
Cloudera Runtime ..

Spark Troubleshooting
Date published: 2024-09-23
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Spark jobs failing with memory issues...4

Cloudera Runtime Spark jobs failing with memory issues

Spark jobs failing with memory issues

This article describes troubleshooting tips for when Spark application fails with memory issues such as java.lang.Ou
tOfMemoryError : *.

Condition

The general symptom for this issue is that Spark applications fail with one of the errors listed below.

This can either be a new application or an application that has been previously working, but is now failing after an
increase in the data size being processed or after a configuration change. The specific symptoms for this issue, which
are contained in the log output, are exposed in the Spark driver, Spark executor, YARN Application Master, and
NodeManager logs.

Symptoms Error messages include:

java.lang.OutOfMemoryError: Java heap space

java.lang.OutOfMemoryError: GC overhead limit exceeded

java.lang.OutOfMemoryError: unable to create new native thread

java.lang.OutOfMemoryError: Not enough memory to build and broadcast the tab
le to all worker nodes. As a workaround, you can either disable broadcast by
 setting
 spark.sql.autoBroadcastJoinThreshold to -1 or increase the spark
 driver memory by setting spark.driver.memory to a higher value

java.lang.OutOfMemoryError: Unable to acquire * bytes of memory, got 0

java.lang.OutOfMemoryError: Requested array size exceeds VM limit

ERROR org.apache.spark.executor.Executor: Managed memory leak detected; size
 = * bytes, TID = *

containerID=container_*] is running [*** VALUE B***] beyond the 'PHYSICAL' m
emory limit. Current usage: * GB of * GB physical memory used; * GB of * GB
virtual memory used. Killing container.

Also, the job may report WARN messages such as

20/11/24 20:23:20 WARN memory.MemoryStore: Not enough space to cache rdd_343
3_344 in memory! (computed 276.3 MB so far)

Cause

When Spark runs on YARN, containers memory is allocated as per the Spark configurations set.

You can configure it using the spark.executor|driver property (the default value is the driver|executor with a minimum
of 1024 MB).

When the configured memory is too small to accommodate the needs of a running application, the application
containers exceed the memory limit set by YARN and are killed by the framework. When enough containers are
killed, the Spark application fails.

4

Cloudera Runtime Spark jobs failing with memory issues

Understanding Spark configurations related to memory

This section provides an overview of Spark configuration order of precedence rules and instructions for resolving
issues with YARN killing containers for exceeding memory limits.

1. Understanding the Spark Configuration Order of Precedence

When configuring Spark application, you need to understand the order of precedence for configuration values.
Configuration values explicitly set in code(SparkConf) take the highest precedence, then flags passed to the spark-
submit command, then values in the Spark defaults configuration file.

The exact order of precedence is:

• Spark configuration file: Parameters are passed to Spark Conf.
• Command-line arguments are passed to spark-submit, spark-shell, or pyspark.
• Cloudera Manager UI properties set in the spark-defaults.conf configuration file.

a. Available Spark configuration properties

• spark.executor.memory
• spark.driver.memory
• spark.yarn.am.memory
• spark.yarn.executor.memoryOverhead
• spark.yarn.driver.memoryOverhead

b. Using Command-line arguments

You can set the above configuration properties when launching Spark applications using the spark-submit
command:

./bin/spark-submit --conf spark.executor.memory=[*** VALUE ***] --conf
spark.driver.memory=[*** VALUE ***]

2. Identify what type of containers are being killed

Review the logs and identify which container is being killed, that is: the driver, executor, or application master
container.

If the container being killed is the executor container, Use the container ID in the NodeManager logs in
conjunction with the application logs, to identify the error if not logged in Executor container logs.

3. Verifying the actual memory values used

Before increasing the Driver or executor memory, access the Spark application properties through the Spark UI:

• For each application, run a job and open the Spark UI.
• Click on the Environment tab.
• Scroll to the Spark Properties section and view the Memory values.

Note: Refer to Tuning Spark Applications for more information about fine tuning Spark.

YARN Capacity Scheduler's container sizing

YARN Capacity Scheduler, the default scheduler in CDP, multiplies the size of the minimum allocation for
containers. With a minimum scheduler of 1GB memory per container, for a request for a container size of 4.5GB
the scheduler rounds up to 5GB. Minimum allocations set to very high values can create large resource waste
problems: for example, with a 4GB minimum allocation a request for 5GB would be served 8GB - creating 3 extra
GB allocation that is not used! Cloudera recommends that when configuring and minimum and maximum container
size, the maximum should be evenly divisible by the minimum.

If you are using the YARN capacity scheduler, memory requests will be rounded up to the nearest multiple of the
value of yarn.scheduler.minimum-allocation-mb in the YARN configuration in Cloudera Manager.

For more information, refer to YARN – The Capacity Scheduler.

5

Cloudera Runtime Spark jobs failing with memory issues

Error 1 : java.lang.OutOfMemoryError: Java heap space

Driver side causes

Possible causes when the driver can go OOM are:

• Running a Collect/Show/ operation on a large file
• Memory leak

Executor side causes

Possible causes when the executor can go OOM are:

• Possible causes data skewness
• Less partitions or the data size is larger than the memory allocated
• Memory leak - where the memory usage increases sharply leading to OOM, even while less or no data is being

processed.

Possible solutions

• Increase the memory for the driver or executor depending on the error message. You need to try this until the job
succeeds and we recommend using spark-submit command line arguments.

• Check the Spark event log , if the last operation that caused the failure is due to Collect/show , then check with the
customer on the necessity to perform this case. This is generally done over testing propose for small data size and
is not needed over PROD or larger dataset runs.

Error 2 : java.lang.OutOfMemoryError: GC overhead limit exceeded

Driver side causes

Possible causes when the driver can go OOM are:

• Running a Collect/Show/ operation on a large file
• Memory leak

Executor side causes

• Possible causes data skewness
• Less partitions or the data size is larger than the memory allocated
• Memory leak

Possible solutions

• Increase the memory for the driver or executor depending on the error message. You need to try this until the job
succeeds and we recommend using spark-submit command line arguments.

• Check the Spark event log , if the last operation that caused the failure is due to Collect/show , then check with the
customer on the necessity to perform this case. This is generally done over testing propose for small data size and
is not needed over PROD or larger dataset runs.

• If even after multiple re-tires of increasing the driver or executor memory and job fails with processing small
amount of data, then it can be a issues with Memory Leak. Take Heap Dump via steps to take heap dump on Spark
application.

• For data skewness issue, please check this article on how to identify and the solutions to resolve the same.

Error 3 : java.lang.OutOfMemoryError: unable to create new native thread

Possible causes when the driver/executor can go OOM are

This indicates that that the application has hit the limit of how many threads it can launch, which is dictated by the OS
(the number it will allow your JVM to use). This in turn usually either means that you need to make changes to the
code or increase the ulimit (nproc) on all NodeManager hosts.

Possible solutions

6

Cloudera Runtime Spark jobs failing with memory issues

In the /etc/security/limits.d/ directory, edit the file [*** NUMBER ***]-nproc.conf, and make sure the user who needs
higher nproc settings has the appropriate limit configured as follows:

userid soft nproc 65536

The above is only an example, and should be modified as desired on all NodeManager hosts.

Error 4 : java.lang.OutOfMemoryError: Not enough memory to build and broadcast the table to all
worker nodes.

Possible solutions

• Increase the memory for the driver depending on the error message.
• Check the table size being broadcasted. It should be noted that we should always broadcast a smaller table.

Users can implicitly specify Broadcast Hint (see Join Strategy Hints for SQL Queries in the Apache Spark
Documentation) in the query.

• Disable broadcast by setting spark.sql.autoBroadcastJoinThreshold to -1.

Error 5 : java.lang.OutOfMemoryError: Unable to acquire * bytes of memory, got 0

Possible causes when the driver can go OOM are:

• Possible causes data skewness
• Less partitions or the data size is larger than the memory allocated
• Memory leak
• System does not have enough memory to allocate resources

Possible solutions

• Increase Executor memory.
• Increase Executor memory overhead:

--conf spark.yarn.executor.memoryOverhead=[*** VALUE ***]

The [*** VALUE ***] is usually 10% of the value specified in --executor-memory.
• Check system setting on Free memory available.

Error 5 : java.lang.OutOfMemoryError: Requested array size exceeds VM limit

Possible causes when the driver can go OOM are:

Shuffle block size is greater than the 2GB Shuffle Size limit . The issue you're experiencing here has to do with the 2
GB block limit in Spark.

Possible solutions

Consider increasing the following:

• the number of partitions for your RDDs in the code by using either the RDD's coalesce() or repartition() method.
• >Executor memory

Error 5 : ERROR org.apache.spark.executor.Executor: Managed memory leak detected; size = * byt
es, TID = *

Managed memory leak error in executors issue occurs when the shuffle read requires more memory than what is
available for the task. Since the shuffle-read side doubles its memory request each time, it can easily end up acquiring
all of the available memory, even if it does not use it.

Note: The job will report with one of the above java.lang.OutOfMemoryError: * reported in the executor
logs along with the above Managed memory leak detected* error.

7

Cloudera Runtime Spark jobs failing with memory issues

Possible solutions

• To increase Driver memory overhead:

--conf spark.yarn.driver.memoryOverhead=[*** VALUE ***]

The [*** VALUE ***] is usually 10% of the value specified in --executor-memory.
• To Increase Executor memory overhead:

--conf spark.yarn.executor.memoryOverhead=[*** VALUE ***]

The [*** VALUE ***] is usually 10% of the value specified in --executor-memory.

containerID=container_*] is running [*** VALUE B***] beyond the 'PHYSICAL' memory limit. Current
 usage: * GB of * GB physical memory used; * GB of * GB virtual memory used. Killing container.

Possible causes when the executor can go OOM are:

• Possible causes data skewness
• Less partitions or the data size is larger than the memory allocated
• Memory leak

Note: The job may report with one of the above java.lang.OutOfMemoryError: * reported in the executor
logs along with the above beyond the 'PHYSICAL' memory limit error.

Possible solutions

Consider increasing Executor memory:

• To Increase Executor memory overhead:

--conf spark.yarn.executor.memoryOverhead=[*** VALUE ***]

The [*** VALUE ***] is usually 10% of the value specified in --executor-memory.

WARN Message: WARN memory.MemoryStore: Not enough space to cache rdd*

Data spilling to disk and no memory to Cache RDD. Indicates memory being easily filled and it can cause
performance issues and also application failure with OOM errors as above.

1. To avoid frequent spilling you would need to increase the heap size of Spark executor.
2. Increase the partition count to have more distribution of data. Review Tuning Partitions in Spark.
3. Memory leak

Possible solutions

• Increase the executor or driver memory Overhead (spark.executor.memoryOverhead and -spark.driver.memory
Overhead).

The memory overhead defaults to 10% of the memory specified (with a minimum of 384mb). Thus increasing the
executor or driver memory can also increase the memory overhead if sufficiently large values are used.

• Decrease the number of executor cores (--executor-cores)

By decreasing the number of parallel tasks being run in executors, each executor requires less memory overhead.

Related Information
Tuning Partitions in Spark

Join Strategy Hints for SQL Queries | Apache Spark Documentation

Tuning Spark Applications

YARN – The Capacity Scheduler | Cloudera Blog

8

http://docs-dev.cloudera.com.s3.amazonaws.com/test/tuning-spark/topics/spark-admin-tuning-the-number-of-partitions.html
https://spark.apache.org/docs/latest/sql-performance-tuning.html#join-strategy-hints-for-sql-queries
http://docs-dev.cloudera.com.s3.amazonaws.com/test/tuning-spark/topics/spark-admin_spark_tuning.html
https://blog.cloudera.com/yarn-capacity-scheduler/

	Contents
	Spark jobs failing with memory issues

