
Cloudera Runtime 7.3.1

Apache Zeppelin
Date published: 2020-07-28
Date modified: 2024-12-10

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Zeppelin Overview..4

Installing Apache Zeppelin..4
Reinstall Apache Zeppelin in 7.3.1..4
Enabling HDFS and Configuration Storage for Zeppelin Notebooks in HDP-2.6.3+...6

Overview... 6
Enable HDFS Storage when Upgrading to HDP-2.6.3+..7
Use Local Storage when Upgrading to HDP-2.6.3+... 8

Configuring Apache Zeppelin... 8
Introduction... 9
Configuring Zeppelin caching.. 9
Configuring Livy.. 9
Livy high availability support.. 10
Configure User Impersonation for Access to Hive..11
Configure User Impersonation for Access to Phoenix.. 12
Enabling Access Control for Zeppelin Elements...12

Enable Access Control for Interpreter, Configuration, and Credential Settings.................................... 12
Enable Access Control for Notebooks... 15
Enable Access Control for Data...16

Shiro Settings: Reference... 17
Active Directory Settings... 17
LDAP Settings.. 18
General Settings.. 19

shiro.ini Example.. 19

Using Apache Zeppelin.. 20
Introduction... 20
Launch Zeppelin... 20
Working with Zeppelin Notes..23

Create and Run a Note...24
Import a Note..25
Export a Note..26
Using the Note Toolbar..27

Import External Packages...28
Configuring and Using Zeppelin Interpreters.. 28

Modify interpreter settings... 28
Using Zeppelin Interpreters.. 29
Customize interpreter settings in a note...31
Use the JDBC interpreter to access Hive.. 32
Use the Livy interpreter to access Spark... 33
Using Spark Hive Warehouse and HBase Connector Client .jar files with Livy...................................34

Cloudera Runtime Zeppelin Overview

Zeppelin Overview

Apache Zeppelin is a web-based notebook that supports interactive data exploration, visualization, and collaboration.

Important:

Zeppelin has been deprecated in Cloudera Runtime 7.2.187.1.9 and is no longer supported by Cloudera.

You can reinstall Zeppelin and migrate your previously used Zeppeling notebooks at your own risk.

Refer to Reinstall Apache Zeppelin in 7.3.1 for more information on how to reinstall Zeppelin in Cloudera
Private Cloud 7.3.1.

Zeppelin supports a growing list of programming languages and interfaces, including Python, Scala, Hive, SparkSQL,
shell, AngularJS, and markdown.

Apache Zeppelin is useful for working interactively with long workflows: developing, organizing, and running
analytic code and visualizing results.

Installing Apache Zeppelin

How to install Apache Zeppelin.

Reinstall Apache Zeppelin in 7.3.1
How to reinstall Apache Zeppelin in Cloudera Private Cloud 7.3.1.

About this task

Note: Customers are advised to take a backup of their existing notebooks by logging into their respective
notebook repositories and creating a copy of the same, interpreter config (interpreter.json file) and safety
variables added in the CM UI as configuration (zeppelin-site.xml and Zeppelin-env.sh) before Upgrade.

4

Cloudera Runtime Installing Apache Zeppelin

Important:

Cloudera Manager changes for Zeppelin in 7.3.1

Zeppelin has been deprecated in Cloudera Runtime 7.1.9 and is no longer supported by Cloudera.

1. Fresh Cluster Installs

• Zeppelin doesn't show up in the Install wizard.
• Zeppeling doesn't show up in the list of available services of the Add-service wizard of Cloudera

Manager.
2. Upgraded Clusters

a. During the pre-upgrade check, Cloudera Manager will show a warning that Zeppelin is going to be
disabled when upgrading to 7.3.1. The upgrade will not proceed until Zeppelin is stopped and deleted
from the cluster.

b. Once the Zeppelin service is stopped and deleted, cluster upgrade can be continued. The upgraded
cluster will no longer contain Zeppelin.

You can reinstall the Zeppelin service as an external CSD as shown below, but Cloudera will not provide support for
Zeppelin in 7.3.1.

For more information on building and using external CSDs, see:

• Cloudera Manager Add-on Services
• Cloudera Manager Extensions | Cloudera GitHub Wiki
• Custom Service Descriptors | Cloudera GitHub Wiki
• Cloudera CSD repository | GitHub

Procedure

1. Download the CSD Build Code.

a) Clone the repository containing the code required to build CSDs:

git clone https://github.com/cloudera/cm_csds.git

2. Copy the interpreter config file (interpreter.json) for Zeppelin to the source of the Zeppelin CSD folder cm_csds/
ZEPPELIN/src/aux/ inside the downloaded cm_csds repository.

3. Build the CSD JAR File.

a) Navigate to the cm_csds directory and build the JAR file for Zeppelin:

cd cm_csds
mvn clean install

b) After the build completes, you'll find the CSD JAR file in the target directory:

ls -lrt ZEPPELIN/target/ZEPPELIN*

5

Cloudera Runtime Installing Apache Zeppelin

4. Deploy the CSD JAR File to Cloudera Manager.

a) Copy the CSD JAR file to the Cloudera Manager server:

scp ZEPPELIN/target/ZEPPELIN-7.3.1.jar [*** USERNAME ***]@[*** HOST
 ***]:/opt/cloudera/csd/

b) SSH into the Cloudera Manager server:

ssh [*** USERNAME ***]@[*** HOST ***]

c) Navigate to the CSD directory:

cd /opt/cloudera/csd/

d) Set the correct permissions and ownership for the JAR file:

sudo chmod 664 ZEPPELIN-7.3.1.jar
sudo chown cloudera-scm:cloudera-scm ZEPPELIN-7.3.1.jar

e) Restart the Cloudera Manager server:

sudo service cloudera-scm-server restart

5. Configure and Add Zeppelin Service.

a) Open Cloudera Manager Admin Console.
b) Add the Zeppelin service in the Cloudera Manager Home page: CM HomeStatus3 dotsAdd service
c) Select Zeppelin.
d) Follow the on-screen instructions to add the Zeppelin service to your cluster.
e) Configure authentication and create users as needed by your authentication provider.
f) Start Zeppelin.
g) Open Zeppelin in the browser.
h) Test by running any paragraph to confirm it is working as expected.
i) Replace the notebook folder with the earlier backed up notebooks.
j) Add the earlier backed up safety variables (zeppelin-site.xml and zeppelin-env.sh) in Cloudera

ManagerZeppelinConfigs.
k) Restart Zeppelin.

Results

Zeppelin is available in your cluster and you are able to run the older notebooks.

Related Information
Cloudera Manager Extensions | Cloudera GitHub Wiki

Custom Service Descriptors | Cloudera GitHub Wiki

Cloudera CSD repository | GitHub

Cloudera Manager Add-on Services

Enabling HDFS and Configuration Storage for Zeppelin Notebooks in
HDP-2.6.3+

Overview
When upgrading to HDP-2.6.3 and higher versions, additional configuration steps are required to enable HDFS
storage for Apache Zeppelin notebooks.

6

https://github.com/cloudera/cm_ext/wiki
https://github.com/cloudera/cm_ext/wiki/CSD-Overview
https://github.com/cloudera/cm_csds
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/managing-clusters/topics/cm-add-on-services.html

Cloudera Runtime Installing Apache Zeppelin

HDP-2.6.3 introduced support for HDFS storage for Apache Zeppelin notebooks and configuration files. In previous
versions, notebooks and configuration files were stored on the local disk of the Zeppelin server.

When upgrading to HDP-2.6.3 and higher versions, there are two options for configuring Zeppelin notebook and
configuration file storage:

• Use HDFS storage (recommended) – Zeppelin notebooks and configuration files must be copied to the new
HDFS storage location before upgrading. Additional upgrade and post-upgrade steps must also be performed, as
described in the following section.

• Use local storage – Perform upgrade and post-upgrade steps to enable local storage.

Enabling HDFS storage makes future upgrades much easier, and also sets up the first step toward enabling Zeppelin
High Availability. Therefore it is recommended that you enable HDFS for Zeppelin notebooks and configuration files
when upgrading to HDP 2.6.3+ from earlier versions of HDP.

Note:

Currently HDFS and local storage are the only supported notebook storage mechanisms in HDP-2.6.3+.
Currently VFSNotebookRepo is the only supported local storage option.

Enable HDFS Storage when Upgrading to HDP-2.6.3+
Perform the following steps to enable HDFS storage when upgrading to HDP 2.6.3+ from earlier versions of HDP.

Procedure

1. Before upgrading Zeppelin, perform the following steps as the Zeppelin service user.

a. Create the /user/zeppelin/conf and /user/zeppelin/notebook directories in HDFS.

hdfs dfs -ls /user/zeppelin
drwxr-xr-x - zeppelin hdfs 0 2018-01-20 04:17 /user/zeppelin/
conf
drwxr-xr-x - zeppelin hdfs 0 2018-01-20 03:40 /user/zeppelin/
notebook

b. Copy all notebooks from the local Zeppelin server (for example, /usr/hdp/2.5.3.0-37/zeppelin/notebook/) to the
/user/zeppelin/notebook directory in HDFS.

hdfs dfs -ls /user/zeppelin/notebook
drwxr-xr-x - zeppelin hdfs 0 2018-01-19 01:40 /user/zeppelin/
notebook/2A94M5J1Z
drwxr-xr-x - zeppelin hdfs 0 2018-01-19 01:40 /user/zeppelin/
notebook/2BWJFTXKJ

c. Copy the interpreter.json and notebook-authorization.json files from the local Zeppelin service configuration
directory (/etc/zeppelin/conf) to the/user/zeppelin/conf directory in HDFS.

hdfs dfs -ls /user/zeppelin/conf
-rw-r--r-- 3 zeppelin hdfs 284091 2018-01-22 23:28 /user/zeppelin/
conf/interpreter.json
-rw-r--r-- 3 zeppelin hdfs 123849 2018-01-22 23:29 /user/zeppelin/
conf/notebook-authorization.json

2. Upgrade Ambari.

3. Upgrade HDP and Zeppelin. During the upgrade, verify that the following configuration settings are present in
Ambari for Zeppelin.

zeppelin.notebook.storage = org.apache.zeppelin.notebook.repo.FileSystem
NotebookRepo
zeppelin.config.fs.dir = conf

If necessary, add or update these configuration settings as shown above.

7

Cloudera Runtime Configuring Apache Zeppelin

4. After the upgrade is complete:

a. Log on to the Zeppelin server and verify that the following properties exist in the /etc/zeppelin/conf/zeppelin-
site.xml file. The actual value for the keytab file and principal name may be different for your cluster.

<property>
 <name>zeppelin.server.kerberos.keytab</name>
 <value>/etc/security/keytabs/zeppelin.server.kerberos.keytab</value>
</property>
<property>
 <name>zeppelin.server.kerberos.principal</name>
 <value>zeppelin@EXAMPLE.COM</value>
</property>

b. Check the Zeppelin Interpreter page to see if any interpreter (e.g. the Livy interpreter) is duplicated. This may
happen in some cases. If duplicate interpreter entries are found, perform the following steps:

1. Backup and delete the interpreter.json file from HDFS (/user/zeppelin/conf/interpreter.json) and from the
local Zeppelin server.

2. Restart the Zeppelin service.
3. Verify that the duplicate entries no longer exist.
4. If any custom interpreter settings were present before the upgrade, add them again via the Zeppelin

interpreter UI page.
c. Verify that your existing notebooks are available on Zeppelin.

Note: When an existing notebook is opened for the first time after the upgrade, it may ask you to save the
interpreters associated with the notebook.

Use Local Storage when Upgrading to HDP-2.6.3+
Perform the following steps to use local notebook storage when upgrading to HDP 2.6.3+ from earlier versions of
HDP.

Procedure

1. Upgrade Ambari.

2. Upgrade HDP and Zeppelin. During the upgrade, verify that the following configuration settings are present in
Ambari for Zeppelin.

zeppelin.notebook.storage = org.apache.zeppelin.notebook.repo.VFSNoteboo
kRepo
zeppelin.config.fs.dir = file:///etc/zeppelin/conf

If necessary, add or update these configuration settings as shown above.

3. After the upgrade is complete:

a. Copy your notebooks and the notebook-authorization.json file from the previous Zeppelin installation
directory to the new installation directory on the Zeppelin server machine.

b. Verify that your existing notebooks are available on Zeppelin.

Note: When an existing notebook is opened for the first time after the upgrade, it may ask you to save the
interpreters associated with the notebook.

Configuring Apache Zeppelin

How to configure Apache Zeppelin.

8

Cloudera Runtime Configuring Apache Zeppelin

Introduction
Zeppelin uses Apache Shiro to provide authentication and authorization (access control).

Clusters created in CDP have security enabled by default. Disabling security on a cluster in CDP is not supported.

Important: Zeppelin will be deprecated in Cloudera Runtime 7.2.18. For more information, see Deprecation
Notices in Cloudera Runtime 7.2.18.

What to do next

If Ranger is enabled on your cluster, no additional configuration steps are required to have Ranger work with
Zeppelin. Note, however, that a Ranger policy change takes about five to ten minutes to take effect.

Configuring Zeppelin caching
Improve cache management and server response for Zeppelin.

About this task

There are two configuration properties in Zeppelin to control the HTTP response headers, allowing for improved
cache management and server response behavior:

• zeppelin.server.response.header.cache-control - default value: no-cache, no-store, must-revalidate, no-transform
• zeppelin.server.response.header.pragma - default value: no-cache

Procedure

1. Navigate to Cloudera ManagerZeppelinConfiguration.

2. Add zeppelin.server.response.header.cache-control and zeppelin.server.response.header.pragma with your desired
values under Zeppelin Server Advanced Configuration Snippet (Safety Valve) for zeppelin-conf/zeppelin-site.xml.

3. Restart the Zeppelin service.

Configuring Livy

About this task
This section describes how to configure Livy in CDP.

Livy is a proxy service for Apache Spark; it offers the following capabilities:

• Zeppelin users can launch a Spark session on a cluster, submit code, and retrieve job results, all over a secure
connection.

• When Zeppelin runs with authentication enabled, Livy propagates user information when a session is created.
Livy user impersonation offers an extended multi-tenant experience, allowing users to share RDDs and cluster
resources. Multiple users can access their own private data and session, and collaborate on a notebook.

The following graphic shows process communication among Zeppelin, Livy, and Spark:

9

Cloudera Runtime Configuring Apache Zeppelin

The following sections describe several optional configuration steps.

Configure Livy user access control

You can use the livy.server.access-control.enabled property to configure Livy user access.

When this property is set to false, only the session owner and the superuser can access (both view and modify) a
given session. Users cannot access sessions that belong to other users. ACLs are disabled, and any user can send any
request to Livy.

When this property is set to true, ACLs are enabled, and the following properties are used to control user access:

• livy.server.access-control.allowed-users – A comma-separated list of users who are allowed to access Livy.
• livy.server.access-control.view-users – A comma-separated list of users with permission to view other users'

infomation, such as submitted session state and statement results.
• livy.server.access-control.modify-users – A comma-separated list of users with permission to modify the sessions

of other users, such as submitting statements and deleting the session.

Restart the Livy interpreter after changing settings

If you change any Livy interpreter settings, restart the Livy interpreter. Navigate to the Interpreter configuration page
in the Zeppelin Web UI. Locate the Livy interpreter, then click restart.

Verify that the Livy server is running

To verify that the Livy server is running, access the Livy web UI in a browser window. The default port is 8998:

http://<livy-hostname>:8998/

Livy high availability support
Livy supports high availability. If there is more than one Livy server in the CDP cluster, high availability is
automatically enabled by Cloudera Manager by setting the livy.server.recovery.mode property to ha and
by including the list of Zookeeper servers in the Livy configuration.

The new high availability mode runs multiple instances of Livy in a cluster. Both the active and passive instances
continuously run and the passive instances take the active role when required. There is only one active server at a
time, and the remaining instances are passive. Passive instances only redirect requests to the active server using HTTP
 307.

10

Cloudera Runtime Configuring Apache Zeppelin

Limitations

• JDBC connection: The JDBC connections are not redirected. More details about this limitation are available
below.

• Load balancing: The active-passive high availability model does not provide additional parallelism or capacity.
Interactive sessions are only handled by the active server, adding more servers does not distribute load across
servers.

Using Livy without Knox gateway

If you are not using Livy through Knox gateway, clients must follow HTTP redirects and resend authentication.
The logic the clients can use is to make a list of the Livy servers by obtaining them from the Cloudera Manager API
and if any of the servers do not respond, the clients should retry sending the request to another server in the list. For
example, in the case of cURL, the --location-trusted flag has to be specified to follow redirects and resend
authentication.

Livy high availability and JDBC connection

Livy provides high availability by active-passive setup. Only the active Livy server node can accept JDBC
connections, and the passive nodes reject connection attempts. Therefore, if a client wants to connect using JDBC,
it has to iterate through all servers and check which one accepts connections. If the active server goes down, the
connection is broken and another node takes over the active role. This behavior is the same for both HTTP and binary
mode connections.

Configure User Impersonation for Access to Hive
This section describes how to configure Apache Zeppelin user impersonation for Apache Hive.

About this task

User impersonation runs Hive queries under the user ID associated with the Zeppelin session.

Kerberos-enabled Cluster

If Kerberos is enabled on the cluster, enable user impersonation as follows:

To configure the %jdbc interpreter, complete the following steps:

1. In Hive configuration settings, set hive.server2.enable.doAs to true.
2. In the Zeppelin UI, navigate to the %jdbc section of the Interpreter page.
3. Enable authentication via the Shiro configuration: specify authorization type, keytab, and principal.

a. Set zeppelin.jdbc.auth.type to KERBEROS.
b. Set zeppelin.jdbc.principal to the value of the principal.
c. Set zeppelin.jdbc.keytab.location to the keytab location.

4. Set hive.url to the URL for HiveServer2. Here is the general format:

jdbc:hive2://HiveHost:10001/default;principal=hive/_HOST@HOST1.COM;hive.
server2.proxy.user=testuser

The JDBC interpreter adds the user ID as a proxy user, and sends the string to HiveServer2; for example:

jdbc:hive2://dkhdp253.dk:2181,dkhdp252.dk:2181,dkhdp251.dk:2181/;service
DiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2

5. Add a hive.proxy.user.property property and set its value tohive.server2.proxy.user.
6. Click Save, then click restart to restart the interpreter.

11

Cloudera Runtime Configuring Apache Zeppelin

For information about authenticating Zeppelin users through Active Directory or LDAP, see "Configuring Zeppelin
Security" in this guide.

Configure User Impersonation for Access to Phoenix
This section describes how to configure Apache Zeppelin user impersonation for Apache Phoenix.

About this task

User impersonation runs Phoenix queries under the user ID associated with the Zeppelin session.

To enable user impersonation for Phoenix, complete the following steps:

Procedure

1. In the HBase configuration settings, enable phoenix sql.

2. In Advanced HBase settings, set the following properties:

hbase.thrift.support.proxyuser=true
hbase.regionserver.thrift.http=true

3. In HDFS configuration settings, set the following properties:

hadoop.proxyuser.hbase.groups=*
hadoop.proxyuser.hbase.hosts=*
hadoop.proxyuser.zeppelin.groups=*
hadoop.proxyuser.zeppelin.hosts=*

4. Make sure that the user has access to HBase. You can verify this from the HBase shell with the user_permissions
command.

Enabling Access Control for Zeppelin Elements
This section describes how to restrict access to specific Apache Zeppelin elements.

After configuring authentication, you may want to restrict access to Zeppelin notes and data, and also set restrictions
on what users and groups can configure Zeppelin interpreters. You can authorize access at three levels within
Zeppelin:

• UI authorization restricts access to Zeppelin Interpreter, Credential, and Configuration pages based on
administrative privileges.

• Note-level authorization restricts access to notes based on permissions (owner, reader, or writer) granted to users
and groups.

• Data-level authorization restricts access to specific data sets.

Enable Access Control for Interpreter, Configuration, and Credential Settings
This section describes how to restrict access to Apache Zeppelin interpreter, credential, and configuration settings.

About this task
By default, any authenticated account can access the Zeppelin interpreter, credential, and configuration settings.
When access control is enabled, unauthorized users can see the page heading, but not the settings.

Before you begin
Users and groups must be defined on all Zeppelin nodes and in the associated identity store.

12

Cloudera Runtime Configuring Apache Zeppelin

Procedure

1. Define a [roles] section in shiro.ini contents, and specify permissions for defined groups. The following example
grants all permissions ("*") to users in group admin:

[roles]
admin = *

2. In the [urls] section of the shiro.ini contents, uncomment the interpreter, configurations, or credential line(s)
to enable access to the interpreter, configuration, or credential page(s), respectively. (If the [urls] section is not
defined, add the section. Include the three /api lines listed in the following example.)

The following example specifies access to interpreter, configurations, and credential settings for role "admin":

[urls]
/api/version = anon
/api/interpreter/** = authc, roles[admin]
/api/configurations/** = authc, roles[admin]
/api/credential/** = authc, roles[admin]
#/** = anon
/** = authc

To add more roles, separate role identifiers with commas inside the square brackets.

Note: The sequence of lines in the [urls] section is important. The /api/version line must be the first line in the [url
s] section:

/api/version = anon

Next, specify the three /api lines in any order:

/api/interpreter/** = authc, roles[admin]
/api/configurations/** = authc, roles[admin]
/api/credential/** = authc, roles[admin]

The authc line must be last in the [urls] section:

/** = authc

3. Map the roles to LDAP or Active Directory (AD) groups. The following is an example of the shiro.ini settings for
Active Directory (before pasting this configuration in your Zeppelin configuration, update the Active Directory
details to match your actual configuration settings).

Sample LDAP configuration, for Active Directory user Authentication, c
urrently tested for single Realm
[main]
ldapRealm=org.apache.zeppelin.realm.LdapRealm
ldapRealm.contextFactory.systemUsername=cn=ldap-reader,ou=ServiceUsers,dc=
lab,dc=hortonworks,dc=net
ldapRealm.contextFactory.systemPassword=SomePassw0rd
ldapRealm.contextFactory.authenticationMechanism=simple
ldapRealm.contextFactory.url=ldap://ad.somedomain.net:389
Ability to set ldap paging Size if needed; default is 100
ldapRealm.pagingSize=200
ldapRealm.authorizationEnabled=true
ldapRealm.searchBase=OU=CorpUsers,DC=lab,DC=hortonworks,DC=net
ldapRealm.userSearchBase=OU=CorpUsers,DC=lab,DC=hortonworks,DC=net
ldapRealm.groupSearchBase=OU=CorpUsers,DC=lab,DC=hortonworks,DC=net
ldapRealm.userObjectClass=person
ldapRealm.groupObjectClass=group
ldapRealm.userSearchAttributeName = sAMAccountName

13

Cloudera Runtime Configuring Apache Zeppelin

Set search scopes for user and group. Values: subtree (default), onel
evel, object
ldapRealm.userSearchScope = subtree
ldapRealm.groupSearchScope = subtree
ldapRealm.userSearchFilter=(&(objectclass=person)(sAMAccountName={0}))
ldapRealm.memberAttribute=member
Format to parse & search group member values in 'memberAttribute'
ldapRealm.memberAttributeValueTemplate=CN={0},OU=CorpUsers,DC=lab,DC=horto
nworks,DC=net
No need to give userDnTemplate if memberAttributeValueTemplate is provid
ed
#ldapRealm.userDnTemplate=
Map from physical AD groups to logical application roles
ldapRealm.rolesByGroup = "hadoop-admins":admin_role,"hadoop-users":hado
op_users_role
Force usernames returned from ldap to lowercase, useful for AD
ldapRealm.userLowerCase = true

Enable support for nested groups using the LDAP_MATCHING_RULE_IN_CHAIN
 operator
ldapRealm.groupSearchEnableMatchingRuleInChain = true
sessionManager = org.apache.shiro.web.session.mgt.DefaultWebSessionManager
If caching of user is required then uncomment below lines
cacheManager = org.apache.shiro.cache.MemoryConstrainedCacheManager
securityManager.cacheManager = $cacheManager

securityManager.sessionManager = $sessionManager
securityManager.realms = $ldapRealm
86,400,000 milliseconds = 24 hour
securityManager.sessionManager.globalSessionTimeout = 86400000
shiro.loginUrl = /api/login

[urls]
This section is used for url-based security.
You can secure interpreter, configuration and credential information by
urls. Comment or uncomment the below urls that you want to hide.
anon means the access is anonymous.
authc means Form based Auth Security
To enfore security, comment the line below and uncomment the next one
#/api/version = anon
/api/interpreter/** = authc, roles[admin_role,hadoop_users_role]
/api/configurations/** = authc, roles[admin_role]
/api/credential/** = authc, roles[admin_role,hadoop_users_role]
#/** = anon
/** = authc

Additional information:

• ldapRealm.rolesByGroup = "hadoop-admins":admin_role,"hadoop-users":hadoop_users_role

This line maps the AD groups "hadoop-admins" and "hadoop-users" to custom roles which can be used in the
[urls] section to control access to various Zeppelin users. Note that the short group names are to be used rather
than fully qualified names such as "cn=hadoop-admins,OU=CorpUsers,DC=lab,DC=hortonworks,DC=net".
The role names can be set to any name but the names should match those used in the [urls] section.

• ldapRealm.groupSearchEnableMatchingRuleInChain = true

A very powerful option to search all of the groups that a given user is member of in a single query. An LDAP
search query with this option traverses the LDAP group hierarchy and finds all of the groups. This is especially
useful for nested groups. More information can be found here. Caution: this option can cause performance
overhead (slow to log in, etc.) if the LDAP hierarchy is not optimally configured.

14

https://msdn.microsoft.com/en-us/library/aa746475%28v=vs.85%29.aspx

Cloudera Runtime Configuring Apache Zeppelin

• ldapRealm.userSearchFilter=(&(objectclass=person)(sAMAccountName={0}))

Use this search filter to limit the scope of user results when looking for a user's Distinguished Name (DN).
This is used only if userSearchBase and userSearchAttributeName are defined. If these two are not defined,
userDnTemplate is used to look for a user's DN.

4. When unauthorized users attempt to access the interpreter, configurations, or credential page, they can see the
page heading, but not the settings.

Enable Access Control for Notebooks
This section describes how to restrict access to Apache Zeppelin notebooks by granting permissions to specific users
and groups.

About this task
There are two main steps in this process: defining the searchBase property in the Zeppelin Shiro configuration, and
then specifying permissions.

Procedure

1. In Zeppelin configuration settings, the Zeppelin administrator should specify activeDirectoryRealm.searchBase or
ldapRealm.searchBase, depending on whether Zeppelin uses AD or LDAP for authentication. The value of sear
chBase controls where Zeppelin looks for users and groups.

For more information, refer to "Shiro Settings: Reference" in this guide. For an example, see "Configure Zeppelin
for Authentication: LDAP and Active Directory" in this guide.

15

Cloudera Runtime Configuring Apache Zeppelin

2. The owner of the notebook should navigate to the note and complete the following steps:

a. Click the lock icon on the notebook:

b. Zeppelin presents a popup menu. Enter the user and groups that should have access to the note. To search for
an account, start typing the name.

Note: If you are using Shiro as the identity store, users should be listed in the [user]section. If you are using
AD or LDAP users and groups should be stored in the realm associated with your Shiro configuration.

Enable Access Control for Data
This section describes how to restrict access to Apache Zeppelin data.

Access control for data brought into Zeppelin depends on the underlying data source:

• To configure access control for Spark data, Zeppelin must be running as an end user ("identity propagation").
Zeppelin implements access control using Livy. When identity propagation is enabled via Livy, data access
is controlled by the type of data source being accessed. For example, when you access HDFS data, access is
controlled by HDFS permissions.

• To configure access control for Hive data, use the JDBC interpreter.
• To configure access control for the Spark shell, define permissions for end users running the shell.

16

Cloudera Runtime Configuring Apache Zeppelin

Shiro Settings: Reference
This section provides additional information about the Shiro settings used to configure Apache Zeppelin security.

Active Directory Settings
This section provides additional information about Shiro Active Directory settings.

Active Directory (AD) stores users and groups in a hierarchical tree structure, built from containers including the
organizational unit (ou), organization (o), and domain controller (dc). The path to each entry is a Distinguished Name
(DN) that uniquely identifies a user or group.

User and group names typically have attributes such as a common name (cn) or unique ID (uid).

Specify the DN as a string, for example cn=admin,dc=example,dc=com. White space is ignored.

activeDirectoryRealm

specifies the class name to use for AD authentication. You should set this to org.apache.zeppelin.
realm.ActiveDirectoryGroupRealm.

activeDirectoryRealm.url

specifies the host and port where Active Directory is set up. .

If the protocol element is specified as ldap, SSL is not used. If the protocol is specified as ldaps,
access is over SSL.

Note: If Active Directory uses a self-signed certificate, import the certificate into the truststore of
the JVM running Zeppelin; for example:

echo -n | openssl s_client –connect ldap.example.com:389 | \
 sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > /tmp/
examplecert.crt

keytool –import \
 -keystore $JAVA_HOME/jre/lib/security/cacerts \
 -storepass changeit \
 -noprompt \
 -alias mycert \
 -file /tmp/examplecert.crt

activeDirectoryRealm.principalSuffix

simplifies the logon information that users must use to log in. Otherwise, AD requires a username
fully qualified with domain information. For example, if a fully-qualified user account is user@hdp
qa.example.com, you can specify a shorter suffix such as user@hdpqa.

activeDirectoryRealm.principalSuffix = @<user-org-level-domain>

activeDirectoryRealm.searchBase

defines the base distinguished name from which the directory search starts. A distinguished name
defines each entry; "dc" entries define a hierarchical directory tree.

activeDirectoryRealm.systemUsername
activeDirectoryRealm.systemPassword

defines the username and password that Zeppelin uses to connect to Active Directory when it
searches for users and groups. These two settings are used for controlling access to UI features, not
for authentication. The Bind method does not require a valid user password.

Example: activeDirectoryRealm.systemPassword = passwordA

17

Cloudera Runtime Configuring Apache Zeppelin

activeDirectoryRealm.groupRolesMap

a comma-separated list that maps groups to roles. These settings are used by Zeppelin to restrict UI
features to specific AD groups. The following example maps group hdpdv_admin at hdp3.example
.com to the "admin" role:

CN=hdpdv_admin,DC=hdp3,DC=example,DC=com:admin

activeDirectoryRealm.authorizationCachingEnabled

specifies whether to use caching to improve performance. To enable caching, set this property to
true.

LDAP Settings
This section provides additional information about Shiro LDAP settings.

LDAP stores users and groups in a hierarchical tree structure, built from containers including the organizational unit
(ou), organization (o), and domain controller (dc). The path to each entry is a Distinguished Name (DN) that uniquely
identifies a user or group.

User and group names typically have attributes such as a common name (cn) or unique ID (uid).

Specify the DN as a string, for example cn=admin,dc=example,dc=com. White space is ignored.

Zeppelin LDAP authentication uses templates for user DNs.

ldapRealm

specifies the class name to use for LDAP authentication. You should set this to org.apache.zeppelin.
realm.LdapRealm unless you are familiar with LDAP and prefer to use org.apache.shiro.realm.ldap.
JndiLdapRealm. ..

ldapRealm.contextFactory.environment[ldap.searchBase]

defines the base distinguished name from which the LDAP search starts. Shiro searches for user
DnTemplate at this address.

If the protocol is specified as ldap, SSL is not used. If the protocol is specified as ldaps, access is
over SSL.

ldapRealm.userDnTemplate

specifies the search location where the user is to be found. Shiro replaces {0} with the username
acquired from the Zeppelin UI. Zeppelin uses User DN templates to configure associated realms.

ldapRealm.contextFactory.url

specifies the host and port on which LDAP is running.

If the protocol element is specified as ldap, SSL will not be used. If the protocol is specified as
ldaps, access will be over SSL.

Note: If LDAP is using a self-signed certificate, import the certificate into the truststore of JVM
running Zeppelin; for example:

echo -n | openssl s_client –connect ldap.example.com:389 | \
 sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > /tmp/
examplecert.crt

keytool –import \
 -keystore $JAVA_HOME/jre/lib/security/cacerts \
 -storepass changeit \
 -noprompt \
 -alias mycert \
 -file /tmp/examplecert.crt

18

Cloudera Runtime Configuring Apache Zeppelin

ldapRealm.contextFactory.systemUsername
ldapRealm.contextFactory.systemPassword

define the username and password that Zeppelin uses to connect to LDAP, to search for users and
groups. These two settings are used for controlling access to UI features, not for authentication. The
Bind method does not require a valid user password.

Examples:

ldapRealm.contextFactory.systemUsername=uid=guest,ou=people,dc=h
adoop,dc=apache,dc=org

ldapRealm.contextFactory.systemPassword=somePassword

ldapRealm.authorizationCachingEnabled

specifies whether to use caching to improve performance. To enable caching, set this property to
true.

General Settings
This section provides additional information about Shiro general settings.

securityManager.sessionManager.globalSessionTimeout

specifies how long to wait (in milliseconds) before logging out a user, if they are logged in and are
not moving the cursor.

The default is 86,400,000 milliseconds, which equals 24 hours.

shiro.ini Example
The following example shows a minimum set of shiro.ini settings for authentication and access control for a Zeppelin
deployment that uses Active Directory.

Before you begin
In this example, the corresponding account information is configured in Active Directory (at adhost.field.hortonworks
.com) and on Zeppelin nodes.

[main]
AD authentication settings
activeDirectoryRealm = org.apache.zeppelin.realm.ActiveDirectoryGroupRealm
activeDirectoryRealm.url = ldap://adhost.org.hortonworks.com:389
activeDirectoryRealm.searchBase = DC=org,DC=hortonworks,DC=com
activeDirectoryRealm.systemUsername
activeDirectoryRealm.systemPassword

general settings
sessionManager = org.apache.shiro.web.session.mgt.DefaultWebSessionManager
cacheManager = org.apache.shiro.cache.MemoryConstrainedCacheManager
securityManager.cacheManager = $cacheManager
securityManager.sessionManager = $sessionManager
securityManager.sessionManager.globalSessionTimeout = 86400000
shiro.loginUrl = /api/login

[roles]
admin = *

[urls]
authentication method and access control filters
/api/version = anon

19

Cloudera Runtime Using Apache Zeppelin

/api/interpreter/** = authc, roles[admin]
/api/configurations/** = authc, roles[admin]
/api/credential/** = authc, roles[admin]
#/** = anon
/** = authc

Using Apache Zeppelin

How to configure Apache Zeppelin.

Introduction
An Apache Zeppelin notebook is a browser-based GUI you can use for interactive data exploration, modeling, and
visualization.

Important: Zeppelin will be deprecated in Cloudera Runtime 7.2.18. For more information, see Deprecation
Notices in Cloudera Runtime 7.2.18.

As an Apache Zeppelin notebook author or collaborator, you write code in a browser window. When you run the code
from the browser, Zeppelin sends the code to backend processors such as Spark. The processor or service and returns
results; you can then use Zeppelin to review and visualize results in the browser.

Apache Zeppelin is supported on the following browsers:

• Internet Explorer, latest supported releases. (Zeppelin is not supported on versions 8 or 9, due to lack of built-in
support for WebSockets.)

• Google Chrome, latest stable release.
• Mozilla Firefox, latest stable release.
• Apple Safari, latest stable release. Note that when SSL is enabled for Zeppelin, Safari requires a Certificate

Authority-signed certificate to access the Zeppelin UI.

Launch Zeppelin
Use the following steps to launch Apache Zeppelin.

To launch Zeppelin in your browser:

1. In the Cloudera Data Platform (CDP) Management Console, go to Data Hub Clusters.
2. Find and select the cluster you want to use.
3. Click the Zeppelin link.

When you first connect to Zeppelin, you will see the home page:

20

Cloudera Runtime Using Apache Zeppelin

The following menus are available in the top banner of all Zeppelin pages:

• Notebook

Open a note, filter the list of notes by name, or create a note:

21

Cloudera Runtime Using Apache Zeppelin

• User settings

Displays your username, or "anonymous" if security is not configured for Zeppelin.

• List version information about Zeppelin
• Review interpreter settings and configure, add, or remove interpreter instances
• Save credentials for data sources
• Display configuration settings

Each instance of Zeppelin contains "notes", which are the fundamental elements of a Zeppelin notebook.

Zeppelin lists available notes on the left side of the welcome screen and in the "Notebook" menu. Zeppelin ships with
several sample notes, including tutorials:

22

Cloudera Runtime Using Apache Zeppelin

Working with Zeppelin Notes
This section provides an introduction to Apache Zeppelin notes.

An Apache Zeppelin note consists of one or more paragraphs of code, which you can use to define and run snippets of
code in a flexible manner.

A paragraph contains code to access services, run jobs, and display results. A paragraph consists of two main
sections: an interactive box for code, and a box that displays results. To the right is a set of paragraph commands. The
following graphic shows paragraph layout.

23

Cloudera Runtime Using Apache Zeppelin

Zeppelin ships with several sample notes, including tutorials that demonstrate how to run Spark scala code, Spark
SQL code, and create visualizations.

To run a tutorial:

1. Navigate to the tutorial: click one of the Zeppelin tutorial links on the left side of the welcome page, or use the
Notebook pull-down menu.

2. Zeppelin presents the tutorial, a sequence of paragraphs prepopulated with code and text.
3. Starting with the first paragraph, click the triangle button at the upper right of the paragraph. The status changes to

PENDING, RUNNING, and then FINISHED when done.
4. When the first cell finishes execution, results appear in the box underneath your code. Review the results.
5. Step through each cell, running the code and reviewing results.

Create and Run a Note
Use the following steps to create and run an Apache Zeppelin note.

To create a note:

1. Click "Create new note" on the welcome page, or click the "Notebook" menu and choose "+ Create new note."
2. Type your commands into the blank paragraph in the new note.

24

Cloudera Runtime Using Apache Zeppelin

When you create a note, it appears in the list of notes on the left side of the home page and in the Notebook menu. By
default, Zeppelin stores notes in the $ZEPPELIN_HOME/notebook folder.

To run your code:

1. Click the triangle button in the cell that contains your code:

2. Zeppelin displays status near the triangle button: PENDING, RUNNING, ERROR, or FINISHED.
3. When finished, results appear in the result section below your code.

The settings icon (outlined in red) offers several additional commands:

These commands allow you to perform several note operations, such as showing and hiding line numbers, clearing the
results section, and deleting the paragraph.

Import a Note
Use the following steps to import an Apache Zeppelin note.

25

Cloudera Runtime Using Apache Zeppelin

About this task
To import a note from a URL or from a JSON file in your local file system:

Procedure

1. Click "Import note" on the Zeppelin home page:

2. Zeppelin displays an import dialog box:

3. To upload the file or specify the URL, click the associated box.

By default, the name of the imported note is the same as the original note. You can rename it by providing a new
name in the "Import AS" field.

Export a Note
Use the following steps to export an Apache Zeppelin note.

To export a note to a local JSON file, use the export note icon in the note toolbar:

Zeppelin downloads the note to the local file system.

26

Cloudera Runtime Using Apache Zeppelin

Note: Zeppelin exports code and results sections in all paragraphs. If you have a lot of data in your results sections,
consider trimming results before exporting them.

Using the Note Toolbar
This section describes how to use the Apache Zeppelin Note toolbar.

At the top of each note there is a toolbar with buttons for running code in paragraphs and for setting configuration,
security, and display options:

There are several buttons in the middle of the toolbar:

These buttons perform the following operations:

• Run all paragraphs in the note sequentially, in the order in which they are displayed in the note.
• Hide or show the code section of all paragraphs.
• Hide or show the result sections in all paragraphs.
• Clear the result section in all paragraphs.
• Clone the current note.
• Export the current note to a JSON file.

Note that the code and result sections in all paragraphs are exported. If you have extra data in some of your result
sections, trim the data before exporting it.

• Commit the current note content.
• Delete the note.
• Schedule the execution of all paragraphs using CRON syntax. This feature is not currently operational. If you

need to schedule Spark jobs, consider using Oozie Spark action.

There are additional buttons on the right side of the toolbar:

These buttons perform the following operations (from left to right):

• Display all keyboard shortcuts.
• Configure interpreters that are bound to the current note.
• Configure note permissions.
• Switch display mode:

• Default: the notebook can be shared with (and edited by) anyone who has access to the notebook.
• Simple: similar to default, with available options shown only when your cursor is over the cell.
• Report: only your results are visible, and are read-only (no editing).

Note: Zeppelin on HDP does not support sharing a note by sharing its URL, due to lack of proper access control
over who and how a note can be shared.

27

Cloudera Runtime Using Apache Zeppelin

Import External Packages
Use the following steps to import external packages into Apache Zeppelin.

To use an external package within a Zeppelin note, you can use one of the following approaches:

• Specify the dependency for the associated interpreter on the Interpreter page.

For more information, see the Dependency Management for Interpreter documentation at zeppelin.apache.org.
• For Spark jobs, you can pass a jar, package, or list of files to spark-submit using SPARK_SUBMIT_OPTIONS;

for example:

• SPARK_SUBMIT_OPTIONS in conf/zeppelin-env.sh

export SPARKSUBMITOPTIONS="--packages com.databricks:spark-csv_2.10:1.2.
0 --jars /path/mylib1.jar,/path/mylib2.jar --files /path/mylib1.py,/path
/mylib2.zip,/path/mylib3.egg"

• In SPARK_HOME/conf/spark-defaults.conf

spark.jars /path/mylib1.jar,/path/mylib2.jar spark.jars.packages com.dat
abricks:spark-csv_2.10:1.2.0 spark.files /path/mylib1.py,/path/mylib2.eg
g,/path/mylib3.zip

If you want to import a library for a note that uses the Livy interpreter, see "Using the %livy Interpreter to Access
Spark" in the HDP Apache Spark guide.

Configuring and Using Zeppelin Interpreters
An Apache Zeppelin interpreter is a plugin that enables you to access processing engines and data sources from the
Zeppelin UI.

For example, if you want to use Python code in your Zeppelin notebook, you need a Python interpreter. Each
interpreter runs in its own JVM on the same node as the Zeppelin server. The Zeppelin server communicates with
interpreters through the use of Thrift.

Apache Zeppelin on Cloudera Data Platform supports the following interpreters:

• JDBC (supports Hive).

However, do note that the JDBC interpreter for Apache Hive is deprecated.
• Markdown
• Livy (supports Spark, Spark SQL, PySpark, PySpark3, and SparkR)

Note: If you are upgrading from HDP to , ensure that your existing notebooks are manualy migrated to
the Livy interpreter. Support for the Spark interpreter is no longer available.

• AngularJS

Note: PySpark and associated libraries require Python version 2.7 or later, or Python version 3.4 or later, installed on
all nodes.

Modify interpreter settings
Use the following steps to modify Apache Zeppelin interpreter settings.

Before using an interpreter, you might want to modify default settings such as the home directory for the Spark
interpreter, the name of the Hive JDBC driver for the JDBC interpreter, or the keytab and principal name for a secure
installation.

To set custom configuration values for an interpreter:

1. Click the user settings menu and navigate to the Interpreter page.

28

Cloudera Runtime Using Apache Zeppelin

2. Scroll down to the Properties section for the interpreter of interest, and click "edit":

3. Make your changes.
4. Scroll to the end of the list of settings and click "Save".
5. Some types of changes require restarting the interpreter; use the button next to the edit button.

Note: The Interpreter page is subject to access control settings. If the page does not list a set of interpreters, check
with your system administrator.

Using Zeppelin Interpreters
This section describes how to use Apache Zeppelin interpreters.

Before using an interpreter, ensure that the interpreter is available for use in your note:

1. Navigate to your note.
2. Click on “interpreter binding”:

29

Cloudera Runtime Using Apache Zeppelin

3. Under "Settings", make sure that the interpreter you want to use is selected (in blue text). Unselected interpreters
appear in white text:

4. To select an interpreter, click on the interpreter name to select the interpreter. Each click operates as a toggle.
5. You should unselect interpreters that will not be used. This makes your choices clearer. For example, if you plan

to use %livy to access Spark, unselect the %spark interpreter.

Whenever one or more interpreters could be used to access the same underlying service, you can specify the
precedence of interpreters within a note:

• Drag and drop interpreters into the desired positions in the list.
• When finished, click "Save".

Use an interpreter in a paragraph

To use an interpreter, specify the interpreter directive at the beginning of a paragraph, using the format %[INTERP
RETER_NAME]. The directive must appear before any code that uses the interpreter.

The following paragraph uses the %sh interpreter to access the system shell and list the current working directory:

%sh

30

Cloudera Runtime Using Apache Zeppelin

pwd
home/zeppelin

Some interpreters support more than one form of the directive. For example, the %livy interpreter supports directives
for PySpark, PySpark3, SparkR, Spark SQL.

To view interpreter directives and settings, navigate to the Interpreter page and scroll through the list of interpreters
or search for the interpreter name. Directives are listed immediately after the name of the interpreter, followed by
options and property settings. For example, the JDBC interpreter supports the %jdbc directive:

Note: The Interpreter page is subject to access control settings. If the Interpreters page does not list settings, check
with your system administrator for more information.

Use interpreter groups

Each interpreter belongs to an interpreter group. Interpreters in the same group can reference each other. For example,
if the Spark SQL interpreter and the Spark interpreter are in the same group, the Spark SQL interpreter can reference
the Spark interpreter to access its SparkContext.

Customize interpreter settings in a note
This section describes how to customize Apache Zeppelin interpreter settings on a per-note basis.

About this task

You can use the Zeppelin conf interpreter to customize interpreter configuration settings on a per-note basis. The conf
interpreter is a generic interpreter that can be used to customize any Zeppelin interpreter on a per-note basis.

In the following example, zeppelin_custom_note_conf.png to customize the Spark interpreter in a Note.

31

Cloudera Runtime Using Apache Zeppelin

First paragraph:

%spark.conf
spark.app.namehelloworld
master yarn-client
spark.jars.packages com.databricks:spark-csv_2.11:1.2.0

Second paragraph:

%spark

import com.databricks.spark.csv._

In the first paragraph, the conf interpreter is used to create a custom Spark interpreter configuration (set app name,
yarn-client mode, and add spark-csv dependencies). After running the first paragraph, the second paragraph can be
run to use spark-csv in the note.

In order for the conf interpreter to run successfully, it must be configured on an isolated per-note basis. Also, the
paragraph with the conf interpreter customization settings must be run first, before subsequent applicable interpreter
processes are launched.

Use the JDBC interpreter to access Hive
This section describes how to use the Apache Zeppelin JDBC interpreter to access Apache Hive.

32

Cloudera Runtime Using Apache Zeppelin

The %jdbc interpreter supports access to Apache Hive data. The interpreter connects to Hive via Thrift.

If you want Hive queries to run under the user ID originating the query, see "Configuring User Impersonation for
Access to Hive" in this guide.

To use the JDBC interpreter to access Hive:

1. Add the following directive at the start of a paragraph:

%jdbc(hive)
2. Next, add the query that accesses Hive.

Here is a sample paragraph:

%jdbc(hive)
SELECT * FROM db_name;

If you receive an error, you might need to complete the following additional steps:

1. Copy Hive jar files to /opt/cloudera/parcels/<version>/lib/zeppelin/interpreter/<name_of_interpreter> (or create a
soft link).

For example, /opt/cloudera/parcels/<version>/lib/zeppelin/interpreter/livy/
2. In the Zeppelin UI, navigate to the %jdbc section of the Interpreter page.
3. Click edit, then add a hive.proxy.user.property property and set its value tohive.server2.proxy.user.
4. Click Save, then click restart to restart the JDBC interpreter.

Use the Livy interpreter to access Spark
This section describes how to use the Livy interpreter to access Apache Spark.

The Livy interpreter offers several advantages over the default Spark interpreter (%spark):

• Sharing of Spark context across multiple Zeppelin instances.
• Reduced resource use, by recycling resources after 60 minutes of activity (by default). The default Spark

interpreter runs jobs--and retains job resources--indefinitely.
• User impersonation. When the Zeppelin server runs with authentication enabled, the Livy interpreter propagates

user identity to the Spark job so that the job runs as the originating user. This is especially useful when multiple
users are expected to connect to the same set of data repositories within an enterprise. (The default Spark
interpreter runs jobs as the default Zeppelin user.)

• The ability to run Spark in yarn-cluster mode.

Prerequisites:

• Before using SparkR through Livy, R must be installed on all nodes of your cluster. For more information, see
"SparkR Prerequisites" in the HDP Apache Spark guide.

• Before using Livy in a note, check the Interpreter page to ensure that the Livy interpreter is configured properly
for your cluster.

Note: The Interpreter page is subject to access control settings. If the Interpreters page does not list access settings,
check with your system administrator for more information.

To access PySpark using Livy, specify the corresponding interpreter directive before the code that accesses Spark; for
example:

%livy.pyspark
print "1"
1

Similarly, to access SparkR using Livy, specify the corresponding interpreter directive:

%livy.sparkr
hello <- function(name) {

33

Cloudera Runtime Using Apache Zeppelin

 sprintf("Hello, %s", name);
}

hello("livy")

Important:

To use SQLContext with Livy, do not create SQLContext explicitly. Zeppelin creates SQLContext by default.

If necessary, remove the following lines from the SparkSQL declaration area of your note:

//val sqlContext = new org.apache.spark.sql.SQLContext(sc)
//import sqlContext.implicits._

Livy sessions are recycled after a specified period of session inactivity. The default is one hour.

For more information about using Livy with Spark, see "Submitting Spark Applications Through Livy" in the HDP
Apache Spark guide.

Importing External Packages

To import an external package for use in a note that runs with Livy:

1. Navigate to the interpreter settings.
2. If you are running the Livy interepreter in yarn-cluster mode, edit the Livy configuration on the Interpreters page

as follows:

a. Add a new key, livy.spark.jars.packages.
b. Set its value to <group>:<id>:<version>.

Here is an example for the spray-json library, which implements JSON in Scala:

io.spray:spray-json_2.10:1.3.1

Using Spark Hive Warehouse and HBase Connector Client .jar files with Livy
This section describes how to use Spark Hive Warehouse Connector (HWC) and HBase-Spark connector client .jar
files with Livy. These steps are required to ensure token acquisition and avoid authentication errors.

Use the following steps to use Spark HWC and HBase-Spark client .jar files with Livy:

1. Copy the applicable HWC or HBase-Spark .jar files to the Livy server node and add these folders to the livy.file.lo
cal-dir-whitelist property in the livy.conf file.

2. Add the required Hive and HBase configurations in the Spark client configuration folder:

• Hive: /etc/spark3/conf/hive-site.xml
• HBase: /etc/spark3/conf/hbase-site.xml

Or add the required configurations using the conf field in the session creation request. This is equivalent to using
"--conf" in spark-submit.

3. Reference these local .jar files in the session creation request using the file:/// URI format.

HWC Example

1. In Cloudera Manager, go to Clusters Livy .
2. Click the Configuration tab and search for the "Livy Server Advanced Configuration Snippet (Safety Valve) for

livy-conf/livy.conf" property.

34

Cloudera Runtime Using Apache Zeppelin

3. Add the /opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars folder to the livy.file.local-dir-whit
elist property in the livy.conf file.

4. Save the changes and restart the Livy service.
5. Log in to the Zeppelin Server Web UI and restart the Livy interpreter.
6. When running the Zeppelin Livy interpreter, reference the HWC .jar file as shown below.

• For Spark 3:

%livy2.conf
livy.spark.jars file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION
]/jars/hive-warehouse-connector-spark3-assembly-[PARCEL VERSION
 ***].jar

HBase-Spark Connector Example

1. When running the Zeppelin Livy interpreter, reference the following HBase .jar files as shown below. Note that
some of these .jar files have 644/root permissions, and therefore may throw an exception. If this happens, you may
need to change the permissions of the applicable .jar files on the Livy node.

%livy.conf
livy.spark.jars file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION
]/jars/hbase-spark3-[PARCEL VERSION ***].jar
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
shaded-protobuf-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
shaded-miscellaneous-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
protocol-shaded-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
shaded-netty-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
shaded-client-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
shaded-mapreduce-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
common-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
server-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
client-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
protocol-[*** PARCEL VERSION ***].jar,
file:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/hbase-
mapreduce-[*** PARCEL VERSION ***].jar,

35

Cloudera Runtime Using Apache Zeppelin

ile:///opt/cloudera/parcels/CDH-[*** CLOUDERA VERSION ***]/jars/guava-32.1
.3-jre.jar

Note: The references to HBase-Spark connector jar file are included because HBase-Spark connector was
used in this example. They are not required for token acquisition.

36

	Contents
	Zeppelin Overview
	Installing Apache Zeppelin
	Reinstall Apache Zeppelin in 7.3.1
	Enabling HDFS and Configuration Storage for Zeppelin Notebooks in HDP-2.6.3+
	Overview
	Enable HDFS Storage when Upgrading to HDP-2.6.3+
	Use Local Storage when Upgrading to HDP-2.6.3+

	Configuring Apache Zeppelin
	Introduction
	Configuring Zeppelin caching
	Configuring Livy
	Livy high availability support
	Configure User Impersonation for Access to Hive
	Configure User Impersonation for Access to Phoenix
	Enabling Access Control for Zeppelin Elements
	Enable Access Control for Interpreter, Configuration, and Credential Settings
	Enable Access Control for Notebooks
	Enable Access Control for Data

	Shiro Settings: Reference
	Active Directory Settings
	LDAP Settings
	General Settings

	shiro.ini Example

	Using Apache Zeppelin
	Introduction
	Launch Zeppelin
	Working with Zeppelin Notes
	Create and Run a Note
	Import a Note
	Export a Note
	Using the Note Toolbar

	Import External Packages
	Configuring and Using Zeppelin Interpreters
	Modify interpreter settings
	Using Zeppelin Interpreters
	Customize interpreter settings in a note
	Use the JDBC interpreter to access Hive
	Use the Livy interpreter to access Spark
	Using Spark Hive Warehouse and HBase Connector Client .jar files with Livy

