Impala documentation uses the terms complex and nested types interchangeably; for ssimplicity, it primarily uses
the term complex types, to encompass all the properties of these types.

When visualizing your data model in familiar SQL terms, you can think of each ARRAY or MAP as aminiature
table, and each STRUCT as arow within such atable. By default, the table represented by an ARRAY hastwo
columns, POS to represent ordering of elements, and ITEM representing the value of each element. Likewise, by
default, the table represented by a MAP encodes key-value pairs, and therefore has two columns, KEY and VALUE.

The ITEM and VALUE names are only required for the very simplest kinds of ARRAY and MAP columns, ones that
hold only scalar values. When the elements within the ARRAY or MAP are of type STRUCT rather than a scalar
type, then the result set contains columns with names corresponding to the STRUCT fields rather than ITEM or
VALUE.

Y ou write most queries that process complex type columns using familiar join syntax, even though the data for both
sides of the join resides in asingle table. The join notation brings together the scalar values from arow with the
values from the complex type columns for that same row. The final result set contains all scalar values, alowing you
to do al the familiar filtering, aggregation, ordering, and so on for the complex data entirely in SQL or using business
intelligence tools that issue SQL queries.

Behind the scenes, Impala ensures that the processing for each row is done efficiently on a single host, without the
network traffic involved in broadcast or shuffle joins. The most common type of join query for tables with complex
type columnsis INNER JOIN, which returns results only in those cases where the complex type contains some
elements. Therefore, most query examplesin this section use either the INNER JOIN clause or the equivalent
comma notation.

Note:

IE Although Impala can query complex types that are present in Parquet files, Impala currently cannot create
new Parquet files containing complex types. Therefore, the discussion and examples presume that you are
working with existing Parquet data produced through Hive, Spark, or some other source. See Constructing
Parquet / ORC files with complex columns using Hive for examples of constructing Parquet data files with
complex type columns.

For learning purposes, you can create empty tables with complex type columns and practice query syntax,
even if you do not have sample data with the required structure.

When planning to use Impala complex types, and designing the Impala schema, first [earn how this kind of schema
differs from traditional table layouts from the relational database and data warehousing fields. Because you might

56

Cloudera Runtime

Impala SQL data types

have already encountered complex typesin a Hadoop context while using Hive for ETL, aso learn how to write high-
performance analytic queries for complex type data using Impala SQL syntax.

How complex types differ from traditional data warehouse schemas

Complex types let you associate arbitrary data structures with a particular row. If you are familiar
with schema design for relational database management systems or data warehouses, a schema with
complex types has the following differences:

Logically, related values can now be grouped tightly together in the sametable.
In traditional data warehousing, related values were typically arranged in one of two ways:

» Split across multiple normalized tables. Foreign key columns specified which rows from
each table were associated with each other. This arrangement avoided duplicate data and
therefore the data was compact, but join queries could be expensive because the related data
had to be retrieved from separate locations. (In the case of distributed Hadoop queries, the
joined tables might even be transmitted between different hostsin a cluster.)

» Flattened into asingle denormalized table. Although this layout eliminated some potential
performance issues by removing the need for join queries, the table typically became larger
because values were repeated. The extra data volume could cause performance issuesin
other parts of the workflow, such aslonger ETL cycles or more expensive full-table scans
during queries.

Complex types represent a middle ground that addresses these performance and volume
concerns. By physically locating related data within the same data files, complex typesincrease
locality and reduce the expense of join queries. By associating an arbitrary amount of data with
asingle row, complex types avoid the need to repeat lengthy values such as strings. Because
Impala knows which complex type values are associated with each row, you can save storage
by avoiding artificial foreign key values that are only used for joins. The flexibility of the STRU
CT, ARRAY, and MAP types lets you model familiar constructs such as fact and dimension
tables from a data warehouse, and wide tables representing sparse matrices.

Physical storage for complex typesin Parquet

Physically, the scalar and complex columnsin each row are located adjacent to each other in the
same Parquet data file, ensuring that they are processed on the same host rather than being broadcast
across the network when cross-referenced within a query. This co-location simplifies the process

of copying, converting, and backing all the columns up at once. Because of the column-oriented
layout of Parquet files, you can still query only the scalar columns of atable without imposing the 1/
O penalty of reading the (possibly large) values of the composite columns.

Within each Parquet datafile, the constituent parts of complex type columns are stored in column-
oriented format:

Each field of a STRUCT typeis stored like a column, with all the scalar values adjacent to each
other and encoded, compressed, and so on using the Parquet space-saving techniques.

For an ARRAY containing scalar values, al those values (represented by the ITEM
pseudocolumn) are stored adjacent to each other.

For aMAP, the values of the KEY pseudocolumn are stored adjacent to each other. If the
VALUE pseudocolumn is a scalar type, its values are also stored adjacent to each other.

If an ARRAY element, STRUCT field, or MAP VALUE part is another complex type, the
column-oriented storage applies to the next level down (or the next level after that, and so on for
deeply nested types) where the final elements, fields, or values are of scalar types.

The numbers represented by the POS pseudocolumn of an ARRAY are not physically stored in the
datafiles. They are synthesized at query time based on the order of the ARRAY elements associated
with each row.

Fileformat support for Impala complex types

57

Cloudera Runtime

Impala SQL data types

Currently, Impala queries support complex type data in the Parquet and ORC file formats. See
Using Parquet data files for details about the performance benefits and physical layout of Parquet
file format.

Because Impala does not parse the data structures containing nested types for unsupported formats
such astext, Avro, SequenceFile, or RCFile, you cannot use data files in these formats with Impala,
even if the query does not refer to the nested type columns. Also, if atable using an unsupported
format originally contained nested type columns, and then those columns were dropped from the
tableusing ALTER TABLE ... DROP COLUMN, any existing datafilesin the table still contain
the nested type data and Impala queries on that table will generate errors.

The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include
complex types. Such queries are allowed in Impala 2.6 and higher.

Y ou can perform DDL operations for tables involving complex typesin most file formats other than
Parquet or ORC. Y ou cannot create tables in Impala with complex types using text files.

Y ou can have a partitioned table with complex type columns that uses a format other than Parquet
or ORC, and use ALTER TABLE to change the file format to Parquet/ORC for individual

partitions. When you put Parquet/ORC files into those partitions, Impala can run queries against that
data as long as the query does not involve any of the non-Parquet and non-ORC partitions.

If you usethe par quet - t ool s command to examine the structure of a Parquet data file that
includes complex types, you see that both ARRAY and MAP are represented as a Bag in Parquet
terminology, with al fields marked Optional because Impala allows any column to be nullable.

Impala supports either 2-level and 3-level encoding within each Parquet datafile. When
constructing Parquet data files outside Impala, use either encoding style but do not mix 2-level and
3-level encoding within the same datafile.

Choosing between complex types and normalized tables

Choosing between multiple normalized fact and dimension tables, or asingle table containing
complex types, is an important design decision.

» If you are coming from atraditional database or data warehousing background, you might be
familiar with how to split up data between tables. Y our business intelligence tools might already
be optimized for dealing with this kind of multi-table scenario through join queries.

» If you are pulling data from Impalainto an application written in a programming language that
has data structures anal ogous to the complex types, such as Python or Java, complex typesin
Impala could simplify datainterchange and improve understandability and reliability of your
program logic.

* You might already be faced with existing infrastructure or receive high volumes of data
that assume one layout or the other. For example, complex types are popular with web-
oriented applications, for example to keep information about an online user al in one place for
convenient lookup and analysis, or to deal with sparse or constantly evolving datafields.

 |f some parts of the data change over time while related data remains constant, using multiple
normalized tables |ets you replace certain parts of the data without rel oading the entire data
set. Conversely, if you receive related data all bundled together, such asin JSON files, using
complex types can save the overhead of splitting the related items across multiple tables.

* From a performance perspective:

e InParquet or ORC tables, Impala can skip columnsthat are not referenced in a query,
avoiding the 1/O penalty of reading the embedded data. When complex types are nested
within a column, the datais physically divided at avery granular level; for example, a query
referring to data nested multiple levels deep in a complex type column does not have to
read all the data from that column, only the data for the relevant parts of the column type
hierarchy.

» Complex types avoid the possibility of expensive join queries when data from fact and
dimension tablesis processed in parallel across multiple hosts. All the information for arow

58

Cloudera Runtime

Impala SQL data types

containing complex typesistypically to bein the same data block, and therefore does not
need to be transmitted across the network when joining fields that are all part of the same
row.

* Thetradeoff with complex typesis that fewer rowsfit in each data block. Whether it is better
to have more data blocks with fewer rows, or fewer data blocks with many rows, depends on
the distribution of your data and the characteristics of your query workload. If the complex
columns are rarely referenced, using them might lower efficiency. If you are seeing low
parallelism due to asmall volume of data (relatively few data blocks) in each table partition,
increasing the row size by including complex columns might produce more data blocks and
thus spread the work more evenly across the cluster. See Scalability considerations for more
on this advanced topic.

Differences between Impala and Hive complex types

Impala can query Parquet and ORC tables containing ARRAY, STRUCT, and MAP columns
produced by Hive. There are some differences to be aware of between the Impala SQL and Hive
SQL syntax for complex types, primarily for queries.

Impala supports a subset of the syntax that Hive supports for specifying ARRAY, STRUCT, and
MAP typesin the CREATE TABLE statements.

Because Impala STRUCT columns include user-specified field names, you use the NAMED_ST
RUCT() constructor in Hive rather than the STRUCT() constructor when you populate an Impala
STRUCT column using aHive INSERT statement.

The Hive UNION typeis not currently supported in Impala.

While Impala usually aims for a high degree of compatibility with Hive SQL query syntax, Impala
syntax differs from Hive for queries involving complex types. The differences are intended to
provide extraflexibility for queriesinvolving these kinds of tables.

» Impaa uses dot notation for referring to element names or el ements within complex types, and
join notation for cross-referencing scalar columns with the elements of complex types within the
same row, rather than the LATERAL VIEW clause and EXPLODE() function of Hive SQL.

» Using join notation lets you use all the kinds of join queries with complex type columns. For
example, you canuseaLEFT OUTER JOIN, LEFT ANTI JOIN, or LEFT SEMI JOIN query
to evaluate different scenarios where the complex columns do or do not contain any elements.

e You caninclude references to collection typesinside subqueries and inline views. For example,
you can construct a FROM clause where one of the “tables’ is a subquery against a complex
type column, or use a subquery against a complex type column as the argument to an IN or
EXISTS clause.

» The Impala pseudocolumn POS lets you retrieve the position of elementsin an array along with
the elements themselves, equivalent to the POSEXPLODE() function of Hive SQL. Y ou do not
use index notation to retrieve asingle array element in a query; the join query loops through the
array elements and you use WHERE clauses to specify which elements to return.

* Join clausesinvolving complex type columns do not require an ON or USING clause. Impala
implicitly applies the join key so that the correct array entries or map elements are associated
with the correct row from the table.

» Impaadoes not currently support the UNION complex type.

Limitations and restrictions for complex types

Complex type columns can only be used in tables or partitions with the Parquet or ORC file format.
Complex type columns cannot be used as partition key columnsin a partitioned table.

When you use complex types with the ORDER BY, GROUP BY, HAVING, or WHERE clauses,
you cannot refer to the column name by itself. Instead, you refer to the names of the scalar values
within the complex type, such asthe ITEM, POS, KEY, or VALUE pseudocolumns, or the field
names from a STRUCT.

59

Cloudera Runtime

Impala SQL data types

The maximum depth of nesting for complex typesis 100 levels.

The maximum length of the column definition for any complex type, including declarations for any
nested types, is 4000 characters.

For ideal performance and scalability, use small or medium-sized collections, where all the complex
columns contain at most a few hundred megabytes per row. Remember, all the columns of arow are
stored in the same HDFS data block, whose size in Parquet files typically ranges from 256 MB to 1
GB.

Including complex type columns in a table introduces some overhead that might make queries that
do not reference those columns somewhat slower than Impala queries against tables without any
complex type columns. Expect at most a 2x slowdown compared to tables that do not have any
complex type columns.

Currently, the COMPUTE STATS statement does not collect any statistics for columns containing
complex types. Impala uses heuristics to construct execution plans involving complex type columns.

Currently, Impala built-in functions and user-defined functions cannot accept complex types

as parameters or produce them as function return values. (When the complex type values are
materialized in an Impala result set, the result set contains the scalar components of the values, such
asthe POS or ITEM for an ARRAY, the KEY or VALUE for aMAP, or thefields of a STRUCT;
these scalar data items can be used with built-in functions and UDFs as usual .)

Impala currently cannot write new data files containing complex type columns. Therefore, although
the SELECT statement works for queries involving complex type columns, you cannot use a
statement form that writes data to complex type columns, such as CREATE TABLE AS SELECT
or INSERT ... SELECT. To create data files containing complex type data, use the Hive INSERT
statement, or another ETL mechanism such as MapReduce jobs, Spark jobs, Pig, and so on.

Currently, Impala can query complex type columns only from Parquet/ORC tables or Parquet/ORC
partitions within partitioned tables. Although you can use complex typesin tables with Avro, text,
and other file formats as part of your ETL pipeline, for example as intermediate tables popul ated
through Hive, doing analytics through Impala requires that the data eventually ends up in a Parquet/
ORC table. The requirement for Parquet/ORC data files means that you can use complex types with
Impalatables hosted on other kinds of file storage systems such as Isilon and Amazon S3, but you
cannot use Impala to query complex types from HBase tables.

When using complex types through SQL in Impala, you learn the notation for < > delimiters for the complex type
columnsin CREATE TABLE statements, and how to construct join queries to “unpack” the scalar values nested
inside the complex data structures. Y ou might need to condense atraditional RDBMS or data warehouse schema

into a smaller number of Parquet tables, and use Hive, Spark, Pig, or other mechanism outside Impalato populate the

tables with data.

Complex type syntax for DDL statements

The definition of data_type, asseeninthe CREATE TABLE and ALTER TABLE statements,
now includes complex typesin addition to primitive types:

primtive_type
| array_type
| map_type
| struct_type

Unions are not currently supported.

Array, struct, and map column type declarations are specified in the CREATE TABLE statement.
Y ou can also add or change the type of complex columns throughthe ALTER TABLE statement.

60

Cloudera Runtime

Impala SQL data types

Currently, Impala queries allow complex types only in tables that use the Parquet or ORC format. If
an Impala query encounters complex typesin atable or partition using any another file format, the
guery returns aruntime error.

You canuse ALTER TABLE ... SET FILEFORMAT PARQUET to change the file format of an
existing table containing complex types to Parquet, after which Impala can query it. Make sure to
load Parquet files into the table after changing the file format, becausethe ALTER TABLE ... SET
FILEFORMAT statement does not convert existing data to the new file format.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar
types.

Because use cases for Impala complex types require that you already have Parquet/ORC data files
produced outside of Impala, you can use the Impala CREATE TABLE LIKE PARQUET syntax
to produce a table with columns that match the structure of an existing Parquet file, including
complex type columns for nested data structures. Remember to include the STORED AS PA
RQUET clausein this case, because even with CREATE TABLE LIKE PARQUET, the defaullt file
format of the resulting table is still text.

Y ou cannot use the CREATE TABLE AS SELECT syntax to create a table with nested type
columns because the complex columns are omitted from the result set of an Impala SELECT * or
SELECT col_name query, and because Impala currently does not support writing Parquet files
with complex type columns,

B Note:
Once you have atable set up with complex type columns, use the DESCRIBE
and SHOW CREATE TABLE statements to see the correct notation with < and >
delimiters and comma and colon separators within the complex type definitions. If
you do not have existing data with the same layout as the table, you can query the
empty table to practice with the notation for the SELECT statement. In the SELECT
list, you use dot notation and pseudocolumns such as ITEM, KEY, and VALUE for
referring to items within the complex type columns. In the FROM clause, you use join
notation to construct table aliases for any referenced ARRAY and MAP columns.

For example, when defining a table that holds contact information, you might represent phone
numbers differently depending on the expected layout and relationships of the data, and how well
you can predict those properties in advance.

Here are different ways that you might represent phone numbersin atraditional relational schema,
with equivalent representations using complex types.

Traditional relational representation of phone numbers: singletable

The traditional, simplest way to represent phone numbersin arelational table isto store all contact
info in asingle table, with al columns having scalar types, and each potential phone number
represented as a separate column. In this example, each person can only have these 3 types of phone
numbers. If the person does not have a particular kind of phone number, the corresponding column
isNULL for that row.

CREATE TABLE contacts_fi xed_phones
(
id BIGNT

, hame STRI NG

, address STRI NG

, home_phone STRI NG

, work_phone STRI NG

, mobil e_phone STRI NG
) STORED AS PARQUET;

An array of phone numbers

61

Cloudera Runtime

Impala SQL data types

Using a complex type column to represent the phone numbers adds some extra flexibility. Now
there could be an unlimited number of phone numbers. Because the array elements have an order
but not symbolic names, you could decide in advance that phone_number[0] is the home number,
[1] isthe work number, [2] is the mobile number, and so on. (In subsequent examples, you will see
how to create a more flexible naming scheme using other complex type variations, such asaMAP
or an ARRAY where each element isa STRUCT.)

CREATE TABLE contacts_array_of phones

(
id Bl NT
, hanme STRI NG
, address STRI NG
, phone_nunber ARRAY < STRI NG >
) STORED AS PARQUET;

A map of phone numbers

Another way to represent an arbitrary set of phone numbersiswith a MAP column. With aMAP,
each element is associated with a key value that you specify, which could be a numeric, string, or
other scalar type. This example uses a STRING key to give each phone number a name, such as
'home' or 'mobile’. A query could filter the data based on the key values, or display the key valuesin
reports.

CREATE TABLE contacts_unlimnted_phones

id BIG@ NT, nanme STRING address STRING phone_number MAP < S
TRI NG STRI NG >
) STORED AS PARQUET;

Traditional relational representation of phone numbers: normalized tables

If you are an experienced database designer, you aready know how to work around the limitations
of the single-table schemafrom Traditional relational representation of phone numbers: single
table. By normalizing the schema, with the phone numbers in their own table, you can associate an
arbitrary set of phone numbers with each person, and associate additional details with each phone
number, such as whether it is ahome, work, or mobile phone.

The flexihility of this approach comes with some drawbacks. Reconstructing all the datafor a
particular person requires ajoin query, which might require performance tuning on Hadoop because
the data from each table might be transmitted from a different host. Data management tasks such as
backups and refreshing the data require dealing with multiple tables instead of a single table.

This exampleillustrates a traditional database schemato store contact info normalized across 2
tables. The fact table establishes the identity and basic information about person. A dimension table
stores information only about phone numbers, using an ID value to associate each phone number
with aperson ID from the fact table. Each person can have O, 1, or many phones; the categories are
not restricted to afew predefined ones; and the phone table can contain as many columns as desired,
to represent all sorts of details about each phone number.

CREATE TABLE fact_contacts (id BIG NI, nane STRING address STR
I NG STORED AS PARQUET;
CREATE TABLE di m phones

(
contact _id Bl G NT
, category STRI NG
, international code STRI NG

62

Cloudera Runtime

Impala SQL data types

, area_code STRI NG

, exchange STRI NG

, extension STRI NG

, hobil e BOOLEAN

, carrier STRING

, current BOOLEAN

, service start _date TI MESTAMP
, service_end_date TI MESTAMP

)
STORED AS PARQUET;

Phone Numbers Represented asan Array of Structs

To represent a schema equivalent to the one from Traditional relational representation of phone
numbers: normalized tables using complex types, this example uses an ARRAY where each
array element isa STRUCT. Aswith the earlier complex type examples, each person can have
an arbitrary set of associated phone numbers. Making each array element into a STRUCT lets us
associate multiple data items with each phone number, and give a separate name and type to each
dataitem. The STRUCT fields of the ARRAY elements reproduce the columns of the dimension
table from the previous example.

You can do all the same kinds of queries with the complex type schema as with the normalized
schema from the previous example. The advantages of the complex type design are in the areas of
convenience and performance. Now your backup and ETL processes only deal with asingle table.
When a query uses ajoin to cross-reference the information about a person with their associated
phone numbers, all the relevant data for each row resides in the same HDFS data block, meaning
each row can be processed on a single host without requiring network transmission.

CREATE TABLE cont acts_det ai | ed_phones

id BIG NT, nane STRING address STRI NG
, phone ARRAY < STRUCT <
category: STRI NG
, international _code: STRI NG
, area_code: STRI NG
, exchange: STRI NG
, extension: STRI NG
, mobil e: BOOLEAN
, carrier: STRING
, current: BOOLEAN
, service start_date: TI MESTAWP
, service_end date: TIMESTAWP
>>
) STORED AS PARQUET;

SQL statementsthat support complex types

The Impala SQL statements that support complex types are currently CREATE_TABLE, ALTE
R_TABLE, DESCRIBE, LOAD_DATA, and SELECT. That is, currently Impala can create or
alter tables containing complex type columns, examine the structure of a table containing complex
type columns, import existing data files containing complex type columns into a table, and query
Parquet/ORC tables containing complex types.

Impala currently cannot write new datafiles containing complex type columns. Therefore, although
the SELECT statement works for queries involving complex type columns, you cannot use a
statement form that writes data to complex type columns, such as CREATE TABLE AS SELECT
or INSERT ... SELECT. To create data files containing complex type data, use the Hive INSERT
statement, or another ETL mechanism such as MapReduce jobs, Spark jobs, Pig, and so on.

DDL statementsand complex types

63

Cloudera Runtime Impala SQL data types

Column specifications for complex or nested types use < and > delimiters:

-- What goes inside the < > for an ARRAY is a single type, either
a scal ar or anot her

-- conpl ex type (ARRAY, STRUCT, or MAP).

CREATE TABLE array_t

id Bl G NT,

al ARRAY <STRI NG,

a2 ARRAY <BI G NT>,

a3 ARRAY <TI MESTAMVP>,

a4 ARRAY <STRUCT <f1: STRING f2: |INT, f3: BOOLEAN>>

)
STORED AS PARQUET;

-- What goes inside the < > for a MAP is two comma- separated t
ypes specifying the types of the key-val ue pair:

-- a scalar type representing the key, and a scal ar or conpl ex
type representing the val ue.

CREATE TABLE map_t

(

o

Bl G NT,

MAP <STRI NG STRI NG,

MAP <STRI NG BI G NT>,

<BlI G NT, STRI NG&,

MAP <BI G NT, BI G NT>,

MAP <STRI NG ARRAY <STRI NG>>

333332
3

)
STORED AS PARQUET;

-- What goes inside the < > for a STRUCT is a comm-separated |is
t of fields, each field defined as
-- nane:type. The type can be a scalar or a conplex type. The fie
I d names for each STRUCT do not clash
-- with the nanes of table colums or fields in other STRUCTs. A
STRUCT is nost often used inside
-- an ARRAY or a MAP rather than as a top-level colum.
CREATE TABLE struct _t
(

id Bl G NT,

sl STRUCT <f1l: STRING f2: BId NT>,

s2 ARRAY <STRUCT <f1: INT, f2: TIMESTAMP>>,

s3 MAP <BlI G NT, STRUCT <nane: STRING birthday: TI MESTAMP>>

)
STORED AS PARQUET;

Queriesand complex types

The following example shows how referring directly to a complex type column returns an error,
while SELECT * on the same table succeeds, but only retrieves the scalar columns.

Note: Many of the complex type examples refer to tables such as CUSTOMER and
REGION adapted from the tables used in the TPC-H benchmark.

SELECT c_orders FROM custoner LIMT 1;

ERROR: Anal ysi sexception: Expr 'c_orders' in select list returns
a conpl ex type ' ARRAY<STRUCT<o_orderkey: Bl G NT, o_or der st at us: STR
ING ... |_receiptdate: STRING | _shi pi nstruct: STRI NG | _shi pnode: S
TRI NG | _coment : STRI NG>>>' |

Only scalar types are allowed in the select |ist.

-- Original colum has several scalar and one conpl ex col um.

64

Cloudera Runtime Impala SQL data types

DESCRI BE cust oner ;

o e e e a oo o m e m e e e e e e e e e e e e e eoa-oa-o--- +

| nane | type |

Focococococoooc foococoocococococococococococoococoo oo o +

| c_custkey | bigint |

| c_name | string |
c_orders array<struct<

	o_orderkey: bi gi nt,
	o_orderstatus:string,
	o_total price:deci mal (12, 2),

I | >> I

-- When we SELECT * fromthat table, only the scal ar col ums cone
back in the result set.

CREATE TABLE sel ect _star_custoner STORED AS PARQUET AS SELECT *
FROM cust omer ;

feccoccoccoccococococooocooooe +
| sunmmary |
frocococococococococoooooe +
| I'nserted 150000 row(s) |
FoocococcooccoococoooooooDooe +

-- The c_orders columm, being of conplex type, was not included
in the SELECT * result set.
DESC sel ect _star_custoner;

feccococccoooooos fecococooccoocoooos +
| nane | type
Focococococoococ Fococococcococooooe +
c_custkey	bigint
c_name	string
c_address	string
c_nationkey	smallint
c_phone	string
c_acct bal	decimal (12, 2)

| c_nktsegment | string |
| c_comment | string |
foccococcocooooc foccoccocoocoooac +

References to fields within STRUCT columns use dot notation. If the field name is unambiguous,
you can omit qualifiers such as table name, column name, or even the ITEM or VALUE
pseudocolumn names for STRUCT elementsinside an ARRAY or aMAP.

SELECT id, address.city FROM custoners WHERE address. zi p = 94305;

References to elements within ARRAY columns use the ITEM pseudocolumn;

select r_name, r_nations.itemn_nanme fromregion, region.r_natio
ns limt 7;

Feccooooc Feccoococccooooooe +
| r_name | item n_nane |
Foccoooac foccoococccoooocooc +
EURCPE	UNI TED KI NGDOM
EURCPE	RUSSIA
EURCPE	ROVANI A
EURCPE	GERVANY
EURCPE	FRANCE
ASIA	VIETNAM
ASIA	CHI NA
fooccoooc feccococccooccoocooc +

65

Cloudera Runtime Impala SQL data types

References to fields within MAP columns use the KEY and VALUE pseudocolumns. In this
example, once the query establishes the alias MAP_FIELD for aMAP column with a STRING key
and an INT value, the query can refer to MAP_FIELD.KEY and MAP_FIELD.VALUE, which have
zero, one, or many instances for each row from the containing table.

DESCRI BE t abl e _0;

| field O | string |
field_ 1 |

SELECT field O, map_field. key, map _fi el d.val ue
FROM table 0, table O0.field 1 AS map _field

WHERE | engt h(field 0) =1

LIMT 10;

feccooocooc feccooococooc fecooooc +

| field O | key | val ue

Foccocoocooc foccooococooc Focooooc +

| b | gshsgkvd | NULL

| b | twtcxj6 | 18

| b | 2vp5 | 39

| b | fhOs | 13

| v | 2 | 41

| v | 8b58ne | 20

| v | hw | 16

| v | 651 388pyt | 29

| v | 03k68g91z | 30

| v | r2hl gbb | NULL

Feccocoocooc feccooococooc Focooooc +

When complex types are nested inside each other, you use a combination of joins, pseudocolumn
names, and dot notation to refer to specific fields at the appropriate level. Thisis the most frequent
form of query syntax for complex columns, because the typical use case involves two levels of
complex types, such asan ARRAY of STRUCT elements.

SELECT id, phone_nunbers. area_code FROM contact info_many_structs
I NNER JO N cont act _i nfo_many_structs. phone_nunbers phone_nunbers
LIMT 3;

Y ou can express relationships between ARRAY and MAP columns at different levelsasjoins. You
include comparison operators between fields at the top level and within the nested type columns so
that Impala can do the appropriate join operation.

Note: Many of the complex type examples refer to tables such as CUSTOMER and
REGION adapted from the tables used in the TPC-H benchmark.

For example, the following queries work equivalently. They each return customer and order data for
customers that have at |east one order.

SELECT c.c_name, o.o_orderkey FROM custonmer c, c.c_orders o LIMT
5;

Customer #000072578	558821
Customer#000072578	2079810
Customer #000072578	5768068
Customer#000072578	1805604

66

Cloudera Runtime

Impala SQL data types

| Custoner #000072578 | 3436389 |

SELECT c.c_nane, o.0_orderkey FROM custoner ¢ INNER JON c.c_o
rders o LIMT 5;

Customer#000072578	558821
Customer #000072578	2079810
Cust omer #000072578	5768068
Cust omer #000072578	1805604
Cust omer #000072578	3436389

The following query using an outer join returns customers that have orders, plus customers with no
orders (no entriesin the C_ORDERS array):

SELECT c.c_custkey, o.o_orderkey
FROM custoner ¢ LEFT QUTER JO N c.c_orders o

LIMT 5;

Focococooooe Fococococoococ +
| c_custkey | o_orderkey |
feccooococooc feccococcooooc +
| 60210 | NULL

| 147873 | NULL

| 72578 | 558821

| 72578 | 2079810

| 72578 | 5768068
feccooococooc feccococcooooc +

The following query returns only customers that have no orders. (With LEFT ANTI JOIN or LEFT
SEMI JOIN, the query can only refer to columns from the left-hand table, because by definition
there is no matching information in the right-hand table.)

SELECT c.c_custkey, c.c_name
FROM custoner ¢ LEFT ANTI JON c.c_orders o

LIMT 5;

Focococooooe Focococococococoocoooe +

| c_custkey | c_nane |

feccooococooc feccoococcoccoocococooc +
60210 Cust omer #000060210
147873 Cust omer #000147873

Cust onmer #000085365

| |
| 141576 | Custonmer #000141576
| |
| | Customer#000070998

Y ou can also perform correlated subgueries to examine the properties of complex type columns for
each row in the result set.

Count the number of orders per customer. Note the correlated reference to the table alias C. The
COUNT(*) operation appliesto al the elements of the C_ORDERS array for the corresponding
row, avoiding the need for a GROUP BY clause.

sel ect c¢_nanme, howrany FROM custoner c¢, (SELECT COUNT(*) howrany
FROM c.c_orders) v limt 5;

| Customer#000030065 | 15 |
| Customer#000065455 | 18 |

67

Cloudera Runtime Impala SQL data types

Customer#000113644	21
Customer#000111078	O
Customer#000024621	O

Count the number of orders per customer, ignoring any customers that have not placed any orders:

SELECT c_nanme, hownmany_orders
FROM

cust oner c,

(SELECT COUNT(*) howrany_orders FROM c.c_orders) subql
VWHERE howmany orders > 0

LIMT 5;

fococococococococococ dococococococococ +
| c_name | howmany orders |
o mmm e e eeaaoao o e e ee e +

Cust oner #000072578

	7
Customer#000046378	26
Customer#000069815	11
Cust omer #000079058	12
Cust omer #000092239	26
feccoocococcooococooooc Feccoococccooooooe +

Count the number of lineitemsin each order. The referenceto C.C_ORDERS in the FROM clause
is needed because the O_ORDERKEY field isamember of the elementsin the C_ORDERS array.
The subquery labelled SUBQL1 is correlated: it is re-evaluated for the C_ ORDERS.O_LINEITEMS
array from each row of the CUSTOMERS table.

SELECT c_nane, o_orderkey, howrany l|ine_itens
FROM
cust omer c,
c.c_orders t2,
(SELECT COUNT(*) howrany line_itens FROM c.c_orders.o_lineit
ens) subql
VHERE howmany _line_itens > 0

LIMT 5;
focococococococosoooe Fococococococ focococococococosoooe +
| c_name | o_orderkey | howrany_ line_itens |
Foococococooocooocooooooc Foocccooocoooos Foococococooocooocooooooc +
Cust omer #000020890 1884930 95
Cust omer #000020890 | 4570754 95

Cust oner #000020890 | 2555489

Cust omer #000020890	3771072	95
Cust omer #000020890	919171	

Get the number of orders, the average order price, and the maximum itemsin any order per
customer. For this example, the subqueries labelled SUBQ1 and SUBQ?2 are correlated: they are
re-evaluated for each row from the original CUSTOMER table, and only apply to the complex
columns associated with that row.

SELECT c_name, howmrany, average price, nost_itens
FROM
cust omer c,
(SELECT COUNT(*) howrany, AVG o _total price) average price FROM
c.c_orders) subqgl,
(SELECT MAX(| _quantity) nost_items FROM c.c_orders.o_lineitem

s) subg2

LIMT 5;

foccoococcoccooococooooc Foccocoocooc foccooccococooooc foccococcocoooc +
| c_nane | howrany | average_price | nost_itens |
focccoccoccoccooccooos feococooooc feccococcooccoocos feocccooccoooos +

Cloudera Runtime Impala SQL data types

Cust omer #000030065	1	128908. 34	
Cust omer #000088191	0	NULL	
Cust omer #000101555	10	164250. 31	50.00
Customer #000022092	0	NULL	
Cust omer #000036277	2	166040. 06	

For example, these queries show how to access information about the ARRAY elements within the
CUSTOMER table from the “nested TPC-H” schema, starting with theinitial ARRAY elements
and progressing to examine the STRUCT fields of the ARRAY/, and then the elements nested within
another ARRAY of STRUCT:

-- How many orders does each custoner have?
-- The type of the ARRAY colum doesn't matter, this is just cou
nting the el ements.
SELECT c_cust key, count (*)
FROM cust oner, customer.c_orders
GROUP BY c_cust key

LIMT 5;

feccooococooc feccococoooc +
| c_custkey | count(*) |
feccocooccoooc feccococooooc +
61081	21
115987	15
69685	19
109124	15
50491	12
feccocooccoooc feccococooooc +

-- How many line itens are part of each custoner order?
-- Now we exanine a field froma STRUCT nested inside the ARRAY.
SELECT c_cust key, c_orders. o_orderkey, count(*)

FROM cust oner, custoner.c_orders c_orders, c_orders.o_lineitens
GROUP BY c_custkey, c_orders.o_orderkey

LIMT 5;

Focococooooe Fococococoococ Focococoococ +
| c_custkey | o_orderkey | count(*)
feccooococooc feccococcooooc feccococoooc +
63367	4985959	7
53989	1972230	2
143513	5750498	5
17849	4857989	1
89881	1046437	1
feccooococooc feccococcooooc feccococoooc +

-- What are the line itenms in each custoner order?
-- One of the STRUCT fields inside the ARRAY is anot her
-- ARRAY contai ni ng STRUCT el enents. The join finds
-- all the related itens fromboth | evel s of ARRAY.
SELECT c_cust key, o_orderkey, | _partkey

FROM cust oner, custoner.c_orders, c_orders.o |lineitens

LIMT 5;

ococccocooos fococococococ ococccocooos +
| c_custkey | o_orderkey | | _partkey |
tmmmmmma - tmmmmmmaa oo tmmmmmma - +
| 113644 | 2738497 | 175846

| 113644 | 2738497 | 27309

| 113644 | 2738497 | 175873

| 113644 | 2738497 | 88559

| 113644 | 2738497 | 8032
tmmmmmma - tmmmmmmaa oo tmmmmmma - +

69

Cloudera Runtime Impala SQL data types

Pseudocolumnsfor ARRAY and MAP types

Each element in an ARRAY type has a position, indexed starting from zero, and avalue. Each
element in a MAP type represents a key-value pair. Impala provides pseudocolumns that let
you retrieve this metadata as part of a query, or filter query results by including such thingsin a
WHERE clause. Y ou refer to the pseudocolumns as part of qualified column namesin queries:

e |ITEM: Thevalue of an array element. If the ARRAY contains STRUCT elements, you can refer
to either array_name.l TEM .field_name or use the shorthand array_name.field_name.

* POS: The position of an element within an array.

« KEY: Thevaueforming the first part of akey-value pair in amap. It is not necessarily unique.

e VALUE: The dataitem forming the second part of a key-value pair in amap. If the VALUE part
of the MAP element isa STRUCT, you can refer to either map_name.VALUE.field name or use
the shorthand map_name.field_name.

ITEM and POS pseudocolumns

When an ARRAY column contains STRUCT elements, you can refer to afield within the STRUCT
using aqualified name of the form array_column.field_name. If the ARRAY contains scalar values,
Impala recognizes the special name array_column.ITEM to represent the value of each scalar array
element. For example, if acolumn contained an ARRAY where each element was a STRING, you
would use array_name.I TEM to refer to each scalar value in the SELECT list, or the WHERE or
other clauses.

This example shows a table with two ARRAY columns whose elements are of the scalar type STRI
NG. When referring to the values of the array elementsin the SELECT list, WHERE clause, or
ORDER BY clause, you use the ITEM pseudocolumn because within the array, the individual
elements have no defined names.

create TABLE persons_of _interest

(

person_id Bl G NT,

al i ases ARRAY <STRI NG,
associ at es ARRAY <STRI NG,
real _nanme STRI NG

)
STORED AS PARQUET;

-- Get all the aliases of each person.
SELECT real nane, aliases.|TEM

FROM persons_of interest, persons_of interest.aliases
ORDER BY real _nane, aliases.item

-- Search for particular associates of each person.
SELECT real nane, associates.|TEM

FROM persons_of i nterest, persons_of interest.associates
WHERE associates.item LIKE ' % MacQuffin';

Because an array isinherently an ordered data structure, Impala recognizes the special name
array_column.POS to represent the numeric position of each element within the array. The POS
pseudocolumn lets you filter or reorder the result set based on the sequence of array elements.

The following example uses atable from a flattened version of the TPC-H schema. The REGION
table only has a few rows, such as one row for Europe and one for Asia. The row for each region
represents all the countriesin that region asan ARRAY of STRUCT elements:

[l ocal host:21000] > desc region;
Foococooocoooooc o 00 CECCoOCCoCCoOCO0OCCoCCo0CO0N0O00NCooCCo00000000 00

70

Cloudera Runtime

Impala SQL data types

| r_name | string

| r_comment | string

| r_nations | array<struct<n_nationkey:snmallint,n _nane:string,n
_coment: string>> |

foocccoccooccooc fooccoccoccooccoococoococooccoocoococcoocooocoocoocooos
___________________ +

To find the countries within a specific region, you use ajoin query. To find out the order of
elementsin the array, you also refer to the POS pseudocolumn in the select list:

[l ocal host:21000] > SELECT rl1.r_name, r2.n_nane, r2.PCS
> FROMregion r1 INNER JON rl.r_nations r2
> WHERE r1.r_nanme = 'ASI A" ;

Fococococ focooccocooos Foooo= +
| r_name | n_nane | pos |
Fooocooooe Fooccooocooooe Fooocoo +
ASSA	VIETNAM	O
ASTA	CHINA	1
ASIA	JAPAN	2
ASIA	INDONESIA	3
ASTA	INDA	4
Fooocooooe Fooccooocooooe Fooocoo +

Once you know the positions of the elements, you can use that information in subsequent queries,

for example to change the ordering of results from the complex type column or to filter certain

elements from the array:
[l ocal host:21000] > SELECT rl1.r_name, r2.n_nane, r2.PCS

> FROMregion r1 INNER JON rl.r_nations r2

> WHERE r1.r_nanme = 'ASIA

> ORDER BY r2. POS DESC;

ococoococ ococccocooos Foooas +
| r_name | n_nane | pos |
tmmmmmm - tmmmmmma - +----- +
ASTA	INDA	4
ASIA	INDONESIA	3
ASIA	JAPAN	2
ASTA	CH NA	1
ASIA	VIETNAM	O
tmmmmmm - tmmmmmma - +----- +

[l ocal host:21000] > SELECT r1.r_nanme, r2.n_nane, r2.P0S
> FROMregion r1 INNER JONrl.r _nations r2
> WHERE r1.r_nane = 'ASIA° AND r 2. PCS BETVEEEN 1

and 3;

Fococoococ Focococooooe Focooe +
| r_name | n_nane | pos |
feccooocac feccooococooc fecooc +
| ASTA | CHI NA | 1 |
| ASIA | JAPAN | 2

| ASTA | INDONESIA | 3 |
Fococoococ Focococooooe Focooe +

KEY and VAL UE pseudocolumns

The MAP datatype is suitable for representing sparse or wide data structures, where each row might
only have entries for a small subset of named fields. Because the element names (the map keys)

71

Cloudera Runtime

Impala SQL data types

vary depending on the row, a query must be able to refer to both the key and the value parts of each
key-value pair. The KEY and VALUE pseudocolumns let you refer to the parts of the key-value
pair independently within the query, as map_column.KEY and map_column.VALUE.

The KEY must always be a scalar type, such as STRING, BIGINT, or TIMESTAMP. It can be
NULL. Values of the KEY field are not necessarily unique within the same MAP. Y ou apply any
required DISTINCT, GROUP BY, and other clausesin the query, and loop through the result set to
process all the values matching any specified keys.

The VALUE can be either a scalar type or another complex type. If the VALUE isa STRUCT,
you can construct a qualified name map_column.VALUE.struct_field to refer to the individual
fieldsinside the value part. If the VALUE isan ARRAY or another MAP, you must include
another join condition that establishes atable alias for map_column.VALUE, and then construct
another qualified name using that alias, for exampletable aliasITEM or table alias.KEY and
table aliasVALUE

The following example shows different ways to access a MAP column using the KEY and VALUE
pseudocolumns. The DETAILS column has a STRING first part with short, standardized values
such as 'Recurring’, 'Lucid’, or ‘Anxiety'. Thisisthe “key” that is used to look up particular kinds of
elements from the MAP. The second part, also a STRING, isalonger free-form explanation. Impala
gives you the standard pseudocolumn names KEY and VALUE for the two parts, and you apply
your own conventions and interpretations to the underlying values.

Note: If you find that the single-item nature of the VALUE makesit difficult to

E model your data accurately, the solution is typically to add some nesting to the
complex type. For example, to have several sets of key-value pairs, make the column
an ARRAY whose elements are MAP. To make a set of key-value pairsthat holds
more elaborate information, make a MAP column whose VALUE part contains an
ARRAY or aSTRUCT.

CREATE TABLE dream j our nal

dream.id BI G NT,
details MAP <STRI NG STRI NG

)
STORED AS PARQUET;

-- What are all the types of dreans that are recorded?
SELECT DI STI NCT details. KEY FROM dream j ournal , dream j ournal . de
tails;

-- How many lucid dreans were recorded?
-- Because there is no GROUP BY, we count the 'Lucid" keys across
all rows.
SELECT COUNT(det ail s. KEY)
FROM dr eam journal, dreamjournal.details
WHERE details. KEY = ' Lucid';

-- Print a report of a subset of dreams, filtering based on both
t he | ookup key
-- and the detail ed val ue.
SELECT dream.id, details.KEY AS "Dream Type", details.VALUE AS
"Dr eam Summary"
FROM dr eam j ournal , dream journal.details
VHERE
details. KEY IN (' Happy', 'Pleasant', 'Joyous')
AND detail s. VALUE LI KE ' %hi | dhood% ;

72

Cloudera Runtime

Impala SQL data types

The following example shows a more elaborate version of the previous table, where the VALUE
part of the MAP entry isa STRUCT rather than a scalar type. Now instead of referring to the
VALUE pseudocolumn directly, you use dot notation to refer to the STRUCT fieldsinside it.

CREATE TABLE better_dream j our nal

dream.id BI G NT,
details MAP <STRI NG STRUCT <summary: STRI NG when_happened: TIM
ESTAMP, duration: DECI MAL(5, 2), woke_ up: BOOLEAN> >

)
STORED AS PARQUET;

-- Do nore el aborate reporting and filtering by exam ning nultipl
e attributes within the sanme dream
SELECT dream.id, details.KEY AS "Dream
Type", details.VALUE. summary AS "Dream
Summary", details.VALUE. duration AS "Duration"
FROM better _dream journal, better dream journal.details
VWHERE
details.KEY IN (" Anxiety', 'Ni ghtmare')
AND det ai | s. VALUE. durati on > 60
AND det ai | s. VALUE. woke_up = TRUE;

-- Renmenber that if the | TEM or VALUE contains a STRUCT, you can
ref erence
-- the STRUCT fields directly without the .ITEM or .VALUE qual
ifier.
SELECT dream.id, details.KEY AS "Dream Type", details.sunmary AS
"Dream Summary", details.duration AS "Duration"

FROM better _dream journal, better dream journal.details
WHERE

details.KEY IN (" Anxiety', 'Ni ghtmare')

AND det ai |l s. duration > 60

AND det ai | s. woke_up = TRUE;

L oading data containing complex types

Because the Impala INSERT statement does not currently support creating new data with complex
type columns, or copying existing complex type values from one table to another, you primarily use
Impalato query Parquet/ORC tables with complex types where the data was inserted through Hive,
or create tables with complex types where you already have existing Parquet/ORC data files.

Because the Impala INSERT statement does not currently support creating new data with complex
type columns, or copying existing complex type values from one table to another, you primarily use
Impalato query Parquet/ORC tables with complex types where the data was inserted through Hive,
or create tables with complex types where you already have existing Parquet/ORC data files.

If you have existing Parquet data files containing complex types, located outside of any Impala or
Hive table, such as datafiles created by Spark jobs, you can use an Impala CREATE TABLE ...
STORED AS PARQUET statement, followed by an Impala LOAD DATA statement to move the
datafilesinto thetable. As an alternative, you can use an Impala CREATE EXTERNAL TABLE
statement to create a table pointing to the HDFS directory that already contains the Parquet or ORC
datafiles.

The simplest way to get started with complex type dataisto take a denormalized table containing
duplicated values, and use an INSERT ... SELECT statement to copy the data into a Parquet table
and condense the repeated values into complex types. With the Hive INSERT statement, you use
the COLLECT_LIST(), NAMED_STRUCT(), and MAP() constructor functions within a GROUP
BY query to produce the complex type values. COLLECT_LIST() turns a sequence of valuesinto
an ARRAY. NAMED_STRUCT() usesthe first, third, and so on arguments as the field names for a
STRUCT, to match the field names from the CREATE TABLE statement.

73

Cloudera Runtime

Impala SQL data types

Note: Because Hive currently cannot construct individual rows using complex

E types through the INSERT ... VALUES syntax, you prepare the datain flat form in
a separate table, then copy it to the table with complex columnsusing INSERT ... S
ELECT and the complex type constructors.

Using complex types as nested types

The ARRAY, STRUCT, and MAP types can be the top-level typesfor “nested type”’ columns. That
is, each of these types can contain other complex or scalar types, with multiple levels of nesting

to a maximum depth of 100. For example, you can have an array of structures, a map containing
other maps, a structure containing an array of other structures, and so on. At the lowest level, there
are always scalar types making up the fields of a STRUCT, elements of an ARRAY/, and keys and
values of aMAP.

Schemas involving complex types typically use some level of nesting for the complex type columns.

For example, to model arelationship like a dimension table and a fact table, you typically use

an ARRAY where each array element isa STRUCT. The STRUCT fields represent what would
traditionally be columnsin a separate joined table. It makes little sense to use a STRUCT as the top-
level type for a column, because you could just make the fields of the STRUCT into regular table
columns.

Perhaps the only use case for atop-level STRUCT would be to to allow STRUCT fields with the
same name as columns to coexist in the same table. The following example shows how atable could
have a column named ID, and two separate STRUCT fields also named I1D. Because the STRUCT
fields are always referenced using qualified names, the identical ID names do not cause a conflict.

CREATE TABLE struct _nanespaces

id Bl G NT
, s1 STRUCT < id: BIGNT, fieldl: STRING >
, S2 STRUCT < id: BIGQ NI, when_happened: TI MESTAMP >

)
STORED AS PARQUET;

select id, sl.id, s2.id from struct_nanespaces;

It is common to make the value portion of each key-value pairinaMAP a STRUCT, ARRAY of
STRUCT, or other complex type variation. That way, each key in the MAP can be associated with
aflexible and extensible data structure. The key values are not predefined ahead of time (other than
by specifying their datatype). Therefore, the MAP can accommodate arapidly evolving schema,

or sparse data structures where each row contains only a few data values drawn from alarge set of
possible choices.

Although you can use an ARRAY of scalar values as the top-level column in atable, such asimple
array istypicaly of limited use for analytic queries. The only property of the array elements, aside
from the element value, is the ordering sequence available through the POS pseudocolumn. To
record any additional item about each array element, such asa TIMESTAMP or a symbolic name,
you use an ARRAY of STRUCT rather than of scalar values.

If you are considering having multiple ARRAY or MAP columns, with related items under the same
position in each ARRAY or the same key in each MAP, prefer to use a STRUCT to group all the
related itemsinto asingle ARRAY or MAP. Doing so avoids the additional storage overhead and
potential duplication of key values from having an extra complex type column. Also, because each
ARRAY or MAP that you reference in the query SELECT list requires an additional join clause,
minimizing the number of complex type columns also makes the query easier to read and maintain,
relying more on dot notation to refer to the relevant fields rather than a sequence of join clauses.

For example, hereis atable with several complex type columns all at the top level and containing
only scalar types. To retrieve every dataitem for the row requires a separate join for each ARRAY
or MAP column. The fields of the STRUCT can be referenced using dot notation, but there is no

74

Cloudera Runtime

Impala SQL data types

real advantage to using the STRUCT at the top level rather than just making separate columns FIEL
D1 and FIELD2.

CREATE TABLE conpl ex_types_top_I evel

id Bl G NT,
al ARRAY<| NT>,
a2 ARRAY<STRI NG,
s STRUCT<fieldl: INT, field2: STRI NG,
-- Nurmeric | ookup key for a string val ue.
mL MAP<I| NT, STRI NG>,
-- String | ookup key for a nuneric val ue.
n2 MAP<STRI NG, | NT>

)
STORED AS PARQUET;

descri be conpl ex_types_top_level;

| bigint |
| array<int> |
| array<string> |
| struct< |
| fieldl:int, |
| field2:string |
| > |
| map<int,string> |
| map<string,int> |

s.fieldil,
s. field2,
mlL. key,
mlL. val ue,
n2. key,
n2. val ue

from
conpl ex_types_top_| evel
conpl ex_types top_level.al
conpl ex_types_top_| evel . a2,
conpl ex_types_top_I evel . ml,
conpl ex_types_top_| evel . n2;

For example, hereis atable with columns containing an ARRAY of STRUCT, aMAP where each
key valueisa STRUCT, and aMAP where each key value isan ARRAY of STRUCT.

CREATE TABLE nesting_deno
(
user _id Bl G NT,
fam |y menbers ARRAY < STRUCT < nane: STRING enmil: STRI NG
dat e_j oi ned: TI MESTAWP >>,
foo map < STRING STRUCT < f1: INT, f2: INT, f3: TIMESTAMP, f4:
BOOLEAN >>,
gamepl ay MAP < STRING , ARRAY < STRUCT <
nane: STRING highest: BIANT, |ives used: INT, total spent:
DECI MAL(16, 2)
>>>

)

75

Cloudera Runtime Impala SQL data types

STORED AS PARQUET;

The DESCRIBE statement rearranges the < and > separators and the field names within each STRU
CT for easy readability:

DESCRI BE nesti ng_deno;

user _id
fam | y_menbers

| bigint
| array<struct<
| name: string,
| emai | : string,
| dat e_j oi ned: ti nest anp
| >>
f oo | map<string, struct<
| fl:int,
| f2:int,
| f3:timestanp,
| f4: bool ean
| >>
| map<string, array<struct<
| name: string,
| hi ghest : bi gi nt,
| lives used:int,
| total spent:decinal (16, 2)
| >>>

ganepl ay

To query the complex type columns, you use join notation to refer to the lowest-level scalar values.
If thevalueisan ARRAY element, the fully qualified name includes the ITEM pseudocolumn. If
thevalueisinside aMAP, the fully qualified name includes the KEY or VALUE pseudocolumn.
Each reference to adifferent ARRAY or MAP (even if nested inside another complex type) requires
an additional join clause.

SELECT
-- The lone scalar field doesn't require any dot notation or join
cl auses.
user _id

-- Retrieve the fields of a STRUCT inside an ARRAY.
-- The FAM LY MEMBERS nane refers to the FAM LY _MEMBERS t abl e
alias defined later in the FROM cl ause.
, fam ly_nenbers.item nane
, famly nmenbers.item enmail
, famly nmenbers.item date_j oi ned
-- Retrieve the KEY and VALUE fields of a MAP, with the val ue bei
ng a STRUCT consisting of nore fields.
-- The FOO nane refers to the FOO table alias defined later in th
e FROM cl ause.
, foo. key
, foo.value.f
, foo.value.f
, foo.value.f
, foo.value.f
-- Retrieve the KEY fields of a MAP, and expand the VALUE part in
to ARRAY itens consisting of STRUCT fi el ds.
-- The GAMEPLAY nane refers to the GAMEPLAY table alias defined
later in the FROM cl ause (referring to the MAP item.
-- The GAME N nane refers to the GAME N table alias defined |a
ter in the FROM cl ause (referring to the ARRAY
-- inside the MAP item s VALUE part.)
, ganepl ay. key

A WNPF

76

Cloudera Runtime

Impala SQL data types

, game_n. name
, gane_n. hi ghest
, ganme_n.lives used
, gane_n.total spent
FROM
nesti ng_deno
, hesting deno.fanmily nmenbers AS fanmi|ly_ nenbers
, nesting_denp.foo AS foo
, hesting deno. ganepl ay AS ganepl ay
, hesting deno. ganepl ay. val ue AS gane_n;

Once you understand the notation to refer to a particular dataitem in the SELECT list, you can use
the same qualified nameto refer to that dataitem in other parts of the query, such as the WHERE
clause, ORDER BY or GROUP BY clauses, or callsto built-in functions. For example, you might
frequently retrieve the VALUE part of each MAP item in the SELECT list, while choosing the
specific MAP items by running comparisons against the KEY part in the WHERE clause.

Accessing complex type data in flattened form using views

The layout of complex and nested typesis largely aphysical consideration. The complex type
columnsreside in the same data files rather than in separate normalized tables, for your convenience
in managing related data sets and performance in querying related data sets. Y ou can use viewsto
treat tables with complex types asif they were flattened. By putting the join logic and references

to the complex type columns in the view definition, you can query the same tables using existing
queriesintended for tables containing only scalar columns. This technique also lets you use tables
with complex types with Bl tools that are not aware of the data types and query notation for
accessing complex type columns.

For example, the variation of the TPC-H schema containing complex types has a table REGION.
Thistable has 5 rows, corresponding to 5 regions such as NORTH AMERICA and AFRICA. Each
row hasan ARRAY column, where each array item isa STRUCT containing details about a country
in that region.

DESCRI BE r egi on;
Fooccococoocoooooc Fooccoococooooococococoooooooe +
| name | type |
feccoocococooc feccoococcoccoococcocooococooc +
r _regi onkey smal | i nt
r _name string
r _coment string
r array<struct<

n_nati onkey: smal | i nt,
n_nane: stri ng,
n_coment: string

>>

I
>
Q
—+
@]
>
n

The same data could be represented in traditional denormalized form, as a single table where the
information about each region is repeated over and over, alongside the information about each
country. The nested complex types let us avoid the repetition, while still keeping the datain asingle
table rather than normalizing across multiple tables.

To use thistable with a JDBC or ODBC application that expected scalar columns, we could create a
view that represented the result set as a set of scalar columns (three columns from the original table,
plus three more from the STRUCT fields of the array elements). In the following examples, any
column with an R_* prefix is taken unchanged from the original table, while any column with an
N_* prefix is extracted from the STRUCT inside the ARRAY.

CREATE VI EW r egi on_vi ew AS
SELECT
r_regi onkey,

77

Cloudera Runtime Impala SQL data types

r_name,
r _conment,
array _field.itemn_nationkey AS n_nati onkey,
array field.itemn_name AS n_nane,
array_field.n_conment AS n_comrent
FROM
region, region.r_nations AS array_field;

Then we point the application queries at the view rather than the original table. From the perspective
of the view, there are 25 rowsin the result set, one for each nation in each region, and queries can
refer freely to fields related to the region or the nation.

-- Retrieve info such as the nation nane fromthe original R _NAT
| ONS array el ements.
sel ect n_nanme fromregion_ view where r_nane in (' EUROPE , 'ASIA

)

| UNI TED KI NGDOM
| RUSSI A

| ROVANI A

| GERVANY

| FRANCE

| VI ETNAM

| CH NA

| JAPAN

| 1 NDONESI A

| INDIA

-- UNI TED STATES in AMERI CA and UNI TED Kl NGDOM i n EURCPE.
SELECT DI STINCT r_nanme FROM regi on_vi ew WHERE n_nane LI KE ' UNI TED
% ;

Focococoooe +
| r_name |
Feccocoocooc +
| AMERI CA |
| EURCPE |
feococooooc +

-- For conci seness, we only list sone view colums in the SELECT
list.

-- SELECT * would bring back all the data, unlike SELECT *

-- queries on the original table with conplex type col ums.
SELECT r_regi onkey, r_nane, n_nati onkey, n_nane FROM regi on_vi ew

LIMT 7;
foccccccccoooc foccccooc foccccccccoooc focccccccccccoooc +
| r_regionkey | r_nane | n_nationkey | n_nane |
focccccccccoac foccccoac focccccccccoac foccccccccccccoac +
3	EURCPE	23	UNI TED KI NGDOM
3	EURCPE	22	RUSSIA
3	EURCPE	19	ROVANI A
3	EURCPE	7	GERVANY
3	EURCPE	6	FRANCE
2	ASIA	21	VI ETNAM
2	ASIA	18	CHI NA
Foocooooooocooc Foocooooc Foocooooooocooc Foocooocooooooooos +

The following examples illustrate the query syntax for some common use cases involving complex type columns:

78

Cloudera Runtime Impala SQL data types

Sample schema and data for experimenting with Impala complex types

The tables used for earlier examples of complex type syntax aretrivial ones with no actual data. The
more substantial examples of the complex type feature use these tables, adapted from the schema
used for TPC-H testing:

SHOW TABLES;

| customer |
| part |
| region

| supplier

Focococococoococ FococococoococoococoocoocococoCocoooooo o +
| nane | type |
feccococococooooc feccooccoccoccooccococcococcococooccocooooooc +

c_cust key bi gi nt

Cc_nane string

c_address string

c_nati onkey smal | i nt

c_phone string

c_acct bal deci mal (12, 2)

c_nkt segnent string

c_conment string

c_orders array<struct<

| |
| |
| |
| |
| |
| |
| |
| |
| o_orderkey: bi gi nt, |
| o_orderstatus:string, |
| o_total price:decimal (12, 2),
| o_orderdate: string, |
| o_orderpriority:string, |
| o_clerk:string, |
| o_shippriority:int, |
| o_conment : stri ng, |
| o_lineitens: array<struct< |
	_partkey: bi gi nt,
	_suppkey: bi gi nt,
	_l'i nenunber:int,
	_quantity:decimal (12, 2),
	_ext endedpri ce: deci mal (12, 2),
	_di scount: deci nal (12, 2),

	_tax:decinal (12, 2),
	_returnflag:string,
	_l'inestatus:string,
	_shipdate:string,
	_commitdate:string,
	_receiptdate:string,
	_shipinstruct:string,
	_shi pnode: string,
	_coment:string

>>

>>
feccococococooooc feccooccoccoccooccococcococcococooccocooooooc +
DESCRI BE part;
feccococcooccoocos feccococcooccoocos +
| nane | type |
feccooccocooooooc feccooccocooooooc +
| p_partkey | bigint
| p_name | string

79

Cloudera Runtime Impala SQL data types

| p_nfagr | string |

| p_brand | string |

| p_type | string |

| p_size | int

| p_container | string |

| p_retailprice | decimal (12, 2)

| p_conmment | string |

feccoococoocooooc feccoococoocooooc +

DESCRI BE r egi on

foocccoccooccooc focccoccooccoccoocooococoocoocoocoocoococooocoocooooooos
__________________ +

| name | type

e e e e e e e m - - +___|_ __
____________________ +

| r_regionkey | smallint

| r_name | string

| r_comment | string

| r_nations | array<struct<n_nationkey:smallint,n_nanme:string
, n_coment : stri ng>>

dmmmmmm e o mmm e e e e e e e e e e eeememmmmm-om-oaaoa-
_____________________ +

foocccoccooccooc fcccoccoccooccooccooccoocooccoococoocoocoocoocoooos +
| nane | type
feccoocococooc ccoocococcooococococoooocococoooococoooococoooooooooc +
s_suppkey bi gi nt
S_nane string
s_address string
S_nati onkey smal |i nt
s_acct bal deci mal (12, 2)

s_comment
S_partsupps

string
array<struct<ps_partkey: bi gi nt,
ps_avail qty:int, ps_suppl ycost: deci nal (12, 2),

	_
s_phone	string
	_
	ps_comment:string>>

The volume of data used in the following examplesis:

SELECT count (*) FROM cust oner

foccocoocooc +
| count(*)

feoccooccooc +

| 150000

feccocooooc +

SELECT count (*) FROM part;
foccocoocooc +

| count(*)

feoccooccooc +

| 200000

feccocooooc +

80

Cloudera Runtime Impala SQL data types

Constructing Parquet / ORC fileswith complex columnsusing Hive

The following examples demonstrate the Hive syntax to transform flat data (tables with all scalar
columns) into Parquet/ORC tables where Impala can query the complex type columns. Each
example shows the full sequence of steps, including switching back and forth between Impala and
Hive. Although the source table can use any file format, the destination table must use the Parquet/
ORC file format. We take Parquet in the following examples. Y ou can replace Parquet with ORC to
do the same things in ORC file format.

Create table with ARRAY in Impala, load datain Hive, query in Impala

This example shows the cycle of creating the tables and querying the complex datain Impala, and
using Hive (either the hive shell or beeline) for the data loading step. The data starts in flattened,
denormalized form in atext table. Hive writes the corresponding Parquet data, including an
ARRAY column. Then Impala can run analytic queries on the Parquet table, using join notation to
unpack the ARRAY column.

/* Initial DDL and | oading of flat, denornalized data happens in
i npal a-shel | */ CREATE TABLE flat_array (country STRING city ST
RI NG ; | NSERT | NTO fl at _array VALUES
(' Canada', 'Toronto') , ('Canada', 'Vancouver') , ('Canada',
"St. John\'s")
, ('Canada', 'Saint John') , ('Canada', 'Montreal') , ('Canada
', "Halifax")
, ("Canada’', 'Wnnipeg') , ('Canada', 'Calgary') , ('Canada',
' Saskat oon')
, ("Canada’', 'Otawa') , ('Canada', 'Yellowknife') , ('France',

"Paris')

, ("France', 'Nice') , ('France', 'Marseilles') , ('France',

' Cannes')

, ("Geece', '"Athens') , ('Geece', 'Piraeus') , ('Geece', "Ha
nia')

, ("Geece', 'Heraklion') , ('Geece', 'Rethymon') , ('Gee
ce', '"Fira');

CREATE TABLE conpl ex_array (country STRING city ARRAY <STRI NG)
STORED AS PARQUET;

/* Conversion to Parquet and conpl ex and/or nested col ums happe
ns in Hve */

I NSERT | NTO conpl ex_array SELECT country, collect list(city) FROM
flat_array GROUP BY country;

Query I D = dev_20151108160808_84477ff 2- 82bd- 4ba4- 9a77- 554f a7b8
cOcb

Total jobs =1

Launchi ng Job 1 out of 1

81

Cloudera Runtime Impala SQL data types

/* Back to inpala-shell again for analytic queries */

REFRESH conpl ex_array;

SELECT country, city.item FROM conpl ex_array, conplex_array.city
Foococoooooc Fooccococoocoooooc +
| country | item |
Feccocoocooc feccoocococooc +
Canada	Toronto
Canada	Vancouver
Canada	St. John's
Canada	Saint John
Canada	Montreal
Canada	Halifax
Canada	Wnnipeg
Canada	Cal gary
Canada	Saskatoon
Canada	Otawa
Canada	Yellowknife
France	Paris
France	N ce
France	Marseilles
France	Cannes
Greece	Athens
Greece	Piraeus
Greece	Hania
Greece	Heraklion
Greece	Rethymmon
Geece	Fira
Foococoooooc Fooccococoocoooooc +

Create table with STRUCT and ARRAY in Impala, load datain Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex datain Impala, and
using Hive (either the hive shell or beeline) for the data loading step. The data starts in flattened,
denormalized form in atext table. Hive writes the corresponding Parquet data, including a STRUCT
column with an ARRAY field. Then Impala can run analytic queries on the Parquet table, using join
notation to unpack the ARRAY field from the STRUCT column.

/* Initial DDL and | oading of flat, denornalized data happens in
i mpal a-shel |l */

CREATE TABLE fl at_struct_array (continent STRI NG country STRI
NG city STRING;
| NSERT | NTO fl at _struct_array VALUES
("North America', 'Canada', 'Toronto') , ('North Anmerica', 'C

anada', 'Vancouver')

, ("North Anerica', 'Canada', "St. John\'s") , ('North Anmeric
a', 'Canada', 'Saint John')

, ("North Anerica', 'Canada', 'Mntreal') , ('North Anerica',
'Canada', 'Halifax')

, ("North Anerica', 'Canada', 'Wnnipeg') , ('North Anerica',
'Canada', 'Calgary')

, ("North Anerica', 'Canada', 'Saskatoon') , ('North Anerica',
'Canada’', 'Otawa')

, ("North Anerica', 'Canada', 'Yellowknife') , ('Europe', 'Fran
ce', 'Paris')

, ("EBurope', 'France', 'Nice') , ('Europe', 'France', 'Marse
illes")

82

Cloudera Runtime

Impala SQL data types

, ("Europe', 'France', 'Cannes') , ('Europe', 'Geece', 'Athen
s')

, ("Europe', 'Greece', 'Piraeus') , ('Europe', 'Geece', 'Hani
a')

, ("Europe', 'Geece', 'Heraklion') , ('Europe', 'Geece', 'Re
t hymmon')

, ("Europe', "Geece', 'Fira);

CREATE TABLE conpl ex_struct_array (continent STRING country ST
RUCT <nane: STRING city: ARRAY <STRI NG >) STORED AS PARQUET,;

/* Conversion to Parquet and conpl ex and/or nested col ums happe
ns in Hive */

I NSERT | NTO conpl ex_struct _array SELECT continent, named_struct ('
nane', country, 'city', collect list(city)) FROMflat _array_array
GROUP BY continent, country;

Query I D = dev_20151108163535_11a4f a53- 0003- 4638- 97e6- ef 13cdb8e09
e

Total jobs =1

Launchi ng Job 1 out of 1

/* Back to inpal a-shell again for analytic queries */

REFRESH conpl ex_struct _array;
SELECT t1.continent, tl.country.nane, t2.item
FROM conpl ex_struct _array t1, tl.country.city t2

fecococooccoocoooos feccococccoooooos feccococcoooooc +
| continent | country.name | item |
Fococococcococooooe Focococococoococ Focococcococooooe +
Europe	France	Paris
Europe	France	Nice
Europe	France	Marseilles
Europe	France	Cannes
Europe	G eece	Athens
Europe	Geece	Piraeus
Europe	G eece	Hania
Europe	G eece	Heraklion
Europe	G eece	Ret hymon
Europe	Greece	Fira
North America	Canada	Toronto
North America	Canada	Vancouver
North America	Canada	St. John's
North America	Canada	Saint John
North Anerica	Canada	Montreal
North America	Canada	Halifax
North America	Canada	W nnipeg
North America	Canada	Cal gary
North America	Canada	Saskat oon
North America	Canada	Otawa
North Anmerica	Canada	Yellowknife
fecococooccoocoooos feccococccoooooos feccococcoooooc +

Flattening normalized tablesinto a single table with complex types

One common use for complex types is to embed the contents of one table into another. The
traditional technique of denormalizing results in a huge number of rows with some column values
repeated over and over. With complex types, you can keep the same number of rows asin the

83

Cloudera Runtime Impala SQL data types

original normalized table, and put al the associated data from the other table in a single new
column.

In this flattening scenario, you might frequently use a column that isan ARRAY consisting of
STRUCT elements, where each field within the STRUCT corresponds to a column name from the
table that you are combining.

The following example shows a traditional normalized layout using two tables, and then an
equivalent layout using complex typesin asingle table.

/* Traditional relational design */
-- This table just stores nunbers, allowing us to | ook up details
about the enpl oyee
-- and details about their vacation tine using a three-table j
oi n query.
CREATE t abl e enpl oyee_vacati ons
(
enpl oyee_id Bl G NT,
vacation_id Bl G NT

)
STORED AS PARQUET;

-- Each kind of information to track gets its own "fact table".
CREATE tabl e vacation_details
(

vacation_id Bl G NT,

vacation_start TI MESTAWP,

duration I NT

)
STORED AS PARQUET;
-- Any tine we print a hunan-readable report, we join with this
table to
-- display info about enpl oyee #1234.
CREATE TABLE enpl oyee_cont act
(
enpl oyee_id Bl G NT,
nanme STRI NG
address STRI NG
phone STRI NG
emai | STRI NG
address_type STRING /* 'hone', '"work', 'renote', etc. */

)

STORED AS PARQUET;

/* Equi val ent flattened schema using conpl ex types */

-- For analytic queries using conplex types, we can bundl e the di
nensi on tabl e

-- and nultiple fact tables into a single table.
CREATE TABLE enpl oyee vacati ons_nested_types

-- W might still use the enployee_id for other join queries.
-- The table needs at | east one scalar colum to serve as an ide
ntifier

-- for the conplex type col unms.
enpl oyee i d Bl G NT,

- Colums of the VACATI ON DETAILS table are folded into a STRUC

T.

-- W drop the VACATION I D col utm because | npal a doesn't need
-- synthetic IDs to join a conplex type colum.

-- Each row fromthe VACATI ON _DETAILS tabl e becones an array el
enent .

Cloudera Runtime Impala SQL data types

vacati on ARRAY < STRUCT <
vacation_start: TIMESTAMP,
duration: | NT

>>

-- The ADDRESS TYPE colum, with a small nunber of predefined val
ues that are distinct
-- for each enpl oyee, nakes the EMPLOYEE CONTACT table a good
candidate to turn into a MAP,
-- with each row represented as a STRUCT. The string value from
ADDRESS TYPE becones the
-- "key" (the anonynmous first field) of the MAP.
contact MAP < STRING STRUCT <
address: STRI NG
phone: STRI NG

emai | : STRI NG
>>

)
STORED AS PARQUET;

I nter changing complex type tables and data fileswith Hive and other components
Y ou can produce Parquet data files through several Hadoop components and APIs.

If you have a Hive-created Parquet table that includes ARRAY, STRUCT, or MAP columns, Impala
can query that same table in Impala 2.3 and higher, subject to the usual restriction that all other
columns are of data types supported by Impala, and aso that the file type of the table must be
Parquet.

If you have a Parquet data file produced outside of Impala, Impala can automatically deduce
the appropriate table structure using the syntax CREATE TABLE ... LIKE PARQUET
'hdfs_path of parquet_file'. In Impala 2.3 and higher, this feature works for Parquet files that
include ARRAY, STRUCT, or MAP types.

/* In inpala-shell, find the HDFS data directory of the ori ginal
tabl e.
DESCRI BE FORMATTED t pch_nest ed_par quet . cust oner ;

i "Locat i on: | hdfs://Iocal host: 20500/t est -war ehouse/ t pch_nest ed
_par quet . db/ cust oner | NULL |

In the Unix shell, find the path of any Parquet data file in
that HDFS directory.

$ hdfs dfs -Is hdfs://Iocal host: 20500/ t est - war ehouse/ t pch_nest e
d_par quet . db/ cust oner

Found 4 itens

- WK - XT - X 3 dev supergroup 171298918 2015-09-22 23:30 hdfs://
| ocal host: 20500/ bl ah/t pch_nest ed_par quet . db/ cust oner/ 000000_0

/* Back in inpala-shell, use the HDFS path in a CREATE TABLE LI KE
PARQUET st atenent. */
CREATE TABLE custonmer ctlp
LI KE PARQUET ' hdf s:/ /I ocal host: 20500/ bl ah/t pch_nest ed_par quet . d
b/ cust oner/ 000000_0"
STORED AS PARQUET;

/* Confirmthat old and new tabl es have the same columm | ayout, i
ncl udi ng conpl ex types. */

DESCRI BE t pch_nest ed_par quet . cust oner

fooccoccooccoooc fecccoccooccoccoccooccocoococooccoocoocooos feococooooc +

85

Cloudera Runtime Impala SQL data types

eccococoocooooc eccooocococcocooocococoooocococoooococooooooc Feccooocooc +

c_cust key bi gi nt

Cc_nane string

Cc_address string

c_nati onkey smal |i nt

c_phone string

c_acct bal deci mal (12, 2)

c_nkt segnment string

c_conment string

c_orders array<struct<

|

|

|

|

|

|

|

|

| o_orderkey: bi gi nt,

| o_orderstatus:string

| o_total price:decinmal (12, 2),
| o_orderdate: string

| o_orderpriority:string,
| o _clerk:string,

| o_shippriority:int,

| o_conment : stri ng,

| o_lineitems: array<struct<
| | _partkey: bigint,

| | _suppkey: bi gi nt,
| | _l'i nenunber:int,
| | _quantity:deci mal (12, 2),

| | _extendedprice: deci mal (12, 2),
| | _di scount: deci nal (12, 2),

| | _tax:decinal (12, 2),

| | _returnflag:string,

| | _l'inestatus:string,

| | _shi pdate: string,

| | _commitdate:string

| | _receiptdate:string,

| | _shi pinstruct:string,

| | _shi pnode: string,

| | _coment:string

| >>

|

feccococccoooooos feccocoococooccooccoccoocooococooocoocooooooe feoccocooooc
____________________ +

| nane | type | comment
feccococococooooc +--! --------------------------------- Feccocoocooc
____________________ +

| c_custkey | bigint | Inferred
from Parquet file.

| c_name | string | Inferred
from Parquet file.

| c_address | string | Inferred
from Parquet file.

| c_nationkey | int | Inferred
from Parquet file.

| c_phone | string | Inferred
from Parquet file.

| c_acctbal | decimal (12, 2) | Inferred
from Parquet file.

| c_nktsegnment | string | Inferred
from Parquet file.

| c_comrent | string | Inferred
from Parquet file.

| c_orders | array<struct< | Inferred

from Parquet file.

86

Cloudera Runtime

Impala SQL data types

Using Parquet datafiles
Scalability considerations

o_

O_

or der key: bi gi nt,

orderstatus: string,

o_total price:deci mal (12, 2),

o_
O_

O_

orderdate:string
orderpriority:string,

clerk:string,

o_shippriority:int,

O_

O_

conmment : string,
lineitens:array<struct<

| _partkey: bi gi nt,

| _suppkey: bi gi nt,

| _I'i nenunber:int,

| _quantity:decimal (12, 2),
| _extendedprice: deci mal (12, 2),
| _di scount: decinmal (12, 2),
| _tax:decinmal (12, 2),

| _returnflag:string,

| _l'inestatus:string,

| _shipdate: string,

| _commitdate:string

| _receiptdate:string,

| _shipinstruct:string,

| _shi pnode: string,

| _coment:string

87

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-parquet.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-scalability.html

Cloudera Runtime Impala SQL data types

Describes how to use UNNEST function to query arrays. ARRAY data types represent collections with arbitrary
numbers of elements, where each element is the same type.

Y ou can query arrays by making ajoin between the table and the array inside the table. This approach isimproved
with the introduction of the UNNEST function in the SELECT list or in the FROM clausein the SELECT statement.
When you use UNNEST, you can provide more than one array in the SELECT statement. If you use JOINs for
querying arraysit will yield a“joining unnest” however the latter will provide a“zipping unnest”.

Use JOIN in cases where you must join unnest of multiple arrays. However if you must zip unnest then use the newly
implemented UNNEST function.

Hereisan example of a SELECT statement that uses JOINs to query an array.

SELECT id, arrl.item arr2.item FROMtbl _nane tbl, thbl.arrl, tbl.arr2;
ID, ARRL.ITEM ARR2.|TEM

[1, 1, 10]
[1, 1, 11]
[1, 2, 10]
[1, 2, 11]
[1, 3, 10]
[1, 3, 11]

E Note:
Thetest data used in thisexampleisID: 1, arrl: {1, 2, 3}, arr2: {10, 11}

Y ou can use one of the two different syntaxes shown here to unnest multiple arrays in one query. Thisresultsin the
items of the arrays being zipped together instead of joining.

e 1S0O:SQL 2016 compliant syntax:

SELECT al.item a2.item
FROM conpl extypes_arrays t, UNNEST(t.arrl, t.arr2) AS (al, a2);

» Postgres compatible syntax:
SELECT UNNEST(arr1), UNNEST(arr2) FROM conpl extypes_arrays;
Unnest operator in SELECT list
SELECT id, unnest(arrl), unnest(arr2) FROMtbl _nane;
Unnest operator in FROM clause

SELECT id, arrl.item arr2.item FROMtbl _nane tbl alias, UNNEST(tbl alias. ar
rl, tbl _alias.arr?2);

This new functionality would zip the arrays next to each other as shown here.

ID, ARRL. I TEM ARR2.|TEM

88

Cloudera Runtime Impala SQL data types

[1, 1, 10]
[1, 2, 11]
[1, 3, NULL]

Note, that arr2 is shorter than arrl so the "missing” itemsin its column will be filled with NULLSs.
B Note: Thetest dataused inthisexampleisID: 1, arrl: {1, 2, 3}, arr2: {10, 11}

e Only arrays from the same table can be zipping unnested
« Theold (joining) and the new (zipping) unnests cannot be used together
* You can add a WHERE filter on an unnested item only if you add awrapper SELECT and do the filtering

Example:

SELECT id, arrl unnest FROM (SELECT id, unnest(arrl) as arrl unnest FROM
tbl _nane) WHERE arrl1l unnest < 10;

Prior to thisrelease to look into the content of an array you had to unnest the array either by the joining syntax or by
using the zipping UNNEST operator as shown in the following example:

SELECT unnest (I Ds), unnest (NAMES) FROM t abl e_nane;
This release adds support to return ARRAY s as STRINGs (JSON arrays) in the SELECT list, for example:

select id, int_array fromfunctional parquet.conpl extypestbl where id = 1;
returns: 1, “[1,2,3]"

Returning ARRAY s from inline or HMS views is also supported. These arrays can be used both in the select list or as
relative table references.

select id, int_array from (select id, int_array from conpl extypestbl) s;

Though STRUCTs are already supported, ARRAY s and STRUCTs nested within each other are not supported yet.
Using them as non-relative table references is also not supported yet.

Before this release, zipping unnest functionality worked for arrays only in "tables" but did not support "views' asa
source. This release improves that support further by accepting inputs from views as well.

Y ou can use UNNEST() on array columnsin two ways. Using one of these two ways results in the items of the arrays
being zipped together instead of joining.

e |S0:SQL 2016 compliant syntax

SELECT al.item a2.item
FROM conpl extypes_arrays t, UNNEST(t.arrl, t.arr2) AS (al, a2);

* Postgres compatible syntax

SELECT UNNEST(arr1), UNNEST(arr2) FROM conpl extypes_arrays;

89

Cloudera Runtime Impala SQL literals

When unnesting multiple arrays with zipping unnest, the i'th item of one array will be placed next to thei'th item of
the other arrays in the results. If the size of the arraysis not equal then the shorter arrays will be filled with NULL
values up to the size of the longest array as shown in the following example:

Thetest dataused in thisexampleisarrl: {1, 2, 3}, arr2: {11, 12}

After running any of the querieslisted in the examples, the result will be as shown here:

arrl arr?2
[1, 11]
[2, 12]
[3, NULL]

In the following example the filter is not in the SELECT query that creates the inline view but alevel above that.

SELECT id, acl, ac2 FROM

(SELECT id, UNNEST(array_col 1) AS acl, UNNEST(array_col 2) AS ac2 FROM
Some_vi ew)
VWHERE id <10;

Each of the Impala data types has corresponding notation for literal values of that type. Y ou specify literal valuesin
SQL statements, such asin the SELECT list or WHERE clause of a query, or as an argument to a function call.

To write literals for the integer types (TINYINT, SMALLINT, INT, and BIGINT), use a sequence of digits with
optional leading zeros.

To write literals for the floating-point types (DECIMAL, FLOAT, and DOUBLE), use a sequence of digits with an
optional decimal point (. character). To preserve accuracy during arithmetic expressions, Impalainterprets floating-
point literals as the DECIMAL type with the smallest appropriate precision and scale, until required by the context to
convert the result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

Y ou can also use exponential notation by including an e character. For example, 1€6 is 1 times 10 to the power of 6 (1
million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the “smallest” that can accurately represent the
value. The typeis promoted to larger or more accurate typesif necessary, based on subsequent parts of an expression.

String literals are quoted using either single or double quotation marks. Y ou can use either kind of quotes for string
literals, even both kinds for different literals within the same statement.

Quoted literals are considered to be of type STRING. To use quoted literalsin contexts requiring a CHAR or VARC
HAR value, CAST() theliteral to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:
To encode special characters within a string literal, precede them with the backslash (\) escape character:

* \trepresentsatab.
* \nrepresents anewline or linefeed. This might cause extraline breaksini nmpal a- shel | output.

90

Cloudera Runtime Impala SQL literals

* \r represents a carriage return. This might cause unusual formatting (making it appear that some content is
overwritten) ini npal a- shel | output.

* \b represents a backspace. This might cause unusual formatting (making it appear that some content is
overwritten) ini npal a- shel | output.

» \Orepresents an ASCII nul character (not the same asa SQL NULL). Thismight not bevisibleini npal a-
shel | output.

« \Z represents a DOS end-of-file character. Thismight not bevisibleini npal a- shel | output.

* \%and_ can be used to escape wildcard characters within the string passed to the LIKE operator.

« \followed by 3 octa digits represents the ASCII code of a single character; for example, \101 is ASCII 65, the
character A.

« Usetwo consecutive backslashes (\\) to prevent the backslash from being interpreted as an escape character.

» Usethe backslash to escape single or double quotation mark characters within astring literal, if theliteral is
enclosed by the same type of quotation mark.

« If the character following the \ does not represent the start of a recognized escape sequence, the character is passed
through unchanged.

Quotes within quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation
marks, and optionally escape the single quote as a\' sequence. Earlier releases required escaping a single quote inside
double quotes. Continue using escape sequences in this case if you aso need to run your SQL code on older versions
of Impala

To include a double quotation character within a string value, enclose the literal with single quotation marks, no
escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as
a\" sequence.

[l ocal host:21000] > select "Wat\'s happeni ng?" as single_wthin_doubl e,

> "I'\"mnot sure.' as single wthin_single,

> "Homer wrote \"The Iliad\"." as double within_d
oubl e,

> "Honmer al so wote "The Odyssey”.' as doubl e_wi

t hi n_si ngl e;

| single within double | single within_single | double wthin_double
doubl e wi thin_single

foccococococococcooccoocooc foccococococococcooccoocooc focccoococoocococcoccooccoocooos
Fococococcocococcococococoocoocooooooe +

| What's happeni ng? | 1'"mnot sure. | Honmer wote "The Iliad". | H
oner also wote "The Qdyssey". |

CES S A S S S S SRS A S S S S S P P +-
________________________________ +

Field terminator character in CREATE TABLE:

Note: The CREATE TABLE clauses FIELDS TERMINATED BY, ESCAPED BY, and LINESTERMIN

E ATED BY have special rulesfor the string literal used for their argument, because they all require asingle
character. Y ou can use aregular character surrounded by single or double quotation marks, an octal sequence
such as \054' (representing a comma), or an integer in the range '-127'..'128' (with quotation marks but no
backslash), which isinterpreted as a single-byte ASCII character. Negative values are subtracted from 256;
for example, FIELDS TERMINATED BY '-2' setsthe field delimiter to ASCI| code 254, the “Icelandic
Thorn” character used as a delimiter by some data formats.

impala-shell considerations:

When dealing with output that includes non-ASCII or non-printable characters such as linefeeds and backspaces, use
thei npal a- shel | optionsto saveto afile, turn off pretty printing, or both rather than relying on how the output
appearsvisualy.

91

Cloudera Runtime Impala SQL literals

For BOOLEAN values, the literals are TRUE and FAL SE, with no quotation marks and case-insensitive.

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp values are
accepted in the format 'yyyy#MM#dd HH:mm:ss.SSSSSS', and can consist of just the date, or just the time, with or
without the fractional second portion. For example, you can specify TIMESTAMP values such as '1966#07#30', '08:
30:00', or '1985#09#25 17:45:30.005'.

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the time
component, such as hour, minute, and second. For example, Impala accepts both '2018#1#1 01:02:03' and '2018-01
-01 1:2:3' asvdlid.

In STRING to TIMESTAMP conversions, leading and trailing white spaces, such as a space, atab, anewline, or
acarriage return, are ignored. For example, Impalatreats the following as equivalent: '1999#12#01 01:02:03 ',
' 1999#12#01 01:02:03', '1999#12#01 01:02:03\r\n\t'".

When you convert or cast a STRING literal to TIMESTAMP, you can use the following separators between the date
part and the time part:

+ One or more space characters

Example: CAST('2001-01-09 01:05:01' AS TIMESTAMP)
* Thecharacter “T”

Example: CAST('2001-01-09T01:05:01' AS TIMESTAMP)

You can also use INTERVAL expressions to add or subtract from timestamp literal values, such as CAST('1966#0
7#30' AS TIMESTAMP) + INTERVAL 5 YEARS + INTERVAL 3DAYS.

Depending on your data pipeline, you might receive date and time data as text, in notation that does not exactly match
the format for Impala TIMESTAMP literals. See Impala Date and Time Functions for functions that can convert
between avariety of string literals (including different field order, separators, and timezone notation) and equivalent
TIMESTAMP or numeric values.

The DATE literalsarein the form of DATE'YYYY-MM-DD'. For example, DATE '2013-01-01'

The notion of NULL valuesisfamiliar from all kinds of database systems, but each SQL dialect can have its own
behavior and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are
significant: any misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming
to correct for large data sets.

e NULL isadifferent value than an empty string. The empty string is represented by a string literal with nothing
inside, "" or ".

* Inadelimited text file, the NULL valueis represented by the special token \N.

* When Impalainserts data into a partitioned table, and the value of one of the partitioning columnsis NULL or
the empty string, the datais placed in a specia partition that holds only these two kinds of values. When these
values are returned in a query, the result isNULL whether the value was originally NULL or an empty string. This
behavior is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty
strings as partition keys, and it returns a string value such as__ HIVE_DEFAULT_PARTITION__ instead of
NULL when such values are returned from a query. For example:

create table t1 (i int) partitioned by (x int, y string);
-- Select an INT colum from another table, with all rows going into a spe
cial HDFS subdirectory

92

Cloudera Runtime Impala SQL operators

-- named __ H VE DEFAULT _PARTI TION__. Dependi ng on whet her one or both of

the partitioning keys

-- are null, this special directory nane occurs at different |evels of the
physical data directory

-- for the table.

insert into t1l partition(x=NULL, y=NULL) select cl from sonme_ot her _tabl e;

insert into tl partition(x, y=NULL) select cl, c2 from sonme_other_table;

insert into tl1l partition(x=NULL, y) select cl1l, ¢c3 from sone_other_table;

e Thereisno NOT NULL clause when defining a column to prevent NULL valuesin that column.

e Thereisno DEFAULT clause to specify anon-NULL default value.

e If an INSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all
inserted rows.

* Inlmpalal.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries,
and at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater
than al other values for sorting purposes. The original Impala behavior always put NULL values at the end, even
for ORDER BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other
popular database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL
by adding the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

Note: Becausethe NULLS FIRST and NULLS LAST keywords are not currently availablein Hive
queries, any views you create using those keywords will not be available through Hive.

« Inall other contexts besides sorting with ORDER BY, comparing aNULL to anything else returns NUL L, making
the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also producesNULL, 5 BE
TWEEN 1 AND NULL produces NULL, and so on.

Several built-in functions serve as shorthand for evaluating expressions and returning NULL, O, or some other
substitution value depending on the expression result: ifnull(), isnull(), nvI(), nullif(), nullifzero(), and zeroifnull().

Kudu considerations:

Columnsin Kudu tables have an attribute that specifies whether or not they can contain NULL values. A column with
aNULL attribute can contain nulls. A column with aNOT NULL attribute cannot contain any nulls, and an INSE
RT, UPDATE, or UPSERT statement will skip any row that attempts to store anull in a column designated as NOT
NULL. Kudu tables default to the NULL setting for each column, except columns that are part of the primary key.

In addition to columns with the NOT NULL attribute, Kudu tables also have restrictions on NULL valuesin columns
that are part of the primary key for atable. No column that is part of the primary key in a Kudu table can contain any
NULL values.

Impala SQL datatypes
Impala Shell configuration options

SQL operators are used primarily in the WHERE clause to perform operations, such as comparison operations and
arithmetic operations.

The arithmetic operators use expressions with aleft-hand argument, the operator, and then (in most cases) aright-
hand argument.

Syntax:

| eft _hand_arg binary_operator right_hand_arg

93

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-start-stop/topics/impala-shell-options.html

Cloudera Runtime Impala SQL operators

unary_operator single_arg

* +and-: Can be used either as unary or binary operators.

« With unary notation, such as +5, -2.5, or -col_name, they multiply their single numeric argument by +1 or
-1. Therefore, unary + returnsits argument unchanged, while unary - flips the sign of its argument. Although
you can double up these operators in expressions such as ++5 (always positive) or -+2 or +-2 (both always
negative), you cannot double the unary minus operator because -- is interpreted as the start of a comment.
(You can use adouble unary minus operator if you separate the - characters, for example with a space or
parentheses.)

< With binary notation, such as 2+2, 5-2.5, or col1 + col2, they add or subtract respectively the right-hand
argument to (or from) the left-hand argument. Both arguments must be of numeric types.

e * and/: Multiplication and division respectively. Both arguments must be of numeric types.

When multiplying, the shorter argument is promoted if necessary (such as SMALLINT to INT or BIGINT, or
FLOAT to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a TINY
INT and an INT produces a BIGINT result. Multiplying aFLOAT and a FLOAT produces a DOUBLE result.
Multiplying a FLOAT and aDOUBLE or a DOUBLE and a DOUBLE produces a DECIMAL(38,17), because
DECIMAL values can represent much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE valuesto avoid losing precision. If
you need to insert the results of adivision operation into a FLOAT column, use the CAST() function to convert
the result to the correct type.

« DIV: Integer division. Arguments are not promoted to a floating-point type, and any fractional result is discarded.
For example, 13 DIV 7 returns 1, 14 DIV 7 returns 2, and 15 DIV 7 returns 2. This operator isthe same as the
QUOTIENT() function.

* %: Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both
arguments must be of one of the integer types.

e &,|, ~, and”: Bitwise operators that return the logical AND, logical OR, NOT, or logical XOR (exclusive OR) of
their argument values. Both arguments must be of one of the integer types. If the arguments are of different type,
the argument with the smaller type isimplicitly extended to match the argument with the longer type.

Y ou can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example,
prior to Impala 2.2, thereis no MOD() function equivalent to the % modulo operator. Conversely, there are some
arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use the POW()
function, but thereis no ** exponentiation operator. See Impala Mathematical Functions for the arithmetic functions
you can use.

Complex type considerations:

To access a column with acomplex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the
individual elements using join notation in the query, and then apply the function to the final scalar item, field, key, or
value at the bottom of any nested type hierarchy in the column.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation.
The array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements
are referenced using dot notation. Numeric values such as SUM() and AV G() are computed using the numeric R_NA
TIONKEY field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME field.

descri be region;

feccocococoooooc foccoccococooocoococoocoocoocooe feoococooooc +
| nane | type | coment |
Fococcoccoccooooe Focococcocococcoccocococcocoooooe Fococooooe +
| r_regionkey | smallint [[
| r_nane | string [[
| r_comment | string | |
| r_nations | array<struct< [[
| | |

| n_nati onkey: smal lint,

94

Cloudera Runtime Impala SQL operators

[[n_name: stri ng, [[
| [n_comment : string | [
I I I I

select r_nane, r_nations.item n_nationkey
fromregion, region.r_nations as r_nations
order by r_nane, r_nations.item n_nationkey;

foccoococooooc feoccoocococcoococooc +
| r_name | item n_nationkey |
feococococcooccooc focococoococococooccoocos +
| AFRICA | O [
| AFRI CA | 5 [
| AFRI CA | 14 |
| AFRICA | 15 [
| AFRICA | 16 |
| AMERI CA | 1 |
| AMERI CA | 2 [
| AMERI CA | 3 [
| AMERI CA | 17 |
| AMERI CA | 24 [
| ASIA | 8 |
| ASIA | 9 |
| ASIA | 12 [
| ASIA | 18 [
| ASIA | 21 |
| EURCPE | 6 [
| EURCPE | 7 |
| EURCPE | 19 |
| EURCPE | 22 [
| EUROPE | 23 [
| MDDLE EAST | 4 |
| MDDLE EAST | 10 [
| MDDLE EAST | 11 |
| MDDLE EAST | 13 |
| MDDLE EAST | 20 [
feccoococooooc feccoococcoccoococooc +
sel ect
r _nane,

count(r_nations.item n_nati onkey) as count,
sum(r_nations.item n_nationkey) as sum
avg(r_nations.item n_nationkey) as avg,
mn(r_nations.itemn_nane) as mi ni mum
max(r_nations.itemn_nane) as maxi num
ndv(r_nations.itemn_nati onkey) as distinct _vals

from
region, region.r_nations as r_nations

group by r_name

order by r_nane;

T S CT +- - - - C T T S O T S
=ooodk
| r_name | count | sum| avg | mnimum | naxi num | distinct
val s |
tmmmmmm e mm - +--mmm - +----- S T Hmmmmmmmaa - o e - e e -aaao-- Hmmmmmmmaa -
----+
| AFRI CA | 5 | 50 | 10 | ALGERIA | MXZAMBI QUE | 5
|
| AMERI CA | 5 | 47 | 9.4 | ARGENTINA | UNITED STATES | 5
|
| ASIA | 5 | 68 | 13.6 | CHI NA | VI ETNAM | 5
|
| EUROPE | 5 | 77 | 15.4 | FRANCE | UNI'TED KINGDOM | 5

95

Cloudera Runtime Impala SQL operators

| MDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5

Y ou cannot refer to a column with acomplex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refersto the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that isan
item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.

descri be region;
focccosccoscas focccosccosccosccosccosces focccosces +
| name | type | coment |
feccocoococoooooc feccoccococooocoococoocoocoocooe feocococooooc +
r_regi onkey smal |i nt
r_name string
r_conmment string

n_nati onkey: smal |int,
n_nane: string,
n_coment: string

| |
| |
I 1 I
| r_nations | array<struct<
I I
| |
| |
| | >>

-- When we refer to the scalar val ue using dot notation

-- We can use arithnetic and conpari son operators on it

-- like any other nunber.

select r_nanme, nation.itemn_nanme, nation.itemn_nationkey * 10
fromregion, region.r_nations as nation

where nation.itemn_nationkey < 5;

foccoococooooc foccoococooooc feccoococcococoococccooococcooooooc +
| r_nane | itemn_name | nation.itemn_nationkey * 10 |
feococococcooccooc feococococcooccooc feoccococccoccoccooccoocococoocoocooos +
| AMERI CA | CANADA | 30 [
| AMERI CA | BRAZI L | 20 [
| AVERI CA | ARGENTINA | 10 [
| M DDLE EAST | EGYPT | 40 [
| AFRICA | ALCGERI A | O [
feococococcooccooc feococococcooccooc feoccococccoccoccooccoocococoocoocooos +

In aWHERE clause, compares an expression to both alower and upper bound. The comparison is successful is the
expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values
are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:
expressi on BETWEEN | ower _bound AND upper _bound

Datatypes. Typically used with numeric data types. Works with any data type, although not very practical for BOOL
EAN values. (BETWEEN false AND true will match all BOOLEAN values.) Use CAST() if necessary to ensure

the lower and upper bound values are compatible types. Call string or date/time functionsif necessary to extract or
transform the relevant portion to compare, especially if the value can be transformed into a number.

Usage notes:

96

Cloudera Runtime Impala SQL operators

Be careful when using short string operands. A longer string that starts with the upper bound value will not be
included, because it is considered greater than the upper bound. For example, BETWEEN 'A’and 'M' would not
match the string value 'Midway'. Use functions such as upper(), lower(), substr(), trim(), and so on if necessary to
ensure the comparison works as expected.

Complex type considerations:

Y ou cannot refer to a column with a complex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refersto the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following example shows how to do aBETWEEN comparison using a numeric field of a STRUCT type that is
an item within an ARRAY column. Once the scalar numeric value R_NATIONKEY isextracted, it canbeusedina
comparison operator:

-- The SMALLINT is a field within an array of structs.
descri be region;

feccocoococoooooc feccoccococooocoococoocoocoocooe feocococooooc +
| nane | type | comment |
Fococcoccoccooooe Focococcocococcocoocoocooooooe Fococooooe +
r_regi onkey smal |int
r_name string
r _coment string
array<struct<

n_nati onkey: snal |i nt,
n_nane: string,
n_conment : string

I
I
I
| r_nations
|
|
I
| >>

-- When we refer to the scal ar val ue using dot notation,
-- Wwe can use arithnetic and conpari son operators on it

-- like any other nunber.

sel ect r_nanme, nation.itemn_nanme, nation.item n_nationkey
fromregion, region.r_nations as nation

where nation.itemn_nationkey between 3 and 5

occccococaoos occccococaoos focococococococococ +
| r_name | itemn_name | item n_nationkey |
tmmmmmm e mm - tmmmmmm e mm - o - e e e e mem-oa-o +
| AMERI CA | CANADA | 3 [
| MDDLE EAST | EGYPT | 4 [
| AFRI CA | ETH OPI A | 5 [
occccococaoos occccococaoos focococococococococ +

Impala supports the familiar comparison operators for checking equality and sort order for the column data types:
Syntax:

| eft _hand_expressi on conpari son_operator right hand_expression

o =, 1=, <> apply to dl scalar types.
o <, <=,>,>= apply to al scalar types, for BOOLEAN, TRUE is considered greater than FAL SE.
Alternatives:

The IN and BETWEEN operators provide shorthand notation for expressing combinations of equality, less than, and
greater than comparisons with a single operator.

97

Cloudera Runtime Impala SQL operators

Because comparing any value to NULL produces NULL rather than TRUE or FALSE, usethe ISNULL and ISNOT
NULL operatorsto check if avalueis NULL or not.

Complex type considerations:

Y ou cannot refer to a column with a complex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refersto the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that isan
item within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used with a
comparison operator such as <:

-- The SMALLINT is a field within an array of structs.
descri be region;

feccocoococoooooc feccoccococooocoococoocoocoocooe feocococooooc +
| nane | type | comment |
Fococcoccoccooooe Focococcocococcocoocoocooooooe Fococooooe +
r_regi onkey smal |int
r_name string
r _coment string
array<struct<

n_nati onkey: snal |i nt,
n_nane: string,
n_conment : string

I
I
I
| r_nations
|
|
I
| >>

-- When we refer to the scal ar val ue using dot notation,
-- Wwe can use arithnetic and conpari son operators on it

-- like any other nunber.

sel ect r_nanme, nation.itemn_nanme, nation.item n_nationkey
fromregion, region.r_nations as nation

where nation.itemn_nationkey < 5

occccococaoos occccococaoos focococococococococ +
| r_name | itemn_name | item n_nationkey |
tmmmmmm e mm - tmmmmmm e mm - o - e e e e mem-oa-o +
| AMERI CA | CANADA | 3 [
| AMERI CA | BRAZI L | 2 [
| AMERI CA | ARGENTINA | 1 [
| MDDLE EAST | EGYPT | 4 [
| AFRI CA | ALGERI A | O [
tmmmmmm e mm - tmmmmmm e mm - o - e e e e mem-oa-o +

The EXISTS operator tests whether a subquery returns any results. You typically useit to find values from one table
that have corresponding values in another table.

The converse, NOT EXISTS, helpsto find all the values from one table that do not have any corresponding valuesin
another table.

Syntax:

EXI STS (subquery)
NOT EXI STS (subquery)

Usage notes:

The subquery can refer to a different table than the outer query block, or the same table. For example, you might use
EXISTS or NOT EXISTS to check the existence of parent/child relationships between two columns of the same table.

98

Cloudera Runtime Impala SQL operators

Y ou can also use operators and function calls within the subquery to test for other kinds of relationships other than
strict equality. For example, you might use acall to COUNT() in the subquery to check whether the number of
matching valuesis higher or lower than some limit. Y ou might call a UDF in the subquery to check whether valuesin
one table matches a hashed representation of those same valuesin a different table.

NULL considerations:

If the subquery returns any value at all (even NULL), EXISTSreturns TRUE and NOT EXISTSreturns false.
Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot includeaLIMIT clause.

Prior to Impala 2.6, the NOT EXISTS operator required a correlated subquery. In Impala 2.6 and higher, NOT EXIS
TS works with uncorrelated queries also.

Complex type considerations:

Y ou cannot refer to a column with a complex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refersto the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

A case-insensitive comparison operator for STRING data, with basic wildcard capability using _to match asingle
character and % to match any characters. The argument expression must match the entire string value. Typically, itis
more efficient to put any % wildcard match at the end of the string.

This operator, available in Impala 2.5 and higher, is the equivalent of the LIKE operator, but with case-insensitive
comparisons.

Syntax:
string_expression | LIKE wi |l dcard_expressi on
string_expression NOT |ILIKE w | dcard_expression
Complex type considerations:

Y ou cannot refer to a column with acomplex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refers to the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

The IN operator compares an argument value to a set of values, and returns TRUE if the argument matches any value
in the set. The NOT IN operator reverses the comparison, and checks if the argument value is not part of a set of
values.

Syntax:

expression I N (expression [, expression])
expression I N (subquery)

expression NOT IN (expression [, expression])
expression NOT I N (subquery)

The left-hand expression and the set of comparison values must be of compatible types.

The left-hand expression must consist only of asingle value, not atuple. Although the left-hand expression is
typically acolumn name, it could also be some other value. For example, the WHERE clauses WHERE id IN (5) and
WHERE 5 IN (id) produce the same results.

99

Cloudera Runtime Impala SQL operators

The set of values to check against can be specified as constants, function calls, column names, or other expressionsin
the query text. The maximum number of expressionsin the IN list is 9999. (The maximum number of elements of a
single expression is 10,000 items, and the IN operator itself counts as one.)

In Impala 2.0 and higher, the set of values can also be generated by a subquery. IN can evaluate an unlimited number
of results using a subquery.

Usage notes:

Any expression using the IN operator could be rewritten as a series of equality tests connected with OR, but the IN
syntax is often clearer, more concise, and easier for Impalato optimize. For example, with partitioned tables, queries
frequently use IN clausesto filter data by comparing the partition key columns to specific values.

NULL considerations:
If therereally isamatching non-null value, IN returns TRUE:

If the searched value is not found in the comparison values, and the comparison valuesinclude NULL, theresult is
NULL:

If the left-hand argument isNULL, IN always returns NULL. This rule applies even if the comparison values include
NULL.

Complex type considerations:

Y ou cannot refer to a column with a complex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refersto the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

Restrictions:
Correlated subqueries used in EXISTS and IN operators cannot includeaLIMIT clause.

Tests whether a value matches aregular expression, using case-insensitive string comparisons. Uses the POSI X
regular expression syntax where * and $ match the beginning and end of the string, . represents any single character,

* represents a sequence of zero or more items, + represents a sequence of one or more items, ? produces a non-greedy
match, and so on.

This operator, available in Impala 2.5 and higher, is the equivalent of the REGEXP operator, but with case-insensitive
comparisons.

Syntax:
string_expression | REGEXP regul ar _expressi on

Usage notes:

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do not
allow backreferences. To retrieve the part of avalue matched within a () section, use the regexp_extract() built-in
function. (Currently, there is not any case-insensitive equivalent for the regexp_extract() function.)

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match aregular expression string that occurs
anywhere inside the target string, the same asif the regular expression was enclosed on each side by .*. Previoudly,
these operators only succeeded when the regular expression matched the entire target string. This change improves
compatibility with the regular expression support for popular database systems. There is no change to the behavior of
the regexp_extract() and regexp_replace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSI X Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including .*? for non-greedy matches.

100

Cloudera Runtime Impala SQL operators

In Impala 2.0 and later, a change in the underlying regular expression library could cause changesin the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary.

Complex type considerations:

Y ou cannot refer to a column with a complex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refersto the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

The ISDISTINCT FROM operator, and its converse the ISNOT DISTINCT FROM operator, test whether or not
values areidentical. ISNOT DISTINCT FROM is similar to the = operator, and ISDISTINCT FROM issimilar to
the = operator, except that NULL values are treated asidentical. Therefore, ISNOT DISTINCT FROM returns true
rather than NULL, and ISDISTINCT FROM returns fal se rather than NULL, when comparing two NULL values. If
one of the values being compared isNULL and the other isnot, IS DISTINCT FROM returnstrueand IS NOT
DISTINCT FROM returns false, again instead of returning NULL in both cases.

Syntax:

expressionl IS DI STI NCT FROM expr essi on2

expressionl IS NOT DI STI NCT FROM expr essi on2
expressi onl <=> expressi on2

The operator <=>isan diasfor ISNOT DISTINCT FROM. Itistypically used as a NULL-safe equality operator in
join queries. That is, A <=> B istrueif A equalsB or if both A and B are NULL.

Usage notes:

This operator provides concise notation for comparing two values and always producing a true or false result, without
treating NULL as a specia case. Otherwise, to unambiguously distinguish between two values requires a compound
expression involving IS[NOT] NULL tests of both operandsin addition to the = or != operator.

The <=> operator, used like an equality operator in ajoin query, is more efficient than the equivalent clause: IF (A IS
NULL ORB ISNULL, AISNULL AND BISNULL, A = B). The <=> operator can use a hash join, while the IF
expression cannot.

The ISNULL operator, and its conversethe IS NOT NULL operator, test whether a specified valueis NULL.
Because using NULL with any of the other comparison operators such as = or != also returns NULL rather than
TRUE or FALSE, you use a special-purpose comparison operator to check for this special condition.

In Impala 2.1.1 and higher, you can use the operators ISUNKNOWN and ISNOT UNKNOWN as synonymsfor IS
NULL and ISNOT NULL, respectively.

Syntax:

expression |'S NULL
expression IS NOT NULL
expression |'S UNKNOMN
expression |'S NOT UNKNOMW

Usage notes:

In many cases, NULL values indicate some incorrect or incompl ete processing during data ingestion or conversion.
Y ou might check whether any valuesin a column are NULL, and if so take some followup action to fill them in.

101

Cloudera Runtime Impala SQL operators

With sparse data, often represented in “wide” tables, it is common for most values to be NULL with only an
occasional non-NULL value. In those cases, you can use the ISNOT NULL operator to identify the rows containing
any data at all for a particular column, regardless of the actual value.

With awell-designed database schema, effective use of NULL valuesand ISNULL and ISNOT NULL operators can
save having to design custom logic around special values such as 0, -1, 'N/A', empty string, and so on. NULL letsyou
distinguish between avalue that is known to be O, false, or empty, and a truly unknown value.

Complex type considerations:

The IS[NOT] UNKNOWN operator, as with the IS[NOT] NULL operator, is not applicable to complex type
columns (STRUCT, ARRAY, or MAP). Using a complex type column with this operator causes a query error.

This variation of the IS operator tests for truth or falsity, with right-hand arguments [NOT] TRUE, [NOT] FALSE,
and [NOT] UNKNOWN.

Syntax:
expression | S TRUE
expression IS NOT TRUE

expression | S FALSE
expression |'S NOT FALSE

Usage notes:

ThisISTRUE and IS FALSE forms are similar to doing equality comparisons with the Boolean values TRUE
and FAL SE, except that IS TRUE and IS FAL SE always return either TRUE or FALSE, even if the left-hand side
expression returns NUL L

These operators let you simplify Boolean comparisons that must also check for NULL, for example X =10 AND X
ISNOT NULL isequivalentto (X !=10) ISTRUE.

InImpala2.1.1 and higher, you can use the operators IS [NOT] TRUE and IS[NOT] FALSE as equivalents for the
built-in functions ISTRUE(), ISNOTTRUE(), ISFAL SE(), and ISNOTFAL SE().

Complex type considerations:

ThelS[NOT] TRUE and IS[NOT] FALSE operators are not applicable to complex type columns (STRUCT,
ARRAY, or MAP). Using a complex type column with these operators causes a query error.

A comparison operator for STRING data, with basic wildcard capability using the underscore (_) to match asingle
character and the percent sign (%) to match any characters. The argument expression must match the entire string
value. Typicaly, it is more efficient to put any % wildcard match at the end of the string.

Syntax:

string_expression LI KE wi | dcard_expression
string_expression NOT LIKE wi | dcard_expression

Complex type considerations:

Y ou cannot refer to a column with acomplex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refersto the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

102

Cloudera Runtime Impala SQL operators

Examples:

select distinct c_|ast _nanme from custoner where c _last nane |like "M% or c_
| ast_nane |ike ' Mac% ;

sel ect count(c_l ast_nane) from custonmer where c_|ast_nanme |ike ' M6 ;

sel ect c¢c_emnil _address from custoner where c_ennil _address |ike '9% edu';

-- W can find 4-letter nanmes beginning with "M by calling functions...

sel ect distinct c_last_name from custoner where |ength(c_| ast_nane) = 4 and
substr(c_last_nane,1,1) = "'M;

-- ...o0or in a nore readable way by matching M foll owed by exactly 3 charac

ters.

select distinct c_|ast_name from custonmer where c_last _nanme like "M __';

For case-insensitive comparisons, see the ILIKE operator. For a more general kind of search operator using regular
expressions, see the REGEXP operator or its case-insensitive counterpart the IREGEXP operator.

Logical operators return aBOOLEAN value, based on abinary or unary logical operation between arguments that are
also BOOLEAN values. Typically, the argument expressions use comparison operators.

Syntax:

bool ean_expression binary | ogi cal _operator bool ean_expressi on
unary_| ogi cal _operator bool ean_expressi on

The Impalalogical operators are:

« AND: A binary operator that returns true if its left-hand and right-hand arguments both evaluate to true, NULL if
either argument isNULL, and false otherwise.

¢ OR: A binary operator that returnstrue if either of its left-hand and right-hand arguments evaluate to true, NULL
if one argument isNULL and the other iseither NULL or false, and false otherwise.

* NOT: A unary operator that flips the state of a Boolean expression from trueto false, or false to true. If the
argument expression isNULL, the result remains NULL. (When NOT is used thisway as aunary logical operator,
it works differently than the ISNOT NULL comparison operator, which returns true when applied to aNULL.)

Complex type considerations:

Y ou cannot refer to a column with acomplex datatype (ARRAY, STRUCT, or MAP) directly in an operator.

Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of
an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refers to the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that isan
item within an ARRAY column. Once the scalar numeric value R_ NATIONKEY isextracted, it can be used in an
arithmetic expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
descri be region;

feococococcooccooc foccococococooccoccooccooccoocooc feoococooooc +
| nane | type | coment |
focccosccoscas focccocccosccosccosccoocas fooccosces +
r _regi onkey smal |int
r_name string
r _coment string
array<struct<

n_nati onkey: smal lint,
n_nane: string,
n_conment : string

I

I

l ;

| r_nations
I

I

I

| >>

103

Cloudera Runtime Impala SQL operators

-- When we refer to the scalar val ue using dot notation

-- Wwe can use arithnetic and conpari son operators on it

-- like any other nunber.

select r_name, nation.itemn_name, nation.item n_nationkey
fromregion, region.r_nations as nation

wher e
nati on.itemn_nati onkey between 3 and 5
or nation.itemn_nationkey < 15;

occccococaoos fococococococococ focococococococococ +
| r_name | item n_name | item n_nationkey |
tmmmmmm e mm - o e - e e -aaao-- o - e e e e mem-oa-o +
| EURCPE | UNI TED KI NGDOM | 23 [
| EUROPE | RUSSI A | 22 [
| EUROPE | ROVANI A | 19 [
| ASIA | VI ETNAM | 21 [
| ASIA | CHI NA | 18 [
| AMERI CA | UNI TED STATES | 24 [
| AMERI CA | PERU | 17 [
| AMERI CA | CANADA | 3 [
| MDDLE EAST | SAUDI ARABIA | 20 [
| MDDLE EAST | EGYPT | 4 [
| AFRI CA | MOZAMBI QUE | 16 [
| AFRI CA | ETH OPI A | 5 [
o m e - o e e e oo o e e e oo +

Tests whether a value matches aregular expression. Uses the POSIX regular expression syntax where * and $ match
the beginning and end of the string, . represents any single character, * represents a sequence of zero or more items, +
represents a sequence of one or more items, ? produces a non-greedy match, and so on.

Syntax:
string_expressi on REGEXP regul ar _expr essi on

Usage notes:
The RLIKE operator is a synonym for REGEXP.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do not
allow backreferences. To retrieve the part of a value matched within a () section, use the regexp_extract() built-in
function.

InImpala 1.3.1 and higher, the REGEXP and RLIKE operators now match aregular expression string that occurs
anywhere inside the target string, the same asif the regular expression was enclosed on each side by .*. Previoudly,
these operators only succeeded when the regular expression matched the entire target string. This change improves
compatibility with the regular expression support for popular database systems. There is no change to the behavior of
the regexp_extract() and regexp_replace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressionsin Perl, Python, and so on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changesin the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary.

Complex type considerations:

Y ou cannot refer to a column with a complex datatype (ARRAY, STRUCT, or MAP) directly in an operator.
Y ou can apply operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of

104

Cloudera Runtime Impala SQL comments

an ARRAY, or the key or value portion of aMAP) as part of ajoin query that refersto the scalar value using the
appropriate dot notation or ITEM, KEY, or VALUE pseudocolumn names.

Example:

- Find all customers whose first nane starts with 'J', followed by 0 or nore
of any character.

select c first _nane, c_|last_nane from custoner where c_first_name regexp
T AJ), @8 c

-- Match nultiple character sequences, either 'Mac' or 'M'.
select c_first_nane, c_last_nane from custoner where c_| ast_nanme regexp '*
(Mac| M) donal d$' ;

It isasynonym for the REGEXP operator.

Impala mathematical functions
RE2 documentation on GitHub

Impala supports the syntax of standard SQL comments.

« All text from a-- sequence to the end of the lineis considered a comment and ignored. This type of comment can
occur on asingle line by itself, or after al or part of a statement.

« All text from a/* sequence to the next */ sequence is considered a comment and ignored. This type of comment
can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a
statement, or before or after a statement.

The Impala SQL dialect supports arange of standard elements, plus some extensions for Big Data use cases related to
data loading and data warehousing.

Note:

B Inthei npal a- shel | interpreter, a semicolon at the end of each statement is required. Since the semicolon
isnot actualy part of the SQL syntax, we do not include it in the syntax definition of each statement, but we
do show it in examplesintended to berunini npal a- shel | .

The following sections show the major SQL statements that you work with in Impala:

After upgrading or migrating your workload from CDH to CDP you will have started using Apache Ranger as the
authorization provider in Impala. This replaces Apache Sentry. There are some differencesin Impala s behavior
which you must be aware of when using Ranger as the authorization provider.

Impalawith Sentry revolved around granting privilegesto ROLES, and ROLES to GROUPS. Until thisrelease,
Impala sintegration with Ranger did not support ROLE related DDL statements. So as aworkaround you had to

105

https://github.com/google/re2

Cloudera Runtime Impala SQL statements

migrate the ROL E-based authorization policies, manage them using Ranger's web Ul, to handle them correctly in
Impala. Y ou will no longer need to use the Ranger’ s web Ul to manage the ROLEsin CDP 7.1.6 since Impala now
supports ROL E management through ROLE related statements.

E Note: ROLES can be still managed using the old approach via Ranger’ s web Ul.

Y ou can perform the following steps to grant to anormal user the privileges on aresource via ROLEs.

1. Assign auser to agroup, €.g. using your corporate LDAP provider.

2. Inthe Ranger web Ul, create a ROLE that includes the group consisting of the user we want to grant the
privileges.

3. Inthe Ranger web Ul,

« create apolicy for the corresponding resource, e.g., atable,
* inthe'Select Role field under the section of 'Allow Conditions, add the ROLE just created above,

* inthe'Permissions field under the section of 'Allow Conditions, add the privileges we want to grant to the
ROLE associated with the group consisting of that normal user.

To bridge the gap between CDH Impalaand CDP Impalain terms of ROLE-related operations, CDP 7.1.6 introduces
ROLE related statements in Impalaintegrated with Ranger.

CREATE ROLE <rol e_nane>

DROP ROLE <rol e_name>

GRANT ROLE <rol e _nane> TO GROUP <group_nane>

REVOKE ROLE <rol e_nanme> FROM GROUP <gr oup_nane>

GRANT <privilege> ON <resource> TO ROLE <rol e_nane>
REVOKE <pri vil ege> ON <resource> FROM ROLE <rol e_nane>
SHOW GRANT ROLE <rol e_nane> ON <resource>

SHOW ROLES

SHOW CURRENT RCLES

SHOW ROLE GRANT GROUP <gr oup_nane>

The following list describes the major differencesin Impala s behavior when using Ranger as the authorization
provider in place of Sentry.

» Beforedropping arolein Ranger, you must remove all the privileges granted to the role in advance, which was
not the case when Sentry was the authorization provider.

e You must specify the resource for the SHOW GRANT ROLE <role_name> ON <resource> statement which is
different when using Sentry as the authorization provider. Thisis due to the fact that thereis no API provided by
Ranger that allows Impalato directly retrieve thelist of al privileges granted to a specified role.

DDL refersto “Data Definition Language”, a subset of SQL statements that change the structure of the database
schemain some way, typically by creating, deleting, or modifying schema objects such as databases, tables, and
views. Most Impala DDL statements start with the keywords CREATE, DROP, or ALTER.

e« ALTER TABLE statement on page 109

106

Cloudera Runtime Impala SQL statements

« ALTERVIEW statement on page 123

¢ COMPUTE STATS statement on page 125

e CREATE DATABASE statement on page 133

e CREATE FUNCTION statement on page 135
 CREATE ROLE statement on page 141
 CREATE TABLE statement on page 142
 CREATE VIEW statement on page 157

« DROP DATABASE statement on page 173

* DROPFUNCTION statement on page 175

¢ DROP ROLE statement on page 176

+ DROP TABLE statement on page 181

« DROP VIEW statement on page 183

¢ GRANT statement on page 186

¢ GRANT ROLE statement on page 189

¢ REVOKE statement on page 206

« REVOKE ROLE statement on page 207

¢ SHOW ROLES statement on page 248

*« SHOW CURRENT ROLES statement on page 248
¢« SHOW ROLE GRANT GROUP statement on page 248

After Impala executes a DDL command, information about available tables, columns, views, partitions, and so on is
automatically synchronized between all the Impalanodesin a cluster. (Prior to Impala 1.2, you had to issue a REFR
ESH or an INVALIDATE METADATA statement manually on the other nodes to make them aware of the changes.)

If the timing of automatic metadata updates is significant, such as when connecting to different Impala nodes within
an impala-shell session for load balancing or using round-robin scheduling, enable the SYNC_DDL query option.
Thiswill ensure that the DDL statement waits until all nodes are notified about the metadata changes.

See Using Impala with the Amazon S3 Filesystem for details about how Impala DDL statements interact with tables
and partitions stored in the Amazon S3 filesystem.

Although INSERT isclassified asa DML statement, when the SYNC_DDL option is enabled, INSERT statements
also delay their completion until all the underlying data and metadata changes are propagated to all Impala nodes and
this option applies to all filesystem-based tables. Internally, Impalainserts have similarities with DDL statementsin
traditional database systems, because they create metadata needed to track HDFS block locations for new files and
they potentially add new partitions to partitioned tables.

Because the SYNC_DDL query option makes each DDL operation take longer than normal, you might only enable
it before the last DDL operation in a sequence. For example, if you are running a script that issues multiple of

DDL operations to set up an entire new schema, add several new partitions, and so on, you might minimize the
performance overhead by enabling the query option only before the last CREATE, DROP, ALTER, or INSERT
statement. The script only finishes when all the relevant metadata changes are recognized by all the Impala nodes, so
you could connect to any node and issue queries through it.

The classification of DDL, DML, and other statements is not necessarily the same between Impala and Hive. Impala
organizes these statements in away intended to be familiar to people familiar with relational databases or data
warehouse products. Statements that modify the metastore database, such as COMPUTE STATS, are classified

as DDL. Statements that only query the metastore database, such as SHOW or DESCRIBE, are put into a separate
category of utility statements.

Note: The query types shown in the Impala debug web user interface might not match exactly the categories
B listed here. For example, currently the USE statement is shown as DDL in the debug web Ul. The query types
shown in the debug web Ul are subject to change, for improved consistency.

107

Cloudera Runtime Impala SQL statements

DML refersto “Data Manipulation Language’, a subset of SQL statements that modify the data stored in tables.
Because Impala focuses on query performance and leverages the append-only nature of HDFS storage, currently
Impala only supports asmall set of DML statements.

Impala supports the following DML statements:

e DELETE: Worksfor Kudu tables only

e INSERT

* LOAD DATA: Does not apply for HBase or Kudu tables
« UPDATE: Works for Kudu tables only

e UPSERT: Works for Kudu tables only

INSERT in Impalais primarily optimized for inserting large volumes of datain a single statement, to make effective
use of the multi-megabyte HDFS blocks. Thisisthe way in Impalato create new datafiles. If you intend to insert
one or afew rows at atime, such as using the INSERT ... VALUES syntax, that technique is much more efficient for
Impalatables stored in HBase.

LOAD DATA moves existing data files into the directory for an Impalatable, making them immediately available for
Impala queries. Thisis one way in Impalato work with data files produced by other Hadoop components. (CREATE
EXTERNAL TABLE isthe other aternative; with external tables, you can query existing datafiles, while the files
remain in their original location.)

In Impala 2.8 and higher, Impala does support the UPDATE, DELETE, and UPSERT statements for Kudu tables. For
HDFS or S3 tables, to simulate the effects of an UPDATE or DELETE statement in other database systems, typically
you use INSERT or CREATE TABLE AS SELECT to copy data from one table to another, filtering out or changing
the appropriate rows during the copy operation.

Y ou can also achieve aresult similar to UPDATE by using Impalatables stored in HBase. When you insert arow into
an HBase table, and the table already contains a row with the same value for the key column, the older row is hidden,
effectively the same as asingle-row UPDATE.

Impala can perform DML operations for tables or partitions stored in the Amazon S3 filesystem.

The ALTER DATABASE statement changes the characteristics of a database.

Use the SET OWNER clause to transfer the ownership of the database from the current owner to another user or a
role.

The database owner isoriginally set to the user who creates the database. When object ownership is enabled in
Ranger, an owner of a database can have the ALL with GRANT or ALL without GRANT privilege. Theterm
OWNER is used to differentiate between the ALL privilege that is explicitly granted viathe GRANT statement and a
privilege that isimplicitly granted by the CREATE DATABASE statement.

Syntax:

ALTER DATABASE dat abase nanme SET OMNER USER user narne;
ALTER DATABASE dat abase name SET OMER ROLE rol e_nane;

Statement type: DDL
Cancellation: Cannot be cancelled.
Added in: Impala 3.1 release.

108

Cloudera Runtime Impala SQL statements

The ALTER TABLE statement changes the structure or properties of an existing Impalatable.

In Impala, thisis primarily alogical operation that updates the table metadata in the metastore database that Impala
shares with Hive. Most ALTER TABLE operations do not actually rewrite, move, and so on the actual datafiles. (The
RENAME TO clause is the one exception; it can cause HDFS files to be moved to different paths.) When you do

an ALTER TABLE operation, you typically need to perform corresponding physical filesystem operations, such as
rewriting the data files to include extrafields, or converting them to a different file format.

Syntax:

ALTER TABLE [ol d_db_nane.] ol d_t abl e name RENAME TO
[new_db_nane.] new_t abl e_name

ALTER TABLE nane ADD [|F NOT EXI STS] COLUMNS (col _spec[, col _spec ...])
ALTER TABLE name REPLACE COLUWMNS (col _spec[, col_spec ...])

ALTER TABLE nane ADD COLUWN [I F NOT EXI STS] col _spec
ALTER TABLE nane DROP [COLUWN] col unm_nane
ALTER TABLE nane CHANGE col utm_name col _spec

ALTER TABLE nanme SET OMNER USER user nane
ALTER TABLE nane SET OANER ROLE rol e_nane

-- Kudu tables only.
ALTER TABLE name ALTER [COLUMN] col umm_nane
{ SET kudu_storage_attr attr_val ue
| DROP DEFAULT }

kudu_storage_attr ::= { DEFAULT | BLOCK_SIZE | ENCODI NG | COWPRESSI ON }

-- Non-Kudu tables only.
ALTER TABLE nanme ALTER [COLUMN] col utm_nane
SET COMVENT ' comment _t ext'

ALTER TABLE nanme ADD [IF NOT EXI STS] PARTITION (partition_spec)
[l ocation_spec]
[cache_spec]
ALTER TABLE name ADD [|F NOT EXI STS] RANGE PARTI TI ON kudu_partiti on_spec

ALTER TABLE nane DROP [|IF EXI STS] PARTITION (partition_spec)
[PURGE]
ALTER TABLE name DROP [IF EXI STS] RANGE PARTI Tl ON kudu_partition_spec

ALTER TABLE nanme RECOVER PARTI Tl ONS

ALTER TABLE nane [PARTITION (partition_spec)]
SET { FILEFORMAT fil e format
| ROW FORMAT row_f or mat
| LOCATION ' hdfs_path_of directory'
| TBLPROPERTI ES (tabl e_properties)
| SERDEPROPERTI ES (serde_properties) }

ALTER TABLE nane col name
('statskKey' ="val, ...)

statsKey ::= nunDVs | numNulls | avgSize | maxSize

109

Cloudera Runtime Impala SQL statements

ALTER TABLE name [PARTI TION (partition_spec)] SET { CACHED I N
"pool _nane' [WTH REPLI CATION = integer] | UNCACHED }

new_nane ::= [new _dat abase.] new_t abl e _nane
col _spec ::= col _nane type_name COWMENT 'colum-comment' [kudu_attri butes]
kudu_attributes ::= { [NOT] NULL | ENCODI NG codec | COWPRESSI ON al gorithm |
DEFAULT constant | BLOCK S| ZE nunber }

partition_spec ::= sinple_partition_spec | conplex_partition_spec
sinple_partition_spec ::= partition_col =constant_val ue
conpl ex_partition_spec ::= conparison_expression_on_partition_col
kudu_partition_spec ::= constant range_operator

VALUES range_operator constant | VALUE = const ant
cache_spec ::= CACHED I N ' pool _name' [WTH REPLI CATION = integer] | UNCACHED
| ocation_spec ::= LOCATION ' hdfs _path_of directory'

tabl e_properties ::= 'nane' ='value' [, 'nane'="value' ...]

serde_properties ::= "nane' ='value' [, 'nanme' = value' ...]
file_ format ::= { PARQUET | TEXTFILE | RCFILE | SEQUENCEFI LE | AVRO }
row format ::= DELIM TED

FI ELDS TERM NATED BY ' char' [ESCAPED BY 'char']]
L

[
[LI NES TERM NATED BY ' char']

Statement type: DDL

Complex type considerations:

In Impala 2.3 and higher, the ALTER TABLE statement can change the metadata for tables containing complex types
(ARRAY, STRUCT, and MAP). For example, you can use an ADD COLUMNS, DROP COLUMN, or CHANGE
clause to modify the table layout for complex type columns. Although Impala queries only work for complex type
columns in Parquet tables, the complex type support in the ALTER TABLE statement appliesto al file formats. For
example, you can use Impalato update metadata for a staging table in a non-Parquet file format where the datais
populated by Hive. Or you can use ALTER TABLE SET FILEFORMAT to change the format of an existing table to
Parquet so that Impala can query it. Remember that changing the file format for a table does not convert the datafiles
within the table; you must prepare any Parquet data files containing complex types outside Impala, and bring them
into the table using LOAD DATA or updating the table's LOCATION property.

Usage notes:

Whenever you specify partitionsin an ALTER TABLE statement, through the PARTITION (partition_spec) clause,
you must include al the partitioning columns in the specification.

Most of the ALTER TABLE operations work the same for internal tables (managed by Impala) as for external tables
(with data files located in arbitrary locations). The exception is renaming atable; for an external table, the underlying
data directory is not renamed or moved.

To drop or alter multiple partitions:

In Impala 2.8 and higher, the expression for the partition clause with a DROP or SET operation can include
comparison operators such as <, IN, or BETWEEN, and Boolean operators such as AND and OR.

For example, you might drop a group of partitions corresponding to a particular date range after the data “ages out”:

110

Cloudera Runtime Impala SQL statements

alter table historical _data drop partition (year < 1995);
alter table historical _data drop partition (year = 1996 and nonth between 1
and 6);

For tables with multiple partition keys columns, you can specify multiple conditions separated by commas, and the
operation only applies to the partitions that match all the conditions (similar to using an AND clause):

alter table historical _data drop partition (year < 1995, l|ast_nanme |ike 'A%

)

This technique can also be used to change the file format of groups of partitions, as part of an ETL pipeline that
periodically consolidates and rewrites the underlying datafilesin a different file format:

alter table fast_growing data partition (year = 2016, nonth in (10,11, 12))
set fileformat parquet;

Note:

E The extended syntax involving comparison operators and multiple partitions appliesto the SET FILEFORM
AT, SET TBLPROPERTIES, SET SERDEPROPERTIES, and SET [UN]JCACHED clauses. Y ou can aso
use this syntax with the PARTITION clausein the COMPUTE INCREMENTAL STATS statement, and
with the PARTITION clause of the SHOW FILES statement. Some forms of ALTER TABLE still only apply
to one partition at atime: the SET LOCATION and ADD PARTITION clauses. The PARTITION clausesin
the LOAD DATA and INSERT statements also only apply to one partition at atime.

A DDL statement that applies to multiple partitions is considered successful (resulting in no changes) even if
no partitions match the conditions. The results are the same as if the IF EXISTS clause was specified.

The performance and scalability of thistechnique is similar to issuing a sequence of single-partition ALTER
TABLE statementsin quick succession. To minimize bottlenecks due to communication with the metastore
database, or causing other DDL operations on the same table to wait, test the effects of performing ALTER
TABLE statements that affect large numbers of partitions.

Amazon S3 considerations:

Y ou can specify an s3a:// prefix on the LOCATION attribute of atable or partition to make Impala query data
from the Amazon S3 filesystem. In Impala 2.6 and higher, Impala automatically handles creating or removing the
associated folders when you issue ALTER TABLE statements with the ADD PARTITION or DROP PARTITION
clauses.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove
folders as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Related Information
for details about reading and writing S3 data with Impala.

HDFS caching (CACHED IN clause):

If you specify the CACHED IN clause, any existing or future datafilesin the table directory or the partition
subdirectories are designated to be loaded into memory with the HDFS caching mechanism.

In Impala 2.2 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets
you specify areplication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Cloudera recommends specifying a value greater than or equal to the HDFS
block replication factor.

111

Cloudera Runtime Impala SQL statements

If you connect to different Impala nodeswithinani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by al the Impala nodes.

The following sections show examples of the use cases for variousALTER TABLE clauses.
To rename atable (RENAME TO clause):

The RENAME TO clause lets you change the name of an existing table, and optionally which database it is located
in.

For internal tables, this operation physically renames the directory within HDFS that contains the datafiles; the
original directory name no longer exists. By qualifying the table names with database names, you can use this
technique to move an internal table (and its associated data directory) from one database to another. For example:

creat e database di;

creat e database d2;

create database d3;

use di;

create table nobile (x int) TBLPROPERTIES ('transactional'="'false');
use d2;

-- Move table from anot her database to the current one.
alter table dl1.nobile renane to nobile;

use di;

-- Move table from one dat abase to anot her.

alter table d2.npbile renane to d3. nobil e;

To change the owner of atable:

ALTER TABLE name SET OANER USER user _nane;
ALTER TABLE name SET OWNER ROLE rol e_narne;

The table owner isoriginally set to the user who creates the table. When object ownership is enabled in Ranger, an
owner of atable can have the ALL with GRANT or ALL without GRANT privilege. The term OWNER is used to
differentiate between the ALL privilege that is explicitly granted viathe GRANT statement and a privilege that is
implicitly granted by the CREATE TABLE statement.

Usethe ALTER TABLE SET OWNER to transfer the ownership from the current owner to another user or arole.

To change the physical location where Impalalooks for data files associated with atable or partition:

ALTER TABLE t abl e_nanme [PARTITION (partition_spec)] SET LOCATI ON
"hdfs_path_of directory';

The path you specify is the full HDFS path where the data files reside, or will be created. Impala does not create any
additional subdirectory named after the table. Impala does not move any data files to this new location or change any
datafilesthat might already exist in that directory.

To set the location for a single partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (nonth int, day int);

-- Each ADD PARTI TION cl ause creates a subdirectory in HDFS.

alter table pl add partition (nonth=1, day=1);

alter table pl add partition (nonth=1, day=2);

alter table pl add partition (nonth=2, day=1);

alter table pl add partition (nonth=2, day=2);

-- Redirect queries, |INSERT, and LOAD DATA for one partition

-- to a specific different directory.

alter table pl partition (nonth=1, day=1) set |ocation '/usr/external data/n
ew _years_day';

112

Cloudera Runtime Impala SQL statements

Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency, use
E asingle ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses, rather
than separate statements with ADD PARTITION and SET LOCATION clauses.

To automatically detect new partition directories added through Hive or HDFS operations:

In Impala 2.3 and higher, the RECOVER PARTITIONS clause scans a partitioned table to detect if any new
partition directories were added outside of Impala, such asby Hive ALTER TABLE statementsor by hdf s df s or
hadoop fs commands. The RECOVER PARTITIONS clause automatically recognizes any datafiles present in
these new directories, the same as the REFRESH statement does.

For example, hereis a sequence of examples showing how you might create a partitioned table in Impala, create new
partitions through Hive, copy datafiles into the new partitions with the hdf s command, and have Impala recognize
the new partitions and new data:

In Impala, create the table, and a single partition for demonstration purposes:

creat e dat abase recover _partitions;

use recover_partitions;

create table t1 (s string) partitioned by (yy int, nmint);

insert into tl partition (yy = 2016, mm = 1) values ('Partition exists');
show files in t1;

fccoococococoocococooococoooSCcocCoooSCOCoooSCOCoooSCoCoooScocoooooocooooc S

ccodmocococooococooc +

| Path | Size
| Partition |

o coCoCoCoCoCoCoCoCCoCoCoCoCCCCCCCOCoCCOCOCoCOCOCOCoCoCoCoCoCoCoCooooooC dho o =

ccodmococoooocosooc +

| /user/hivel/ warehouse/recover _partitions.db/t1/yy=2016/ nrm¥=1/data.txt | 17B
| yy=2016/ mm=1 |

e ccocoococooccooccoocoocoooCoOCoCCoCCooCoCCooOCoOCooCOCCooCooooooCooSooooc dho o=

ccodfmoccooccoocoacs +

qui t;

In Hive, create some new partitions. In areal use case, you might create the partitions and popul ate them with data as
the final stages of an ETL pipeline.

hi ve> use recover_partitions;

(0

hive> alter table t1 add partition (yy = 2016, mm = 2);
(04

hive> alter table t1 add partition (yy = 2016, mm = 3);
(04

hi ve> quit;

For demonstration purposes, manually copy data (a single row) into these new partitions, using manual HDFS
operations:

$ hdfs dfs -1s /user/hivel/warehouse/ recover partitions.db/t1l/yy=2016/
Found 3 itens

drwxr-xr-x - inpala hive 0 2016-05-09 16: 06 /user/ hi vel/ war ehouse/ r ecover
_partitions.db/t1/yy=2016/ mm=1

drwxr-xr-x - jrussell hive 0 2016-05-09 16: 14 /user/ hi ve/ war ehouse/ recove
r_partitions.db/t1/yy=2016/ mm=2

113

Cloudera Runtime Impala SQL statements

drwxr-xr-x - jrussell hive 0 2016-05-09 16: 13 /user/ hi ve/ war ehouse/r ecover_p
artitions.db/t1/yy=2016/ m=3

$ hdfs dfs -cp /user/hive/warehouse/recover_partitions.db/t1/yy=2016/ mm=1/
data.txt \

[user/ hi ve/ war ehouse/ recover partitions.db/t1/yy=2016/ mm=2/ dat a. t xt
$ hdfs dfs -cp /user/hive/warehouse/recover_partitions.db/t1/yy=2016/ nm=1/d
ata.txt \

[user/ hi ve/ war ehouse/ recover partitions. db/t1/yy=2016/ mm=3/ dat a. t xt

hi ve> select * fromt1l;
K

Partition exists 2016 1
Partition exists 2016 2
Partition exists 2016 3
hi ve> qui t;

In Impala, initially the partitions and data are not visible. Running ALTER TABLE with the RECOVER PARTITIO
NS clause scans the table data directory to find any new partition directories, and the data files inside them:

select * fromt1;

focococoococococooccoocos occooc +----+
| s lyy | mm|
feccoococcoccoococooc feoocooc +----+
| Partition exists | 2016 | 1 |
foccoocococcoococooc foccooc +----+

alter table t1 recover partitions;
select * fromt1;

Partition exists	2016	1
Partition exists	2016	3
Partition exists	2016	2
e e e eeea eemaan oo+

To change the key-value pairs of the TBLPROPERTIES and SERDEPROPERTIES fields:

ALTER TABLE tabl e_nane SEI' TBLPROPERTI ES (' keyl' ="' val uel',
"key2' ='value2'[, ...

ALTER TABLE t abl e_nane SET SERDEPROPERTI ES (' keyl' ='val uel',
"key2' ='value2'[, ...]);

The TBLPROPERTIES clause is primarily away to associate arbitrary user-specified data items with a particular
table.

The SERDEPROPERTIES clause sets up metadata defining how tables are read or written, needed in some cases by
Hive but not used extensively by Impala. Y ou would use this clause primarily to change the delimiter in an existing
text table or partition, by setting the 'serialization.format' and ‘field.delim’ property values to the new delimiter
character. The SERDEPROPERTIES clause does not change the existing data in the table. The change only affects
the future inserts into the table.

Use the DESCRIBE FORMATTED statement to see the current values of these properties for an existing table.

114

Cloudera Runtime Impala SQL statements

To manually set or update table or column statistics:

Although for most tables the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement isall you

need to keep table and column statistics up to date for a table, sometimes for avery large table or one that is updated
frequently, the length of time to recompute all the statistics might make it impractical to run those statements as often
as needed. As aworkaround, you can usethe ALTER TABLE statement to set table statistics at the level of the entire
table or asingle partition, or column statistics at the level of the entire table.

Y ou can set the numrows value for table statistics by changing the TBLPROPERTIES setting for atable or partition.
For example:

create tabl e anal ysis_data stored as parquet as select * fromraw dat a;

I nserted 1000000000 rows in 181.98s

conput e stats anal ysi s_dat a;

insert into anal ysis_data select * fromsnaller _table we forgot before;

I nserted 1000000 rows in 15.32s

-- Now there are 1001000000 rows. We can update this single data point int
he stats.

alter table analysis_data set tblproperties(' numRows' ="' 1001000000, ' STATS
_GENERATED_VI A _STATS TASK' ='true');

-- If the table originally contained 1 nmillion rows, and we add anot her part

ition with 30 thousand rows,

-- change the nunRows property for the partition and the overall table.

alter table partitioned data partition(year=2009, nonth=4) set tblproperties
(' nunRows' =' 30000' , ' STATS GENERATED VI A STATS TASK ='true');

alter table partitioned data set thlproperties ('nunRows'='1030000', ' STATS

GENERATED_VI A_STATS TASK' ='true');

In Impala 2.6 and higher, you can usethe SET COLUMN STATS clause to set a specific stats value for a particular
column.

Y ou specify a case-insensitive symbolic name for the kind of statistics: numDV's, numNulls, avgSize, maxSize. The
key names and values are both quoted. This operation applies to an entire table, not a specific partition. For example:

create table t1 (x int, s string);
insert intotl values (1, 'one'), (2, 'tw'), (2, 'deux');
show col umrm stats t1;

foccoooac foccoooac feoccoocococcoococooc foccoooac foccococooc foccococooc +
| Columm | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
fooococoooc fooococoooc focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +
| x | I NT | -1 | -1 | 4 | 4 |
| s | STRRNG | -1 | -1 | -1 | -1 [
feccoococac feccoococac feccoocococcoococooc feccoococac feccococooc feccococooc +

alter table t1 set colum stats x ('nunDVs'="2',"'nunNulls'="0");

alter table t1 set columm stats s (' nundvs' ='3',' maxsize' ='4");
show col um stats t1;

Fococococ Fococococ Focococococococoococ Fococococ Focococococ Focococococ +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
deemaaoo deemaaoo- e deemaaoo R A +
| x | I'NT | 2 | O | 4 | 4

| s | STRING| 3 | -1 | 4 | -1 [
fooococoooc fooococoooc focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +

To reorganize columns for atable:

Y ou can add multiple columns at atime using the ALTER TABLE statement. If you specify the IF NOT EXISTS
clause, Impalasilently ignores the ADD request and does not return an error if a column with the same name existsin
the table.

When you replace columns, al the original column definitions are discarded.

115

Cloudera Runtime Impala SQL statements

Y ou might use these statements if you receive a new set of data files with different data types or columnsin a
different order. The data files are retained, so if the new columns are incompatible with the old ones, use INSERT O
VERWRITE or LOAD DATA OVERWRITE to replace all the data before issuing any further queries.

For example, hereis how you might add columns to an existing table. The first ALTER TABLE adds two new
columns, and the second ALTER TABLE adds one new column. A single Impala query reads both the old and new
datafiles, containing different numbers of columns. For any columns not present in a particular datafile, al the
column values are considered to be NULL.

create table t1 (x int);
insert into tl values (1), (2);

alter table t1 add columms (s string, t tinmestanp);
insert into t1l values (3, "three', now));

alter table t1 add columms (b bool ean);
insert into tl values (4, 'four', now(), true);

select * fromtl order by Xx;

R e e e e Fommm +
| x| s | t | b I
oo e T coocooocoooooocoooooooooooooooooE e o - +
1] NULL	NULL	NULL	
2] NULL	NULL	NULL	
3	three	2016-05-11 11:19: 45. 054457000	NULL
4	four	2016-05-11 11:20:20.260733000	true
. frocoococoocooocooocoooooooooooooooooe Fome o - - +

Y ou might use the CHANGE clause to rename a single column, or to treat an existing column as a different type than
before, such as to switch between treating a column as STRING and TIMESTAMP, or between INT and BIGINT.

Y ou can only drop a single column at atime; to drop multiple columns, issue multiple ALTER TABLE statements, or
define the new set of columnswith asingle ALTER TABLE ... REPLACE COLUMNS statement.

The following examples show some safe operations to drop or change columns. Dropping the final column in atable
lets Impalaignore the data causing any disruption to existing data files. Changing the type of a column works if
existing data values can be safely converted to the new type. The type conversion rules depend on the file format of
the underlying table. For example, in atext table, the same value can be interpreted as a STRING or a numeric value,
while in abinary format such as Parquet, the rules are stricter and type conversions only work between certain sizes
of integers.

create table optional _colums (x int, y int, z int, al int, a2 int);
insert into optional _colums values (1,2,3,0,0), (2,3,4,100,100);

-- When the last colum in the table is dropped, Inpala ignores the
-- values that are no | onger needed. (Dropping Al but |eaving A2

-- woul d cause problens, as we will see in a subsequent exanple.)
alter table optional _colunms drop col unm a2;

alter table optional _colunms drop columm ail;

sel ect * from optional _col ums;
B e

| x|yl z]
fecodeocde oot
| 1| 2] 3]
| 2] 3] 4]

o e &

create table int_to_string (s string, x int);
insert intoint to string values (‘one', 1), ('tw', 2);

116

Cloudera Runtime Impala SQL statements

-- What was an INT colum will now be interpreted as STRI NG

-- This technique works for text tables but not other file formats.

-- The second X represents the new nane of the column, which we keep the s
ane.

alter table int _to_string change x x string;

-- Once the type is changed, we can insert non-integer values into the X

col um

-- and treat that columm as a string, for exanple by uppercasing or conca
tenati ng.

insert into int_to string values ('three', '"trois');
select s, upper(x) fromint_to_string;

fecooooc feccococooc +

| s | upper(x) |

Focooooc foccococooc +

| one | 1 [

| two | 2 |

| three | TRO S |

fecooooc feccococooc +

Remember that Impala does not actually do any conversion for the underlying datafiles asaresult of ALTER TA
BLE statements. If you use ALTER TABLE to create atable layout that does not agree with the contents of the
underlying files, you must replace the files yourself, such asusing LOAD DATA toload anew set of datafiles, or
INSERT OVERWRITE to copy from another table and replace the original data.

The following example shows what happensif you delete the middle column from a Parquet table containing three
columns. The underlying datafiles still contain three columns of data. Because the columns are interpreted based

on their positions in the data file instead of the specific column names, a SELECT * query now reads the first and
second columns from the data file, potentially leading to unexpected results or conversion errors. For this reason,

if you expect to someday drop a column, declare it as the last column in the table, where its data can be ignored by
queries after the column is dropped. Or, re-run your ETL process and create new data filesif you drop or change the
type of acolumn in away that causes problems with existing datafiles.

-- Parquet table showi ng how dropping a columm can produce unexpected resul
ts.
create table pl (sl string, s2 string, s3 string);

insert into pl values ('‘one', 'un', 'uno'), ('twd', 'deux', 'dos'),
("three', '"trois', 'tres');

select * from pl;

fooocoooc fooocoooc dhoccooc +

| s1 | s2 | s3 |

Focoocooe Focoocooe Focococ +

| one | un | uno |

| two | deux | dos |

| three | trois | tres |

fooocoooc fooocoooc dhoccooc +

alter table pl drop colum s2;

-- The S3 col unn contai ns unexpected results.

-- Because S2 and S3 have conpatible types, the query reads

-- values fromthe dropped S2, because the existing data files

-- still contain those values as the second col um.
select * from pl;
Focoocooe Focoocooe +
| s1 | s3 |
fecooooc fecooooc +
one	un
two	deux
three	trois

117

Cloudera Runtime Impala SQL statements

-- Parquet table showi ng how dropping a colum can produce conversion error
S.
create table p2 (sl string, x int, s3 string);

insert into p2 values (‘one', 1, 'uno'), ('tw', 2, 'dos'), ('three', 3,

"tres');

select * from p2;
fooocoooc fecodmocoac +
| s1 | x| s3 |
Focoocooe Focodfmcococ +
one	2	uno
two	2	dos
three	3	tres
fooocoooc fecodmocoac +

alter table p2 drop colum x;

select * from p2;

WARNI NGS:

File 'hdfs_filenane' has an inconpatible Parquet schema for columm 'add_col
ums. p2.s3'.

Col umm type: STRING Parquet schema:

optional int32 x [i:1 d:1 r:Q0]

File 'hdfs_fil ename' has an inconpatible Parquet schema for colum 'add_col
ums. p2.s3'.

Col unm type: STRING Parquet schena:

optional int32 x [i:1 d:1 r:Q0]

In Impala 2.6 and higher, if an Avro tableis created without column definitions in the CREATE TABLE statement,
and columns are later added through ALTER TABLE, the resulting table is now queryable. Missing values from the
newly added columns now default to NULL.

To change the file format that Impal a expects datato be in, for atable or partition:

Usean ALTER TABLE ... SET FILEFORMAT clause. Y ou can include an optional PARTITION (col1=vall,
col2=val2, ... clause so that the file format is changed for a specific partition rather than the entire table.

Because this operation only changes the table metadata, you must do any conversion of existing data using regular
Hadoop techniques outside of Impala. Any new data created by the ImpalaINSERT statement will be in the new
format. Y ou cannot specify the delimiter for Text files; the data files must be comma-delimited.

To set the file format for asingle partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (nonth int, day int);
-- Each ADD PARTI TI ON cl ause creates a subdirectory in HDFS.
alter table pl add partition (nonth=1, day=1);

alter table pl add partition (nonth=1, day=2);

alter table pl add partition (nonth=2, day=1);

alter table pl add partition (nonth=2, day=2);

-- Queries and I NSERT statenents will read and wite files

-- in this format for this specific partition.

alter table pl partition (nonth=2, day=2) set fileformt parquet;

To change the row format with different delimiter characters:

Use the SET ROW FORMAT DELIMITED clause to ingest data files that use a different delimiter character or a
different line end character. When specifying delimiter and line end characters with the FIELDS TERMINATED BY,
ESCAPED BY, and LINES TERMINATED BY clauses, you can use the following:

118

Cloudera Runtime

* A regular ASCII character surrounded by single or double quotation marks.
« Anoctal sequence, such as\054' representing a comma or \O' for ASCII null (hex 00).
e Special characters, such as:

o \t'fortab
* \n'for newline or linefeed
« \r'for carriage return
* Aninteger intherange'-127'.."128' (with quotation marks but no backslash)

Negative values are subtracted from 256. For example, FIELDS TERMINATED BY '-2' setsthe field delimiter
to ASCII code 254.

For the ESCAPED BY clause, choose an escape character that is not used anywhere elsein the file. The character
following the escape character istaken literally as part of afield value.

Surrounding field values with quotation marks does not help Impalato parse fields with embedded delimiter
characters as the quotation marks are considered to be part of the column value.

If you want to use\ as the escape character, specify the clauseini npal a- shel | asESCAPED BY '\

To add or drop partitions for atable, the table must already be partitioned (that is, created with a PARTITIONED
BY clause). The partition is aphysical directory in HDFS, with a name that encodes a particular column value (the
partition key). The Impala INSERT statement already creates the partition if necessary, so the ALTER TABLE ...
ADD PARTITION is primarily useful for importing data by moving or copying existing data filesinto the HDFS
directory corresponding to a partition. (Y ou can use the LOAD DATA statement to move filesinto the partition
directory, or ALTER TABLE ... PARTITION (...) SET LOCATION to point a partition at a directory that already
contains datafiles.

The DROP PARTITION clause is used to remove the HDFS directory and associated data files for a particular set
of partition key values; for example, if you always analyze the last 3 months worth of data, at the beginning of each
month you might drop the oldest partition that is no longer needed. Removing partitions reduces the amount of
metadata associated with the table and the complexity of calculating the optimal query plan, which can simplify and
speed up queries on partitioned tables, particularly join queries. Here is an example showing the ADD PARTITION
and DROP PARTITION clauses.

To avoid errors while adding or dropping partitions whose existence is not certain, add the optional IF [NOT] EXI
STS clause between the ADD or DROP keyword and the PARTITION keyword. That is, the entire clause becomes
ADD IF NOT EXISTSPARTITION or DROP IF EXISTS PARTITION. The following example shows how
partitions can be created automatically through INSERT statements, or manually through ALTER TABLE statements.
The IF [NOT] EXISTS clauses let the ALTER TABLE statements succeed even if a new requested partition already
exists, or a partition to be dropped does not exist.

Inserting 2 year values creates 2 partitions:

create table partition_t (s string) partitioned by (y int);

insert into partition_t (s,y) values ('two thousand',b 2000), ('nineteen nine
ty',1990);

show partitions partition_t;

fecooooc fecooooc feccoococac fococooc feccoocoocooooc feccoccoccooococooooc feccoococac
feccoccoccooococooooc +

| vy | #Rows | #Files | Size | Bytes Cached | Cache Replication | Fornat
| I'ncremental stats |

Focoocooe Focoocooe Fococococ Focococ Focococococoococ Focococcccocococooooe Fococococ
Fococooe +

| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT

| false |

| 2000 | -1 | 1 | 13B | NOT CACHED | NOT CACHED | TEXT

| false |

| Total | -1 | 2 | 29B | OB | |

119

Impala SQL statements

Cloudera Runtime

Impala SQL statements

Without the IF NOT EXISTS clause, an attempt to add a new partition might fail:

alter table partition_t add partition (y=2000);

ERROR: Anal ysi sExcepti on:

Partition spec al ready exists:

(y=2000) .

The IF NOT EXISTS clause makes the statement succeed whether or not there was already a partition with the

specified key value:

alter table partition_t add if not exists partition (y=2000);
alter table partition_t add if not exists partition (y=2010);
show partitions partition_t;

fooocoooc fooocoooc fooocooooc
fococcocococcooccoocooc +

| vy | #Rows | #Files
| I'ncremental stats
fecooooc fecooooc feccoococac
Focooooc +

| 1990 | -1 | 1

| false |

| 2000 | -1 | 1

| false |

| 2010 | -1 | O

| false |

| Total | -1 | 2
+! ______ +! ______ .,
fecooooc +

| Size |

| 16B |
| 13B |
| 0B |
| 29B |

Byt es Cached |

Cache Replication

| For mat

Likewise, the IF EXISTS clause lets DROP PARTITION succeed whether or not the partition is already in the table:

alter table partition_t drop if exists partition (y=2000);
alter table partition_t drop if exists partition (y=1950);
show partitions partition_t;

Focoocooe Focoocooe Fococococ
feccoccocoooococooooc +
| vy | #Rows | #Files
| I'ncremental stats
fooocoooc fooocoooc fooocooooc
foocoooc +
| 1990 | -1 | 1
| false |
| 2010 | -1 | O
| false |
| Total | -1 | 1
+! ______ +! ______ .,
fecooooc +

| Size |

| 16B |

Byt es Cached |

Cache Replication

| For mat

The optional PURGE keyword, available in Impala 2.3 and higher, is used with the DROP PARTITION clause to
remove associated HDFS data filesimmediately rather than going through the HDFS trashcan mechanism. Use this
keyword when dropping a partition if it is crucial to remove the data as quickly as possible to free up space, or if there
is a problem with the trashcan, such as the trash cannot being configured or being in a different HDFS encryption

zone than the datafiles.

Create an enpty table and define the partitioning schene.

120

Cloudera Runtime Impala SQL statements

Create table part_t (x int) partitioned by (nmonth int);

-- Create an enpty partition into which you could copy data files from some
ot her source.

alter table part _t add partition (nonth=1);

-- After changing the underlying data, issue a REFRESH statenent to nake

the data visible in Inpala.

refresh part _t;

-- Later, do the same for the next nonth.

alter table part _t add partition (nonth=2);

-- Now you no | onger need the ol der data.

alter table part_t drop partition (nonth=1);

-- If the table was partitioned by nonth and year, you would issue a state

ment |ike:

-- alter table part_t drop partition (year=2003, nont h=1);

-- which would require 12 ALTER TABLE statenents to renove a year's worth of
dat a.

-- If the data files for subsequent nmonths were in a different file format,

-- you could set a different file format for the new partition as you create
it.
alter table part t add partition (nonth=3) set fil efornat=parquet;

The value specified for a partition key can be an arbitrary constant expression, without any references to columns. For
example:

alter table tine_data add partition (nonth=concat (' Deceni,'ber'));
alter table sales_data add partition (zipcode = cast (9021 * 10 as string));

Note:

IE An aternative way to reorganize atable and its associated data filesisto use CREATE TABLE to create a
variation of the original table, then use INSERT to copy the transformed or reordered data to the new table.
The advantage of ALTER TABLE isthat it avoids making a duplicate copy of the data files, allowing you to
reorganize huge volumes of datain a space-efficient way using familiar Hadoop techniques.

To switch atable between internal and external:

Y ou can switch atable from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch atable frominternal to external.
ALTER TABLE t abl e_nanme SET TBLPROPERTI ES(' EXTERNAL' =' TRUE') ;

-- Switch a table fromexternal to internal.
ALTER TABLE t abl e_name SET TBLPROPERTI ES(' EXTERNAL' =' FALSE') ;

If the Kudu service isintegrated with the Hive Metastore, the above operations are not supported.
Cancellation: Cannot be cancelled.
HDFS permissions:

Most ALTER TABLE clauses do not actually read or write any HDFSfiles, and so do not depend on specific HDFS
permissions. For example, the SET FILEFORMAT clause does not actually check the file format existing data files
or convert them to the new format, and the SET LOCATION clause does not require any special permissions on the

new location. (Any permission-related failures would come later, when you actually query or insert into the table.)

In general, ALTER TABLE clauses that do touch HDFS files and directories require the same HDFS permissions as
corresponding CREATE, INSERT, or SELECT statements. The permissions allow the user ID that thei npal ad
daemon runs under, typically the impala user, to read or write files or directories, or (in the case of the execute bit)
descend into adirectory. The RENAME TO clause requires read, write, and execute permission in the source and
destination database directories and in the table data directory, and read and write permission for the datafiles within

121

Cloudera Runtime

the table. The ADD PARTITION and DROP PARTITION clauses require write and execute permissions for the
associated partition directory.

Kudu considerations:

Because of the extra constraints and features of Kudu tables, such asthe NOT NULL and DEFAULT attributes for
columns, ALTER TABLE has specific requirements related to Kudu tables:

e Inan ADD COLUMNS operation, you can specify the NULL, NOT NULL, and DEFAULT default_value
column attributes.

* InlImpala2.9 and higher, you can also specify the ENCODING, COMPRESSION, and BLOCK _SIZE attributes
when adding a column.

» If you add a column withaNOT NULL attribute, it must also have aDEFAULT attribute, so the default value can
be assigned to that column for all existing rows.

* The DROP COLUMN clause works the same for a Kudu table as for other kinds of tables.

» Although you can change the name of a column with the CHANGE clause, you cannot change the type of a
column in aKudu table.

* You cannot change the nullability of existing columnsin a Kudu table.

* InlImpala2.10, you can change the default value, encoding, compression, or block size of existing columnsin a
Kudu table by using the SET clause.

* You cannot use the REPLACE COLUMNS clause with a Kudu table.

 The RENAME TO clause for a Kudu table only affects the name stored in the metastore database that Impala
usesto refer to the table. To change which underlying Kudu table is associated with an Impala table name,
you must change the TBLPROPERTIES property of thetable: SET TBLPROPERTIES('kudu.table_name
'="kudu_tbl_name). Y ou can only change underlying Kudu tables for the external tables.

The following are some examples of using the ADD COLUMNS clause for a Kudu table:

CREATE TABLE t1 (x INT, PRI MARY KEY (x))
PARTI TI ON BY HASH (x) PARTI TI ONS 16
STORED AS KUDU

ALTER TABLE t1 ADD COLUMNS (y STRI NG ENCODI NG prefi x_encodi ng) ;

ALTER TABLE t1 ADD COLUWNS (z | NT DEFAULT 10);

ALTER TABLE t1 ADD COLUWNS (a STRI NG NOT NULL DEFAULT '', t TIMESTAMP COM
PRESSI ON def ault _conpressi on);

The following are some examples of modifying column defaults and storage attributes for a Kudu table:

create table kt (x bigint primary key, s string default 'yes', t timnmestanp)

stored as kudu;

-- You can change the default value for a colum, which affects any rows
-- inserted after this change is nade.

alter table kt alter colum s set default 'no';

-- You can renove the default value for a colum, which affects any rows
-- inserted after this change is made. If the colum is nullable, any

-- future inserts default to NULL for this colum. If the colum is marked
-- NOT NULL, any future inserts nust specify a value for the col um.
alter table kt alter colunm s drop default;

insert into kt values (1, 'foo', now));

-- Because of the DROP DEFAULT above, onitting S fromthe insert

-- gives it a value of NULL.

insert into kt (x, t) values (2, now));

sel ect * from kt;

Impala SQL statements

Cloudera Runtime Impala SQL statements

| 2| NULL | 2017-10-02 00: 03: 40. 652156000 |
| 1| foo | 2017-10-02 00: 03: 04. 346185000 |

-- O her storage-related attributes can al so be changed for col unns.
-- These changes take effect for any newWy inserted rows, or rows
-- rearranged due to conpaction after deletes or updates.

alter table kt alter colum s set encodi ng prefix_encoding;

-- The COLUWN keyword is optional in the syntax.

alter table kt alter x set block size 2048;

alter table kt alter colunmm t set conpression zlib;

desc kt;

e ccooc feccoococooc feccoocooc feccoococooooc feccococooc feccoccocoooooac +- -
--------------- foccooccococcoccococcococodimoocoocooooadp

| nane | type | comment | primary_key | nullable | default_value | enco
di ng | conpression | block_size |

Focococ Fococcoccooooe Fococooooe Fococcoccoccooooe Focococococ Fococcoccoccococooooe Fococ
------------- feccoccococooccococooccodimoocococoooooon

| x | bigint | | true | false | | AU
TO_ENCODI NG | DEFAULT_COWPRESSI ON | 2048 |

| s | string [| fal se | true [| P
REFI X_ENCODI NG | DEFAULT_COWMPRESSION | O [

| t | timestanp | | false | true | | AUTO
_ENCODING | ZLIB | O [

e ccooc feccoococooc feccoocooc feccoococooooc feccococooc feccoccocoooooac ST
------------- foccooccococcoccococcococodimoocoocooooadp

Kudu tables all use an underlying partitioning mechanism. The partition syntax is different than for non-Kudu tables.
You can usethe ALTER TABLE statement to add and drop range partitions from a Kudu table. Any new range must
not overlap with any existing ranges. Dropping a range removes all the associated rows from the table.

Impalawith Amazon S3

The ALTER VIEW statement changes the characteristics of aview.

Because aview isalogical construct, an alias for a query, with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data filesin HDFS.

To see the definition of the updated view, issue a DESCRIBE FORMATTED statement.

Syntax:
ALTER VI EW [dat abase_nane.] vi ew_nhane
[(col um_nane [COMMENT 'colum_coment'][, ...])]

AS sel ect _statenent;

ALTER VI EW [dat abase_nane.] vi ew_nane
RENAME TO [dat abase_nane.] vi ew_nane;

ALTER VI EW [dat abase_nane.] vi ew_nane SET OANER USER user nane;
ALTER VI EW [dat abase_nane.] vi ew nane SET OANER ROLE rol e_nane;

ALTER VI EW [dat abase_nane.] vi ew_nane
SET TBLPROPERTI ES (' nane' = 'value'[, 'nane' = 'value' ...]);

ALTER VI EW [dat abase_nane.] vi ew_nane

123

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-s3.html#s3

Cloudera Runtime Impala SQL statements

UNSET TBLPROPERTI ES (' name' [, ...]);

» The AS clause associates the view with a different query.
An optiona list of column names can be specified with or without the column-level comments.

For example:

ALTER VIEWv1 AS SELECT x, UPPER(s) s FROMt2;

ALTER VIEW V1 (c1, c2) AS SELECT x, UPPER(s) s FROMt2;

ALTER VIEWv7 (cl COWENT ' Comment for cl', c2) AS SELECT t1.cl, tl.c2 F
ROM t 1;

* The RENAME TO clause changes the name of the view, moves the view to a different database, or both.

For example:

ALTER VI EW dbl. vl RENAME TO db2.v2; -- Mwve the viewto a different data
base with a new nane.

ALTER VI EWdbl. vl RENAME TO dbl.v2; -- Renane the view in the sane dat aba
se.

ALTER VI EW dbl. vl RENAME TO db2.v1l; -- Mwve the viewto a difference dat

abase with the sane vi ew nane.
« The SET OWNER clause transfers the ownership of the view from the current owner to another user or arole.

The view owner isoriginally set to the user who creates the view. When object ownership is enabled in Ranger, an
owner of aview can havethe ALL with GRANT or ALL without GRANT privilege. The term OWNER is used to
differentiate between the ALL privilege that is explicitly granted viathe GRANT statement and a privilege that is
implicitly granted by the CREATE VIEW statement.

e The SET TBLPROPERTIES clause is primarily away to associate arbitrary user-specified dataitemswith a
particular view.

Y ou can associate arbitrary items of metadata with a table by specifying the TBLPROPERTIES clause. This
clause takes a comma-separated list of key-value pairs and stores those itemsin the metastore database. Y ou can
also unset the view properties later with an UNSET TBLPROPERTIES clause.

For example:

ALTER VI EWv1 SET TBLPROPERTIES ('tblpl" = "'1', '"tblp2' ="'2");
ALTER VI EWv1 UNSET TBLPROPERTIES ('tblpl', 'tblp2');

Statement type: DDL

If you connect to different Impala nodeswithinani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by al the Impala nodes.

Security considerations:

If these statementsin your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statementsin log files and other administrative
contexts.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

The COMMENT statement adds, changes, or removes a comment about a database, a table, or a column.

124

Cloudera Runtime Impala SQL statements

Y ou can aternatively use the CREATE and ALTER statements to add comments to the objects.

Y ou can view the comment on a database, atable, or a column using the SHOW or DESCRIBE statement.

Syntax:

COVMENT ON DATABASE db_name |S {'comrent' | NULL}

COMMENT ON TABLE [db_name.]table nane IS {' coment' | NULL}
COMMVENT ON COLUWN [db_nane.]tabl e _name. colum_nane IS {' comment' | NULL}
Parameters:

« db_name: Specify the database name if not for the current database.
e NULL: If given for the comment, removes the existing comment.
e The comment string can be up to 256 characters long.

Privileges required:

To add a comment, the ALTER privilege on the object is required.

To view acomment, the SELECT, INSERT, or REFRESH on the object is required.
Usage notes:

Added in: Impala 3.1 release.

The COMPUTE STATS statement gathers information about volume and distribution of datain atable and all
associated columns and partitions. The information is stored in the metastore database, and used by Impalato help
optimize queries.

For example, if Impala can determine that atable islarge or small, or has many or few distinct values it can organize
and parallelize the work appropriately for ajoin query or insert operation. For details about the kinds of information
gathered by this statement, see the Table and column statistics topic.

Syntax:

COWUTE STATS [db_nane.]table_name [(colum_list)] [TABLESAMPLE
SYSTEM per cent age) [REPEATABLE(seed)]]

colum_list ::= colum_nane [, colum_nane, ...
COVPUTE | NCREMENTAL STATS [db_nane.]tabl e _nane [PARTI TION (partition_spec)]

partition_spec ::= partition_col =constant_val ue

partition_spec ::= sinple_partition_spec | conplex_partition_spec

sinple partition_spec ::= partition_col =constant_val ue
conmpl ex_partition_spec ::= conparison_expression_on_partition_col

The PARTITION clauseis only allowed in combination with the INCREMENTAL clause. It is optional for COMP
UTE INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions
through the PARTITION (partition_spec) clausein aCOMPUTE INCREMENTAL STATS or DROP INCREME
NTAL STATS statement, you must include all the partitioning columns in the specification, and specify constant
values for all the partition key columns.

Usage notes:

125

Cloudera Runtime

Originally, Impalarelied on usersto run the Hive ANALYZE TABLE statement, but that method of gathering
statistics proved unreliable and difficult to use. The Impala COMPUTE STATS statement was built to improve the
reliability and user-friendliness of this operation. COMPUTE STATS does not require any setup steps or special
configuration. Y ou only run asingle Impala COMPUTE STATS statement to gather both table and column statistics,
rather than separate Hive ANALY ZE TABLE statements for each kind of statistics.

For non-incremental COMPUTE STATS statement, the columns for which statistics are computed can be specified
with an optional comma-separate list of columns.

If no column list is given, the COMPUTE STATS statement computes column-level statistics for all columns of the
table. This adds potentially unneeded work for columns whose stats are not needed by queries. It can be especially
costly for very wide tables and unneeded large string fields.

COMPUTE STATS returns an error when a specified column cannot be analyzed, such as when the column does not
exist, the column is of an unsupported type for COMPUTE STATS, e.g. colums of complex types, or the column isa
partitioning column.

If an empty column list is given, no column isanalyzed by COMPUTE STATS.

In Impala 2.12 and higher, an optional TABLESAMPLE clause immediately after atable reference specifies that the
COMPUTE STATS operation only processes a specified percentage of the table data. For tables that are so large that
afull COMPUTE STATS operation isimpractical, you can use COMPUTE STATS witha TABLESAMPLE clause
to extrapolate statistics from a sample of the table data. See Table and column statistics about the experimental stats

extrapolation and sampling features.

The COMPUTE INCREMENTAL STATS variation is a shortcut for partitioned tables that works on a subset of
partitions rather than the entire table. The incremental nature makes it suitable for large tables with many partitions,
where afull COMPUTE STATS operation takes too long to be practical each time a partition is added or dropped.

f Important:
For a particular table, use either COMPUTE STATS or COMPUTE INCREMENTAL STATS. Thetwo
kinds of stats do not interoperate with each other at the table level. Without dropping the stats, if you run
COMPUTE INCREMENTAL STATSit will overwrite the full compute stats or if you run COMPUTE
STATS it will drop all incremental stats for consistency.

When you run COMPUTE INCREMENTAL STATSon atable for the first time, the statistics are computed
again from scratch regardless of whether the table already has statistics. Therefore, expect a one-time
resource-intensive operation for scanning the entire table when running COMPUTE INCREMENTAL
STATSfor the first time on a given table.

In Impala 3.0 and lower, approximately 400 bytes of metadata per column per partition are needed for
caching. Tableswith a big number of partitions and many columns can add up to a significant memory
overhead as the metadata must be cached on the cat al ogd host and on every i npal ad host that is eligible
to be a coordinator. If this metadata for all tables exceeds 2 GB, you might experience service downtime. In
Impala 3.1 and higher, the issue was alleviated with an improved handling of incremental stats.

COMPUTE INCREMENTAL STATS only applies to partitioned tables. If you use the INCREMENTAL clause for
an unpartitioned table, Impala automatically uses the original COMPUTE STATS statement. Such tables display false
under the Incremental stats column of the SHOW TABLE STATS output.

126

Impala SQL statements

Cloudera Runtime Impala SQL statements

Note:

E Because many of the most performance-critical and resource-intensive operations rely on table and column
statistics to construct accurate and efficient plans, COMPUTE STATS s an important step at the end of your
ETL process. Run COMPUTE STATS on al tables as your first step during performance tuning for slow
queries, or troubleshooting for out-of-memory conditions:

« Accurate statistics help Impala construct an efficient query plan for join queries, improving performance
and reducing memory usage.

e Accurate statistics help Impala distribute the work effectively for insert operations into Parquet tables,
improving performance and reducing memory usage.

e Accurate statistics help |mpala estimate the memory required for each query, which isimportant when
you use resource management features, such as admission control and the Y ARN resource management
framework. The statistics help Impalato achieve high concurrency, full utilization of available memory,
and avoid contention with workloads from other Hadoop components.

* InImpala2.8 and higher, when you runthe COMPUTE STATSor COMPUTE INCREMENTAL
STATS statement against a Parquet table, Impala automatically applies the query option setting MT_D
OP=4 to increase the amount of intra-node parallelism during this CPU-intensive operation. See MT_DOP
query option for details about what this query option does and how to use it with CPU-intensive SELECT
statements.

Computing stats for groups of partitions:

In Impala 2.8 and higher, you can run COMPUTE INCREMENTAL STATS on multiple partitions, instead of the
entire table or one partition at atime. Y ou include comparison operators other than = in the PARTITION clause, and
the COMPUTE INCREMENTAL STATS statement appliesto all partitions that match the comparison expression.

For example, the INT_PARTITIONS table contains 4 partitions. The following COMPUTE INCREMENTAL
STATS statements affect some but not all partitions, asindicated by the Updated n partition(s) messages. The
partitions that are affected depend on valuesin the partition key column X that match the comparison expression in
the PARTITION clause.

show partitions int_partitions;

fecooooc fecooooc feccoococac fococooc feccoocoocooooc feccoccoccooococooooc fecooooc
-t
| x | #Rows | #Files | Size | Bytes Cached | Cache Replication | Fornat
[...
Focoocooe Focoocooe Fococococ Focococ Focococococoococ Focococcccocococooooe Focoocooe
S
| 99 | -1 | O | OB | NOT CACHED | NOT CACHED | PARQ
UET | ..
| 120 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT
[...
| 150 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT
[...
| 200 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT
| ...
| Total | -1 | O | oB | OB | |
[...
Focoocooe Focoocooe Fococococ Focococ Focococococoococ Focococcccocococooooe Focoocooe
oo d,

conpute incremental stats int_partitions partition (x < 100);

fooccoocococcooocococcooocococoooococoooooocooooc +
| sunmmary |
FococococococococoocoocoocoCcoCcoCooooooooooooo +
| Updated 1 partition(s) and 1 colum(s). |
fccoocococooocococooococoooococooooococooooc +

conpute increnental stats int_partitions partition (x in (100, 150, 200));

Cloudera Runtime Impala SQL statements

o e mm e — . — =
| summary |
feccoocococcoococococoocococooococooooococooooc +
| Updated 2 partition(s) and 1 colum(s). |
foccocoocococcoccooccooccooccoocoooocoocooocoooooc +

conpute incremental stats int_partitions partition (x in (100, 150, 200) or

X < 100);
foccoocococcoocococcoocococooocococoooococooooc +
| summary [
foccocoocococcoccooccooccooccoocoooocoocooocoooooc +
| Updated 3 partition(s) and 1 colum(s). |
ccoocococooococoooococoooococoooooocooooc +
conmpute increnental stats int_partitions partition (x != 150);
feccocoococoococooccooccoocoocoocoooocoocoocoooooc +
| summary |
FococococococococoocoocoocoCcoCoCcooooooooooooo +
| Updated 3 partition(s) and 1 columm(s). |
feccoocococcoococococoocococooocococoooococooooc +

Complex type considerations:

Currently, the statistics created by the COMPUTE STATS statement do not include information about complex type
columns. The column stats metrics for complex columns are always shown as-1. For queries involving complex type
columns, Impala uses heuristics to estimate the data distribution within such columns.

HBase considerations:

COMPUTE STATS works for HBase tables also. The statistics gathered for HBase tables are somewhat different
than for HDFS-backed tables, but that metadatais still used for optimization when HBase tables are involved in join
queries.

Amazon S3 considerations:
COMPUTE STATS also works for tables where data resides in the Amazon Simple Storage Service (S3).
Performance considerations:

The statistics collected by COMPUTE STATS are used to optimize join queries INSERT operations into Parquet
tables, and other resource-intensive kinds of SQL statements.

For large tables, the COMPUTE STATS statement itself might take along time and you might need to tune its
performance. The COMPUTE STATS statement does not work with the EXPLAIN statement, or the SUMMARY
command ini npal a- shel | . You can use the PROFILE statement ini npal a- shel | to examinetiming
information for the statement as awhole. If abasic COMPUTE STATS statement takes a long time for a partitioned
table, consider switching to the COMPUTE INCREMENTAL STATS syntax so that only newly added partitions are
analyzed each time.

Examples:

This example shows two tables, T1 and T2, with a small number distinct values linked by a parent-child relationship
between T1.ID and T2.PARENT. T1istiny, while T2 has approximately 100K rows. Initialy, the statistics includes
physical measurements such as the number of files, the total size, and size measurements for fixed-length columns
such aswith the INT type. Unknown values are represented by -1. After running COMPUTE STATS for each

table, much more information is available through the SHOW STATS statements. If you were running ajoin query

128

Cloudera Runtime Impala SQL statements

involving both of these tables, you would need statistics for both tables to get the most effective optimization for the
query.

[l ocal host:21000] > show table stats t1;
Query: show table stats t1

Focooooc foccoooac foccooc foccoooac +
| #Rows | #Files | Size | Format |
foocoooc fooococoooc occooc fooococoooc +
| -1 | 1 | 33B | TEXT |
fecooooc feccoocooc feoocooc feccoocooc +

Returned 1 row(s) in 0.02s
[l ocal host:21000] > show table stats t2;
Query: show table stats t2

foocoooc fooococoooc feoococooccoac fooococoooc +
| #Rows | #Files | Size | Format |
emmaaa- R demmemeea R +
| -1 | 28 | 960.00KB | TEXT |
ool oo S S oo +

Returned 1 row(s) in 0.01s
[l ocal host:21000] > show colum stats t1;
Query: show colum stats t1

focccoooc focccoooc focccccccccccooooac focccoooc foccccooooc foccccooooc +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
foccccoac foccccoac focccccccccccccooac foccccoac foccccccoac foccccccoac +
| id | I'NT | -1 | -1 | 4 | 4

| s | STRRNG| -1 | -1 | -1 | -1 |
Fomm e e Fomm e e dococcococcooccooccoooos Fomm e e Poococcoococooc Poococcoococooc +

Returned 2 row(s) in 1.71s
[l ocal host:21000] > show column stats t2;
Query: show colum stats t2

Fococoooc Fococoooc Focococococococoooc Fococoooc Focococoooc Focococoooc +
| Columm | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
Fooocooooe Fooocooooe Fooccocococooocoooooooe Fooocooooe Foocoocoooc Foocoocoooc +
| parent | INT | -1 | -1 | 4 | 4 |
| s | STRING| -1 | -1 | -1 | -1 [
oo oo LS S S oo S S S S +

Returned 2 row(s) in 0.01s
[l ocal host:21000] > conpute stats t1;
Query: compute stats t1l

ccoocococooococoooococoooococoooooocooooc +
| summary |
feccoocococcoococococoocococooococooooococooooc +
| Updated 1 partition(s) and 2 colum(s). |
foccocoocococcoccooccooccooccoocoooocoocooocoooooc +

Returned 1 row(s) in 5.30s
[l ocal host:21000] > show table stats t1;
Query: show table stats t1

Focooooc foccoooac foccooc foccoooac +
| #Rows | #Files | Size | Format |
foocoooc fooococoooc occooc fooococoooc +
| 3 | 1 | 33B | TEXT |
fecooooc feccoocooc feoocooc feccoocooc +

Returned 1 row(s) in 0.01s
[l ocal host:21000] > show column stats t1;
Query: show colum stats t1

fooococoooc fooococoooc focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +
| Columm | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
R eemeaaa- e e e eeea R demmemeea dommemeea +
| id | I'NT | 3 | -1 | 4 | 4 [
| s | STRING| 3 | -1 | -1 | -1 |
fooocooooc fooocooooc feccooococoococoococoocos fooocooooc fesccocoooooc fesccocoooooc +

Returned 2 row(s) in 0.02s
[l ocal host:21000] > conpute stats t2;

129

Cloudera Runtime Impala SQL statements

Query: compute stats t2

o m m e e e o e e o e e e e e e e e e m-oo-o--oo- +
| summary |
Foococoocooccococcococcococococococococooooooos +
| Updated 1 partition(s) and 2 colum(s). |
o ococcooocoooooCoOSCCoCCoOCoOCCoCCoCCooOooO0oe +

Returned 1 row(s) in 5.70s
[l ocal host:21000] > show table stats t2;
Query: show table stats t2

Feoccooas Fococoooc Focococoooc Fococoooc +
| #Rows | #Files | Size | Format |
Foococooc Fooocooooe Foocoocoooc Fooocooooe +
| 98304 | 1 | 960.00KB | TEXT |
H--m - H- - - - C T H- - - - +

Returned 1 row(s) in 0.03s
[l ocal host:21000] > show columm stats t2;
Query: show col unn stats t2

Fococococ Fococococ Focococococococoococ Fococococ Focococococ Focococococ +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
deemaaoo deemaaoo- e deemaaoo R A +
| parent | INT | 3 | -1 | 4 | 4 |
| s | STRING| 6 | -1 | 14 | 9.3 [
fooococoooc fooococoooc focococoococococooccoocos fooococoooc feoococooccoac feoococooccoac +

Returned 2 row(s) in 0.01s

The following example shows how to use the INCREMENTAL clause, available in Impala2.1.0 and higher. The
COMPUTE INCREMENTAL STATS syntax lets you collect statistics for newly added or changed partitions, without
rescanning the entire table.

-- Initially the table has no increnental stats, as indicated
-- 'fal se' under Increnental stats.
show table stats itempartitioned;

feccocoococoooooc fooocoooc fooocooooc fesccocoooooc feccoccccooccooas feocococooooc fooocoooc
| i _category | #Rows | #Files | Size | Bytes Cached | Format | Increme
ntal stats

demmmmmaaaaos demmaoo- R E E S 4--n o

| Books | -1 | 1 | 223.74KB | NOT CACHED | PARQUET | false
| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Hone | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | fal se
| Jewelry | -1 | 1 | 223.72KB | NOT CACHED | PARQUET | fal se
| Men | -1 | 1 | 231.25KB | NOT CACHED | PARQUET | false
| Music | -1 | 1 | 237.90KB | NOT CACHED | PARQUET | false
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Wonen | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | fal se
| Total | -1 | 10 | 2.25MB | OB [[
SRS S S ool oo S S S S TS SRS ool

-- After the first COWUTE | NCREMENTAL STATS,
-- all partitions have stats. The first

-- COWPUTE | NCREMENTAL STATS scans the whol e
-- table, discarding any previous stats from
-- a traditional COWPUTE STATS st atenent.
conpute increnental stats itempartitioned;

fcoccocococcooccooccoccoocooccocooocoocoocoocoooos +
| summary |
ccoccococooococooococococoocococooocoocooooooc +
| Updated 10 partition(s) and 21 columm(s). |
foccoccococococcococococcococooccocooocococooooooc +

show table stats itempartitioned;

130

Cloudera Runtime

Impala SQL statements

feccoococooooc R — fecocooooc fecooococooc feccoocococooooc
| i _category | #Rows | #Files | Size | Bytes Cached
emental stats

feococococcooccooc foocoooc fooococoooc feoococooccoac feococococcooccooas
| Books | 1733 | 1 | 223.74KB | NOT CACHED

| Children | 1786 | 1 | 230.05KB | NOT CACHED

| Electronics | 1812 | 1 | 232.67KB | NOT CACHED

| Home | 1807 | 1 | 232.56KB | NOT CACHED

| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED

| Men | 1811 | 1 | 231.25KB | NOT CACHED

| Music | 1860 | 1 | 237.90KB | NOT CACHED

| Shoes | 1835 | 1 | 234.90KB | NOT CACHED

| Sports | 1783 | 1 | 227.97KB | NOT CACHED

| Wonen | 1790 | 1 | 226.27KB | NOT CACHED

| Total | 17957 | 10 | 2.25MB | OB
Fococcoccoccooooe Focoocooe Fococococ Focococococ Fococcoccoccooooe

-- Add a new partition..

alter table itempartitioned add partition (i_category=' Canping');

-- Add or replace files in HDFS outside of Inpala,
-- rendering the stats for a partition obsol ete.
linport _data into_sports_partition.sh

refresh itempartitioned

drop incremental stats itempartitioned partition (i _category='Sports');

-- Now sone partitions have increnental stats
-- and sone do not.
show table stats itempartitioned;

feccoococooooc fecooooc feccoocooc feccococooc feccoococooooc
| i _category | #Rows | #Files | Size | Bytes Cached
ntal stats

feococococcooccooc foocoooc fooococoooc feoococooccoac feococococcooccooc
| Books | 1733 | 1 | 223.74KB | NOT CACHED

| Canping | -1 | 1 | 408.02KB | NOT CACHED

| Children | 1786 | 1 | 230. 05KB | NOT CACHED

| Electronics | 1812 | 1 | 232.67KB | NOT CACHED

| Home | 1807 | 1 | 232.56KB | NOT CACHED

| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED

| Men | 1811 | 1 | 231.25KB | NOT CACHED

| Music | 1860 | 1 | 237.90KB | NOT CACHED

| Shoes | 1835 | 1 | 234.90KB | NOT CACHED

| Sports | -1 | 1 | 227.97KB | NOT CACHED

| Wonen | 1790 | 1 | 226.27KB | NOT CACHED

| Total | 17957 | 11 | 2.65MB | OB
feccoococooooc fecooooc feccoocooc feccococooc feccoococooooc

-- After another COVPUTE | NCREMENTAL STATS,

-- all partitions have incremental stats, and only the 2

-- partitions without increnmental stats were scanned.
conpute increnmental stats itempartitioned;

o m mm e e e e e e o e e e e e e e e e e mooo-o--o--- +
| summary |
Frcocococoococococococococococococococooooocs +
| Updated 2 partition(s) and 21 col um(s).

o ococoocoooooCOSNCCoCCoOCOoOCODCCoCCooOCoo0ooC +

For mat

I ncrene

true
fal se
true
true
true
true
true
true
true
fal se
true

131

Cloudera Runtime Impala SQL statements

| i _category | #Rows | #Files | Size | Bytes Cached | Format | Increm
ental stats

foccoococooooc Focooooc foccoooac foccococooc feccoocococooooc Foccooocooc foccoooac
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true

| Canping | 5328 | 1 | 408.02KB | NOT CACHED | PARQUET | true

| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true

| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true

| Hone | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true

| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true

| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true

| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true

| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true

| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true

| Wonen | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true

| Total | 17957 | 11 | 2.65MB | OB [[
feococococcooccooc foocoooc fooococoooc feoococooccoac feococococcooccooas feoococooooc occooc

File format considerations:

The COMPUTE STATS statement works with tables created with any of the file formats supported by Impala. The
following considerations apply to COMPUTE STATS depending on the file format of the table.

The COMPUTE STATS statement works with text tables with no restrictions. These tables can be created through
either Impala or Hive.

The COMPUTE STATS statement works with Parquet tables. These tables can be created through either Impala or
Hive.

The COMPUTE STATS statement works with Avro tables without restriction in Impala 2.2 and higher. In earlier
releases, COMPUTE STATS worked only for Avro tables created through Hive, and required the CREATE TABLE
statement to use SQL -style column names and types rather than an Avro-style schema specification.

The COMPUTE STATS statement works with RCFile tables with no restrictions. These tables can be created through
either Impala or Hive.

The COMPUTE STATS statement works with SequenceFile tables with no restrictions. These tables can be created
through either Impala or Hive.

The COMPUTE STATS statement works with partitioned tables, whether all the partitions use the same file format,
or some partitions are defined through ALTER TABLE to use different file formats.

Statement type: DDL

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATYS) can be
cancelled during some stages, when running INSERT or SELECT operationsinternally. To cancel this statement, use
Ctrl-C from thei npal a- shel | interpreter, the Cancel button from the Watch page in Hue, Actions > Cancel from
the Querieslist in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries
tab in the Impalaweb Ul (port 25000).

Restrictions:

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL valuesin each column and

E recorded that figure in the metastore database. Because |mpala does not currently use the NULL count during
query planning, Impala 1.4.0 and higher speeds up the COMPUTE STATS statement by skipping this NULL
counting.

Internal details:

Behind the scenes, the COMPUTE STATS statement executes two statements: one to count the rows of each

partition in the table (or the entire table if unpartitioned) through the COUNT (*) function, and another to count the
approximate number of distinct valuesin each column through the NDV () function. Y ou might see these queriesin
your monitoring and diagnostic displays. The same factors that affect the performance, scalability, and execution of

132

Cloudera Runtime Impala SQL statements

other queries (such as parallel execution, memory usage, admission control, and timeouts) also apply to the queries
run by the COMPUTE STATS statement.

HDFS permissions:

The user ID that thei npal ad daemon runs under, typically the impala user, must have read permission for all
affected files in the source directory: all filesin the case of an unpartitioned table or a partitioned table in the case of
COMPUTE STATS; or dl thefilesin partitions without incremental statsin the case of COMPUTE INCREMEN
TAL STATS. It must also have read and execute permissions for all relevant directories holding the data files.
(Essentially, COMPUTE STATS requires the same permissions as the underlying SELECT queriesit runs against the
table))

Kudu considerations:

The COMPUTE STATS statement applies to Kudu tables. Impala does not compute the number of rows for each
partition for Kudu tables. Therefore, you do not need to re-run the operation when you see -1 in the # Rows column of
the output from SHOW TABLE STATS. That column always shows -1 for all Kudu tables.

The CREATE DATABASE statement is used to create a new database.
In Impala, a database is both:

« Alogical construct for grouping together related tables, views, and functions within their own namespace. Y ou
might use a separate database for each application, set of related tables, or round of experimentation.

» A physical construct represented by a directory treein HDFS. Tables (internal tables), partitions, and datafiles
are al located under this directory. Y ou can perform HDFS-level operations such as backing it up and measuring
space usage, or remove it with a DROP DATABASE statement.

Syntax:

CREATE (DATABASE| SCHEMA) [I F NOT EXI STS] dat abase_nanme[COMVENT
' dat abase_conment ' |
[LOCATI ON hdf s_pat h] ;

Statement type: DDL
Usage notes:

A database is physically represented as a directory in HDFS, with a filename extension .db, under the main Impala
data directory. If the associated HDFS directory does not exist, it is created for you. All databases and their associated
directories are top-level objects, with no physical or logical nesting.

After creating a database, to make it the current database withinani npal a- shel | session, use the USE statement.
Y ou can refer to tables in the current database without prepending any qualifier to their names.

When you first connect to Impalathroughi npal a- shel | , the database you start in (before issuing any CREATE
DATABASE or USE statements) is named default.

Impalaincludes another predefined database, _impala_builtins, that serves as the location for the built-in functions.
To see the built-in functions, use a statement like the following:

show functions in _inpala_builtins;
show functions in _inpala_ builtins |ike '*substring*';

After creating adatabase, your i npal a- shel | session or another i npal a- shel | connected to the same node
can immediately access that database. To access the database through the Impala daemon on a different node, issue
the INVALIDATE METADATA statement first while connected to that other node.

Setting the LOCATION attribute for a new database is away to work with sets of filesin an HDFS directory structure
outside the default Impala data directory, as opposed to setting the LOCATION attribute for each individual table.

133

Cloudera Runtime Impala SQL statements

If you connect to different Impala nodeswithinani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by al the Impala nodes.

Hive considerations:

When you create a database in Impala, the database can also be used by Hive. When you create a database in Hive,
issuean INVALIDATE METADATA statement in Impala to make Impala permanently aware of the new database.

The SHOW DATABASES statement lists all databases, or the databases whose name matches awildcard pattern.
In Impala 2.5 and higher, the SHOW DATABASES output includes a second column that displays the associated
comment, if any, for each database.

Amazon S3 considerations:

To specify that any tables created within a database reside on the Amazon S3 system, you can include an s3a:// prefix
onthe LOCATION attribute. In Impala 2.6 and higher, Impala automatically creates any required folders as the
databases, tables, and partitions are created, and removes them when they are dropped.

In Impala 2.6 and higher, ImpalaDDL statements such as CREATE DATABASE, CREATE TABLE, DROP DAT
ABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove folders
as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point |mpala database,
tables, or partitions at them, and manually remove folders when no longer needed.

Cancellation: Cannot be cancelled.
HDFS permissions:

The user ID that thei npal ad daemon runs under, typically the impala user, must have write permission for the
parent HDFS directory under which the database is located.

Examples:

create database first_db;
use first_db;
create table t1 (x int);

create dat abase second_db;

use second_db;

-- Each dat abase has its own namespace for tables.

-- You can reuse the sanme table nanmes in each database.
create table t1 (s string);

creat e dat abase tenp;

-- You can either USE a database after creating it,

-- or qualify all references to the table name with the name of the datab
ase.

-- Here, tables T2 and T3 are both created in the TEMP dat abase.

create table temp.t2 (x int, y int);
use dat abase tenp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statenent.
drop dat abase tenp;
ERROR: Anal ysi sException: Cannot drop current default database: tenp

-- The always-avail abl e database 'default' is a convenient one to USE
-- before droppi ng a database you creat ed.

use default;

-- Before dropping a database, first drop all the tables inside it,

-- or in Inmpala 2.3 and hi gher use the CASCADE cl ause.

drop dat abase tenp;

134

Cloudera Runtime Impala SQL statements

ERRCR: | npal aRunti meExcepti on: Error making 'dropDatabase’ RPC to Hi ve Meta
store:

CAUSED BY: | nvalidQOperationException: Database tenp is not enpty

show tables in tenp;

Focococ +
| name |
S T +
| t3 |
C T +

-- Inpala 2.3 and hi gher:
drop dat abase tenp cascade;

-- Earlier rel eases:
drop table tenp.t3;
drop dat abase tenp;

Impalawith Amazon S3

Creates a user-defined function (UDF), which you can use to implement custom logic during SELECT or INSERT
operations.

Syntax:

The syntax is different depending on whether you create a scalar UDF, which is called once for each row and
implemented by a single function, or a user-defined aggregate function (UDA), which isimplemented by multiple
functions that compute intermediate results across sets of rows.

In Impala 2.5 and higher, the syntax is also different for creating or dropping scalar Java-based UDFs. The statements
for Java UDFs use a new syntax, without any argument types or return type specified. Java-based UDFs created using
the new syntax persist across restarts of the Impala catalog server, and can be shared transparently between Impala
and Hive.

To create a persistent scalar C++ UDF with CREATE FUNCTION:

CREATE FUNCTI ON [I F NOT EXI STS]
[db_nane.]function_nanme([arg_type[, arg_type...])
RETURNS return_type
LOCATI ON ' hdfs_path_to_dot _so'
SYMBOL=' synbol _nan®'

To create a persistent Java UDF with CREATE FUNCTION:

CREATE FUNCTION [I F NOT EXI STS] [db_nane.]function_nane
LOCATION ' hdfs_path_to_jar'
SYMBOL=' cl ass_nhan®'

To create a persistent UDA, which must be written in C++, issue a CREATE AGGREGATE FUNCTION statement:

CREATE [AGGREGATE] FUNCTION [I F NOT EXI STS]
[db_nane.]function_name([arg_type[, arg_type...])
RETURNS return_type
[I NTERMVEDI ATE t ype_spec]
LOCATI ON ' hdf s_pat h'
[I NI T_EN=' functi on]
UPDATE_FN=' f uncti on
MERGE _FN=' functi on
[PREPARE_FN=' f uncti on]

135

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-s3.html

Cloudera Runtime Impala SQL statements

[CLOSEFN=' f uncti on]
[SERI ALI ZE_FN=' f uncti on]
[FI NALI ZE_FN=' f uncti on]

Statement type: DDL

Varargs notation:

B Note:
Variable-length argument lists are supported for C++ UDFs, but currently not for Java UDFs.
If the underlying implementation of your function accepts a variable number of arguments:

e Thevariable arguments must go last in the argument list.

e Thevariable arguments must al be of the same type.

e You must include at least one instance of the variable argumentsin every function call invoked from SQL.

* You designate the variable portion of the argument list in the CREATE FUNCTION statement by including ...
immediately after the type name of the first variable argument. For example, to create a function that accepts an
INT argument, followed by a BOOLEAN, followed by one or more STRING arguments, your CREATE FUNCT
ION statement would look like:

CREATE FUNCTI ON func_nanme (I NT, BOOLEAN, STRING ...)
RETURNS type LOCATION 'path' SYMBOL='entry_point';

See User-defined functions for how to code a C++ UDF to accept variable-length argument lists.
Scalar and aggregate functions:

The simplest kind of user-defined function returns a single scalar value each timeit is called, typicaly once for

each row in the result set. This general kind of function is what is usually meant by UDF. User-defined aggregate
functions (UDAS) are a specialized kind of UDF that produce a single value based on the contents of multiple rows.
Y ou usually use UDAs in combination with a GROUP BY clause to condense alarge result set into a smaller one, or
even a single row summarizing column values across an entire table.

Y ou create UDAs by using the CREATE AGGREGATE FUNCTION syntax. The clauses INIT_FN, UPDATE_FN,
MERGE_FN, SERIALIZE _FN, FINALIZE FN, and INTERMEDIATE only apply when you create a UDA rather
than ascalar UDF.

The*_FN clauses specify functions to call at different phases of function processing.

 Initialize: The function you specify with the INIT_FN clause does any initial setup, such asinitializing member
variablesin interna data structures. This function is often a stub for simple UDAS. Y ou can omit this clause and a
default (no-op) function will be used.

« Update: The function you specify with the UPDATE_FN clauseis called once for each row in the original result
set, that is, before any GROUP BY clauseis applied. A separate instance of the function is called for each
different value returned by the GROUP BY clause. The final argument passed to this function is a pointer, to
which you write an updated value based on its origina value and the value of the first argument.

e Merge: The function you specify with the MERGE_FN clause is called an arbitrary number of times, to combine
intermediate values produced by different nodes or different threads as Impala reads and processes datafilesin
paralléel. The final argument passed to this function is a pointer, to which you write an updated value based on its
origina value and the value of the first argument.

» Serialize: The function you specify with the SERIALIZE _FN clause frees memory alocated to intermediate
results. It isrequired if any memory was allocated by the Allocate function in the Init, Update, or Merge functions,
or if the intermediate type contains any pointers. See the UDA code samples for details.

» Finalize: The function you specify with the FINALIZE_FN clause does any required teardown for resources
acquired by your UDF, such as freeing memory, closing file handles if you explicitly opened any files, and so on.
This function is often a stub for simple UDAS. Y ou can omit this clause and a default (no-op) function will be
used. It isrequired in UDAs where the final return type is different than the intermediate type. or if any memory
was allocated by the Allocate function in the Init, Update, or Merge functions. See the UDA code samples for
details.

136

Cloudera Runtime Impala SQL statements

If you use a consistent naming convention for each of the underlying functions, Impala can automatically determine
the names based on the first such clause, so the others are optional.

Complex type considerations:

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types (STRUCT, ARRAY,,
or MAP).

Usage notes:
* When authorization is enabled, the CREATE FUNCTION statement requires:

* The CREATE privilege on the database.
e TheALL privilege on two URIswhere the URIs are:

* TheJAR file on thefile system. For example:

GRANT ALL ON URI 'file:///path_to nmy.jar' TO ROLE my_rol e;

e TheJAR on HDFS. For example:

GRANT ALL ON URI '"hdfs:///path/to/jar' TO ROLE ny_rol e

* You canwrite Impala UDFsin either C++ or Java. C++ UDFs are new to Impala, and are the recommended
format for high performance utilizing native code. Java-based UDFs are compatible between Impalaand Hive,
and are most suited to reusing existing Hive UDFs. (Impala can run Java-based Hive UDFs but not Hive UDAS.)

e Impaa 2.5 introduces UDF improvements to persistence for both C++ and Java UDFs, and better compatibility
between Impala and Hive for Java UDFs.

» Thebody of the UDF is represented by a .so or .jar file, which you storein HDFS and the CREATE FUNCTION
statement distributes to each Impala node.

» Impalacallsthe underlying code during SQL statement evaluation, as many times as needed to process al the
rows from the result set. All UDFs are assumed to be deterministic, that is, to always return the same result when
passed the same argument values. Impala might or might not skip some invocations of a UDF if the result value
isaready known from a previous call. Therefore, do not rely on the UDF being called a specific number of times,
and do not return different result values based on some external factor such asthe current time, a random number
function, or an external data source that could be updated while an Impala query isin progress.

« The names of the function argumentsin the UDF are not significant, only their number, positions, and data types.

« You can overload the same function name by creating multiple versions of the function, each with a different
argument signature. For security reasons, you cannot make a UDF with the same name as any built-in function.

* Inthe UDF code, you represent the function return result as a struct. This struct contains 2 fields. Thefirst field is
a boolean representing whether the valueis NULL or not. (When thisfield is true, the return valueis interpreted
asNULL.) The second field is the same type as the specified function return type, and holds the return value when
the function returns something other than NULL.

* Inthe UDF code, you represent the function arguments as an initial pointer to a UDF context structure, followed
by references to zero or more structs, corresponding to each of the arguments. Each struct has the same 2 fields as
with the return value, a boolean field representing whether the argument isNULL, and afield of the appropriate
type holding any non-NULL argument value.

» For sample code and build instructions for UDFs, see the UDA code samples.

» Because the file representing the body of the UDF is stored in HDFS, it is automatically available to all the Impala
nodes. Y ou do not need to manually copy any UDF-related files between servers.

» Because Impala currently does not have any ALTER FUNCTION statement, if you need to rename a function,
move it to adifferent database, or change its signature or other properties, issue a DROP FUNCTION statement
for the original function followed by a CREATE FUNCTION with the desired properties.

» Because each UDF is associated with a particular database, either issue a USE statement before doing any CREA
TE FUNCTION statements, or specify the name of the function as db_name.function_name.

137

Cloudera Runtime Impala SQL statements

If you connect to different Impala nodeswithinani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by al the Impala nodes.

Compatibility:

Impala can run UDFs that were created through Hive, aslong asthey refer to Impala-compatible data types (not
composite or nested column types). Hive can run Java-based UDFs that were created through Impala, but not Impala
UDFswritten in C++.

The Hive current_user() function cannot be called from a Java UDF through Impala.
Persistence:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the cat al ogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must rel oad those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the cat al ogd daemon. Prior to Impala2.5
the requirement to rel oad functions after a restart applied to both C++ and Java functions.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

For additional examples of al kinds of user-defined functions, see Creating an Impala user-defined function on page
443.

The following example shows how to take a Java jar file and make all the functionsinside one of its classes into
UDFs under a single (overloaded) function name in Impala. Each CREATE FUNCTION or DROP FUNCTION
statement applies to al the overloaded Java functions with the same name. This example uses the signaturel ess syntax
for CREATE FUNCTION and DROP FUNCTION, which isavailablein Impala 2.5 and higher.

At the start, the jar fileisin the local filesystem. Then it is copied into HDFS, so that it is available for Impalato
reference through the CREATE FUNCTION statement and queries that refer to the Impala function name.

$ jar -tvf udf-exanpl es-cdh570.j ar
0 Mon Feb 22 04:06: 50 PST 2016 META-| NF/
122 Mon Feb 22 04:06: 48 PST 2016 META-| NF/ MANI FEST. MF
0 Mon Feb 22 04:06: 46 PST 2016 com
0 Mon Feb 22 04:06: 46 PST 2016 com cl oudera/
0 Mon Feb 22 04:06:46 PST 2016 coni cl oudera/i npal a/
2460 Mon Feb 22 04: 06: 46 PST 2016 coni cl oudera/i npal a/ | nconpati bl eUdf Te
st.cl ass
541 Mon Feb 22 04:06:46 PST 2016 coni cl oudera/i npal a/ Test Udf Excepti on. cl
ass
3438 Mon Feb 22 04: 06: 46 PST 2016 coni cl ouder a/i npal a/ JavaUdf Test . cl ass
5872 Mon Feb 22 04: 06: 46 PST 2016 coni cl ouder a/i npal a/ Test Udf . cl ass

$. hdf s dfs -put udf-exanpl es-cdh570.jar /user/inpal a/udfs
$ hdfs dfs -Is /user/inpal a/udfs
Found 2 itens

STWr--r-- 3 jrussell supergroup 853 2015-10-09 14: 05 /user/inpal a/
udf s/ hell o_worl d.jar
STWr--T-- 3 jrussell supergroup 7366 2016-06- 08 14: 25 /user/inpal a/

udf s/ udf - exanpl es- cdh570. j ar

138

Cloudera Runtime

Impala SQL statements

Ini npal a- shel | ,the CREATE FUNCTION refersto the HDFS path of the jar file and the fully qualified class
name inside the jar. Each of the functions inside the class becomes an Impala function, each one overloaded under the
specified Impala function name.

[l ocal host:21000] > create function testudf

exanpl es- cdh570. jar' synbol =' com cl ouder a. i npal a. Test Udf ' ;

[l ocal host:21000] > show functi ons;

| return type |
ersistent |

| B(IJ_EAI\I |
| DOUBLE| |
| DOUBLE |
| DOUBLE| |
| FLOATI |
| FLOATI |
| FLOATI |
| I'NT I
| DOJBLEl |

|
| INT |

|
| INT I

| SMALLII\IT |
| SI\/ALLI!\I'I’ |
| SI\/ALLlINT |
| STR NGI |

|
| STRING |

si gnature

t est udf (Bl G NT)

t est udf (BOOLEAN)

t est udf (BOOLEAN, BOOLEAN)

t est udf (BOOLEAN, BOOLEAN, BOOLEAN)
t est udf (DOUBLE)

t est udf (DOUBLE, DOUBLE)

t est udf (DOUBLE, DOUBLE, DOUBLE)
t est udf (FLQAT)

t est udf (FLOAT, FLQAT)

t est udf (FLOAT, FLOAT, FLOAT)

t est udf (I NT)

t est udf (I NT, DOUBLE)

testudf (I NT, | NT)

testudf (I NT, INT, |NT)

t est udf (SMALLI NT)

t est udf (SMALLI NT, SMALLI NT)
testudf (SMALLI NT, SMALLI NT, SMALLI NT)
t est udf (STRI NG

t est udf (STRING, STRI NG

testudf (STRING STRI NG STRI NG

t est udf (TI NYI NT)

JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA
JAVA

| ocation '/user/inpal a/ udf s/ udf -

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

true

139

Cloudera Runtime

Impala SQL statements

These are all simple functions that return their single arguments, or sum, concatenate, and so on their multiple
arguments. Impala determines which overloaded function to use based on the number and types of the arguments.

nsert into bigint_x values (1), (2), (4),

sel ect testudf(x) from bigint x;

_________________ +
udf s. test udf (x) |

_________________ +
1 I
2 I
4 I
3 I

_________________ +

nsert into int_x values (1), (2), (4),

sel ect testudf(x, x+1, x*x) fromint_x;

o S S P S S +
| udfs.testudf(x, x + 1, x * x) |
foococococcoccoccooccoococooocoocoooos +
| 4 I
| 9 |
| 25 I
| 16 I
fecocococococcoccooccoocoooocooooooos +
sel ect testudf(x) fromstring x;
Fococcoccoccoccoocooooe +

| udfs.testudf(x) |
A +

| one |

| two |

| four |

| three |
S +

sel ect testudf(x,x) fromstring_x;
S S S S S S +

| udfs.testudf(x, x) |
fococcocococcoccoocoacs +

| oneone |

| twotwo [

| fourfour [

| threethree |
fecoccoococoococoococoocooos +

The previous exampl e used the same Impala function name as the name of the class. This example shows how the
Impalafunction name is independent of the underlying Java class or function names. A second CREATE FUNCTION
statement resultsin a set of overloaded functions all named my_func, to go along with the overloaded functions all
named testudf.

create function nmy_func location '/user/inpal a/udfs/udf-exanpl es-cdh570.j ar'

synbol =' com cl ouder a. i npal a. Test Udf ' ;

show functi ons;

feccocoococoooooc feccocoocococcooccoccoccoocooocoooocooocoooooos
----------- +

| return type | signature

rsistent |

demmmmmaaaos do m e e e e e eeeaeeoo--ooo--
----------- +

| BIA NT | my_func(BI A NT)

bi nary type

| is pe

140

Cloudera Runtime Impala SQL statements

| BOOLEAN | my_f unc(BOOLEAN) | JAVA | true

| Bw_EANI | ny_func(BOCOLEAN, BOOLEAN) | JAVA | true
|

| BIGNT | testudf (Bl G NT) | JAVA | true

[B(IJ_EANI | testudf(BOOLEAN) | JAVA | true

| BCD_EAI\I | testudf(BOOLEAN, BOOLEAN) | JAVA | true

The corresponding DROP FUNCTION statement with no signature drops all the overloaded functions with that name.

drop function ny_func;
show functi ons;

feccocoococoooooc feccocoocococcooccoccoccoocooocoooocooocoooooos feccocoococoooooc fooocoooc
-------- +
| return type | signature | binary type | is p
ersistent |
demmmmmeaaaos do m e e e e e eeeaeeoo--ooo-- demmmmmaaaaos demmaoo-
-------- +
| BI G NT | testudf (Bl G NT) | JAVA | true

|
| BOOLEAN | testudf(BOOLEAN) | JAVA | true

I
| BOOLEAN | testudf (BOOLEAN, BOOLEAN) | JAVA | true

The signatureless CREATE FUNCTION syntax for Java UDFs ensures that the functions shown in this example
remain available after the Impala service (specifically, the Catalog Server) are restarted.

UDA sample code

The CREATE ROLE statement creates arole to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to a group and the users belonging to the group will be assigned the role. A user that has
been assigned arole will only be able to exercise the privileges of that role. Only users with administrative privileges
can create/drop roles. By default, the Impala users do not have administrative privileges in Ranger. For Impala users
to have administrative privileges in Ranger you must use Ranger Web Ul and configure.

Syntax:
CREATE ROLE rol e_nane

Required privileges:
Only administrative users can use this statement.
Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statementsin Hive, and Hive
makes use of any roles and privileges specified by the GRANT and REVOKE statementsin Impala. The Impala
GRANT and REVOKE statements for privileges do not require the ROLE keyword to be repeated before each role
name, unlike the equivalent Hive statements.

141

https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc

Cloudera Runtime Impala SQL statements

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

The CREATE TABLE statement creates a new table with the specified properties.
While creating atable, you can optionally specify aspects such as:

* Whether the tableisinternal or external.

» The columns and associated data types.

e The columns used for physically partitioning the data.
» Thefileformat for datafiles.

e The HDFSdirectory where the data files are located.

Syntax:

The general syntax for creating atable and specifying its columnsis as follows:

Explicit column definitions:

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
(col _nane data_type
[COMMENT ' col _comment']
[, ...]

)

[PARTI TI ONED BY (col _nane data_type [COWENT 'col _conment'], ...)]
[SORT BY ([colum [, colum ...]])]

[COMMENT 't abl e_conment ']

[ROW FORVAT row_f or mat]

[WTH SERDEPROPERTI ES (' keyl' ='val uel', 'key2' ='value2', ...)]

[STORED AS file fornmat]

[LOCATI ON ' hdfs_pat h']

[CACHED I N ' pool nane' [W TH REPLI CATI ON = integer] | UNCACHED]

[TBLPROPERTI ES (' keyl' =" val uel', 'key2' ='value2', ...)]

CREATE TABLE AS SELECT:

CREATE [EXTERNAL] TABLE [I F NOT EXI STS] db_nane.]t abl e_name
[PARTI TI ONED BY (col _name[, ...])]
[SORT BY ([colum [, colum ...]])]
[COMMENT 't abl e_conment ']
+ [ROW FORMAT row_f or mat]
[WTH SERDEPROPERTI ES (' keyl' ='val uel', 'key2' ='value2', ...)]
+ [STORED AS ctas _file format]
[LOCATI ON ' hdfs_pat h']
+ [CACHED I N ' pool _narre [WTH REPLI CATI C]\I = integer] | UNCACHED]
[TBLPROPERTI ES (' keyl' =" val uel', 'key2'='value2', ...)]
AS
sel ect _st at enent

list, in the same order asin the PARTITIONED BY clause. Otherwise, you will receive an error about a
column name mismatch.

B Note: If creating a partitioned table, the partition key columns must be listed last in the SELECT columns

primtive_type:

TI NYI NT
| SMALLI NT
| INT

142

Cloudera Runtime Impala SQL statements

| BIG NT
| BOOLEAN
| FLOAT

| DOUBLE
| DECI MAL
| STRING
| CHAR

| VARCHAR

| TI MESTAVP

compl ex_type:
struct _type
| array_type

| map_type

struct _type: STRUCT < nane : primtive or_conplex type [COWENT
‘comment _string'], ... >

array_type: ARRAY < primtive_or_conpl ex_type >
map_type: MAP < prinmitive type, primtive or_conplex type >

row_fornat:
DELI M TED [FI ELDS TERM NATED BY ' char' [ESCAPED BY 'char']]
[LI NES TERM NATED BY ' char']

file formt:
PARQUET
| TEXTFI LE
| AVRO
| SEQUENCEFI LE
| RCFILE

ctas file fornat:
PARQUET
| TEXTFI LE

Column definitions inferred from data file:

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
LI KE PARQUET ' hdf s_pat h_of _parquet _fil e’
[PARTI TI ONED BY (col _nane data type [COWENT 'col _conment'], ...)]
[SORT BY ([columm [, colum ...]])]
[COMMENT 't abl e_conment ']
[ROW FORMAT row_f or mat]
[WTH SERDEPROPERTI ES (' keyl' ='val uel', 'key2' ='value2', ...)]
[STORED AS file_format]
[LOCATI ON ' hdfs_pat h']
[CACHED I N ' pool _nane' [W TH REPLI CATI ON = integer] | UNCACHED]
[TBLPROPERTI ES (' keyl' =" val uel', 'key2'='value2', ...)]
dat a_t ype:
primtive_type
| array_type
| map_type
| struct_type

Kudu tables:

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
(col _nane data_type
[kudu_columm_attribute ...]
[COMMENT ' col _comment']
[, ...]

143

Cloudera Runtime Impala SQL statements

[PRI MARY KEY (col _name[, ...])]

)

[PARTI TI ON BY kudu_partition_cl ause]

[COMMENT 't abl e _conment"']

STORED AS KUDU

[TBLPROPERTI ES (' keyl' ='val uel', 'key2'="value2', ...)]

Kudu column attributes:

PRI MARY KEY
| [NOT] NULL
| ENCODI NG codec
| COVPRESSI ON al gorithm
| DEFAULT const ant
| BLOCK_SI ZE number

kudu_partition_clause:

kudu_partition_clause ::=[hash clause [, ...]] [, range_cl ause]
hash_cl ause :: =
HASH [(pk_col [, ...]1) 1
PARTI TI ONS n

range_cl ause ::=
FANGE [(pk_col [, ...]) 1]

PARTI TI ON const ant _expr essi on range_conpari son_oper at or VAL
UES range_conpari son_operator constant_expressi on
| PARTITI ON VALUE = constant _expression_or_tuple

}
[, ...]
)

range_conpari son_operator ::={ < | <=}

External Kudu tables:

In Impala 3.4 and earlier, you can create an external Kudu table based on a pre-existing Kudu schema using the table
property 'kudu.table name'="internal_kudu_name'.

CREATE EXTERNAL TABLE [IF NOT EXI STS] [db_nane.]tabl e _nane
[COMMENT ' col comment']
STORED AS KUDU
[TBLPROPERTI ES (' kudu. t abl e. nane' ="' i nt er nal _kudu_nane' ,
"keyl ='valuel',...)]

Alternatively, in Impala 3.4 and higher, you can also create an external Kudu table as follows:

CREATE EXTERNAL TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
(col _nane data_type
[kudu_columm_attribute ...]
[COMMENT ' col _comment ']

[, ...]

[PRIEMARY KEY (col _name[, ...])]

)

[PARTI TI ON BY kudu_partition_cl ause]

[COMMENT 't abl e _conment']
STORED AS KUDU

144

Cloudera Runtime Impala SQL statements

[TBLPROPERTI ES (' external .tabl e. purge' =" true', 'keyl' ='valuel ,...)]

* UseaHive metastore (HMS) 3 or later.

« Provide column specifications to define the schema when you create the table, similar to creating an internal table.
¢ Omit the kudu.table_name table property as thereis no pre-existing schema.

* Include the required external .table.purge property.

Only the schema metadatais stored in HM S when you create an external table; however, using this create table
syntax, drop table on the Kudu external table deletes the data stored outside HM S in Kudu as well as the metadata
(schema) inside HMS. Likewise, renaming the table changes the name of the table in HM S and in Kudu. Kudu
synchronizes changes to the actual data and metadata; consequently, operations such as dropping atable or atering a
table name simulate internal table operations.

CREATE TABLE AS SELECT for Kudu tables:

CREATE TABLE [I F NOT EXI STS] db_nane.]tabl e_nane

[PRIMARY KEY (col _name[, ...])]

[PARTI TI ON BY kudu_partition_cl ause]

[COMMENT 't abl e conment']

STORED AS KUDU

[TBLPROPERTI ES (' keyl' =" val uel', 'key2' ='value2', ...)]
AS

sel ect _st at enent

Statement type: DDL
Column definitions:
Depending on the form of the CREATE TABLE statement, the column definitions are required or not allowed.

With the CREATE TABLE AS SELECT and CREATE TABLE LIKE syntax, you do not specify the columns at all;
the column names and types are derived from the source table, query, or datafile.

With the basic CREATE TABLE syntax, you must list one or more columns, its name, type, optionally constraints,
and optionally a comment, in addition to any columns used as partitioning keys. There is one exception where the
column list is not required: when creating an Avro table with the STORED AS AV RO clause, you can omit the list of
columns and specify the same metadata as part of the TBLPROPERTIES clause.

Constraints:

Constraints are advisory and intended for estimating cardinality during query planning in afuture release; thereis no
attempt to enforce constraints. Add primary and foreign key information after column definitions. Do not include a
constraint name; the constraint name is generated internally as a UUID. The following constraint states are supported:

 DISABLE
« NOVALIDATE
* RELY

The ENABLE, VALIDATE, and NORELY options are not supported. The foreign key must be defined as the
primary key in the referenced table.

Constraint examples:

CREATE TABLE pk(col 1 INT, col 2 STRING, PRI MARY KEY(col 1, col 2));

CREATE TABLE fk(id INT, coll INT, col2 STRING PRI MARY KEY(id),

145

Cloudera Runtime Impala SQL statements

FOREI GN KEY(col 1, col 2) REFERENCES pk(col 1, col 2));
CREATE TABLE pk(id INT, PRI MARY KEY(id) DI SABLE, NOVALI DATE, RELY);

CREATE TABLE fk(id INT, coll INT, col2 STRING PRI MARY KEY(id),
FORElI GN KEY(col 1, col 2) REFERENCES pk(col 1, col 2));

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in Impala 2.3 and higher. Because you can
nest these types (for example, to make an array of maps or a struct with an array field), these types are also sometimes
referred to as nested types.

Impala can create tabl es containing complex type columns, with any supported file format. Because currently Impala
can only query complex type columns in Parquet tables, creating tables with complex type columns and other file
formats such astext is of limited use. For example, you might create atext table including some columns with
complex types with Impala, and use Hive as part of your to ingest the nested type data and copy it to an identical
Parquet table. Or you might create a partitioned table containing complex type columns using one file format, and use
ALTER TABLE to change the file format of individual partitions to Parquet; Impala can then query only the Parquet-
format partitionsin that table.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.
Internal and external tables (EXTERNAL and LOCATION clauses):

By default, Impala creates an “internal” table, where Impala manages the underlying data files for the table, and
physically deletes the data files when you drop the table. If you specify the EXTERNAL clause, Impalatreats the
table as an “externa” table, where the datafiles are typically produced outside Impala and queried from their original
locations in HDFS, and Impala leaves the data files in place when you drop the table.

Typically, for an external table you include a LOCATION clause to specify the path to the HDFS directory where
Impalareads and writes files for the table. For example, if your data pipeline produces Parquet filesin the HDFS
directory /user/etl/destination, you might create an external table as follows:

CREATE EXTERNAL TABLE external _parquet (cl INT, c2 STRING c3 Tl MESTAMP)
STORED AS PARQUET LOCATI ON '/user/etl/destination';

Although the EXTERNAL and LOCATION clauses are often specified together, LOCATION is optional for external
tables, and you can also specify LOCATION for interna tables. The difference isall about whether Impala “takes
control” of the underlying data files and moves them when you rename the table, or deletes them when you drop the
table. For more about internal and external tables and how they interact with the LOCATION attribute, see Overview
of Impala tables.

Partitioned tables (PARTITIONED BY clause):

The PARTITIONED BY clause divides the data files based on the values from one or more specified columns.
Impala queries can use the partition metadata to minimize the amount of data that is read from disk or transmitted
across the network, particularly during join queries.

Note:
E All Kudu tables require partitioning, which involves different syntax than non-Kudu tables. See the PART
ITION BY clause, rather than PARTITIONED BY, for Kudu tables.

In Impala 2.10 and higher, the PARTITION BY clause is optional for Kudu tables. If the clause is omitted,
Impala automatically constructs a single partition that is not connected to any column. Because such atable
cannot take advantage of Kudu features for parallelized queries and query optimizations, omitting the PART
ITION BY clauseis only appropriate for small lookup tables.

Prior to Impala 2.5, you could use a partitioned table as the source and copy data from it, but could not specify any
partitioning clauses for the new table. In Impala 2.5 and higher, you can now use the PARTITIONED BY clause with

146

Cloudera Runtime Impala SQL statements

aCREATE TABLE ASSELECT statement. See the examples under the following discussion of the CREATE T
ABLE AS SELECT syntax variation.

Sorted tables (SORT BY clause):

The optional SORT BY clause |ets you specify zero or more columns that are sorted in the data files created by

each Impala INSERT or CREATE TABLE AS SELECT operation. Creating data files that are sorted is most useful
for Parquet tables, where the metadata stored inside each file includes the minimum and maximum values for each
column in thefile. (The statistics apply to each row group within thefile; for simplicity, Impalawrites a single row
group in each file.) Grouping data values together in relatively narrow ranges within each data file makes it possible
for Impalato quickly skip over datafiles that do not contain value ranges indicated in the WHERE clause of a query,
and can improve the effectiveness of Parquet encoding and compression.

This clause is not applicable for Kudu tables or HBase tables. Although it works for other HDFS file formats besides
Parquet, the more efficient layout is most evident with Parquet tables, because each Parquet data file includes
statistics about the data valuesin that file.

The SORT BY columns cannot include any partition key columns for a partitioned table, because those column
values are not represented in the underlying data files.

Because datafiles can arrive in Impala tables by mechanisms that do not respect the SORT BY clause, such asLOAD

DATA or ETL toolsthat create HDFS files, Impala does not guarantee or rely on the data being sorted. The sorting
aspect is only used to create a more efficient layout for Parquet files generated by Impala, which helpsto optimize
the processing of those Parquet files during Impala queries. During an INSERT or CREATE TABLE AS SELECT
operation, the sorting occurs when the SORT BY clause applies to the destination table for the data, regardless of
whether the source table has a SORT BY clause.

For example, when creating a table intended to contain census data, you might define sort columns such as last name
and state. If adatafilein this table contains a narrow range of last names, for example from Smith to Smythe, Impala
can quickly detect that this data file contains no matches for a WHERE clause such as WHERE last_name = 'Jones
and avoid reading the entirefile.

CREATE TABLE census_data (last_name STRING first_name STRING state STRI NG
address STRI NG

SORT BY (|l ast_nane, state)

STORED AS PARQUET;

Likewise, if an existing table contains data without any sort order, you can reorganize the data in a more efficient way
by using INSERT or CREATE TABLE AS SELECT to copy that datainto a new table with a SORT BY clause:

CREATE TABLE sorted _census_data
SORT BY (|l ast_nane, state)
STORED AS PARQUET
AS SELECT | ast_nane, first_nane, state, address
FROM unsort ed_census_dat a;

The metadata for the SORT BY clauseis stored in the TBLPROPERTIES fields for the table. Other SQL engines that
can interoperate with Impalatables, such as Hive and Spark SQL, do not recognize this property when inserting into a
table that has a SORT BY clause.

Transactional tables:

In the version 3.3 and higher, when integrated with Hive 3, Impala can create, read, and insert into transactional
tables.

To create atable that supports transactions, use the TBLPROPERTIES clause and set the 'transactional’ and 'transac
tional_properties' as below. Currently, Impala only supportsinsert-only transactional tables.

TBLPROPERTI ES(' transactional ' =" true', 'transactional properties'="insert_onl
y')

147

Cloudera Runtime Impala SQL statements

When integrated with Hive3 and the DEFAULT_TRANSACTIONAL_TY PE query option is set to INSERT_ONLY,
tables are created as insert-only transactional table by default.

Transactional tables are not supported for Kudu and HBase.
Kudu considerations:

Because Kudu tables do not support clauses related to HDFS and S3 data files and partitioning mechanisms, the
syntax associated with the STORED AS KUDU clause is shown separately in the above syntax descriptions. Kudu
tables have their own syntax for CREATE TABLE, CREATE EXTERNAL TABLE, and CREATE TABLE AS
SELECT. Prior to Impala 2.10, all internal Kudu tables require a PARTITION BY clause, different than the PART
ITIONED BY clause for HDFS-backed tables.

Here are some examples of creating empty Kudu tables:

-- Single partition. Only for Inpala 2.10 and hi gher.
-- Only suitable for snmall | ookup tables.
CREATE TABLE kudu_no_partition_by cl ause

id bigint PRIMARY KEY, s STRING b BOOLEAN
)
STORED AS KUDU,

-- Single-colum primry key.
CREATE TABLE kudu_t1 (id BI G NT PRI MARY key, s STRING b BOOLEAN)
PARTI TI ON BY HASH (i d) PARTITI ONS 20 STORED AS KUDU,

-- Milti-colum primary key.
CREATE TABLE kudu_t2 (id BIGNT, s STRING b BOOLEAN, PRI MARY KEY (id,s))
PARTI TI ON BY HASH (s) PARTI TI ONS 30 STORED AS KUDY,

-- Meani ngful primary key columm is good for range partitioning.
CREATE TABLE kudu_t3 (id BIG NT, year INT, s STRI NG
b BOOLEAN, PRI MARY KEY (i d, year))
PARTI TI ON BY HASH (i d) PARTITI ONS 20,
RANGE (year) (PARTITION 1980 <= VALUES < 1990,
PARTI TI ON 1990 <= VALUES < 2000,
PARTI TI ON VALUE = 2001,
PARTI TI ON 2001 < VALUES)
STORED AS KUDUY;

Here is an example of creating an external Kudu table:

-- Inherits colum definitions fromoriginal table.
-- For tables created through Inpala, the kudu.table name property
-- conmes from DESCRI BE FORMATTED out put fromthe original table.
CREATE EXTERNAL TABLE external t1 STORED AS KUDU

TBLPROPERTI ES (' kudu. tabl e _nane' =" kudu_tbl created via_api');

In Impala 3.4 and higher, by default HM S implicitly trandates internal Kudu tables to external Kudu tables with
the 'external .table.purge’ property set to true. Y ou can explicitly create such external Kudu tables similar to the way
you create internal Kudu tables. Y ou must set the table property 'external .table.purge’ to true. Here is an example of
creating an external Kudu table;

CREATE EXTERNAL TABLE nyext kudut bl (
idint PRI MARY KEY,
name string)
PARTI TI ON BY HASH PARTI TI ONS 8
STORED AS KUuDU

148

Cloudera Runtime Impala SQL statements

TBLPROPERTI ES (' external .tabl e. purge' ="true');

Operations on the resulting external table in Impala, HM S, and Kudu table metadata is synchronized. HM S-Kudu
integration does not need to be enabled for external table synchronization. Such synchronized tables behave similar to
internal tables. For example, dropping a table removes the underlying Kudu table data as well as the table metadatain
HMS.

If you want to drop only the HM S metadata and not drop the Kudu table, you can set external .table.purge to false, as
shown in the following example:

ALTER TABLE nyext kudut bl set tbl properties('external.table.purge' = fa
| se');

Hereisan example of CREATE TABLE AS SELECT syntax for aKudu table:

-- The CTAS statenent defines the primary key and partitioning schene.
-- The rest of the columm definitions are derived fromthe select |ist.
CREATE TABLE ctas_t1

PRI MARY KEY (id) PARTITION BY HASH (id) PARTITIONS 10

STORED AS KUDU

AS SELECT id, s FROM kudu_t 1;

The following CREATE TABLE clauses are not supported for Kudu tables:

e PARTITIONED BY (Kudu tables use the clause PARTITION BY instead)
*+ LOCATION

* ROWFORMAT

+ CACHED IN | UNCACHED

* WITH SERDEPROPERTIES

Partitioning for Kudu tables (PARTITION BY clause)

For Kudu tables, you specify logical partitioning across one or more columns using the PARTITION BY clause. In
contrast to partitioning for HDFS-based tables, multiple values for a partition key column can be located in the same
partition. The optional HASH clause lets you divide one or a set of partition key columnsinto a specified number of
buckets. Y ou can use more than one HASH clause, specifying a distinct set of partition key columns for each. The
optional RANGE clause further subdivides the partitions, based on a set of comparison operations for the partition
key columns,

Here are some examples of the PARTITION BY HASH syntax:

-- Apply hash function to 1 prinmary key col um.

create table hash_t1 (x bigint, y bigint, s string, primry key (Xx,y))
partition by hash (x) partitions 10
stored as kudu;

-- Apply hash function to a different primary key col um.

create table hash t2 (x bigint, y bigint, s string, primary key (x,Y))
partition by hash (y) partitions 10
stored as kudu;

-- Apply hash function to both primary key col ums.

-- In this case, the total nunber of partitions is 10.

create table hash t3 (x bigint, y bigint, s string, primary key (x,Yy))
partition by hash (x,y) partitions 10
stored as kudu;

149

Cloudera Runtime Impala SQL statements

-- When the colum list is onitted, apply hash function to all prinmary key c
ol umms.
create table hash_ t4 (x bigint, y bigint, s string, primary key (x,Yy))
partition by hash partitions 10
stored as kudu;

-- Hash the X val ues independently fromthe Y val ues.

-- In this case, the total nunber of partitions is 10 x 20.

create table hash_t5 (x bigint, y bigint, s string, primary key (x,Yy))
partition by hash (x) partitions 10, hash (y) partitions 20
stored as kudu;

Here are some examples of the PARTITION BY RANGE syntax:

-- Create partitions that cover every possible value of X

-- Ranges that span nultiple values use the keyword VALUES bet ween

-- a pair of < and <= conpari sons

create table range_t1 (x bigint, s string, s2 string, primary key (x, S))
partition by range (x)

partition 0 <= values <= 49, partition 50 <= val ues <= 100,
partition values < 0, partition 100 < val ues

stored as kudu;

-- Create partitions that cover sone possible values of X

-- Val ues outside the covered range(s) are rejected.

-- New range partitions can be added through ALTER TABLE

create table range t2 (x bigint, s string, s2 string, primary key (x, s))
partition by range (x)

partition 0 <= values <= 49, partition 50 <= val ues <= 100
stored as kudu;
-- A range can al so specify a single specific value, using the keyword VALUE
-- with an = conpari son.
create table range t3 (x bigint, s string, s2 string, primary key (x, S))
partition by range (S)

partition value = 'Yes', partition value = 'No', partition value = 'M
aybe'

stored as kudu;
-- Using nmultiple colums in the RANGE cl ause and tuples inside the parti
tion spec
-- only works for partitions specified with the VALUE= synt ax.
create table range_t4 (x bigint, s string, s2 string, primary key (x, S))
partition by range (x,s)

partition value = (0,'zero'), partition value = (1,'one'), partition v
alue = (2,'"two")

stored as kudu;

Here are some examples combining both HASH and RANGE syntax for the PARTITION BY clause:

-- Values fromeach range partition are hashed into 10 associ ated buckets.
-- Total nunber of partitions in this case is 10 x 2.

150

Cloudera Runtime Impala SQL statements

create table conbined_t1 (x bigint, s string, s2 string, primry key (x, s))
partition by hash (x) partitions 10, range (X)
(

partition 0 <= values <= 49, partition 50 <= val ues <= 100
stored as kudu;

-- The hash partitioning and range partitioning can apply to different colum
ns.
-- But all the colums used in either partitioning scheme nust be fromthe p
rimry key.
create table conmbined t2 (x bigint, s string, s2 string, primary key (x, S))
partition by hash (s) partitions 10, range (X)
(

partition 0 <= values <= 49, partition 50 <= val ues <= 100

stored as kudu;

Specifying file format (STORED AS and ROW FORMAT clauses):

The STORED AS clause identifies the format of the underlying datafiles. Currently, Impala can query more types
of file formats than it can create or insert into. Use Hive to perform any create or data load operations that are not
currently available in Impala. For example, Impala can create an Avro, SequenceFile, or RCFile table but cannot
insert datainto it. There are also Impala-specific procedures for using compression with each kind of file format. For
details about working with data files of various formats, see How Impala works with Hadoop fle formats.

Note: InImpala1.4.0 and higher, Impala can create Avro tables, which formerly required doing the CREA
TE TABLE statement in Hive. See Using the Avro file format with Impala Tables for details and examples.

By default (when no STORED AS clause is specified), datafilesin Impalatables are created as text files with Ctrl-

A (hex 01) characters as the delimiter. Specify the ROW FORMAT DELIMITED clause to produce or ingest data
filesthat use a different delimiter character such astab or |, or adifferent line end character such as carriage return

or newline. When specifying delimiter and line end characters with the FIELDS TERMINATED BY and LINES TE
RMINATED BY clauses, use'\t' for tab, \n' for newline or linefeed, "\r' for carriage return, and \0 for ASCII nul (hex
00).

The ESCAPED BY clause applies both to text files that you create through an INSERT statement to an Impala TEXT
FILE table, and to existing data files that you put into an Impalatable directory. (Y ou can ingest existing data files
either by creating the table with CREATE EXTERNAL TABLE ... LOCATION, the LOAD DATA statement,

or through an HDFS operation such as hdfs dfs -put file hdfs_path.) Choose an escape character that is not used
anywhere elsein thefile, and put it in front of each instance of the delimiter character that occurs within afield
value. Surrounding field values with quotation marks does not help Impala to parse fields with embedded delimiter
characters; the quotation marks are considered to be part of the column value. If you want to use\ as the escape
character, specify the clauseini npal a- shel | asESCAPED BY "\

Note: The CREATE TABLE clauses FIELDS TERMINATED BY, ESCAPED BY, and LINESTERMIN
ATED BY have special rulesfor the string literal used for their argument, because they all require asingle
character. Y ou can use aregular character surrounded by single or double quotation marks, an octal sequence
such as \054' (representing a comma), or an integer in the range '-127'..'128' (with quotation marks but no
backslash), which isinterpreted as a single-byte ASCII character. Negative values are subtracted from 256;
for example, FIELDS TERMINATED BY '-2' setsthe field delimiter to ASCII code 254, the “Icelandic
Thorn” character used as a delimiter by some data formats.

Cloning tables (LIKE clause):

To create an empty table with the same columns, comments, and other attributes as another table, use the following
variation. The CREATE TABLE ... LIKE form allows arestricted set of clauses, currently only the LOCATION,
COMMENT, and STORED AS clauses.

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_name

151

Cloudera Runtime Impala SQL statements

LIKE { [db_nane.]tabl e_name | PARQUET ' hdfs_path_of _parquet_file' }
[COMVENT 't abl e_coment ']

[STORED AS file fornmat]

[LOCATI ON ' hdfs_pat h']

Note:
E To clone the structure of atable and transfer datainto it in asingle operation, use the CREATE TABLE AS
SELECT syntax described in the next subsection.

When you clone the structure of an existing table using the CREATE TABLE ... LIKE syntax, the new table keeps
the same file format as the original one, so you only need to specify the STORED AS clauseif you want to use a
different file format, or when specifying aview asthe original table. (Creating atable “like” aview produces atext
table by default.)

Although normally Impala cannot create an HBase table directly, Impala can clone the structure of an existing HBase
table with the CREATE TABLE ... LIKE syntax, preserving the file format and metadata from the original table.

There are some exceptions to the ability to use CREATE TABLE ... LIKE with an Avro table. For example, you
cannot use this technique for an Avro table that is specified with an Avro schema but no columns. When in doubt,
check if aCREATE TABLE ... LIKE operation worksin Hive; if not, it typically will not work in Impala either.

If the original table is partitioned, the new table inherits the same partition key columns. Because the new tableis
initially empty, it does not inherit the actual partitions that exist in the original one. To create partitions in the new
table, insert data or issue ALTER TABLE ... ADD PARTITION statements.

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view_name syntax. In Impala 1.4.0

and higher, you can create a table with the same column definitions as aview using the CREATE TABLE LIKE
technique. Although CREATE TABLE LIKE normally inherits the file format of the original table, aview hasno
underlying file format, so CREATE TABLE LIKE view_name produces a text table by default. To specify a different
fileformat, include a STORED AS file_format clause at the end of the CREATE TABLE LIKE statement.

Because CREATE TABLE ... LIKE only manipulates table metadata, not the physical data of the table, issue
INSERT INTO TABLE statements afterward to copy any data from the original table into the new one, optionally
converting the data to a new file format. For some file formats, Impalacan do aCREATE TABLE ... LIKE to create
the table, but Impala cannot insert datain that file format; in these cases, you must load the datain Hive.

CREATE TABLE AS SELECT:

The CREATE TABLE AS SELECT syntax is a shorthand notation to create a table based on column definitions
from ancther table, and copy data from the source table to the destination table without issuing any separate INSERT
statement. Thisidiom is so popular that it hasits own acronym, “CTAS".

The following examples show how to copy data from a source table T1 to a variety of destinations tables, applying
various transformations to the table properties, table layout, or the dataitself as part of the operation:

-- Sanple table to be the source of CTAS operations.
CREATE TABLE t1 (x INT, y STRING;
I NSERT INTO t1 VALUES (1, 'one'), (2, '"two'), (3, 'three');

-- Cone all the colums and data fromone table to another.
CREATE TABLE clone _of t1 AS SELECT * FROM t 1;

Focococcccoccococooooe +
| summary |
feccoccccooococooooc +
| I'nserted 3 row(s) |
fecccoococoococooccoocooe +

-- Clone the colums and data, and convert the data to a different file form
at .
CREATE TABLE parquet version_of t1 STORED AS PARQUET AS SELECT * FROM t 1;

152

Cloudera Runtime Impala SQL statements

-- Copy only sonme rows to the new tabl e.
CREATE TABLE subset _of t1 AS SELECT * FROMt1l WHERE x >= 2;

dooccocococooocooooooooc +

| summary |

o e e e oo +

| I'nserted 2 row(s) |

Foococcococococosooos +

-- Same idea as CREATE TABLE LIKE: clone table |ayout but do not copy any d
at a.

CREATE TABLE enpty clone_of t1 AS SELECT * FROM t1 WHERE 1=0;
o e e e oo +

| summary |

Foococcococococosooos +

| I'nserted O row(s) |

dooccocococooocooooooooc +

-- Reorder and renane columms and transformthe data.
CREATE TABLE t5 AS SELECT upper(y) AS s, x+1 AS a, 'Entirely new columm' AS
n FROM t 1;

SELECT * FROM t 5;

ONE	2	Entirely new colum
TWO	3	Entirely new colum
THREE	4	Entirely new col um

Seethe SELECT statement on page 207 topic for details about query syntax for the SELECT portion of a CREA
TE TABLE AS SELECT statement.

The newly created table inherits the column names that you select from the original table, which you can override by
specifying column aliases in the query. Any column or table comments from the original table are not carried over to
the new table.

Note: When using the STORED AS clause witha CREATE TABLE AS SELECT statement, the
destination table must be afile format that Impala can write to: currently, text or Parquet. Y ou cannot specify
an Avro, SequenceFile, or RCFile table as the destination table for a CTAS operation.

Prior to Impala 2.5 you could use a partitioned table as the source and copy data from it, but could not specify any
partitioning clauses for the new table. In Impala 2.5 and higher, you can now use the PARTITIONED BY clause with
aCREATE TABLE AS SELECT statement. The following example demonstrates how you can copy datafrom an
unpartitioned tablein aCREATE TABLE AS SELECT operation, creating a new partitioned table in the process. The
main syntax consideration is the column order in the PARTITIONED BY clause and the select list: the partition key
columns must be listed last in the select list, in the same order asin the PARTITIONED BY clause. Therefore, in this
case, the column order in the destination table is different from the source table. Y ou also only specify the column
namesin the PARTITIONED BY clause, not the data types or column comments.

create table partitions_no (year smallint, nmonth tinyint, s string);
insert into partitions_no values (2016, 1, 'January 2016'),
(2016, 2, 'February 2016'), (2016, 3, 'March 2016');

-- Prove that the source table is not partitioned.

153

Cloudera Runtime Impala SQL statements

show partitions partitions_no;
ERROR: Anal ysi sException: Table is not partitioned: ctas_partition_by.partit
i ons_no
-- Create new table with partitions based on columm val ues from source tab
e.
create table partitions_yes partitioned by (year, nonth)

as select s, year, nonth frompartitions_no;

feccoccccooococooooc +
| summary |
Foococcococococosooos +
| I'nserted 3 row(s) |
dooccocococooocooooooooc +

-- Prove that the destination table is partitioned.
show partitions partitions_yes;

+--- - - +--- - - +--- - - R +------ +. .
| year | nonth | #Rows | #Files | Size |...
Foococooc Foococooc Foococooc Fooocooooe Fooocooc +

| 2016 | 1 | -1 | 1 | 13B |

| 2016 | 2 | -1 | 1 | 14B |

| 2016 | 3 | -1 | 1 | 11B |

| Total | | -1 | 3 | 38B |
Feccooas Feccooas Feccooas Fococococ Focococ +

The most convenient layout for partitioned tablesiswith al the partition key columns at the end. The CTAS
PARTITIONED BY syntax requires that column order in the select list, resulting in that same column order in the
destination table.

descri be partitions_no;

demmaoo- demmmmeaao demmmmeao +
| nane | type | coment |
fooocoooc fesccocoooooc feocococooooc +
| year | smallint | |
| month | tinyint | |
| s | string [[
demmaoo- R R +

-- The CTAS operation forced us to put the partition key colums | ast.
-- Having those colunms | ast works better with idions such as SELECT *
-- for partitioned tables.

descri be partitions_yes;

feococos focccoscoos fooccosces +
| nane | type | coment |
fooocoooc fesccocoooooc feocococooooc +
s	string	
year	smallint	
month	tinyint	
feococos docccoscoos focccosces +

Attempting to use a select list with the partition key columns not at the end resultsin an error due to a column name
mismatch:

-- W expect this CTAS to fail because non-key colum S
-- cones after key colums YEAR and MONTH in the select |ist.
create table partitions_maybe partitioned by (year, nonth)
as select year, nmonth, s frompartitions_no;
ERROR: Anal ysi sException: Partition colum nane m smatch: year != nonth

Aspart of a CTAS operation, you can convert the data to any file format that Impala can write (currently, TEXTFILE
and PARQUET). Y ou cannot specify the lower-level properties of atext table, such asthe delimiter.

154

Cloudera Runtime Impala SQL statements

Sorting considerations: Although you can specify an ORDER BY clausein an INSERT ... SELECT statement, any
ORDER BY clauseisignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially
creates many different datafiles, prepared by different executor Impala daemons, and therefore the notion of the data
being stored in sorted order isimpractical.

CREATE TABLE LIKE PARQUET:

The variation CREATE TABLE ... LIKE PARQUET 'hdfs_path_of parquet_fil€' lets you skip the column
definitions of the CREATE TABLE statement. The column names and data types are automatically configured based
on the organization of the specified Parquet data file, which must already reside in HDFS. Y ou can use a datafile
located outside the Impala database directories, or afile from an existing Impala Parquet table; either way, Impala
only uses the column definitions from the file and does not use the HDFS location for the LOCATION attribute of
the new table. (Although you can also specify the enclosing directory with the LOCATION attribute, to both use the
same schema as the data file and point the Impalatable at the associated directory for querying.)

The following considerations apply when you use the CREATE TABLE LIKE PARQUET technique:

« Any column comments from the origina table are not preserved in the new table. Each column in the new table
has a comment stating the low-level Parquet field type used to deduce the appropriate SQL column type.

« |If you use adatafile from a partitioned Impalatable, any partition key columns from the origina table are | eft
out of the new table, because they are represented in HDFS directory names rather than stored in the datafile.
To preserve the partition information, repeat the same PARTITION clause asin the original CREATE TABLE
Statement.

» Thefileformat of the new table defaults to text, as with other kinds of CREATE TABLE statements. To make
the new table also use Parquet format, include the clause STORED AS PARQUET inthe CREATE TABLE LIK
E PARQUET statement.

 |f the Parquet datafile comes from an existing Impalatable, currently, any TINYINT or SMALLINT columns are
turned into INT columnsin the new table. Internally, Parquet stores such values as 32-bit integers.

* When the destination table uses the Parquet file format, the CREATE TABLE AS SELECT and INSERT ... S
ELECT statements always create at |east one datafile, even if the SELECT part of the statement does not match
any rows. Y ou can use such an empty Parquet datafile as atemplate for subsequent CREATE TABLE LIKE PA
RQUET statements.

For more details about creating Parquet tables, and examples of the CREATE TABLE LIKE PARQUET syntax, see
Using the Parquet file format with Impala tables.

Visibility and Metadata (TBLPROPERTIES and WITH SERDEPROPERTIES clauses):

Y ou can associate arbitrary items of metadata with a table by specifying the TBLPROPERTIES clause. This clause
takes a comma-separated list of key-value pairs and stores those itemsin the metastore database. Y ou can aso change
the table properties later with an ALTER TABLE statement. Y ou can observe the table properties for different
delimiter and escape characters using the DESCRIBE FORMATTED command, and change those settings for an
existing tablewith ALTER TABLE ... SET TBLPROPERTIES.

Y ou can also associate SerDes properties with the table by specifying key-value pairs through the WITH SERDEPR
OPERTIES clause. This metadatais not used by Impala, which hasits own built-in serializer and deserializer for the
file formats it supports. Particular property values might be needed for Hive compatibility with certain variations of
file formats, particularly Avro.

Some DDL operations that interact with other Hadoop components require specifying particular values in the SERD
EPROPERTIES or TBLPROPERTIES fields, such as creating an Avro table or an HBase table. (Y ou typically create
HBase tables in Hive, because they require additional clauses not currently available in Impala.)

To see the column definitions and column comments for an existing table, for example before issuinga CREATE T
ABLE ... LIKEor aCREATE TABLE ... AS SELECT statement, issue the statement DESCRIBE table name. To
see even more detail, such as the location of data files and the values for clauses such as ROW FORMAT and STOR
ED AS, issue the statement DESCRIBE FORMATTED table name. DESCRIBE FORMATTED is aso needed to
see any overall table comment (as opposed to individual column comments).

After creating atable, your i npal a- shel | session or another i npal a- shel | connected to the same node can
immediately query that table. There might be abrief interval (one statestore heartbeat) before the table can be queried

155

Cloudera Runtime Impala SQL statements

through a different Impala node. To make the CREATE TABLE statement return only when the table is recognized
by all Impalanodes in the cluster, enable the SYNC_DDL query option.

HDFS caching (CACHED IN clause):

If you specify the CACHED IN clause, any existing or future data filesin the table directory or the partition
subdirectories are designated to be loaded into memory with the HDFS caching mechanism.

In Impala 2.2 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE lets
you specify areplication factor, the number of hosts on which to cache the same data blocks. When Impala processes
a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host that has a
cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the same cached
data block is processed multiple times. Cloudera recommends specifying a value greater than or equal to the HDFS
block replication factor.

Column order:

If you intend to use the table to hold data files produced by some external source, specify the columnsin the same
order asthey appear in the datafiles.

If you intend to insert or copy data into the table through Impala, or if you have control over the way externally
produced datafiles are arranged, use your judgment to specify columnsin the most convenient order:

» |f certain columns are often NULL, specify those columns last. Y ou might produce data files that omit these
trailing columns entirely. Impala automatically fillsin the NULL valuesif so.

« |If an unpartitioned table will be used as the source for an INSERT ... SELECT operation into a partitioned table,
specify last in the unpartitioned table any columns that correspond to partition key columnsin the partitioned
table, and in the same order as the partition key columns are declared in the partitioned table. This technique lets
you use INSERT ... SELECT * when copying data to the partitioned table, rather than specifying each column
name individualy.

» If you specify columnsin an order that you later discover is suboptimal, you can sometimes work around the
problem without recreating the table. Y ou can create aview that selects columns from the original tablein a
permuted order, then do a SELECT * from the view. When inserting data into atable, you can specify a permuted
order for the inserted columns to match the order in the destination table.

Hive considerations:

Impala queries can make use of metadata about the table and columns, such as the number of rows in atable or the
number of different valuesin a column. Prior to Impala 1.2.2, to create this metadata, you issued the ANALY ZE
TABLE statement in Hive to gather thisinformation, after creating the table and loading representative datainto it. In
Impala 1.2.2 and higher, the COMPUTE STATS statement produces these statistics within Impala, without needing to
use Hiveat al.

HBase considerations:

Note:

B The Impala CREATE TABLE statement cannot create an HBase table, because it currently does not support
the STORED BY clause needed for HBase tables. Create such tables in Hive, then query them through
Impala

Amazon S3 considerations:

To create a table where the data resides in the Amazon Simple Storage Service (S3), specify as3a:// prefix LOCA
TION attribute pointing to the datafilesin S3.

In Impala 2.6 and higher, you can use this special LOCATION syntax as part of a CREATE TABLE AS SELECT
statement.

In Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP DAT
ABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove folders
as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point |mpala database,
tables, or partitions at them, and manually remove folders when no longer needed.

156

Cloudera Runtime Impala SQL statements

Sorting considerations: Although you can specify an ORDER BY clausein an INSERT ... SELECT statement, any
ORDER BY clauseisignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially
creates many different datafiles, prepared by different executor Impala daemons, and therefore the notion of the data
being stored in sorted order isimpractical.

HDFS considerations:

The CREATE TABLE statement for an internal table creates a directory in HDFS. The CREATE EXTERNAL
TABLE statement associates the table with an existing HDFS directory, and does not create any new directory

in HDFS. To locate the HDFS data directory for atable, issue a DESCRIBE FORMATTED table statement. To
examine the contents of that HDFS directory, use an OS command such as hdfs dfs -Is hdfs://path, either from the OS
command line or through the shell or I commandsini npal a- shel | .

The CREATE TABLE AS SELECT syntax creates data files under the table data directory to hold any data copied by
the INSERT portion of the statement. (Even if no datais copied, Impala might create one or more empty datafiles.)

HDFS permissions:

The user ID that thei npal ad daemon runs under, typically the impala user, must have both execute and write
permission for the database directory where the table is being created.

Security considerations:

If these statementsin your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statementsin log files and other administrative
contexts.

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATYS) can be
cancelled during some stages, when running INSERT or SELECT operationsinternally. To cancel this statement, use
Ctrl-C from thei nmpal a- shel | interpreter, the Cancel button from the Watch page in Hue, Actions > Cancel from
the Querieslist in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries
tab in the Impalaweb Ul (port 25000).

Impalatables

Partitioning

Hadoop file formats supported
SQL transactionsin Impala

The CREATE VIEW statement lets you create a shorthand abbreviation for a more complicated query. The base
guery can involve joins, expressions, reordered columns, column aiases, and other SQL features that can make a
query hard to understand or maintain.

Because aview is purely alogical construct (an alias for a query) with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data filesin HDFS.

Syntax:
CREATE VIEW [I F NOT EXI STS] vi ew_nane
[(col um_name [COMMVENT ' col umm_commrent'][, ...])]
[COMMENT ' vi ew_coment ']
[TBLPROPERTI ES (' nane' = 'value'[, ...])]

AS sel ect _st at enent

Statement type: DDL
Usage notes:

157

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-partition.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-file-formats.html

Cloudera Runtime Impala SQL statements

The CREATE VIEW statement can be useful in scenarios such as the following:

e Toturn even the most lengthy and complicated SQL query into aone-liner. Y ou can issue simple queries against
the view from applications, scripts, or interactive queriesini npal a- shel | . For example:

select * from vi ew nane;
select * fromview nane order by cl desc limt 10;

The more complicated and hard-to-read the origina query, the more benefit there isto simplifying the query using
aview.

e To hide the underlying table and column names, to minimize maintenance problems if those names change. In
that case, you re-create the view using the new names, and all queries that use the view rather than the underlying
tables keep running with no changes.

* To experiment with optimization techniques and make the optimized queries available to all applications. For
example, if you find a combination of WHERE conditions, join order, join hints, and so on that works the best
for aclass of queries, you can establish aview that incorporates the best-performing techniques. Applications
can then make relatively simple queries against the view, without repeating the complicated and optimized logic
over and over. If you later find a better way to optimize the original query, when you re-create the view, al the
applications immediately take advantage of the optimized base query.

« Tosimplify awhole class of related queries, especially complicated queries involving joins between multiple
tables, complicated expressionsin the column list, and other SQL syntax that makes the query difficult to
understand and debug. For example, you might create a view that joins severa tables, filters using severa
WHERE conditions, and selects several columns from the result set. Applications might issue queries against this
view that only vary intheir LIMIT, ORDER BY, and similar simple clauses.

For queries that require repeating complicated clauses over and over again, for examplein the select list, ORDER BY,
and GROUP BY clauses, you can use the WITH clause as an alternative to creating aview.

Y ou can optionally specify the table-level and the column-level comments asin the CREATE TABLE statement.
Complex type considerations:

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typicaly use join queriesto
refer to the complex values. Y ou can use viewsto hide the join notation, making such tables seem like traditional
denormalized tables, and making those tables queryable by businessintelligence tools that do not have built-in
support for those complex types.

Because you cannot directly issue SELECT col_name against a column of complex type, you cannot use aview or a
WITH clause to “rename” a column by selecting it with a column alias.

If you connect to different Impala nodes within ani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by al the Impala nodes.

Security considerations:

If these statementsin your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statementsin log files and other administrative
contexts.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

-- Create a viewthat is exactly the sane as the underlying table.
CREATE VI EWv1 AS SELECT * FROM 11,

-- Create a view that includes only certain colums fromthe underlying tabl
e.
CREATE VI EWv2 AS SELECT cl1, c3, c7 FROMt1;

158

Cloudera Runtime Impala SQL statements

-- Create a viewthat filters the values fromthe underlying table.
CREATE VI EWv3 AS SELECT DI STINCT c1, ¢3, ¢7 FROMt1l WHERE c1 IS NOT NULL A

ND c5 > 0;

-- Create a viewthat that reorders and renanmes colums from the underlying

tabl e.

CREATE VI EWv4 AS SELECT c4 AS | ast_nane, c6 AS address, c2 AS birth _date
FROM t 1;

-- Create a view that runs functions to convert or transformcertain colu
ms.

CREATE VI EWv5 AS SELECT c1, CAST(c3 AS STRING c3, CONCAT(c4,c5) c5, TRIM
c6) c6, "Constant" c8 FROMt1;

-- Create a view that hides the conplexity of a view query.

CREATE VIEWvV6 AS SELECT tl.cl1, t2.c2 FROMt1 JONt2 ONtl.id =t2.id;

-- Create a viewwith a colum coment and a table comment.

CREATE VI EWv7 (cl1 COWENT ' Comment for cl1', c2) COWENT ' Comment for v7' AS
SELECT t1.cl, tl1l.c2 FROMt1;

-- Create a viewwith tbl properties.
CREATE VIEW V7 (cl1 , c2) TBLPROPERTIES ('tblpl" = "'1', "tblp2' ="'2') AS SE
LECT tl1.cl, tl1.c2 FROM t1;

The DELETE statement deletes an arbitrary number of rows from a Kudu table. This statement only works for Impala
tables that use the Kudu storage engine.

Syntax:

DELETE [FROM [dat abase _nane.]tabl e_name [WHERE where_conditions]

DELETE table ref FROM [joined table refs] [WHERE where_conditi ons]

The first form evaluates rows from one table against an optional WHERE clause, and deletes all the rows that match
the WHERE conditions, or al rowsif WHERE is omitted.

The second form evaluates one or more join clauses, and deletes all matching rows from one of the tables. The join
clauses can include non-Kudu tables, but the table from which the rows are deleted must be a Kudu table. The FROM
keyword isrequired in this case, to separate the name of the table whose rows are being deleted from the table names
of thejoin clauses.

Usage notes:
The conditions in the WHERE clause are the same ones allowed for the SELECT statement.

The conditions in the WHERE clause can refer to any combination of primary key columns or other columns.
Referring to primary key columnsin the WHERE clause is more efficient than referring to non-primary key columns.

If the WHERE clause is omitted, all rows are removed from the table.

Because Kudu currently does not enforce strong consistency during concurrent DML operations, be aware that the
results after this statement finishes might be different than you intuitively expect:

« |f some rows cannot be deleted because their some primary key columns are not found, due to their being deleted
by a concurrent DELETE operation, the statement succeeds but returns a warning.

e A DELETE statement might also overlap with INSERT, UPDATE, or UPSERT statements running concurrently
on the same table. After the statement finishes, there might be more or fewer rows than expected in the table
because it is undefined whether the DELETE applies to rows that are inserted or updated while the DELETE isin
progress.

159

Cloudera Runtime Impala SQL statements

The number of affected rowsisreportedinani npal a- shel | message and in the query profile.
Statement type: DML

Important: After adding or replacing datain atable used in performance-critical queries, issue a COMP
UTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for atable after
any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data
through Hive and doing a REFRESH table namein Impala. This technique is especially important for tables
that are very large, used in join queries, or both.

Examples:

The following examples show how to delete rows from a specified table, either al rows or rows that match a WHERE
clause:

-- Deletes all rows. The FROM keyword i s optional.
DELETE FROM kudu_t abl e;
DELETE kudu_t abl e;

-- Deletes 0, 1, or nore rows.

-- (If cl1is a single-colum primry key, the statenment could only
-- delete O or 1 rows.)

DELETE FROM kudu_t abl e WHERE c1 = 100;

-- Deletes all rows that match all the WHERE condi ti ons.
DELETE FROM kudu_t abl e WHERE

(cl >c2 ORc3 IN("hello',"world)) AND c4 IS NOT NULL;
DELETE FROM t 1 WHERE

(cl1 IN(1,2,3) ANDc2 > c3) ORc4 IS NOT NULL;
DELETE FROM ti me_seri es WHERE

year = 2016 AND nmonth IN (11, 12) AND day > 15;
-- WHERE condition with a subquery.
DELETE FROM t 1 WHERE

¢5 I N (SELECT DI STI NCT ot her _col FROM ot her _tabl e);
-- Does not delete any rows, because the WHERE condition is always fal se.
DELETE FROM kudu_t abl e WHERE 1 = 0;

The following examples show how to delete rows that are part of the result set from ajoin:

-- Renrove _all_rows fromtl that have a matching X value in t2.
DELETE t1 FROMt1 JON t2 ONtl.x = t2.x;
-- Renove _sonme_ rows fromtl that have a matching X value in t2.
DELETE t1 FROMt1 JONt2 ONt1l.x = t2.x

VWHERE t1.y = FALSE and t2.z > 100;

-- Delete froma Kudu table based on a join with a non-Kudu table.
DELETE t1 FROM kudu_table t1 JO N non_kudu_table t2 ONt1.x = t2.x;

-- The tables can be joined in any order as |ong as the Kudu table

-- is specified as the deletion target.
DELETE t2 FROM non_kudu_table t1 JON kudu_table t2 ONt1l.x = t2.Xx;

SELECT statement

The DESCRIBE statement displays metadata about a table, such as the column names and their data types. In Impala
2.3 and higher, you can specify the name of a complex type column, which takes the form of a dotted path. The path

160

Cloudera Runtime Impala SQL statements

might include multiple componentsin the case of anested type definition. In Impala 2.5 and higher, the DESCRIBE
DATABASE form can display information about a database.

Syntax:

DESCRI BE [DATABASE] [FORVATTED| EXTENDED] obj ect _name

obj ect_nane ::=
[db_nane.]tabl e_nane[.conpl ex_col nane ...]
| db_nane

Y ou can use the abbreviation DESC for the DESCRIBE statement.

The DESCRIBE FORMATTED variation displays additional information, in aformat familiar to users of Apache
Hive. The extrainformation includes low-level details such as whether the table isinternal or external, when it was
created, the file format, the location of the datain HDFS, whether the object is atable or aview, and (for views) the
text of the query from the view definition.

Note: The Compressed field is not areliable indicator of whether the table contains compressed data. It
IE typically always shows No, because the compression settings only apply during the session that |oads data
and are not stored persistently with the table metadata.

Describing databases:

By default, the DESCRIBE output for a database includes the location and the comment, which can be set by the
LOCATION and COMMENT clauses on the CREATE DATABASE statement.

The additional information displayed by the FORMATTED or EXTENDED keyword includes the HDFS user 1D that
is considered the owner of the database, and any optional database properties. The properties could be specified by
the WITH DBPROPERTIES clause if the database is created using a Hive CREATE DATABASE statement. Impala
currently does not set or do any special processing based on those properties.

The following examples show the variations in syntax and output for describing databases. This feature is availablein
Impala 2.5 and higher.

descri be dat abase defaul t;

feccoocooc feccoccococcoccocooooooc feccoococccoococcooooooe +
| name | location | comment |
Foccocasos Fococococococococoooooe Foococcoccococococososooos +
| default | /user/hive/warehouse | Default H ve database |
Fooocooocococ doococooccooocooocooooooooc Foococococcooocooocoooooocoooc +

oo CES S A S S S S SIS S S S S +
| nane | location | comrent [
feoococooooc foccococococococcooccoocooc foccocoocococcoccoocoocooos +
| default | /user/hive/warehouse | Default H ve database |
| Oaner: | [[
| | public | ROLE |
TS SRS S A S S S S S S S S S S S +

Fococooooe Focococococococococoooc Focococcoccoccoccococooooooe +
| name | location | comment |
feccoocooc feccoccococcoccocooooooc feccoococccoococcooooooe +
| default | /user/hivel/warehouse | Default Hi ve database |
| Owner [[[
| | public | ROLE |
Fococooooe Focococococococococoooc Focococcoccoccoccococooooooe +

Describing tables:
If the DATABASE keyword is omitted, the default for the DESCRIBE statement isto refer to atable.

161

Cloudera Runtime Impala SQL statements

If you have the SELECT privilege on a subset of the table columns and no other relevant table/database/server-level
privileges, DESCRIBE returns the data from the columns you have access to.

If you have the SELECT privilege on a subset of the table columns and no other relevant table/database/server-level
privileges, DESCRIBE FORMATTED/EXTENDED does not return the LOCATION field. The LOCATION datais
shown if you have any privilege on the table, the containing database or the server.

-- By default, the table is assumed to be in the current database.
descri be ny_tabl e;

Focoooc Fococoooc Foccocasos +
| nanme | type | comment |
Fooocooc Fooocooooe Fooocooocococ +
| x | int | |
| s | string | [
C T CT T +

-- Use a fully qualified table nane to specify a table in any database.
descri be ny_dat abase. ny_t abl e;

feoocooc feccoocooc feccooocooc +
| nanme | type | coment |
foccooc Foccoooac Foccooocooc +
| x | int | |
| s | string | |
Focococ Fococococ Fococooooe +

-- The formatted or extended output includes additional useful information.
-- The LOCATION field is especially useful to know for DDL statenents and HD
FS commrands

-- during ETL jobs. (The LOCATION includes a full hdfs:// URL, onitted here
for readability.)

describe formatted ny_tabl e;

e e
----- SIS S S S
| nane | type
| comment
Fococococococococococococoooooa FococococococococoocoocoCoCcoCoCoCoCoCooooooooo
s ete e e eeeeceeaaaoa +
| # col _nane | data_type
| comment |
| NULL
| NULL [
| x | int
| NULL [
| s | string
| NULL |
| NULL
| NULL [
| # Detailed Table Information | NULL
| NULL [
| Database: | ny_dat abase
| NULL |
| Owner: | jrussel
| NULL [
| CreateTine: | Fri Mar 18 15:58:00 PDT 2016
| NULL [
| Last AccessTi ne: | UNKNOWN
| NULL |
| Protect Mode: | None
| NULL [
| Retention: | O
| NULL [

162

Cloudera Runtime

Impala SQL statements

| Location: | /user/hivel/warehouse/ ny_dat abase. db/ ny_t ab
e | NULL
| Tabl e Type: | MANAGED TABLE
| NULL
| Tabl e Paraneters: | NULL
| NULL |
[| transient_|astDdl Ti me
| 1458341880 [
[| NULL
| NULL [
| # Storage Information | NULL
| NULL |
| SerDe Library: | org. . LazySi npl eSer De
| NULL |
| I nput For mat : | org.apache. hadoop. mapr ed. Text | nput For mat
| NULL [
| CQut put For mat : | org. . Hi vel gnor eKeyText Qut put For nmat
| NULL |
| Conpressed: | No
| NULL |
| Num Bucket s: | O
| NULL [
| Bucket Col umms: | 1]
| NULL |
| Sort Col ums: | T[]
| NULL |
feccoococcococoococcocoococcooooooc foccoocococcoocococcoocococooocococoooococooooc
----- eccococococcoccoocoooooodp

Complex type considerations:

Because the column definitions for complex types can become long, particularly when such types are nested, the
DESCRIBE statement uses special formatting for complex type columns to make the output readable.

For the ARRAY, STRUCT, and MAP types available in Impala 2.3 and higher, the DESCRIBE output is formatted to
avoid excessively long lines for multiple fields within a STRUCT, or a nested sequence of complex types.

Y ou can pass amulti-part qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and
visualize its structure as if it were atable. For example, if table T1 contains an ARRAY column A1, you could issue
the statement DESCRIBE t1.al. If table T1 contained a STRUCT column S1, and afield F1 within the STRUCT
was aMAP, you could issue the statement DESCRIBE t1.s1.f1. An ARRAY is shown as a two-column table, with
ITEM and POS columns. A STRUCT is shown as a table with each field representing a column in the table. A MAP
is shown as atwo-column table, with KEY and VALUE columns.

For example, hereisthe DESCRIBE output for atable containing a single top-level column of each complex type:

create table t1 (x int, a array<int>, s struct<fl: string, f2: bigint> mnma
p<string,int>) stored as parquet;

descri be t1;

foccooc foccoccococoococooc Foccooocooc +
| nane | type | comment |
occooc focococococooccooocoacs feoococooooc +
| x | int | |
| a | array<int> [[
| s | struct< | |
| | fl:string, | |
[[f2: bi gi nt [[
| | > . | |
| m | map<string,int> | |
feoocooc feccoccocooocosooc feccooocooc +

163

Cloudera Runtime

Here are examples showing how to “drill down™ into the layouts of complex types, including using multi-part names
to examine the definitions of nested types. The < > delimitersidentify the columns with complex types; these are
the columns where you can descend another level to see the parts that make up the complex type. This technique
helps you to understand the multi-part names you use as table references in queries involving complex types, and the
corresponding column names you refer to in the SELECT list. These tables are from the “nested TPC-H” schema,
shown in detail in Sample schema and data for experimenting with |mpala complex types.

The REGION table contains an ARRAY of STRUCT €elements:

» Thefirst DESCRIBE specifies the table name, to display the definition of each top-level column.

» The second DESCRIBE specifies the name of a complex column, REGION.R_NATIONS, showing that when you
include the name of an ARRAY column in aFROM clause, that table reference acts like a two-column table with
columns ITEM and POS.

» Thefinal DESCRIBE specifiesthe fully qualified name of the ITEM field, to display the layout of its underlying
STRUCT typein table format, with the fields mapped to column names.

Impala SQL statements

-- #1. The overall layout of the entire table.
descri be region;
feccoococooooc feccoococcoccoococcocooococooc feccooocooc +
| name | type | coment |
foccoococooooc feccoocococcoocococooococooc Foccooocooc +
r _regi onkey smal | i nt
r_name string
r _coment string

n_nati onkey: smal | i nt,
n_nane: string,
n_coment: string

I

I

l .

| r_nations
I

I

I

| >>

I
I
I
| array<struct<
I
I
I
I

-- #2: The ARRAY colum within the table.
descri be region.r_nations;

item| struct<

[n_nati onkey: smal | i nt,
| n_nane: string,

[n_coment: string
I

I

-- #3: The STRUCT that makes up each ARRAY el enent.
-- The fields of the STRUCT act |ike columms of a table.
describe region.r_nations.item

Fococcoccoccooooe Focococococ Fococooooe +
| name | type | coment |
feccoococooooc feccococooc feccoocooc +
| n_nationkey | smallint | |
| n_nane | string [[
| n_comment | string | |
Fococcoccoccooooe Focococococ Fococooooe +

The CUSTOMER table contains an ARRAY of STRUCT elements, where onefield in the STRUCT is another
ARRAY of STRUCT elements:

* Again, theinitial DESCRIBE specifies only the table name.

164

Cloudera Runtime Impala SQL statements

» The second DESCRIBE specifies the qualified name of the complex column, CUSTOMER.C_ORDERS, showing
how an ARRAY is represented as a two-column table with columns ITEM and POS.

» Thethird DESCRIBE specifies the qualified name of the ITEM of the ARRAY column, to see the structure of
the nested ARRAY . Again, it has has two parts, ITEM and POS. Because the ARRAY contains a STRUCT, the
layout of the STRUCT is shown.

e Thefourth and fifth DESCRIBE statements drill down into a STRUCT field that isitself a complex type, an
ARRAY of STRUCT. The I TEM portion of the qualified nameis only required when the ARRAY elements
are anonymous. The fields of the STRUCT give names to any other complex types nested inside the STRUCT.
Therefore, the DESCRIBE parameters CUSTOMER.C_ORDERS.ITEM.O_LINEITEMS and CUSTOMER.C O
RDERS.O_LINEITEMS are equivalent. (For brevity, leave out the ITEM portion of a qualified name whenitis
not required.)

« Thefina DESCRIBE shows the layout of the deeply nested STRUCT type. Because there are no more complex
types nested inside this STRUCT, thisis as far as you can drill down into the layout for thistable.

-- #1: The overall layout of the entire table.

descri be custoner;

feccoocoocooooc frccooccococooccococooccocoooccocooooooc +
| nane | type I
foccoocococooooc fooccoccococcoccococcococococoocococooooooc +
| c_custkey | bigint [

nore scal ar colums ...

| c_orders | array<struct< |
| | o_orderkey: bi gi nt, [
[| o_orderstatus:string, |
| | o_total price:decinal (12, 2), |
[[o_orderdate: string, [
| | o_orderpriority:string, |
[[o_clerk:string, |
[[o_shippriority:int, |
| [o_conment : string, |
| | o_lineitens: array<struct< |
[[| _partkey: bi gint, [
| | | _suppkey: bi gi nt, |
[[| _l'i nenunber:int, [
[[| _quantity:deci ml (12, 2), |
[[| _extendedprice: deci mal (12, 2),

| | | _di scount:decinal (12, 2), |
[[| _tax:decimal (12, 2), [
| | | _returnflag:string, |
[[| _linestatus:string, [
		_shi pdate: string,
		_conmitdate:string,
		_receiptdate:string,
[[_shi pinstruct:string, [
		_shi pnode: string,
[[| _comment:string |
I | >> I
I | >> I
foccoocococooooc fooccoccococcoccococcococococoocococooooooc +

-- #2: The ARRAY colum wthin the table.
descri be custoner.c_orders;

item| struct< [
| o_orderkey: bi gi nt, |
[o_orderstatus:string, [
nore struct fields ...
[[o_lineitems: array<struct< [
| | | _partkey: bi gi nt, |

165

Cloudera Runtime

Impala SQL statements

| | _suppkey: bi gi nt,

nore nested struct fields ..

| | _coment:string

>>

-- #3: The STRUCT
- - The fields
descri be custoner.

that makes up each ARRAY el enent.
of the STRUCT act |ike colums of a table.

c_orders.item

Fococcoccoccoccoocooooe Focococococococococococococococoooc +
| nane | type [
feccoccocooocosooc feccoocococcoocococcoccococooococooooc +
| o_orderkey | bigint |
| o_orderstatus | string [
o_totalprice	decimal (12, 2)
o_orderdate	string
o_orderpriority	string
o_clerk	string
o_shippriority	int
o_coment	string [
o_lineitens	array<struct<
[[| _suppkey: bi gi nt, |
nore struct fields ..

| | _coment:string |

| >> |
focococococooccooocoacs foccococcoccooccoccooccocoococoocooocoooos +

-- #4: The ARRAY nested inside the STRUCT el ements of the first ARRAY
descri be custoner.c_orders.itemo_lineitens;

item

nor

| struct<

| | _partkey: bi gi nt,
| | _suppkey: bi gi nt,
e struct fields ...

[| _coment:string

-- #5: Shorter formof the previous DESCRIBE. Qrits the .| TEM portion of the

name

t hi ngs

because O LI NEI TEMS and other field nanes provide a way to refer to

i nsi de t he ARRAY el enent.

descri be custoner.c_orders.o_lineitens;

| nane
| item
|
I

nor

| type

| struct<

| | _partkey: bi gi nt,
| | _suppkey: bi gi nt,
e struct fields ...

[| _coment:string

The STRUCT representing ARRAY el enents nested inside

anot her ARRAY of STRUCTS.
in this output neans this

The | ack of any conplex types
is as far as DESCRI BE can

166

Cloudera Runtime Impala SQL statements

-- descend into the table I ayout.
descri be custoner.c_orders.o_lineitens.item

foccoccococoococooc feccoccocoooooac +
| name | type |
focococococooccooocoacs fococococcooccoooos +
| | _partkey | bigint |
| | _suppkey | bigint [
nmore scal ar columms ...
| I _comment | string |
feccocococooccoocooos fecococoococooocoooos +
Usage notes:

After thei npal ad daemons are restarted, the first query against a table can take longer than subsequent queries,
because the metadata for the table is |oaded before the query is processed. This one-time delay for each table can
cause misleading results in benchmark tests or cause unnecessary concern. To “warm up” the Impala metadata cache,
you can issue a DESCRIBE statement in advance for each table you intend to access | ater.

When you are dealing with data files stored in HDFS, sometimes it isimportant to know details such as the path of
the datafiles for an Impalatable, and the hostname for the namenode. Y ou can get thisinformation from the DESC
RIBE FORMATTED output. Y ou specify HDFS URIs or path specifications with statements such asLOAD DATA
and the LOCATION clause of CREATE TABLE or ALTER TABLE. You might also use HDFS URIs or paths with
Linux commands such ashadoop and hdf s to copy, rename, and so on, datafilesin HDFS.

If you connect to different Impala nodes within ani npal a- shel | session for |oad-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by all the Impala nodes.

Each table can also have associated table statistics and column statistics. To see these categories of information, use
the SHOW TABLE STATS table name and SHOW COLUMN STATS table_name statements. See the SHOW
statement topic for details.

Important: After adding or replacing datain atable used in performance-critical queries, issue a COMP

& UTE STATS statement to make sure al statistics are up-to-date. Consider updating statistics for atable after
any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data
through Hive and doing aREFRESH table namein Impala. Thistechniqueis especialy important for tables
that are very large, used in join queries, or both.

Examples:

The following example shows the results of both a standard DESCRIBE and DESCRIBE FORMATTED for different
kinds of schema objects:

« DESCRIBE for atable or aview returns the name, type, and comment for each of the columns. For aview, if the
column value is computed by an expression, the column name is automatically generated as_c0, _c1, and so on
depending on the ordinal number of the column.

« A table created with no special format or storage clausesis designated asa MANAGED_TABLE (an “internal
table” in Impala terminology). Its datafiles are stored in an HDFS directory under the default Hive data directory.
By default, it uses Text data format.

e Aview isdesignated as VIRTUAL_VIEW in DESCRIBE FORMATTED output. Some of its properties are
NULL or blank because they are inherited from the base table. The text of the query that definesthe view is part
of the DESCRIBE FORMATTED output.

» A tablewith additional clausesin the CREATE TABLE statement has differencesin DESCRIBE FORMATTED
output. The output for T2 includesthe EXTERNAL_TABLE keyword because of the CREATE EXTERNAL
TABLE syntax, and different InputFormat and OutputFormat fields to reflect the Parquet file format.

[l ocal host:21000] > create table t1 (x int, y int, s string);
Query: create table t1 (x int, y int, s string)

[l ocal host:21000] > describe t1;

Query: describe t1l

Query finished, fetching results ...

167

Cloudera Runtime

Impala SQL statements

oocoos foocoocac
| nanme | type
dosccos feocococac
| x | int

|y | int

| s | string
dosccos fFeocoocas

Ret urned 3 row(s)

[l ocal host:21000] > describe formatted t1;

Query: describe formatted t1
fetching results ..
e

Query finished,

| # col _nane
| coment |
I

| NULL [
| x

| None |
|y

| None |
| s
| None |

| NULL

| # Detailed Table Information

| NULL [
| Database:

| NULL |
| Owner:
| NULL [
| CreateTine:

| NULL [

| Last AccessTi ne:

| NULL |
| Protect Mode:
| NULL [
| Retention:
| NULL [
| Location:

|

| NULL [
| Tabl e Type:

| NULL [

| Tabl e Paraneters:

| NULL |
|

| 1374526996 |
|

| NULL |

| # Storage Information

| NULL [
| SerDe Library:

|
| NULL |
| I nput Format:
| NULL [

data_type

NULL

i nt

i nt

string

NULL

NULL
descri be formatted

doc_deno

Mon Jul 22 17:03:16 EDT 2013

UNKNOWN
None

0

hdf s: //127. 0. 0. 1: 8020/ user/ hi ve/ war ehouse/

describe formatted. db/t1

MANACGED_TABLE

NULL

transi ent | astDdl Ti ne

NULL

NULL

or g. apache. hadoop. hi ve. serde2. | azy.

LazySi npl eSer De

or g. apache. hadoop. mapr ed. Text | nput For mat

168

Cloudera Runtime Impala SQL statements

| CQut put For mat : | org.apache. hadoop. hive. gl .io.
I I
| | Hi vel gnor eKeyText Qut put For mat
| NULL [
| Conpressed: | No
| NULL |
| Num Buckets: | O
| NULL |
| Bucket Col unms: | 1]
| NULL [
| Sort Col umms: | 1]
| NULL |
focccooccosccooccooccooconooons foocccocccocccscccocccccoocooocooocooocaoooas
fecccccooocas +

Returned 26 rowm(s) in 0.03s

[l ocal host:21000] > create view vl as select x, upper(s) fromt1;
Query: create view vl as select x, upper(s) fromtl

[l ocal host:21000] > describe vi;

Query: describe vl

Query finished, fetching results ..
Fo-o o oo oo +
| nane | type | comment |
occooc fooococoooc feoococooooc +
| x | int | |
| _c1 | string | [
deemoos deemaaoo- R +

Returned 2 row(s) in 0.10s

[l ocal host:21000] > describe fornmatted vi;
Query: describe formatted vl

Query finished, fetching results ..

focccccocoooooooooococccocoooooooc focccccocooooooooooocccocoooooooc foccccooooooc
---------- +

| name | type | conment
+--------! --------------------- FoocooooooocooooooooOoooDoDOO Do Fooccooooooc
____________ ¥

| # col _nane | data_type | comment

| l | NULL | NULL

| X | | int | None

| _c1 | | string | None

| l | NULL | NULL

| # Detai,ed Tabl e I nformation | NULL | NULL

| DatabasL: | describe formatted | NULL

| Owner: l | doc_deno | NULL

| CXeateTiLE: | Mon Jul 22 16:56:38 EDT 2013 | NULL

| LastAchssTine: | UNKNOWN | NULL

| Protectlwbde: | None | NULL

| RetentiLn: | O | NULL

| Table TyLe: | VI RTUAL_VI EW | NULL

| Tabl e PLraneters: | NULL | NULL

169

Cloudera Runtime

Impala SQL statements

| # Storage Information
| SerDe L!brary:

| I nput For mat :

| ChtputFLrnat:

I
| Conpressed:

I
| Num Buckets:
| Bucket Col umms:

|
| Sort Col umms:

| # View Information
|
| View Original Text:

I
| View Expanded Text:

Returned 28 rowm(s) in 0.03s

transien
NULL
NULL
nul |

nul |

nul |

No

0

[]

[]
NULL

NULL
SELECT x
SELECT x

[l ocal host:21000] > create external table
as parquet location '/user/doc_deno/sanpl e _data'
[l ocal host:21000] > describe formatted t2;

Query: describe formatted t2

Query finished, fetching results ..

e e e e e e e e e e e e e e e e —— -
--------- feccoocoocooods
| name
| comrent [
o e e e e e e e e e e e e e e e e e e e .= =
----------- Fococcoccococoooodp
| # col _nane
| comment |
I
| NULL [
| x
| None |
|y
| None |
| s
| None [
I
| NULL |
| # Detailed Table Information
| NULL |
| Database:
| NULL [
| Oaner:
| NULL |
| CreateTine:
| NULL |
| Last AccessTi ne:
| NULL [

t _lastDdl Ti ne

, upper(s) FROMt1
, upper(s) FROMt1

t2 (x int, yint, s

1374526598
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

data_typ
NUL L

i nt

i nt
string
NULL
NULL
descri be
doc_deno
Mon Jul
UNKNOWN

e

_formatted

22 17:01: 47 EDT 2013

170

Cloudera Runtime

Impala SQL statements

Pr ot ect Mbde:
| NULL
Ret enti on:

I

| NULL [
| Location:
_data | NULL |
| Tabl e Type:

| NULL |
| Tabl e Paraneters:

| NULL [

|

| TRUE |
| 1374526907 |

| NULL [
| # Storage Information
| NULL [
| SerDe Library:
npl eSer De | NULL [
| I nput For mat :
t Format | NULL [
| CQut put For mat :
t Format | NULL |
| Conpressed:
| NULL |
| Num Buckets:
| NULL [
| Bucket Col unms:
| NULL [
| Sort Col umms:
| NULL |

Returned 27 rowms) in 0.17s

Cancellation: Cannot be cancelled.

HDFS permissions:

None

0

hdf s: //127. 0. 0. 1: 8020/ user/ doc_deno/ sanpl e
EXTERNAL_TABLE

NUL L

EXTERNAL

transi ent | astDdl Ti ne

NUL L

NULL

or g. apache. hadoop. hi ve. serde2. | azy. LazySi
com cl ouder a. i npal a. hi ve. serde. Par quet | npu
com cl ouder a. i npal a. hi ve. serde. Par quet Qut pu
No

0

[]
[]

The user ID that thei npal ad daemon runs under, typically the impala user, must have read and execute permissions
for all directoriesthat are part of the table. (A table could span multiple different HDFS directoriesiif it is partitioned.
The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its

LOCATION attribute.)

Cloudera Manager considerations:

A changein the behavior of metadataloading in Impala 2.9 could lead to certain long-running statements being left
out of the Cloudera Manager list of Impala queries until the statements are completed.

Prior to Impala 2.9, statements such as DESCRIBE could cause the Impalaweb Ul, and Cloudera Manager
monitoring pages that rely on information from the web Ul, to become unresponsive while they ran. Thefirst time
Impalareferences alarge table, for example one with thousands of partitions, the statement might take longer than
normal while the metadata for the tableisloaded. In Impala 2.9 and higher, the Impalaweb Ul and associated
Cloudera Manager monitoring pages are more responsive while a metadata loading operation isin progress.

Although the statement that |oads the metadata shows up on the Impalaweb Ul /queries page immediately, it does not
show up in the Cloudera Manager list of queries until the metadatais finished loading. For example, the first DESC
RIBE of alarge partitioned table might take 30 minutes due to metadata loading, and the statement does not show up

in Cloudera Manager during those 30 minutes.

Kudu considerations:

The information displayed for Kudu tables includes the additional attributes that are only applicable for Kudu tables:

171

Cloudera Runtime Impala SQL statements

* Whether or not the column is part of the primary key. Every Kudu table has a true value here for at least one
column. There could be multiple true values, for tables with composite primary keys.

* Whether or not the column is nullable. Specified by the NULL or NOT NULL attributes on the CREATE TABLE
statement. Columns that are part of the primary key are automatically non-nullable.

» Thedefault value, if any, for the column. Specified by the DEFAULT attribute on the CREATE TABLE
statement. If the default valueis NULL, that is not indicated in this column. It isimplied by nullable being true
and no other default value specified.

e The encoding used for values in the column. Specified by the ENCODING attribute on the CREATE TABLE
statement.

* The compression used for values in the column. Specified by the COMPRESSION ettribute on the CREATE T
ABLE statement.

» Theblock size (in bytes) used for the underlying Kudu storage layer for the column. Specified by the BLOCK_SI
ZE attribute on the CREATE TABLE statement.

The following example shows DESCRIBE output for a simple Kudu table, with a single-column primary key and all
column attributes | eft with their default values:

describe mllion_rows;

occooc fooococoooc feoococooooc feccocococoooooc feococoocoooc feccocoococoocoooos fooococoooc
------- Focococcocococococococodeooocoooooooo P
| nane | type | conment | primary_key | nullable | default_value | encodin
g | conpression | block_size |
oo oo SRS RS S S RS S RS S S oo
------- dooccoccocossoccoconoodmoconosocsoods
| id | string | | true | fal se [| AUTO_EN
CODI NG | DEFAULT_COWPRESSION | O [
| s | string | | fal se | fal se [| AUTO_EN
CODI NG | DEFAULT_COWPRESSION | O [
oo oo oo S S RS S RS S S oo
------- dooccoccocossoccoconoodmoconosocsoods

The following example shows DESCRIBE output for a Kudu table with atwo-column primary key, and Kudu-
specific attributes applied to some columns:

create tabl e kudu_descri be_exanpl e

clint, c2 int,
c3 string, ¢4 string not null, c5 string default 'n/a', c6 string default

2:7 bigint not null, ¢c8 bigint null default null, c9 bigint default -1 enco
ding bit_shuffle,

primary key(cl, c2)
partition by hash (cl, c2) partitions 10 stored as kudu;

descri be kudu_descri be_exanpl e;

Focococ Fococococ Fococcooooe Fococcoccocooooe Focococoococ Fococcoccoccoocooooe Focooe
---------- Focococcocococococococodmoocoocoooooo g
| nanme | type | coorment | primary_key | nullable | default_value | enco
di ng | conpression | bl ock_size |
foccooc Foccoocoac Foccooocooc fooccoococoocooc foccococooc foccooccocoooooac frooooc
---------- fococcocococococcooccoccoodiocoooonoooadp
| c1 | int | | true | false | | AUTO
_ENCODI NG | DEFAULT_COWPRESSION | O [
| c2 | int [| true | fal se [| AUTO
_ENCODI NG | DEFAULT_COWPRESSION | O [
| ¢3 | string | | false | true | | AUTO

_ENCODI NG | DEFAULT_COWPRESSION | O [

172

Cloudera Runtime Impala SQL statements

| c4 | string | | false | false | | AUTO
_ENCODI NG | DEFAULT_COWPRESSION | O [

| ¢5 | string | | false | true | n/a | AUTO
_ENCODI NG | DEFAULT_COVPRESSION | O [

| c6 | string | | false | true | | AUTO
_ENCODI NG | DEFAULT _COVPRESSION | O |

| c7 | bigint | | false | false | | AUTO
_ENCODI NG | DEFAULT_COWPRESSION | O [

| c8 | bigint | | false | true | | AUTO
_ENCODI NG | DEFAULT_COVPRESSION | O [

| ¢9 | bigint | | false | true | -1 | BIT
SHUFFLE | DEFAULT_COWPRESSION | O |

feoocooc feccoocooc feccooocooc feccoococooooc feccococooc feccoccocooooooc feoooc
---------- feccoccococcoccococooccodmoocoocooooode
SHOW statement

The DROP DATABASE statement removes a database from the system. The physical operations involve removing
the metadata for the database from the metastore, and deleting the corresponding *.db directory from HDFS.

Syntax:
DROP (DATABASE| SCHEMA) [I F EXI STS] dat abase_nanme [RESTRI CT | CASCADE] ;

Statement type: DDL
Usage notes:
By default, the database must be empty before it can be dropped, to avoid losing any data.

In Impala 2.3 and higher, you can include the CASCADE clause to make Impaladrop all tables and other objectsin
the database before dropping the database itself. The RESTRICT clause enforces the original requirement that the
database be empty before being dropped. Because the RESTRICT behavior is still the default, this clauseis optional.

The automatic dropping resulting from the CASCADE clause follows the same rules as the corresponding DROP
TABLE, DROP VIEW, and DROP FUNCTION statements. In particular, the HDFS directories and data files for any
external tables are left behind when the tables are removed.

When you do not use the CASCADE clause, drop or move all the objects inside the database manually before
dropping the database itself:

* Usethe SHOW TABLES statement to locate all tables and views in the database, and issue DROP TABLE and
DROP VIEW statements to remove them all.

* Usethe SHOW FUNCTIONS and SHOW AGGREGATE FUNCTIONS statements to locate all user-defined
functionsin the database, and issue DROP FUNCTION and DROP AGGREGATE FUNCTION statements to
remove them all.

* To keep tables or views contained by a database while removing the database itself, use ALTER TABLE and
ALTER VIEW to move the relevant objects to a different database before dropping the original database.

Y ou cannot drop the current database, that is, the database your session connected to either through the USE
statement or the -d option of i nmpal a- shel | . Issue a USE statement to switch to a different database first. Because
the default database is always available, issuing USE default is a convenient way to leave the current database before
dropping it.

Hive considerations:
When you drop a database in Impala, the database can no longer be used by Hive.

Examples:

173

Cloudera Runtime Impala SQL statements

See CREATE DATABASE statement for examples covering CREATE DATABASE, USE, and DROP DATABASE.
Amazon S3 considerations:

In Impala 2.6 and higher, ImpalaDDL statements such as CREATE DATABASE, CREATE TABLE, DROP DAT
ABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove folders
as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point |mpala database,
tables, or partitions at them, and manually remove folders when no longer needed.

Cancellation: Cannot be cancelled.
HDFS permissions:

The user ID that thei npal ad daemon runs under, typically the impala user, must have write permission for the
directory associated with the database.

Examples:

create database first_db;
use first_db;
create table t1 (x int);

creat e dat abase second_db;

use second_db;

-- Each dat abase has its own nanmespace for tables.

-- You can reuse the sanme table nanes in each database.
create table t1 (s string);

creat e database tenp;

-- You can either USE a database after creating it,

-- or qualify all references to the table name with the name of the datab
ase.

-- Here, tables T2 and T3 are both created in the TEMP dat abase.

create table temp.t2 (x int, y int);
use dat abase tenp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statenent.
drop dat abase tenp;
ERROR: Anal ysi sException: Cannot drop current default database: tenp

-- The always-avail abl e database 'default' is a convenient one to USE

-- before droppi ng a database you creat ed.

use defaul t;

-- Before dropping a database, first drop all the tables inside it,

-- or in Inmpala 2.3 and hi gher use the CASCADE cl ause.

drop dat abase tenp;

ERRCOR: | npal aRunti meExcepti on: Error making 'dropDatabase’ RPC to Hi ve Meta
store:

CAUSED BY: I nvalidQOperationException: Database tenp is not enpty

show tables in tenp;

Focococ +
| nane |
e ccooc +
| t3 |
dhoccooc +

-- Inpala 2.3 and hi gher:
drop dat abase tenp cascade;

-- Earlier rel eases:
drop table tenp.t3;

174

Cloudera Runtime Impala SQL statements

drop dat abase tenp;

CREATE DATABASE statement
Impalawith Amazon S3

The DROP FUNCTION statement removes a user-defined function (UDF), so that it is not available for execution
during Impala SELECT or INSERT operations.

Syntax:
To drop C++ UDFsand UDASs:

DROP [AGGREGATE] FUNCTION [I F EXI STS]
[db_nane.] function_name(type[, type...])

Note:

E The preceding syntax, which includes the function signature, also applies to Java UDFs that were created
using the corresponding CREATE FUNCTION syntax that includes the argument and return types. After
upgrading to Impala 2.5 or higher, consider re-creating all Java UDFs with the CREATE FUNCTION syntax
that does not include the function signature. Java UDFs created this way are now persisted in the metastore
database and do not need to be re-created after an Impala restart.

To drop Java UDFs (created using the CREATE FUNCTION syntax with no function signature):
DROP FUNCTION [I F EXI STS] [db_nane.]function_nane

Statement type: DDL
Usage notes:

Because the same function name could be overloaded with different argument signatures, you specify the argument
types to identify the exact function to drop.

Restrictions:

In Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database. Java UDFs
are also persisted, if they were created with the new CREATE FUNCTION syntax for Java UDFs, where the Java
function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTION syntax
do not persist across restarts because they are held in the memory of the cat al ogd daemon. Until you re-create
such Java UDFs using the new CREATE FUNCTION syntax, you must rel oad those Java-based UDFs by running the
original CREATE FUNCTION statements again each time you restart the cat al ogd daemon. Prior to Impala2.5
the requirement to rel oad functions after a restart applied to both C++ and Java functions.

Cancellation: Cannot be cancelled.
HDFS permissions:

The user ID that thei npal ad daemon runs under, typically the impala user, does not need any particular HDFS
permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files
and directories.

Examples:

The following example shows how to drop Java functions created with the signatureless CREATE FUNCTION
syntax in Impala 2.5 and higher. Issuing DROP FUNCTION function_name removes all the overloaded functions

175

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-s3.html

Cloudera Runtime Impala SQL statements

under that name. See the CREATE FUNCTION statement for alonger example showing how to set up such functions
in thefirst place.

create function nmy_func location '/user/inpal a/udfs/udf-exanpl es-cdh570.j ar'
synbol =' com cl ouder a. i npal a. Test Udf ' ;

show functi ons;

Fococcoccoccooooe FocococococococoocococoocoCcoCooooooooooooo Fococcoccoccooooe Fococ

----------- +

| return type | signature | binary type | is pe

rsistent |

feccocoococoooooc feccocoocococcooccoccoccoocooocoooocooocoooooos feccocoococoooooc dho oo

----------- +

| BI G NT | nmy_func(BI G NT) | JAVA | true
I

| BOOLEAN | my_f unc(BOOLEAN) | JAVA | true
I

| BOOLEAN | my_func(BOOLEAN, BOOLEAN) | JAVA | true
|

| BIGNT | testudf (Bl G NT) | JAVA | true
I

| BOOLEAN | testudf (BOOLEAN) | JAVA | true
|

| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true

drop function ny_func;
show functi ons;

feococococcooccooc fococococcoccoccoccooccoocccocoocooocoocoooooos feococococcooccooc occooc

--------- +

| return type | signature | binary type | is

persi stent |

S S S P P S e S S S S S S SIS S oo

--------- +

| BI G NT | testudf (Bl G NT) | JAVA | true
|

| BOOLEAN | testudf(BOOLEAN) | JAVA | true

I
| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true

CREATE FUNCTION statement

The DROP ROLE statement removes a role from the metastore database. Once dropped, the role is revoked for
all groups it was previously assigned. Queries that are already executing are not affected. Impala verifies the role
information approximately every 60 seconds, so the effects of DROP ROLE might not take effect for new Impala
queriesfor abrief period.

Syntax:
DROP ROLE rol e_nane

176

Cloudera Runtime Impala SQL statements

E Note: Before dropping arole in Ranger, you must remove al the privileges granted to the role in advance.

Required privileges:
Only administrative users can use this statement.
Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive
makes use of any roles and privileges specified by the GRANT and REVOKE statementsin Impala. The Impala
GRANT and REVOKE statements for privileges do not require the ROLE keyword to be repeated before each role
name, unlike the equivalent Hive statements.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

The DROP STATS statement removes the specified statistics from atable or partition. The statistics were originally
created by the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement.

Syntax:

DROP STATS [dat abase _nane.]t abl e_nanme
DROP | NCREMENTAL STATS [dat abase_name.] tabl e_nane PARTI TION (partition_spec)

partition_spec ::= partition_col =constant_val ue

The PARTITION clauseisonly allowed in combination with the INCREMENTAL clause. It is optional for COMP
UTE INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions
through the PARTITION (partition_spec) clausein a COMPUTE INCREMENTAL STATS or DROP INCREME
NTAL STATS statement, you must include all the partitioning columns in the specification, and specify constant
valuesfor al the partition key columns.

DROP STATSremoves al statistics from the table, whether created by COMPUTE STATS or COMPUTE INCR
EMENTAL STATS.

DROP INCREMENTAL STATS only affectsincremental statistics for asingle partition, specified through the PART
ITION clause. Theincremental stats are marked as outdated, so that they are recomputed by the next COMPUTE
INCREMENTAL STATS statement.

Usage notes:

Y ou typically use this statement when the statistics for atable or a partition have become stale due to data files being
added to or removed from the associated HDFS data directories, whether by manual HDFS operations or INSERT,
INSERT OVERWRITE, or LOAD DATA statements, or adding or dropping partitions.

When atable or partition has no associated statistics, Impalatreatsit as essentially zero-sized when constructing the
execution plan for aquery. In particular, the statistics influence the order in which tables are joined in ajoin query. To
ensure proper query planning and good query performance and scalability, make sure to run COMPUTE STATS or
COMPUTE INCREMENTAL STATS on thetable or partition after removing any stale statistics.

Dropping the statistics is not required for an unpartitioned table or a partitioned table covered by the original type of
statistics. A subsequent COMPUTE STATS statement replaces any existing statistics with new ones, for all partitions,
regardless of whether the old ones were outdated. Therefore, this statement was rarely used before the introduction of
incremental statistics.

177

Cloudera Runtime

Impala SQL statements

Dropping the statistics is required for a partitioned table containing incremental statistics, to make a subsequent
COMPUTE INCREMENTAL STATS statement rescan an existing partition. See the Tables and columns topic for

information about incremental statistics, a new feature available in Impala 2.1.0 and higher.

Statement type: DDL

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that thei npal ad daemon runs under, typically the impala user, does not need any particular HDFS
permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files

and directories.

Examples:

The following example shows a partitioned table that has associated statistics produced by the COMPUTE INCR
EMENTAL STATS statement, and how the situation evolves as statistics are dropped from specific partitions, then

the entire table.

Initially, al table and column statistics are filled in.

show table stats itempartitioned;

feccoococooooc fecooooc feccoococac
| i_category | #Rows | #Files
ental stats

Fococcoccoccooooe Focoocooe Fococococ
| Books | 1733 | 1

| Children | 1786 | 1

| Electronics | 1812 | 1

| Home | 1807 | 1

| Jewelry | 1740 | 1

| Men | 1811 | 1

| Music | 1860 | 1

| Shoes | 1835 | 1

| Sports | 1783 | 1

| Wonren | 1790 | 1

| Total | 17957 | 10
feccoococooooc fecooooc feccoocooc

| i_itemsk

| i_itemid

| i_rec_start_date
| i _rec_end date

| i_itemdesc

. 302803039

| i_current_price
| i _whol esal e_cost
| i _brand_id
| i_brand
1776008605

| i _class_ id
| i_class
6749992370

| i _category_ id
| i_manufact_id

Si ze

#Di stinct Val ues

19443
9025

13330

2807
2105
965
725

16
101

10
1857

Byt es Cached

CACHED
CACHED
CACHED
CACHED
CACHED
CACHED
CACHED
CACHED
CACHED
CACHED

1
RPRRRERe

]
PR REe

1
[N

1
(BN

#Nul | s

For mat

| I'ncrem

| true
| true
| true
| true
| true
| true
| true
| true
| true
| true
|

[
()]

N

178

Cloudera Runtime Impala SQL statements

| i_manufact | STRI NG | 1028 | -1 | 15 | 1
1. 3295001983

| i_size | STRI NG | 8 | -1 | 11 | 4.3
3459997177

| i _formulation | STRI NG | 12884 | -1 | 20 | 1
9. 9799995422

| i_color | STRI NG | 92 | -1 | 10 | 5.3
8089990615

| i_units | STRI NG | 22 | -1 | 7 | 4

. 18690013885

| i_container | STRI NG | 2 | -1 | 7 | 6.9
9259996414

| i_manager_id | I'NT | 105 | -1 | 4 | 4

| i_product_nane | STRI NG | 19094 | -1 | 25 | 18
0233001708

| i_category | STRI NG | 10 | O | -1 | -1
focococoococococooccoocos feocococooccooac focococoococococooccoocos fooococoooc feoococooccoac dho o

To remove statistics for particular partitions, use the DROP INCREMENTAL STATS statement. After removing
statistics for two partitions, the table-level statistics reflect that change in the #Rows and Incremental statsfields. The
counts, maximums, and averages of the column-level statistics are unaffected.

Note: (Itispossible that the row count might be preserved in future after aDROP INCREMENTAL STATS
statement. Check the resolution of the issue IMPALA-1615.)

drop incremental stats itempartitioned partition (i_category="Sports');
drop incremental stats itempartitioned partition (i_category='El ectronics'

)

show table stats item partitioned

fecococooccoocooc fooocoooc fooocooooc feccocoocoooc fecocococccooccooac feocococooooc occooc

| i _category | #Rows | #Files | Size | Bytes Cached | Format | Increm
ental stats

T demmaoo- S R E S S S R
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true

| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true

| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | fal se

| Hone | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true

| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true

| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true

| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true

| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true

| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false

| Wonen | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true

| Total | 17957 | 10 | 2.25MB | OB [[

S S S ool oo S S SIS S oo ool

Focococococococoooa Fococcoccooooe Focococococococoooa Fococococ Focococococ oo =
| Col um | Type | #Distinct Values | #Nulls | Max Size | Avg
Si ze

feccooococoococooocoooos fecococoococooac feccooococoococooocoooos fooocooooc feccocoocoooc oo
| i_itemsk | I'NT | 19443 | -1 | 4 | 4

| i_itemid | STRI NG | 9025 | -1 | 16 | 16

| i _rec_start _date | TIMESTAMP | 4 | -1 | 16 | 16

| i _rec_end date | TIMESTAMP | 3 | -1 | 16 | 16

179

Cloudera Runtime

Impala SQL statements

| i_itemdesc | STRI NG | 13330 | -1 | 200 | 10
0. 302803039
| i _current _price | FLOAT | 2807 | -1 | 4 | 4
| i_whol esal e_cost | FLOAT | 2105 | -1 | 4 | 4
| i_brand_id | I'NT | 965 | -1 | 4 | 4
| i_brand | STRI NG | 725 | -1 | 22 | 16
. 1776008605
| i_class_id | I'NT | 16 | -1 | 4 | 4
| i_class | STRI NG | 101 | -1 | 15 | 7
76749992370
| i _category_id | INT | 10 | -1 4 | 4
| i_manufact_id | I'NT | 1857 | -1 | 4 | 4
| i _manufact | STRI NG | 1028 | -1 | 15 | 11.3
295001983

i _size | STRI NG | 8 | -1 | 11 | 4.
33459997177
| i_fornulation | STRI NG | 12884 | -1 | 20 | 19.9
799995422
| i_color | STRI NG | 92 | -1 | 10 | 5
38089990615
| i_units | STRI NG | 22 | -1 | 7 | 4.18
690013885

i _cont ai ner | STRI NG | 2 | -1 | 7 | 6
99259996414
| i_manager_id | I'NT | 105 | -1 | 4 | 4
| i _product _name | STRI NG | 19094 | -1 | 25 | 18
. 0233001708
| i_category | STRI NG | 10 | O | -1 | -1
focococoococococooccoocos feocococooccooac focococoococococooccoocos fooococoooc feoococooccoac +- -

To remove all statistics from the table, whether produced by COMPUTE STATS or COMPUTE INCREMENTAL
STATS, use the DROP STATS statement without the INCREMENTAL clause). Now, both table-level and column-

level statistics are reset.

drop stats itempartitioned,;

show table stats item partitioned

feccocoococoooooc fooocoooc fooocooooc fesccocoooooc feccoccccooccooas feocococooooc fooocooooc
| i _category | #Rows | #Files | Size | Bytes Cached | Format | Incr
emental stats

demmmmmaaaaos demmaoo- R E E S E R

| Books | -1 | 1 | 223.74KB | NOT CACHED | PARQUET | false

| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false

| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false

| Hone | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | fal se

| Jewelry | -1 | 1 | 223.72KB | NOT CACHED | PARQUET | fal se

| Men | -1 | 1 | 231.25KB | NOT CACHED | PARQUET | false

| Music | -1 | 1 | 237.90KB | NOT CACHED | PARQUET | false

| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false

| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false

| Wonen | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | fal se

| Total | -1 | 10 | 2.25MB | OB [[
SRS S S ool oo S S S S TS SRS oo
show col umm stats itempartitioned

Focococococococoococ Fococcoccooooe Focococococococoococ Fococococ Focococococ dho o =
------- +

| Col um | Type | #Distinct Values | #Nulls | Max Size | Avg

180

Cloudera Runtime Impala SQL statements

foccccccccooooooooc foccocccooooc foccccccccooooooooc fococooooc focccoooooc Focooc
----- +

| i _itemsk | INT | -1 | -1 | 4 | 4
[i_it!am_id | STRI NG | -1 | -1 | -1 | -1
| i_r!ac_st art _date | TIMESTAMP | -1 | -1 | 16 | 16
| i_r!ac_end_date | TIMESTAMP | -1 | -1 | 16 | 16
| i_ilem_desc | STRI NG | -1 | -1 | -1 | -1
| i _culr rent_price | FLOAT | -1 | -1 | 4 | 4

| i _W||’10| esal e_cost | FLOAT | -1 | -1 | 4 | 4

[i_blrand_id | I'NT | -1 | -1 | 4 | 4
| i_blrand | STRNG | -1 | -1 | -1 | -1
[i_cI!’:\ss_id | I'NT | -1 | -1 | 4 | 4
| i_cllass | STRI NG | -1 | -1 | -1 | -1
| i _c!’;lt egory_id | I'NT | -1 | -1 | 4 | 4

| i_rr!anufact_id | INT | -1 | -1 | 4 | 4
| i_rralnufact | STRNG | -1 | -1 | -1 | -1
| i_silze | STRNG | -1 | -1 | -1 | -1
| i_florrrulation | STRI NG | -1 | -1 | -1 | -1
| i_c!alor | STRNG | -1 | -1 | -1 | -1
| i_unilts | STRI NG | -1 | -1 | -1 | -1
| i_clontai ner | STRI NG | -1 | -1 | -1 | -1
| i_rerager_id | INT | -1 | -1 | 4 | 4
| i _plr oduct _nane | STRI NG | -1 | -1 | -1 | -1
| i _cal egory | STRI NG | 10 | O | -1 | -1
+----! ------------- Fooccooooooo. Foocoooooocooooooos Fooccooooc Fooccooooooc o oo
------ +

Table and column statistics

The DROP TABLE statement removes an Impala table. Also removes the underlying HDFS data files for internal
tables, although not for external tables.

Syntax:

DROP TABLE [I F EXI STS] [db_nane.]tabl e _nane [PURGE]

181

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-perf-stats.html

Cloudera Runtime Impala SQL statements

IF EXISTS clause:

The optional IF EXISTS clause makes the statement succeed whether or not the table exists. If the table does exist,

it is dropped; if it does not exist, the statement has no effect. This capability is useful in standardized setup scripts
that remove existing schema objects and create new ones. By using some combination of IF EXISTS for the DROP
statementsand IF NOT EXISTS clauses for the CREATE statements, the script can run successfully the first time
you run it (when the objects do not exist yet) and subsequent times (when some or all of the objects do already exist).

PURGE clause:

The optional PURGE keyword, available in Impala 2.3 and higher, causes Impala to remove the associated HDFS
datafilesimmediately, rather than going through the HDFS trashcan mechanism. Use this keyword when dropping
atableif itiscrucia to remove the data as quickly as possible to free up space, or if thereis a problem with the
trashcan, such as the trash cannot being configured or being in a different HDFS encryption zone than the datafiles.

Statement type: DDL
Usage notes:

By default, Impala removes the associated HDFS directory and data files for the table. If you issue aDROP TABLE
and the data files are not deleted, it might be for the following reasons:

» |f the table was created with the EXTERNAL clause, Impalaleaves al files and directories untouched. Use
external tables when the data is under the control of other Hadoop components, and Impalais only used to query
the data files from their original locations.

* Impalamight leave the datafiles behind unintentionally, if thereis no HDFS location available to hold the HDFS
trashcan for the impala user.

Make sure that you are in the correct database before dropping atable, either by issuing a USE statement first or by
using afully qualified name db_name.table_name.

If you intend to issue a DROP DATABASE statement, first issue DROP TABLE statements to remove al the tables
in that database.

Examples:

creat e database tenporary;

use tenporary;

create tabl e uninportant (x int);

create table trivial (s string);

-- Drop a table in the current database.
drop tabl e uninportant;

-- Switch to a different database.

use default;

-- To drop a table in a different database...
drop table trivial;

ERROR: Anal ysi sException: Tabl e does not exist: default.trivial
-- ...use a fully qualified nane.

drop table tenporary.trivial;

Amazon S3 considerations:

The DROP TABLE statement can remove data files from S3 if the associated S3 table isan interna table. In Impala
2.6 and higher, as part of improved support for writing to S3, Impala also removes the associated folder when
dropping an internal table that resides on S3.

For compatibility with the S3 write support in Impala, follow these steps for querying table through Impala:

1. Use native Hadoop techniques, such as hadoop fs-cp or INSERT in Impala or Hive to create datafilesin S3.
2. Usethe PURGE clause with DROP TABLE when dropping internal (managed) tables.

By default, when you do not include the PURGE clause in the statement, the data files are moved to the S3A trashcan.
This operation is expensive. When you do include the PURGE clause, the data files are deleted immediately, skipping
the expensive S3A trashcan operation.

182

Cloudera Runtime Impala SQL statements

In Impala 2.6 and higher, ImpalaDDL statements such as CREATE DATABASE, CREATE TABLE, DROP DAT
ABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD|DROP] PARTITION can create or remove folders
as needed in the Amazon S3 system. Prior to Impala 2.6, you had to create folders yourself and point |mpala database,
tables, or partitions at them, and manually remove folders when no longer needed.

Cancellation: Cannot be cancelled.
HDFS permissions:

For an internal table, the user ID that thei npal ad daemon runs under, typically the impala user, must have write
permission for al the files and directories that make up the table.

For an external table, dropping the table only involves changes to metadata in the metastore database. Because Impala
does not remove any HDFSfiles or directories when external tables are dropped, no particular permissions are needed
for the associated HDFS files or directories.

Kudu considerations:

Kudu tables can be managed or external, the same as with HDFS-based tables. For a managed table, the underlying
Kudu table and its data are removed by DROP TABLE. For an external table, the underlying Kudu table and its data
remain after aDROP TABLE.

CREATE DATABASE statement
Managing disk space for Impala data

The DROP VIEW statement removes the specified view, which was originally created by the CREATE VIEW
statement. Because aview is purely alogical construct (an aias for a query) with no physical data behind it, DROP
VIEW only involves changes to metadata in the metastore database, not any datafilesin HDFS.

Syntax:
DROP VIEW[IF EXI STS] [db_nane.]vi ew_nane

Statement type: DDL
Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

The following example creates a series of views and then drops them. These examplesillustrate how views are
associated with a particular database, and both the view definitions and the view names for CREATE VIEW and
DROP VIEW can refer to aview in the current database or afully qualified view name.

-- Create and drop a view in the current database.
CREATE VIEWfew rows_fromt1l AS SELECT * FROMt1l LIMT 10;
DROP VIEWfew rows_fromt1;

-- Create and drop a view referencing a table in a different database.
CREATE VIEWtabl e_fromother_db AS SELECT x FROM dbl.foo WHERE x IS NOT N
ULL;

DROP VIEWt abl e from ot her db;

USE db1;

-- Create a viewin a different database.

CREATE VI EW db2.v1 AS SELECT * FROM db2. f oo;

-- Switch into the other database and drop the view.

USE db2;

183

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-hdfs.html

Cloudera Runtime Impala SQL statements

DROP VI EW v1;

USE db1;

-- Create a viewin a different database.
CREATE VI EW db2. vl AS SELECT * FROM db2. f oo;
-- Drop a view in the other database.

DROP VI EW db2. v1;

The EXPLAIN statement returns the execution plan for a statement, showing the low-level mechanisms that Impala
will useto read the data, divide the work among nodes in the cluster, and transmit intermediate and final results
across the network.

Use explain followed by a complete SELECT query. For example:
Syntax:

EXPLAIN { select_query | ctas_stnt | insert_stnt }

The select_query isa SELECT statement, optionally prefixed by a WITH clause.

Theinsert_stmt isan INSERT statement that insertsinto or overwrites an existing table. It can use either the INSE
RT ... SELECT or INSERT ... VALUES syntax.

The ctas_stmt isa CREATE TABLE statement using the AS SELECT clause, typically abbreviated asa“CTAS’
operation.

Usage notes:

Y ou can interpret the output to judge whether the query is performing efficiently, and adjust the query and/or the
schemaif not. For example, you might change the tests in the WHERE clause, add hints to make join operations more
efficient, introduce subqueries, change the order of tablesin ajoin, add or change partitioning for atable, collect
column statistics and/or table statisticsin Hive, or any other performance tuning steps.

The EXPLAIN output reminds you if table or column statistics are missing from any table involved in the query.
These statistics are important for optimizing queries involving large tables or multi-table joins. See COMPUTE
STATS statement on page 125 for how to gather statistics, and Table and column statistics for how to use this
information for query tuning.

Read the EXPLAIN plan from bottom to top:

* Thelast part of the plan shows the low-level details such as the expected amount of data that will be read, where
you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan atable
based on total data size and the size of the cluster.

» Asyou work your way up, next you see the operations that will be parallelized and performed on each Impala
node.

« At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from one
node to another.

« TheEXPLAIN_LEVEL query option lets you customize how much detail to show in the EXPLAIN plan
depending on whether you are doing high-level or low-level tuning, dealing with logical or physical aspects of the

query.

If you come from atraditional database background and are not familiar with data warehousing, keep in mind that
Impalais optimized for full table scans across very large tables. The structure and distribution of this dataistypically
not suitable for the kind of indexing and single-row lookups that are common in OL TP environments. Seeing a query
scan entirely through alarge table is common, not necessarily an indication of an inefficient query. Of course, if you
can reduce the volume of scanned data by orders of magnitude, for example by using a query that affects only certain
partitions within a partitioned table, then you might be able to optimize a query so that it executesin seconds rather
than minutes.

184

Cloudera Runtime Impala SQL statements

Extended EXPLAIN output:

For performance tuning of complex queries, and capacity planning (such as using the admission control and resource
management features), you can enable more detailed and informative output for the EXPLAIN statement. In the

i mpal a- shel | interpreter, issue the command SET EXPLAIN_LEVEL=level, where level isan integer from 0 to
3 or corresponding mnemonic values minimal, standard, extended, or verbose.

When extended EXPLAIN output is enabled, EXPLAIN statements print information about estimated memory
reguirements, minimum number of virtual cores, and so on.

Starting in Impala 3.2, if the EXPLAIN_LEVEL option is set to EXTENDED level or VERBOSE, the output
contains the following additional information.

» Theanalyzed query, in the output header.

The analyzed query may have been rewritten to include various optimizations and implicit casts. See the example
below.

» The predicates in the plan output includes the same implicit casts and literals printed with a cast to show the type.
Examples:

This example shows how the standard EXPLAIN output moves from the lowest (physical) level to the higher
(logical) levels. The query begins by scanning a certain amount of data; each node performs an aggregation operation
(evaluating COUNT (*)) on some subset of data that islocal to that node; the intermediate results are transmitted
back to the coordinator node (Iabelled here as the EXCHANGE node); lastly, the intermediate results are summed to
display the final result.

[npal ad- host: 21000] > expl ain select count(*) from custoner_address;

Esti mat ed Per-Host Requirenments: Menory=42. 00MB VCores=1 |

03: AGCREGATE [MERCE FI NALI ZE]
| output: sum(count(*))

|
I I
I I
| |
| 02: EXCHANGE [PARTI TI ON=UNPARTI TI ONED] [
| | |
| 01: AGCREGATE [
| | output: count(*) |
I I
| |
| |

00: SCAN HDFS [defaul t.custoner_address]
partitions=1/1 size=5.25M8

The following example shows an extended EXPLAIN output. Note that the analyzed query was rewritten to include:
» The'constant folding' optimization, which simplified the expression in the original query, '1000/ 100' to '10'.
» Theimplicit castsin the WHERE clause.

EXPLAI N SELECT * FROM functi onal kudu. al | t ypesti ny WHERE bi gi nt _col < 1000 /
100;

| ...
| Anal yzed query: SELECT * FROM myt abl e WHERE CAST(bi gi nt _col AS DOUBLE) <
CAST(10 AS DOUBLE)

[...
| 00: SCAN KUDU [functional kudu. al | typesti ny]
| predicates: CAST(bigint_col AS DOUBLE) < CAST(10 AS DOUBLE)

185

Cloudera Runtime Impala SQL statements

Security considerations:

If these statementsin your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statementsin log files and other administrative
contexts.

Cancellation: Cannot be cancelled.
HDFS permissions:

The user ID that thei npal ad daemon runs under, typically the impala user, must have read and execute permissions
for all applicable directoriesin all source tables for the query that is being explained. (A SELECT operation could
read files from multiple different HDFS directories if the source table is partitioned.)

Kudu considerations:

The EXPLAIN statement displays equivalent plan information for queries against Kudu tables as for queries against
HDFS-based tables.

To see which predicates Impala can “push down” to Kudu for efficient evaluation, without transmitting unnecessary
rows back to Impala, look for the kudu predicates item in the scan phase of the query. The label kudu predicates
indicates a condition that can be evaluated efficiently on the Kudu side. The label predicatesin a SCAN KUDU node
indicates a condition that is evaluated by Impala. For example, in atable with primary key column X and non-primary
key column 'Y, you can see that some operators in the WHERE clause are evaluated immediately by Kudu and others
are evaluated later by Impala:

EXPLAI N SELECT x,y from kudu_t abl e WHERE
Xx =1 ANDy NOT IN (2,3) ANDz =1

AND a |'S NOT NULL AND b > 0 AND | ength(s) > 5;
o e e e e e e e e - -
| Explain String
e e e e e e e e e e - -
| 00: SCAN KUDU [kudu_t abl e]
[predicates: y NOT IN (2, 3), length(s) > 5

| kudu predicates: a IS NOT NULL, b >0, x =1, z =1

Only binary predicates, ISNULL and ISNOT NULL (in Impala 2.9 and higher), and IN predicates containing
literal valuesthat exactly match the typesin the Kudu table, and do not require any casting, can be pushed to Kudu.

EXPLAIN_LEVEL query option
Table and column statistics
Understanding performance using Explain plan

The GRANT statement grants a privilege on a specified object to a user or to agroup.

Syntax:

GRANT privilege ON object type object nane
TO USER user _nane

GRANT privilege ON object_type object_nane
TO GRCOUP group_nane

GRANT privilege ON object type object_nane
TO ROLE rol e_nane

186

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-perf-stats.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-explain-plan.html

Cloudera Runtime Impala SQL statements

privilege ::= ALL | ALTER | CREATE | DROP | INSERT | REFRESH | SELECT
| SELECT(col um_nane)
obj ect _type ::= SERVER | URl | DATABASE | TABLE

Typically, the object_nameisanidentifier. For URIs, it isastring literal.
The ability to grant or revoke SELECT privilege on specific columnsis available in Impala 2.3 and higher.
Usage notes:

Y ou can only grant the ALL privilege to the URI object. Finer-grained privileges mentioned below on a URI are not
supported.

The table below lists the minimum level of privileges and the scope required to execute SQL statements. The
following notations are used:

e ANY denotesthe SELECT, INSERT, CREATE, or REFRESH privilege.
* ALL privilege denotesthe SELECT, INSERT, CREATE, and REFRESH privileges.
« The owner of an object effectively hasthe ALL privilege on the object.

« The parent levels of the specified scope are implicitly supported. For example, if aprivilege islisted with the
TABLE scope, the same privilege granted on DATABASE and SERVER will allow the user to execute that
specific SQL statement on TABLE.

SQL Statement Privileges Scope
SELECT SELECT TABLE
WITH SELECT SELECT TABLE
EXPLAIN SELECT SELECT TABLE
INSERT INSERT TABLE
EXPLAIN INSERT INSERT TABLE
TRUNCATE INSERT TABLE
LOAD INSERT TABLE
ALL URI
CREATE DATABASE CREATE SERVER
CREATE DATABASE LOCATION CREATE SERVER
ALL URI
CREATE TABLE CREATE DATABASE
CREATE TABLE LIKE CREATE DATABASE
SELECT, INSERT, or REFRESH TABLE
CREATE TABLE ASSELECT CREATE DATABASE
INSERT DATABASE
SELECT TABLE
EXPLAIN CREATE TABLE AS SELECT CREATE DATABASE
INSERT DATABASE
SELECT TABLE
CREATE TABLE LOCATION CREATE TABLE
ALL URI
CREATE VIEW CREATE DATABASE

187

Cloudera Runtime

Impala SQL statements

SELECT TABLE
ALTER DATABASE SET OWNER ALL WITH GRANT DATABASE
ALTER TABLE ALL TABLE
ALTER TABLE SET LOCATION ALL TABLE
ALL URI
ALTER TABLE RENAME CREATE DATABASE
ALL TABLE
ALTER TABLE SET OWNER ALL WITH GRANT TABLE
ALTER VIEW ALL TABLE
SELECT TABLE
ALTER VIEW RENAME CREATE DATABASE
ALL TABLE
ALTER VIEW SET OWNER ALL WITH GRANT VIEW
DROP DATABASE ALL DATABASE
DROP TABLE ALL TABLE
DROP VIEW ALL TABLE
CREATE FUNCTION CREATE DATABASE
ALL URI
DROP FUNCTION ALL DATABASE
COMPUTE STATS ALL TABLE
DROP STATS ALL TABLE
INVALIDATE METADATA REFRESH SERVER
INVALIDATE METADATA <table> REFRESH TABLE
REFRESH <table> REFRESH TABLE
REFRESH AUTHORIZATION REFRESH SERVER
REFRESH FUNCTIONS REFRESH DATABASE
COMMENT ON DATABASE ALL DATABASE
COMMENT ON TABLE ALL TABLE
COMMENT ON VIEW ALL TABLE
COMMENT ON COLUMN ALL TABLE
DESCRIBE DATABASE SELECT, INSERT, or REFRESH DATABASE
DESCRIBE <table/view> SELECT, INSERT, or REFRESH TABLE
If the user has the SELECT privilege at the SELECT COLUMN
COLUMN level, only the columns the user
has access will show.
USE ANY TABLE
SHOW DATABASES ANY TABLE
SHOW TABLES ANY TABLE
SHOW FUNCTIONS SELECT, INSERT, or REFRESH DATABASE
SHOW PARTITIONS SELECT, INSERT, or REFRESH TABLE
SHOW TABLE STATS SELECT, INSERT, or REFRESH TABLE

188

Cloudera Runtime Impala SQL statements

SHOW COLUMN STATS SELECT, INSERT, or REFRESH TABLE
SHOW FILES SELECT, INSERT, or REFRESH TABLE
SHOW CREATE TABLE SELECT, INSERT, or REFRESH TABLE
SHOW CREATE VIEW SELECT, INSERT, or REFRESH TABLE
SHOW CREATE FUNCTION SELECT, INSERT, or REFRESH DATABASE
SHOW RANGE PARTITIONS (Kudu only) | SELECT, INSERT, or REFRESH TABLE
UPDATE (Kudu only) ALL TABLE
EXPLAIN UPDATE (Kudu only) ALL TABLE
UPSERT (Kudu only) ALL TABLE
WITH UPSERT (Kudu only) ALL TABLE
EXPLAIN UPSERT (Kudu only) ALL TABLE
DELETE (Kudu only) ALL TABLE
EXPLAIN DELETE (Kudu only) ALL TABLE
Compatibility:

e ThelmpaaGRANT and REVOKE statements are available in Impala 2.0 and later.

* InImpalal.4 and later, Impala can make use of any privileges specified by the GRANT and REV OKE statements
in Hive.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

The GRANT statement assigns a role to a group.

GRANT ROLE rol e _nane TO GROUP gr oup_nane

Impala supports inserting into tables and partitions that you create with the Impala CREATE TABLE statement, or
pre-defined tables and partitions created through Hive.

Syntax:

[with_cl ause]
I NSERT [hint_clause] { INTO| OVERWRITE } [TABLE] tabl e _name
[(colum_list)]
[PARTITION (partition_clause)]

[hint_cl ause] sel ect_stat enent
| VALUES (value [, value ...]) [, (value [, value ...]) ...]

}

189

Cloudera Runtime Impala SQL statements

partition_clause ::= col _nane [= constant] [, col _name [= constant] ...]

hint_clause ::=
hi nt _w t h_dashes |
hint_with cstyle delimters |
hint_with_brackets

hint_with_dashes ::= -- +SHUFFLE | -- +NOSHUFFLE -- +CLUSTERED

hint_w th_cstyle coments ::=/* +SHUFFLE */ | /* +NOSHUFFLE */ | /*
+CLUSTERED */

hint_w th_brackets ::= [SHUFFLE] | [NOSHUFFLE]
(Wth this hint format, the square brackets are part of the syntax.)

Note: The sguare bracket style of hint is now deprecated and might be removed in a future release. For that
Ij reason, any newly added hints are not available with the square bracket syntax.

Appending or replacing (INTO and OVERWRITE clauses):

The INSERT INTO syntax appends data to atable. The existing datafiles are left as-is, and the inserted dataiis put
into one or more new datafiles.

The INSERT OVERWRITE syntax replaces the datain atable. Currently, the overwritten data files are deleted
immediately; they do not go through the HDFS trash mechanism.

Complex type considerations:

The INSERT statement currently does not support writing data files containing complex types (ARRAY, STRUCT,
and MAP). To prepare Parquet data for such tables, you generate the data files outside Impala and then use LOAD

DATA or CREATE EXTERNAL TABLE to associate those data files with the table. Currently, such tables must
use the Parquet file format.

Kudu considerations:
Currently, the INSERT OVERWRITE syntax cannot be used with Kudu tables.

Kudu tables require a unique primary key for each row. If an INSERT statement attempts to insert arow with the
same values for the primary key columns as an existing row, that row is discarded and the insert operation continues.
When rows are discarded due to duplicate primary keys, the statement finishes with awarning, not an error. (Thisis
achange from early releases of Kudu where the default was to return in error in such cases, and the syntax INSERT |
GNORE was required to make the statement succeed. The IGNORE clause is no longer part of the INSERT syntax.)

For situations where you prefer to replace rows with duplicate primary key values, rather than discarding the new
data, you can use the UPSERT statement instead of INSERT. UPSERT inserts rows that are entirely new, and for
rows that match an existing primary key in the table, the non-primary-key columns are updated to reflect the valuesin
the “upserted” data.

If you really want to store new rows, not replace existing ones, but cannot do so because of the primary key
uniqueness constraint, consider recreating the table with additional columnsincluded in the primary key.

Usage notes:
Impala currently supports:

» Copy datafrom another table using SELECT query. In Impala 1.2.1 and higher, you can combine CREATE T
ABLE and INSERT operations into a single step with the CREATE TABLE AS SELECT syntax, which bypasses
the actual INSERT keyword.

« Anoptional WITH clause before the INSERT keyword, to define a subquery referenced in the SELECT portion.

« Create one or more new rows using constant expressions through VALUES clause. (The VALUES clause was
added in Impala 1.0.1.)

190

Cloudera Runtime Impala SQL statements

» By default, the first column of each newly inserted row goes into the first column of the table, the second column
into the second column, and so on.

Y ou can also specify the columns to be inserted, an arbitrarily ordered subset of the columns in the destination
table, by specifying a column list immediately after the name of the destination table. This feature lets you adjust
the inserted columns to match the layout of a SELECT statement, rather than the other way around. (This feature
was added in Impala1.1.)

The number of columns mentioned in the column list (known as the “column permutation”) must match the
number of columnsin the SELECT list or the VALUES tuples. The order of columnsin the column permutation
can be different than in the underlying table, and the columns of each input row are reordered to match. If the
number of columnsin the column permutation is less than in the destination table, all unmentioned columns are
set to NULL.

* Anoptiona hint clause immediately either before the SELECT keyword or after the INSERT keyword, to fine-
tune the behavior when doing an INSERT ... SELECT operation into partitioned Parquet tables. The hint clause
cannot be specified in multiple places. The hint keywords are [SHUFFLE] and [NOSHUFFLE], including
the sguare brackets. Inserting into partitioned Parquet tables can be a resource-intensive operation because it
potentially involves many files being written to HDFS simultaneously, and separate large memory buffers being
allocated to buffer the data for each partition.

Ij Note:

« Insert commands that partition or add files result in changes to Hive metadata. Because Impala uses Hive
metadata, such changes may necessitate a metadata refresh. For more information, see the REFRESH
function.

e Currently, Impala can only insert data into tables that use the text and Parquet formats. For other file
formats, insert the data using Hive and use Impalato query it.

« Asanadternative to the INSERT statement, if you have existing data files elsewhere in HDFS, the LOAD

DATA statement can move those files into atable. This statement works with tables of any file format.

Statement type: DML (but till affected by the SYNC_DDL query option)
Usage notes:

When you insert the results of an expression, particularly of a built-in function call, into a small numeric column such
asINT, SMALLINT, TINYINT, or FLOAT, you might need to use a CAST() expression to coerce values into the
appropriate type. Impala does not automatically convert from alarger type to asmaller one. For example, to insert
cosine valuesinto a FLOAT column, write CAST(COS(angle) AS FLOAT) in the INSERT statement to make the
conversion explicit.

File format considerations:

Because Impala can read certain file formats that it cannot write, the INSERT statement does not work for all kinds of
Impalatables. See How Impala works with Hadoop file formats for details about what file formats are supported by
the INSERT statement.

Any INSERT statement for a Parquet tabl e requires enough free space in the HDFS fil esystem to write one block.
Because Parquet data files use ablock size of 1 GB by default, an INSERT might fail (even for avery small amount
of data) if your HDFS s running low on space.

If you connect to different Impala nodeswithinani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by al the Impala nodes.

Important: After adding or replacing datain atable used in performance-critical queries, issue a COMP

& UTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for atable after
any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data
through Hive and doing a REFRESH table namein Impala. This technique is especially important for tables
that are very large, used in join queries, or both.

Examples:

191

Cloudera Runtime Impala SQL statements

The following example sets up new tables with the same definition as the TAB1 table using different file formats, and
demonstrates inserting data into the tables created with the STORED AS TEXTFILE and STORED AS PARQUET
clauses:

CREATE DATABASE | F NOT EXI STS file formats;
USE fil e formats;

DROP TABLE | F EXI STS text_tabl e;

CREATE TABLE text_table

(id INT, col_1 BOCLEAN, col_2 DOUBLE, col_3 TI MESTAWP)
STORED AS TEXTFI LE;

DROP TABLE | F EXI STS par quet _t abl e;

CREATE TABLE par quet _table

(id INT, col _1 BOOLEAN, col_2 DOUBLE, col _3 TI MESTAMP)
STORED AS PARQUET;

With the INSERT INTO TABLE syntax, each new set of inserted rows is appended to any existing datain the
table. Thisis how you would record small amounts of data that arrive continuously, or ingest new batches of data
alongside the existing data. For example, after running 2 INSERT INTO TABLE statements with 5 rows each, the
table contains 10 rows total:

[l ocal host:21000] > insert into table text table select * fromdefault.tabl
Inserted 5 rows in 0.41s

[l ocal host:21000] > insert into table text table select * fromdefault.tabl
Inserted 5 rows in 0.46s

[l ocal host:21000] > select count(*) fromtext_table;

feccococooc +
| count(*) |
fesccocoooooc +
| 10 |
Focococococ +

Returned 1 row(s) in 0.26s

With the INSERT OVERWRITE TABLE syntax, each new set of inserted rows replaces any existing datain the
table. Thisis how you load datato query in a data warehousing scenario where you analyze just the data for a
particular day, quarter, and so on, discarding the previous data each time. Y ou might keep the entire set of datain
oneraw table, and transfer and transform certain rows into a more compact and efficient form to perform intensive
analysis on that subset.

For example, here weinsert 5 rows into atable using the INSERT INTO clause, then replace the data by inserting 3
rows with the INSERT OVERWRITE clause. Afterward, the table only contains the 3 rows from the final INSERT
statement.

[l ocal host:21000] > insert into table parquet _table select * fromdefault.ta
b1;
Inserted 5 rows in 0.35s

[l ocal host:21000] > insert overwite table parquet_table select * from def
ault.tabl limt 3;

Inserted 3 rows in 0.43s

[l ocal host:21000] > sel ect count(*) from parquet _tabl e;

Focococoooc +
| count(*) |
Foocoocoooc +
| 3 I
C T +

Returned 1 row(s) in 0.43s

192

Cloudera Runtime Impala SQL statements

The VALUES clause lets you insert one or more rows by specifying constant values for all the columns. The number,
types, and order of the expressions must match the table definition.

Note: TheINSERT ... VALUES technique is not suitable for loading large quantities of datainto HDFS-
E based tables, because the insert operations cannot be parallelized, and each one produces a separate datafile.
Useit for setting up small dimension tables or tiny amounts of data for experimenting with SQL syntax, or
with HBase tables. Do not useit for large ETL jobs or benchmark tests for load operations. Do not run scripts
with thousands of INSERT ... VALUES statements that insert a single row each time. If you do run INSE
RT ... VALUES operations to load data into a staging table as one stage in an ETL pipeline, include multiple
row valuesif possible within each VALUES clause, and use a separate database to make cleanup easier if the
operation does produce many tiny files.

The following example shows how to insert one row or multiple rows, with expressions of different types, using
literal values, expressions, and function return values:

create table val _test 1 (cl int, c2 float, c3 string, c4 boolean, c5 tinmesta
np) ;

insert into val _test 1 values (100, 99.9/10, 'abc', true, now));

create table val test 2 (id int, token string);

insert overwite val _test 2 values (1, 'a'), (2, 'b"), (-1,'xyzzy');

These examples show the type of “not implemented” error that you see when attempting to insert datainto atable
with afile format that Impala currently does not write to:

DROP TABLE | F EXI STS sequence_t abl e;

CREATE TABLE sequence_t abl e

(id INT, col_1 BOCLEAN, col_2 DOUBLE, col_3 TI MESTAWP)
STORED AS SEQUENCEFI LE;

DROP TABLE | F EXI STS rc_tabl e;

CREATE TABLE rc_tabl e

(id INT, col _1 BOOLEAN, col_2 DOUBLE, col_3 TI MESTAMP)
STORED AS RCFI LE;

[l ocal host:21000] > insert into table rc_table select * fromdefault.tabl;
Renote error
Backend 0: RC FI LE not i npl ement ed.

[l ocal host:21000] > insert into table sequence_table select * fromdefault.t
abl;

Renote error

Backend 0: SEQUENCE_FI LE not i npl enent ed.

The following examples show how you can copy the datain al the columns from one table to another, copy the data
from only some columns, or specify the columnsin the select list in adifferent order than they actually appear in the
table:

-- Start with 2 identical tables.
create table t1 (cl int, c2 int);
create table t2 like t1;

-- If there is no () part after the destination table nane,
-- all colums nust be specified, either as * or by nane.
insert into t2 select * fromtl;

insert into t2 select c1, c2 fromt1;

-- Wth the () notation follow ng the destination table nane,

-- you can onit columms (all values for that columm are NULL

-- in the destination table), and/or reorder the val ues

-- selected fromthe source table. This is the "colum pernutation” feature.
insert intot2 (cl) select cl fromt1;

193

Cloudera Runtime Impala SQL statements

insert into t2 (c2, cl) select c1, c2 fromt1;

-- The colum nanmes can be entirely different in the source and destination
t abl es.

-- You can copy any columms, not just the correspondi ng ones, fromthe so
urce table.

-- But the nunmber and type of selected columms nust match the columms nentio
ned in the () part.

alter table t2 replace colums (x int, y int);

insert into t2 (y) select cl1 fromti;

Sorting considerations. Although you can specify an ORDER BY clausein an INSERT ... SELECT statement, any
ORDER BY clauseisignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially
creates many different datafiles, prepared by different executor Impala daemons, and therefore the notion of the data
being stored in sorted order isimpractical.

Concurrency considerations. Each INSERT operation creates new data files with unique names, so you can run
multiple INSERT INTO statements simultaneously without filename conflicts. While datais being inserted into an
Impalatable, the datais staged temporarily in a subdirectory inside the data directory; during this period, you cannot
issue queries against that table in Hive. If an INSERT operation fails, the temporary data file and the subdirectory
could be left behind in the data directory. If so, remove the relevant subdirectory and any datafilesit contains
manually, by issuing an hdfs dfs-rm -r command, specifying the full path of the work subdirectory, whose name
endsin_dir.

The VALUES clause is a general-purpose way to specify the columns of one or more rows, typically within an INSE
RT statement.

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of datainto HDFS-
Ij based tables, because the insert operations cannot be parallelized, and each one produces a separate datafile.
Useit for setting up small dimension tables or tiny amounts of data for experimenting with SQL syntax, or
with HBase tables. Do not use it for large ETL jobs or benchmark tests for load operations. Do not run scripts
with thousands of INSERT ... VALUES statements that insert a single row each time. If you do run INSE
RT ... VALUES operations to load datainto a staging table as one stage in an ETL pipeline, include multiple
row valuesif possible within each VALUES clause, and use a separate database to make cleanup easier if the
operation does produce many tiny files.

The following examples illustrate:

* Howtoinsert asinglerow using aVALUES clause.

e How toinsert multiple rows using aVALUES clause.

* How therow or rows from aVALUES clause can be appended to atable through INSERT INTO, or replace the
contents of the table through INSERT OVERWRITE.

* How theentriesin a VALUES clause can be literals, function results, or any other kind of expression. See
Impala SQL literals on page 90 for the notation to use for literal values, especially for quoting and escaping
conventions for strings. See Impala SQL operators on page 93 and Impala built-in functions on page 305
for other things you can include in expressions with the VALUES clause.

[l ocal host:21000] > describe val _exanpl e;
Query: describe val _exanpl e

Query finished, fetching results ...
ooocoooc feoococooooc feoococooooc +

| id | int [[
| col _1 | boolean | [
| col 2 | double | |

194

Cloudera Runtime Impala SQL statements

[l ocal host:21000] > insert into val _exanple values (1,true, 100.0);
Inserted 1 rows in 0.30s
[l ocal host:21000] > select * from val exanpl e;

fococdmocococ Feccooas +
| id | col_1 | col_2 |
fecocodmcooooe fecooooc +
| 2 | true | 100 |
foccodmocosooc Focooooc +

[l ocal host:21000] > insert overwite val exanpl e val ues (10, fal se, powm(2,5)),
(50, true, 10/ 3);

Inserted 2 rows in 0.16s

[l ocal host:21000] > select * from val _exanpl e;

fecocodmcosooc feccoccccooococooooc +

| 10 | false | 32 |
| 50 | true | 3.333333333333333 |

When used in an INSERT statement, the Impala V ALUES clause can specify some or al of the columnsin the
destination table, and the columns can be specified in a different order than they actually appear in the table. To
specify adifferent set or order of columnsthan in the table, use the syntax:

I NSERT | NTO destination
(col _x, col _y, col_2z)
VALUES
(val _x, val y, val_2z);

Any columnsin the table that are not listed in the INSERT statement are set to NULL.
HDFS considerations:

Impala physically writes all inserted files under the ownership of its default user, typically impala. Therefore, this
user must have HDFS write permission in the corresponding table directory.

The permission requirement is independent of the authorization performed by the Ranger framework. (If the
connected user is not authorized to insert into atable, Ranger blocks that operation immediately, regardless of the
privileges available to the impala user.) Files created by Impala are not owned by and do not inherit permissions from
the connected user.

The number of data files produced by an INSERT statement depends on the size of the cluster, the number of data
blocks that are processed, the partition key columnsin a partitioned table, and the mechanism Impala uses for
dividing the work in parallel. Do not assume that an INSERT statement will produce some particular number of
output files. In case of performance issues with data written by Impala, check that the output files do not suffer from
issues such as many tiny files or many tiny partitions. (In the Hadoop context, even files or partitions of afew tens of
megabytes are considered “tiny”.)

The INSERT statement has always left behind a hidden work directory inside the data directory of the table.
Formerly, this hidden work directory was named .impala insert_staging . In Impala 2.0.1 and later, this directory
name is changed to _impala_insert_staging . (While HDFS tools are expected to treat names beginning either with
underscore and dot as hidden, in practice names beginning with an underscore are more widely supported.) If you
have any scripts, cleanup jobs, and so on that rely on the name of this work directory, adjust them to use the new
name.

HBase considerations:
Y ou can use the INSERT statement with HBase tables as follows:

e Youcaninsert asingle row or asmall set of rowsinto an HBase table with the INSERT ... VALUES syntax.
Thisisagood use case for HBase tables with Impala, because HBase tables are not subject to the same kind of
fragmentation from many small insert operations as HDFS tables are.

* You caninsert any number of rows at once into an HBase table using the INSERT ... SELECT syntax.

195

Cloudera Runtime Impala SQL statements

» If more than oneinserted row has the same value for the HBase key column, only the last inserted row with that
valueisvisible to Impala queries. Y ou can take advantage of this fact with INSERT ... VALUES statements to
effectively update rows one at atime, by inserting new rows with the same key values as existing rows. Be aware
that after an INSERT ... SELECT operation copying from an HDFS table, the HBase table might contain fewer
rows than were inserted, if the key column in the source table contained duplicate values.

* You cannot INSERT OVERWRITE into an HBase table. New rows are always appended.

« When you create an Impala or Hive table that maps to an HBase table, the column order you specify with the
INSERT statement might be different than the order you declare with the CREATE TABLE statement. Behind
the scenes, HBase arranges the columns based on how they are divided into column families. This might cause
amismatch during insert operations, especialy if you use the syntax INSERT INTO hbase_table SELECT * FR
OM hdfs _table. Before inserting data, verify the column order by issuing a DESCRIBE statement for the table,
and adjust the order of the select list in the INSERT statement.

Amazon S3 considerations:

In Impala 2.6 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLEAS SE
LECT) can write datainto atable or partition that resides in the Amazon Simple Storage Service (S3). The syntax of
the DML statements is the same as for any other tables, because the S3 location for tables and partitions is specified
by an s3a:// prefix in the LOCATION attribute of CREATE TABLE or ALTER TABLE statements. If you bring data
into S3 using the normal S3 transfer mechanisms instead of Impala DML statements, issue a REFRESH statement for
the table before using Impala to query the S3 data.

Because of differences between S3 and traditional filesystems, DML operations for S3 tables can take longer than
for tables on HDFS. For example, both the LOAD DATA statement and the final stage of the INSERT and CREA
TE TABLE AS SELECT statements involve moving files from one directory to another. (In the case of INSERT
and CREATE TABLE AS SELECT, thefiles are moved from atemporary staging directory to the final destination
directory.) Because S3 does not support a“rename” operation for existing objects, in these cases Impala actually
copies the data files from one location to another and then removes the origina files. In Impala 2.6, the S3_SKIP_
INSERT_STAGING query option provides away to speed up INSERT statements for S3 tables and partitions, with
the tradeoff that a problem during statement execution could leave datain an inconsistent state. It does not apply to
INSERT OVERWRITE or LOAD DATA statements.

ADLS considerations;

In Impala 2.9 and higher, the Impala DML statements (INSERT, LOAD DATA, and CREATE TABLEAS SE
LECT) can write data into atable or partition that residesin the Azure Data L ake Store (ADLS). ADLS Gen2is
supported in Impala 3.1 and higher.

IntheCREATE TABLE or ALTER TABLE statements, specify the ADLS location for tables and partitions with the
adl:// prefix for ADLS Genl and abfs:// or abfss:// for ADLS Gen2 inthe LOCATION attribute.

If you bring datainto ADL S using the normal ADLS transfer mechanismsinstead of Impala DML statements, issue a
REFRESH statement for the table before using Impalato query the ADLS data.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statementsin log files and other administrative
contexts.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from thei npal a- shel | interpreter, the
Cancel button from the Watch page in Hue, Actions > Cancel from the Queries|list in Cloudera Manager, or Cancel
from the list of in-flight queries (for a particular node) on the Queries tab in the Impalaweb Ul (port 25000).

HDFS permissions:

Theuser ID that thei npal ad daemon runs under, typically the impala user, must have read permission for the files
in the source directory of an INSERT ... SELECT operation, and write permission for al affected directoriesin the
destination table. (An INSERT operation could write files to multiple different HDFS directories if the destination
tableis partitioned.) This user must also have write permission to create a temporary work directory in the top-level
HDFS directory of the destination table. An INSERT OVERWRITE operation does not require write permission on
the original datafilesin the table, only on the table directories themselves.

196

Cloudera Runtime Impala SQL statements

Restrictions:

For INSERT operationsinto CHAR or VARCHAR columns, you must cast all STRING literals or expressions
returning STRING to to a CHAR or VARCHAR type with the appropriate length.

Related startup options:

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those
subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the same
permissions as its parent directory in HDFS, specify the ##insert_inherit_permissions startup option for thei npal ad
daemon.

For apartitioned table, the optional PARTITION clause identifies which partition or partitions the values are inserted
into.

All examplesin this section will use the table declared as below:
CREATE TABLE t1 (w INT) PARTITIONED BY (x INT, y STRING ;

Static partition inserts

In a static partition insert where a partition key column is given a constant value, such as PART
ITION (year=2012, month=2), the rows are inserted with the same values specified for those
partition key columns.

The number of columnsin the SELECT list must equal the number of columnsin the column
permutation.

The PARTITION clause must be used for static partitioning inserts.
Example:

The following statement will insert the some_other_table.c1 values for the w column, and all the
rows inserted will have the same x value of 10, and the samey value of ‘a’.

I NSERT I NTO t1 PARTITION (x=10, y='a')
SELECT c1 FROM sone_ot her _t abl e;

Dynamic partition inserts

In adynamic partition insert where a partition key column isin the INSERT statement but not
assigned avalue, such asin PARTITION (year, region)(both columns unassigned) or PARTITIO
N(year, region="CA") (year column unassigned), the unassigned columns are filled in with the final
columns of the SELECT or VALUES clause. In this case, the number of columnsin the SELECT
list must equal the number of columnsin the column permutation plus the number of partition key
columns not assigned a constant value.

The following rules apply to dynamic partition inserts.
» The columns are bound in the order they appear in the INSERT statement.
The table below shows the values inserted with the INSERT statements of different column

orders.
Columnw Value Column x Value Columny Vaue
INSERT INTOt1 (w, x,y) | 1 2 ‘¢
VALUES(1, 2, 'c¢);
INSERT INTO t1 (x,w) 2 1 ‘'c
PARTITION (y) VALUE
S(1,2, ‘¢

197

Cloudera Runtime Impala SQL statements

* When apartition clauseis specified but the non-partition columns are not specified in the INSE
RT statement, asin the first example below, the non-partition columns are treated as though they
had been specified before the PARTITION clause in the SQL.

Example: These three statements are equivalent, inserting 1 tow, 2to x, and ‘c’ to y columns.

I NSERT INTO t1 PARTITION (x,y) VALUES (1, 2, ‘c’);
INSERT INTOt1 (w) PARTITION (x, y) VALUES (1, 2, ‘c’);
INSERT INTO t1 PARTITION (x, y='c') VALUES (1, 2);

« ThePARTITION clauseis not required for dynamic partition, but all the partition columns must
be explicitly present in the INSERT statement in the column list or in the PARTITION clause.
The partition columns cannot be defaulted to NULL.

Example:

The following statements are valid because the partition columns, x and y, are present in the
INSERT statements, either in the PARTITION clause or in the column list.

I NSERT I NTO t1 PARTITION (x,y) VALUES (1, 2, ‘c’);
INSERT INTO t1 (w, x) PARTITION (y) VALUES (1, 2, ‘cC’);

The following statement is not valid for the partitioned table as defined above because the
partition columns, x and y, are not present in the INSERT statement.

INSERT INTO t1 VALUES (1, 2, 'c');

» |f partition columns do not exist in the source table, you can specify a specific value for that
columnin the PARTITION clause.

Example: The source table only contains the column w and y. The value, 20, specified in the
PARTITION clause, isinserted into the x column.

I NSERT | NTO t1 PARTI TION (x=20, y) SELECT * FROM source;

The TRUNCATE table statement on Insert-Only Transactional tables creates new empty ACID base directories and
does not remove the files. To maintain transactional isolation TRUNCATE statement will NOT delete the previous
base and delta directories.

Reading and writing ADLS data with Impala
Examples and performance characteristics of static and dynamic partitioned inserts

The INVALIDATE METADATA statement marks the metadata for one or al tables as stale. The next time the
Impala service performs a query against a table whose metadata is invalidated, Impala rel oads the associated metadata
before the query proceeds. Asthisisavery expensive operation compared to the incremental metadata update done
by the REFRESH statement, when possible, prefer REFRESH rather than INVALIDATE METADATA.

INVALIDATE METADATA isrequired when the following changes are made outside of Impala, in Hive and other
Hive client, such as SparkSQL:

« Metadata of existing tables changes.
* New tables are added, and Impalawill use the tables.

* TheSERVER or DATABASE level privileges are changed from outside of Impala.
« Block metadata changes, but the files remain the same (HDFS rebalance).

198

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-adls.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-partition.html

Cloudera Runtime Impala SQL statements

* UDFjarschange.

« Sometablesare no longer queried, and you want to remove their metadata from the catalog and coordinator
caches to reduce memory requirements.

No INVALIDATE METADATA is needed when the changes are made by impalad.
Onceissued, the INVALIDATE METADATA statement cannot be cancelled.

Syntax:

| NVALI DATE METADATA [[db_nane.]t abl e_nane]

If thereis no table specified, the cached metadata for al tablesis flushed and synced with Hive Metastore (HMS). If
tables were dropped from the HM S, they will be removed from the catalog, and if new tables were added, they will
show up in the catalog.

If you specify atable name, only the metadata for that one table is flushed and synced with the HMS.
Usage notes:

To return accurate query results, Impala need to keep the metadata current for the databases and tables queried.
Therefore, if some other entity modifies information used by Impalain the metastore, the information cached by
Impalamust be updated viaINVALIDATE METADATA or REFRESH.

INVALIDATE METADATA and REFRESH are counterparts:

* INVALIDATE METADATA isan asynchronous operations that simply discards the loaded metadata from the
catalog and coordinator caches. After that operation, the catalog and all the Impala coordinators only know about
the existence of databases and tables and nothing more. Metadata loading for tablesis triggered by any subsequent
queries.

e REFRESH reloads the metadata synchronously. REFRESH is more lightweight than doing a full metadata load
after atable has been invalidated. REFRESH cannot detect changesin block locations triggered by operations like
HDFS balancer, hence causing remote reads during query execution with negative performance implications.

Use REFRESH after invalidating a specific table to separate the metadata |oad from the first query that's run against
that table.

Examples:

This exampleillustrates creating a new database and new tablein Hive, then doing an INVALIDATE METADATA
statement in Impala using the fully qualified table name, after which both the new table and the new database are
visible to Impala.

Before the INVALIDATE METADATA statement was issued, Impalawould give a*“not found” error if you tried to
refer to those database or table names.

$ hive

hi ve> CREATE DATABASE new db_from hi ve;

hi ve> CREATE TABLE new_db_from hi ve. new table fromhive (x INT);

hi ve> quit;

$ i npal a-shel |

> REFRESH new _db_from hi ve. new tabl e from hive;

ERROR: Anal ysi sExcepti on: Database does not exist: new db_from hive
> | NVALI DATE METADATA new _db_from hi ve. new tabl e from hive;

> SHOW DATABASES LI KE ' new ' ;

199

Cloudera Runtime Impala SQL statements

Use the REFRESH statement for incremental metadata update.

> REFRESH new_t abl e _from hive;

HDFS considerations:

By default, the INVALIDATE METADATA command checks HDFS permissions of the underlying datafiles and
directories, caching this information so that a statement can be cancelled immediately if for example the impala

user does not have permission to write to the data directory for the table. (This checking does not apply when the
cat al ogd configuration option --load _catalog_in_background is set to false, which it is by default.) Impalareports
any lack of write permissions as an INFO message in the log file.

If you change HDFS permissions to make data readable or writeable by the Impala user, issue another INVALIDATE
METADATA to make Impala aware of the change.

Kudu considerations:

By default, much of the metadata for Kudu tables is handled by the underlying storage layer. Kudu tables have less
reliance on the Metastore database, and require less metadata caching on the Impala side. For example, information
about partitionsin Kudu tables is managed by Kudu, and Impala does not cache any block locality metadata for Kudu
tables. If the Kudu serviceis not integrated with the Hive Metastore, Impala will manage Kudu table metadata in the
Hive Metastore.

The REFRESH and INVALIDATE METADATA statements are needed less frequently for Kudu tables than for
HDFS-backed tables. Neither statement is needed when data is added to, removed, or updated in a Kudu table, even
if the changes are made directly to Kudu through a client program using the Kudu API. Run REFRESH table _name
or INVALIDATE METADATA table name for a Kudu table only after making a change to the Kudu table schema,
such as adding or dropping a column.

On-demand Metadata

The LOAD DATA statement streamlines the ETL process for an internal Impalatable by moving adatafile or all the
datafilesin adirectory from an HDFS location into the Impala data directory for that table.

Syntax:

LOAD DATA | NPATH ' hdfs_file_or_directory_path' [OVERARI TE] INTO T
ABLE t abl enane
[PARTI TION (partcol 1=val 1, partcol 2=val 2 ...)]

When the LOAD DATA statement operates on a partitioned table, it always operates on one partition at atime.
Specify the PARTITION clauses and list all the partition key columns, with a constant value specified for each.

Statement type: DML (but still affected by the SYNC_DDL query option)

Note:
B « Whenthe LOAD DATA statement operates on a partitioned table, ensure that the partition exists.
¢ You must be aware of the authorization behavior for the LOAD DATA command in Impala. When the
LOAD DATA command is executed in Impala, the command checks if the user has ALL accessto the
source HDFSfile/dir through a URL policy. Thisimpliesthat the requesting user must have the ALL
privilege on the source path in Ranger's policy repository of HADOOP SQL even if the requesting user is
granted some privilege on the source path using Rangers' policy repository of HDFS or HDFS ACLSs.

Usage notes:

200

https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/impala-reference/topics/impala-on-demand-metadata.html

Cloudera Runtime Impala SQL statements

* Theloaded data files are moved, not copied, into the Impala data directory.

* You can specify the HDFS path of asingle file to be moved, or the HDFS path of adirectory to move al the files
inside that directory. Y ou cannot specify any sort of wildcard to take only some of the files from a directory.
When loading adirectory full of datafiles, keep all the datafiles at the top level, with no nested directories
underneath.

e Currently, the ImpalaLOAD DATA statement only imports files from HDFS, not from the local filesystem. It
does not support the LOCAL keyword of the Hive LOAD DATA statement. Y ou must specify a path, not an hdfs
J4IURI.

« Intheinterest of speed, only limited error checking is done. If the loaded files have the wrong file format,
different columns than the destination table, or other kind of mismatch, Impala does not raise any error for the
LOAD DATA statement. Querying the table afterward could produce a runtime error or unexpected results.
Currently, the only checking the LOAD DATA statement does is to avoid mixing together uncompressed and
LZO-compressed text filesin the same table.

* When you specify an HDFS directory name as the LOAD DATA argument, any hidden filesin that directory
(files whose names start with a.) are not moved to the Impala data directory.

» Theoperation failsif the source directory contains any non-hidden directories. Prior to Impala 2.5 if the source
directory contained any subdirectory, even ahidden one such as_impala_insert_staging, the LOAD DATA
statement would fail. In Impala 2.5 and higher, LOAD DATA ignores hidden subdirectories in the source
directory, and only failsif any of the subdirectories are non-hidden.

« Theloaded datafilesretain their original namesin the new location, unless a name conflicts with an existing
datafile, in which case the name of the new file is modified dightly to be unigue. (The name-mangling isa slight
difference from the Hive LOAD DATA statement, which replaces identically named files.)

e By providing an easy way to transport files from known locations in HDFS into the Impala data directory
structure, the LOAD DATA statement lets you avoid memorizing the locations and layout of HDFS directory tree
containing the Impala databases and tables. (For a quick way to check the location of the datafiles for an Impala
table, issue the statement DESCRIBE FORMATTED table name.)

 ThePARTITION clauseis especialy convenient for ingesting new data for a partitioned table. Asyou receive
new data for atime period, geographic region, or other division that corresponds to one or more partitioning
columns, you can load that data straight into the appropriate |mpala data directory, which might be nested several
levels down if the table is partitioned by multiple columns. When the table is partitioned, you must specify
constant values for all the partitioning columns.

Complex type considerations:

Because Impala currently cannot create Parquet data files containing complex types (ARRAY, STRUCT, and MAP),
the LOAD DATA statement is especially important when working with tables containing complex type columns.

Y ou create the Parquet data files outside Impala, then use either LOAD DATA, an external table, or HDFS-level file
operations followed by REFRESH to associate the data files with the corresponding table.

If you connect to different Impala nodeswithinani npal a- shel | session for load-balancing purposes, you can
enable the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed
metadata has been received by al the Impala nodes.

Important: After adding or replacing datain atable used in performance-critical queries, issue a COMP
UTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for atable after
any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after loading data
through Hive and doing a REFRESH table namein Impala. This technique is especially important for tables
that are very large, used in join queries, or both.

Examples:

First, we use atrivial Python script to write different numbers of strings (one per line) into files stored in the doc_
demo HDFS user account. (Substitute the path for your own HDFS user account when doing hdf s df s operations
like these)

random strings. py 1000 | hdfs dfs -put - /user/doc_deno/thousand_strings.txt
random strings. py 100 | hdfs dfs -put - /user/doc_deno/hundred_strings.txt
random strings.py 10 | hdfs dfs -put - /user/doc_deno/ten_strings.txt

201

Cloudera Runtime Impala SQL statements

Next, we create atable and load an initial set of datainto it. Remember, unless you specify a STORED AS clause,
Impalatables default to TEXTFILE format with Ctrl-A (hex 01) asthefield delimiter. This example uses asingle-
column table, so the delimiter is no