Cloudera Runtime 7.3.1

Apache Atlas Reference

Date published: 2020-07-28
Date modified: 2024-12-10

CLOUD=RA

https://docs.cloudera.com/


https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



Cloudera Runtime | Contents | iii

Apache Atlas Advanced Search language reference.........cccccevovevee e cveececcnenne, 5
Apache Atlas StatiStiCS refer @NCE........cee e 8
Apache Atlas metadata attribUteS...........ccoovivieicic 11
Dynamic handling of failurein updating iNndeX..........cccccvveveveeiceeneese e 14
Configurations USed fOr INAEX FECOVENY........ccuiiririirieiereeteriete ettt st st et s be e b e e b e b 14

List of REST APl for dynamiC iNdEX FECOVETY.........ccurueirieirieesiet sttt sttt 15

Defining Apache Atlas enumerations...........cccccveveeeieeseesiee s 16
Purging deleted entities.... ..o e 17
AUItING PUIJEH ENLITIES. ...ttt b bbb b e et et e e e e e e e e et eaeeb e e aeebeebesbesaesbe b nes 18

PUT /admMin/PUIGE, APL ...ttt b bt bbbt e e et et et e st e st e aeebesbesbesbesbeseeseenean 19

POST /admMin/AUOITS/ AP ...t bttt bt b e se e e e 22
Apache Atlas technical metadata migration reference..........ccccoccevcveveevcieenenne, 24
SyStEM MELA0AEA IMIGIAIION. ......eeeteeetereetere ettt ettt s b et se bt se bt sb st b et s b et b et e b e ne et e seebeseebeseas 24

HDFS entity metadata Migration.........c..ceieeerieirieerieesieesie sttt b e bt se b e ebeseebe e 25

Hive entity metadata MIGration...........ccciiiiiiiiere ettt e b e s bbb e e srenea 26
Impala entity metadata MiGratioN..........cccoeiriirie ettt b e et be e 30

Spark entity metadata MIgratioN.........cccceieirieireereer et b e et b et sa et se et b e b e b e b e 32

AWS S3 entity metadatan MIGration...........cooveireinie ettt et e 33

NiFi metadata COlECTION.........cccuiiiiieee e 35
HOW Lin€age Strat@Qy WOIKS........cciieieiieiesiesiee ettt st st e e e e e eaeesesseebeebeseesaente st seensenseneeneenens 36
Understanding the data that flow iNtO ALI@S........cccviiiiiiiiie e 38

N T T T TC= o L= 38

F N A= SR NN T T = = 0] TS T o 39

AUES NiFT QUUIT ENEFIES......cececeiie et n et r e 41

How the reporting task runs in @ NiFi CIUSLEN...........cccviiiiie e e 41
ANAYSING BVENT QNAIYSIS....uietiiieieisieieiestes e sesteseeesee e e ee e st esestessesrestestessessesteseessessessesseseesesseaseesessessessesteseessnns 42
Limitations Of Atlas-NiFi INtEGIratiON........ccceieieeieececeeese s e et sreste st e e s enaeneeneenens 43
HiveServer metadata COllECtioN..........cceeiiiiiiriii s 44
HiveServer actions that produce Atlas ENtItIES...........coeiirieieeer e e 44
HiveServer entities Created iN ALIaS........c.oivciieie e 45
HIVESEIVEN FElEIIONSNIPS. ... ettt h ettt b e et e e e e e e et e e e s e e st e seebesbesbesbesbesbesbenbenbeneens 50
HIVESEIVEL [INEAOE. ... cteee ettt sttt b et e b e e b e s bt sae e b et se e s et et e e eneeneeaeebeebesaentens 51

(RIS = AV A= (0 (L A= 011 (=T 52



HBase Metadata COBCLION.......ooeeeee et e e e e e e e e e e eaeeeeeeeeeeeennes 53

HBase actions that produce Atlas ENLITIES...........ciriiriiire bbb 54
HBase entities Createt IN AIBS........cvoieeeieere ettt s e e et ne e e seesensesaesresaesnens 54
Changing the column family COMPrESSION TYPE.....c.cuiiiirieeriertee sttt ere e 58
HDBSE [TNEBOE. ...ttt bbbt b et b et b e e b s e e bt se bt se ekt seebesb e st sbe st et e e nbe e 58
[ RTe S o[ = =S RPN 59
Schema Registry metadata collection............ccccveveviieeiie e 59
Configuring Atlas and SChEMA REGISIIY .....ccviiiieiericrieereee et e e e e e ese e e e e ereeresnennens 61
Schema Registry actions that produce Atlas ENtiti€S.........cccvveiieiereierereeees e eneas 62
o g Tc =T = 10 T 1T 0 62
Schema REQISIIY AUt ENLIES.......ccueieeeececere et sae st besa et e e sae e enaeseeneesenresnennens 64
Troubleshooting SCHEMA REGISITY .......ccviiiiieeese sttt st e te st e e e e e e e eseeseenesresteseesrees 64
Impala metadata COllECTION..........cooeiiiie e 64
Impala actions that Produce Atlas ENLITIES...........ciiiiiieee e e 65
Impala entitieS Created IN AIBS... ..o ettt b e b bbb b e e s e e e e e eneas 66
TagTor E LT gT= o T OSSR 68
IMPEAIA BUAIT ENIEIES.. ...ttt ettt h e ae b e be bt eb e s b e s eese et et e se e e e m e e e et eneebeeaeenesbeneees 69
Kafka metadata COllECTION..........ccevieiiiece e 69
Kafka actions that produce Atlas BNITIES..........ccieiirriree e s b e s sneae s 70
KafKa FEIATONSNIPS. ...ttt b e e b e bt e bt bbb b e bt b et et e e e b e et e neebe e 70
KBFKB TINEAJE. ...ce et bbbt b et b e b et b b b et bbbt sttt 71
L = Y= 11 o = g 11 = 71
Spark metadata COlECHION.........cceeiii i 72
Spark actions that Produce Atlas ENEITIES.........cccicieeecieeeee e e e e s 73
Spark entities created iN APaChe ALIES.......cuce e et nrens 73
7= o G 1T == o =SSR 76
= T S 1= = 10T T o 76
= 10 [ = =S 77
Spark Connector configuration iN APaChe AtIBS..........ccveiiiieiiiiese e e e ene s 77

7= S 010 o] = o) i o RS 78



Cloudera Runtime Apache Atlas Advanced Search language reference

Atlas lets you search for metadata using a domain-specific language with a SQL -like format.

If you find that the Basic Search or Free-text Search doesn't allow you to search as precisely as you would like,
you can create a query in the Advanced Search interface to return exactly the results you are looking for. Advanced
Search queries use a domain-specific language that is intentionally SQL-like.

Each Advanced Search query isin the form of three clauses:
FROM WHERE SELECT

Additional keywords such as GROUPBY, ORDERBY, and LIMIT can be used to affect the output.

The value specified in the FROM clause acts as the scope of the query. Y ou can specify any entity type in the FROM
clause. The possible entity types are the same list as in the Type search; the names are case-sensitive.

The FROM clauseis required and also assumed: the first item included in the query (if not literally the word "from")
is assumed to be the object of the FROM clause.

Examples

With or without FROM: To retrieve all entities of type "hive_db" use one of the following queries:
hi ve_db
from hive_db

If you only specify aFROM clause, Atlas returns all entities of that type.

Note: To avoid unintentional load on the server because of an overly broad search, Atlas returns a maximum
E of 100 results when no limit is set.

The WHERE clause allows for filtering over the result set identified in the FROM clause by specifying a condition of
the form:

identifier operator 'literal’
Theidentifier is the name of a property of the entity type specified in the FROM clause. The properties for agiven
entity type are those shown in the Properties tab of an entity detail page. The names are case-sensitive.
Operators vary by the data type of the literal and include the following:
String: = LIKE
Numeric, Date: = <>
Boolean: =

The LIKE operator allows you to use wildcardsin the literal. Asterisk (*) replaces zero to multiple values; question
mark (?) replaces asingle value.

The literal must be enclosed in single or double quotes. Matches are case-sensitive. Literals can be lists of values. If
you specify comma-separated values in square brackets, they act as an OR operation.

Dates used in literals need to be specified using the 1SO 8601 format and in single or double quotes.

Boolean values used in literals are lower case "true" and "false" without quotation marks.




Cloudera Runtime Apache Atlas Advanced Search language reference

Y ou can specify multiple conditions using AND or OR operators. Note that making alist of valuesis more efficient
than using the same identifier in multiple conditions.

Examples:

Exact string: To retrieve all entities of type hive_table with a specific name "time_dim", use:
fromhive table where nane = "tine_dim

Multiple conditions: To retrieve entity of type hive_table with name that can be either "time_dim" or
"customer_dim":

fromhive_table where nane 'time_dim or name = 'custoner_di m
List of values: The query in the example above can be written using a value array:
fromhive_ table where nane = ["custoner_dinl', "tinme_din]
Wildcard filtering: To retrieve entity of type hive table whose name endswith'_dim':
fromhive table where nane LIKE '* _di m

Toretrieve ahive_db whose name starts with R followed by any 3 characters, followed by rt followed by at least 1
character, followed by none or any number of characters:

DB where nane |ike "R???2rt?*"

Date Literal: To retrieve entity of type hive_table created within 2019 and 2020, use the date portion of the time value
and specify arange using two phrases connected by AND:

from hive table where createTine > '2019-01-01' and
createTinme < '2019-01-03'

Boolean Literal: To retrieve entity of type hdfs_path whose attribute isFile is set to true and whose name s Invoice:

from hdfs_path where isFile = true and nane = "I nvoi ce"

The select clause allows you to specify the properties you want returned in the search results. Properties with simple
values can be returned; properties that contain other entities are not available. The property names are case sensitive.

To display column headers that are more meaningful that the system property names, you can use aliases using ‘as.’
Examples

Select clause only: To retrieve entities of type "hive_table" with some of its properties:
fromhive_table sel ect owner, nane, qualifiedNanme
WHERE and SELECT clauses: To retrieve entity of type hive_table for a specific table with some properties:

fromhive_table where nane = 'custoner_dim select owner, nane, qualifie
dNane

Change output names using AS: To display column headers as'Owner’, 'Name' and 'FullName'.

fromhive table select owner as Omer, nane as Nane, qualifiedName as Ful | Na
ne




Cloudera Runtime

Apache Atlas Advanced Search language reference

Searches with system attributes

In the attribute filter lists, system attributes appear with normal text names. When you use them in advanced searches,
use the corresponding field name, which is prefixed with two underscores.

System Attribute Description

Identifier in Advanced Search

technical attribute for the creation date of the original data asset or operation.

Type The Atlas entity type. __typeName
Status The entity statusin Atlas: thisfield indicatesif a data asset has been deleted; __ state
Atlas maintains the entity information after the asset no longer exists on the
cluster.
Created By User The Atlas user who created this entity. Typically thisisthe Atlassystem user. | __ createdBy
If an entity was created by an API call or created manually by users, the active
user account would be included in this attribute.
Last Modified User The Atlas user who last updated the entity, whether through Atlas metadata __modifiedBy
collection from a cluster service, an Atlas AP, or achange through the Atlas
ul.
Created timestamp The date Atlas created the entity. Note that thisfield is different from the __timestamp

Last Modified timestamp

The date when an entity was |last updated in Atlas. Note that thisfield is
different from the technical attribute for the last modification date of the actual
data asset or operation on the cluster.

__modificationTimestamp

GUID A unique identifier generated by Atlas. Thisisthe 32-digit code found in the __guid
browser URL for an entity.
Labels Label metadata added to an entity. __labels

User-Defined Properties

Key-vaue pair metadata added to an entity.

__customAttributes

Classifications

Classifications added to an entity.

__classificationNames

Propagated Classifications

Classifications added to entities downstream from an entity where the
classification was added by a user.

__propagatedClassificationNa
mes

A concatenated string of classification names and attributes for an entity. This
attribute is not available through the Atlas UI.

__classificationsText

Isincomplete

A system indicator that entities were created because they were referenced

in the metadata collected by a service other than the source type associated
with the entity type. An entity istypically marked "isincomplete’ when Atlas
receives metadata out of order from when the events occurred. If Isincomplete
entities remain “incomplete” for along time, it may indicate that the original
messages for entity metadata have not arrived.

__islncomplete

Advanced Searches using Classifications

Y ou can search for entities that are tagged with a specific classification using "is" or "isa" keywordsin either the
From or Where clauses. Is and Isa are interchangeable.

Examples

FROM or WHERE clause: To retrieve al entities of type "hive table" that are tagged with the "Dimension”
classification, you could use the following query:

hive table is D nension
from hive_table where hive_ table isa D nmension

Related Information

Apache Atlas metadata attributes
Apache Atlas Advanced Search



https://atlas.apache.org/2.0.0/Search-Advanced.html

Cloudera Runtime Apache Atlas Statistics reference

Apache Atlas Statistics reference

Atlas collects statistics on the metadata it processes. Use this information to help troubleshoot problems and to gauge
performance.

To view dtatistics, click the graph button in the top right corner:

@ Apache Atlas = £ BackTo Results
- (7] & admin
W CLASSIFICATION & GLOSSARY -

sl (hive_table)

Advanced @

Classifications: | 4

Term: |+
hive_process_execution (3) ®

roperties Lineage Relationships Classifications Audits Schema

Key Value Show Empty Values

The statistics available are categorized into Entity Statistics and Server Statistics:

Entity Statistics

The distribution of entity across their types. A second column gives the number of these entities that have been
marked as deleted.




Cloudera Runtime Apache Atlas Statistics reference

F =

Statistics

Entities (25)

Entities Active (25) Deleted (0)
hbase_column_family 1010 0
hbase_namespace 3 0
hbase_table 56 3
hive_column 2012 53

Classification Statistics

A list of classifications assigned to entities and the count of entities marked with that classification. The count for
each classification is a hyperlink that runs a search for entities marked with the classification.

Server Statistics

Server statistics reflect the current server session and the metadata collection messages that Atlas reads from a
dedicated Kafkatopic.




Cloudera Runtime Apache Atlas Statistics reference

Statistics
Entities (25)
Server Statistics
Server Details
startTimeStamp 04/06/2019 12:10 Al
activeTimeStamp 04/06/2019 12:10 Al
upTime 103 hour 24 min
Server Details

startTimeStampThe

The timestamp of the most recent start of the Atlas server.
activeTimeStamp

Same as the start TimeStamp unless Atlas was disabled.
upTime

The amount of time between startTimeStamp and the current time when the server was running.
statusBackendStore

The status of the Atlas server connection to the HBase namespace where entity metadata is stored.
statusl ndexStore

10



Cloudera Runtime Apache Atlas metadata attributes

The status of the Atlas server connection to the Solr collection where entity metadata isindexed.
collectionTime

The last time metrics were cal cul ated.
lastM essagePr ocessedTime

The timestamp of the last message Atlas recorded from the Kafka topic where services publish
metadata.

offsetCurrent

Theindex in the Kafka partition that was most recently read.
offsetStart

The index in the Kafka partition that was first read.

Notification Details: Kafka Topic-Partition
Atlas Hook

The primary topic through which services send metadata to Atlas and Atlas sends metadata to
Ranger.

Spark-AtlasHook Topic
A supplementary topic provided for Spark communication to Atlas.

Notification Details: M essage Statistics
Period

The interval that the statistic appliesto, including the total lifetime of Atlas. Each period indicated
includes a timestamp for when the period started.

Count
The number of messages processed by Atlas during the period.
Avg Time (ms)

The average duration between the time that a hook published a message to the Kafka topic to the
time entities where successfully created or updated.

Creates

The number of entities produced from the messages processed during the period.
Updates

The number of entities updated based on the messages processed during the period.
Deletes

The number of entities updated based on the messages processed during the period.
Failed

The number of messages that were received but not processed. For more information on what might
have prevented these messages from being processed.

Attributes are the key-value pairs that hold metadata details for entities and classifications.

Different types of attributes are popul ated with values differently.
Technical Attributes

These attributes are the entity fields that contain technical metadata defined in entity models. For
the built-in entity types, Atlas collects this information from services on the cluster. These attributes
are read-only in the Ul but can be updated using the Atlas API. All entity types share basic metadata
such as names and qualified names; however, the rest of the technical metadata is specific to the
entity type.

11



Cloudera Runtime

Apache Atlas metadata attributes

System Attributes

These attributes are populated by Atlas when it creates an entity instance. They include:

System Attribute Description Identifier in Advanced
Search

Type The Atlas entity type. __typeName
Status The entity statusin Atlas: thisfield indicatesif adataasset has | __ state

been deleted; Atlas maintains the entity information after the

asset no longer exists on the cluster.
Created By User The Atlas user who created this entity. Typically thisisthe __createdBy

Atlas system user. If an entity was created by an API call or

created manually by users, the active user account would be

included in this attribute.
Last Modified User The Atlas user who last updated the entity, whether through __modifiedBy

Atlas metadata collection from a cluster service, an Atlas API,

or achange through the Atlas Ul.
Created timestamp The date Atlas created the entity. Note that thisfield is __timestamp

different from the technical attribute for the creation date of the

original data asset or operation.
Last Modified The date when an entity was last updated in Atlas. Note that __modificationTimest
timestamp thisfield is different from the technical attribute for the last amp

modification date of the actual data asset or operation on the

cluster.
GUID A unique identifier generated by Atlas. Thisisthe 32-digit __guid

code found in the browser URL for an entity.
Labels Label metadata added to an entity. __labels
User-Defined Key-value pair metadata added to an entity. __customAttributes
Properties
Classifications Classifications added to an entity. __classificationNames
Propagated Classifications added to entities downstream from an entity __propagatedClassificati
Classifications where the classification was added by a user. onNames

A concatenated string of classification names and attributes for
an entity. This attribute is not available through the Atlas Ul.

__classificationsText

Isincomplete

A system indicator that entities were created because they were
referenced in the metadata collected by a service other than

the source type associated with the entity type. An entity is
typically marked "islncomplete” when Atlas receives metadata
out of order from when the events occurred. If Isincomplete
entities remain “incomplete” for along time, it may indicate
that the original messages for entity metadata have not arrived.

__islncomplete

When defining new models, you can take advantage of the isA ppendOnPartial Update option

in attribute definitions. This option allows array or map type attribute values to be updated by
appending rather than replacing the entire set. For example, to represent alist of key-value pairs that
can be augmented over time, you might define an attribute metadata as a map with the option isAp
pendOnPartial Update set to true:

{

"nane": "netadata",

"typeNane": "map<string, string>",
"isOptional": true,
"cardinality": "SINGE",

"val uesM nCount": O,

"val uesMaxCount": 1,

"isUni que": false,

"i sl ndexabl e": fal se,

"includelnNotification": false,

12



Cloudera Runtime Apache Atlas metadata attributes

"description": "Contains key-value pairs that provide netadata

"searchWight": -1,

"options": {

"i sAppendOnParti al Update": "true"
}

Classifications, labels, and user-defined properties are included as system attributes in the context
of search. They are modeled as entity attributes so that when you access an entity (through the Ul or
API), you get al these entity-specific metadata.

Business M etadata Attributes

These attributes are populated in the Atlas Ul or through API calls. They provide away to extend
the metadata stored for entity instances. Y ou can define Business M etadata attributes to apply to a
specific entity type or to many entity types. Administrators can control the users or groups who can
set values for these attributes by creating a Ranger policy against the Business Metadata collection
that contains the attribute.

Classification Attributes

These attributes are populated in the Atlas Ul or through API calls. They provide away to enrich
the worth of aclassification for searching, for access policiesin Ranger, and for organizing cluster
data assets.

Classifications can aso be assigned to entities through lineage: if the classification is defined to
alow lineage propagation, a classification assigned to an entity is also assigned to all entities that
have output relationships to the classified entity. The propagation appliesto all further generations
of the lineage. Note that Atlas distinguishes between classifications that were specifically assigned
to an entity and classifications that were assigned through lineage propagation.

User-defined Properties

These attributes are populated in the Atlas Ul or through API calls. They allow usersto add
metadata in the form of key-value pairsto any entity instance. Values are limited to strings. Both
key and value are included in searches. They are not centrally managed like classifications or
Business Metadata attributes. They are not accessible through Ranger for specifying access policies.

Attribute names can include letters, numbers, underscores, and hyphens; they must start with aletter or number. All
attributes can have values one of the following Java data types.

e string

e Boolean

e byte

e short

e int

e float

e double

e long

o date

e enumeration

Where enumeration type values are strings from pre-defined enumeration defined using the Atlas API.

B Note: The Atlas Free-text search only works with attributes with string values.

When you define an attribute, you an indicate that the value can include more than one entry. Atlas records multiple
values in acommarseparated list. Thus, when searching on attributes with multiple values, users should use the
logical operator "Contains' rather than "=" so the search matches on a single value rather than the whole list.

13



Cloudera Runtime Dynamic handling of failure in updating index

Atlas Business Metadata overview

Working with Atlas Classifications and Labels
Configuring Atlas Authorization using Ranger
Defining Apache Atlas enumerations

The JanusGraph database transaction might fail in certain scenarios and this failure can be handled dynamically using
a specific configuration.

There are certain scenarios in which JanusGraph transactions might fail, including, while indexing into Solr. When
you create HIVE entities, the first level of storage includes persisting into HBase and the corresponding indexes are
logged in Salr.

Theindex updation can be partially successful when data gets stored in HBase but Solr indexing fails. There could

be inconsistencies with logged indexes for the failed transactions in Solr. These scenarios might lead to a mismatch
between the basic and advanced search resultsin Atlas. Re-indexing the datais an option which can reindex the entire
data; however, it istime consuming.

To have a better system resilience and evolution of data tracking, atransaction log processor option named write-
ahead isimplemented. When enabled, JanusGraph maintains al the transaction log information which can be used to
recover indices in the event of failures as described earlier. The log data information consumes more storage space
but having arobust system coupled with maintaining data movement overrides the need to have additional storage
systems.

The write-ahead configuration inspects the Solr health and registers the time in the event of any issues with Solr.
Once Salr is up and running, the indices can be recovered from the previously noted time.

Learn what JanusGraph is and how Apache Atlas uses the JanusGraph database to support search index capabilities.

JanusGraph is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of
vertices and edges distributed across a multi-machine cluster.

Apache Atlas uses the JanusGraph database at the heart of its metadata repository. This graph is used to show the
interconnected relationships between data sources; the data sets they host; the business meaning of the data elements
within each data set; the classification of these elements in terms of quality, confidentiality, retention; who (people
and processes) are using them and for which purposes.

JanusGraph uses a pluggable persistence store to save the metadata content and a search index for its search API.
Apache Atlas takes advantage of this configurability to support arange of size, scalability, and performance
requirements.

To enable index recovery, you must configure some of the underlying entities.

Configuration properties that must be set:
« atlas.index.recovery.enable: To enable or disable index recovery.

Example: atlas.index.recovery.enable=true.

14


https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/atlas-leveraging-business-metadata/topics/atlas-business-metadata-overview.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/atlas-working-with-classifications/topics/atlas-working-with-classifications.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/atlas-securing/topics/atlas-configure-ranger-authorization.html

Cloudera Runtime Dynamic handling of failure in updating index

By default index recovery is enabled on Atlas startup. To disable index recovery, set the value to false. When no
index recovery datais available by default, Atlas considers recovery start time based on TTL - (current time minus
tx.log TTL). By default SOLR tx.log default TTL is configured as 10 days.

» atlas.graph.index.status.check.frequency: To configure the frequency of SOLR health check. It takesinput astime
in milliseconds. By default SOLR health checkup takes effect every 30 seconds.

Example: atlas.graph.index.status.check.frequency=5000.

» atlasindex.recovery.start.time: To start index recovery by custom recovery time as provided by the user. This
property must be set to atimestamp in the yyyy-MM-dd'T'HH:mm:ssformat

If there are frequent SOLR restart operations or if SOLR is down, setting the start time configuration provides
additional clarity.

Example: atlas.index.recovery.start.time=2023-03-24T09:17:23.656Z.

» write.ahead.log.ttl.in.hours: To configure time duration for which the write-ahead transaction log is available. This
property value must be set in hours.

E Note: The write-ahead logs live up to 10 days as per JanusGraph default settings.

Example: write.ahead.log.ttl.in.hours=36.

Y ou can use Atlas REST APIsthat provide flexibility to start index recovery on demand, for index recovery. POST
APl and GET API are the supported APIs to handle index recovery.

With this API, you can commence index recovery on-demand operation providing the start time for index recovery.
APl POST  api/atlas/v2/indexrecovery/start?start Time=2023-04-10T06:17:23.656Z

This API recoversindices starting from earliest of 2023-04-10T06:17:23.656Z or from the transaction log available
time.

B Note: You can initiate the on-demand index recovery feature only as a user with administrator privileges.

Without REST AP, if youwanted to retrieve the details about previous or upcoming index recovery, the only option
available isto search through Atlas logs. But with this API, you can directly request for index recovery details.

API: GET api/atlas/v2/indexrecovery/

Response to GET API provides recovery time of previous and recent/upcoming index recovery and also provides the
customTime which indicates on-demand index recovery started by you through the REST API.

“customTime": "2023-04-10T06:17:23.656Z",
"startTime": "2023-04-18T04:04:24.4112",
"prevTime": "2023-04-17T03:54:54.0842"

Learn about the Index recovery vertex properties and how Index recovery time persistsin a single graph vertex.
Index recovery vertex has the following properties:

« Property-1: Key as“__idxRecovery name’ and with constant value as”__ solrindexRecoverylnfo”.

15



Cloudera Runtime Defining Apache Atlas enumerations

* Property-2: Key as“__idxrecovery startTime” and it holds the current recovery time.

* Property-3: Key as“__idxrecovery prevTime’ and it holds the previous recovery time.

* Property-4 Key as“__idxRecovery customTime” and it holds the previous recovery time started through REST
API.

Whenever Apache Solr moves to an unhealthy state the upcoming recovery timeislogged in Atlas application log
as Index Recovery: Stopped! Recovery time: <timestamp>

Every time Solr moves to an Active state from an unhealthy state it islogged in Atlas application log as Index Re
covery: Started! Recovery time: <timestamp> and current recovery timeis reset to null by assigning that time to
previous recovery time.

Atlas|ets you define enumerations to use as attribute values.

Enumerations are atop-level objectsin the Atlas datamodel. They can be used to standardize values available for
users to select when assigning Business M etadata attributes to entities.

Users need administrator privileges to create or update enumerations.
To define enumerations:

1. LogintoAtlas.

2. To access the Atlas Administration features, choose Administration from the user menu in the top right of the
Atlas window.

Administration
Bulk Import

Help

= Logout

Users need administrator privileges to access the Administration panel features.
Go to the Enumerations tab.
Enter the name of the new enumeration and select it in the list.

> w

Enumeration names must start with aletter and can include letters, numbers, spaces, and underscores.
5. Enter the enumeration values, separating each value by pressing Enter.

Enumeration values are stored as strings and can include UTF-8 characters including spaces.
6. Click Update.

The enumeration is now available to be used as the type for Business Metadata attributes.

If the enumeration name or values don't meet the requirements, you'll see an error in the top right corner of the Atlas
Ul.

Adding attributes to Business Metadata

16


https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/atlas-leveraging-business-metadata/topics/atlas-adding-attributes-to-business-metadata.html

Cloudera Runtime Purging deleted entities

You can use Atlas REST API callsto remove entities from Atlas. Only entities that have been deleted in the source
system and marked as deleted in Atlas can be purged.

When adata asset is deleted, such as after a DROP TABLE command in Hive, Atlas continues to retain the asset's
entity, including metadata, lineage, and audit record. The status of the entity is set to "deleted”; deleted entities show
up in search results when the checkbox to Show historical entitiesis checked. Deleted entities appear in lineage graph
dimmed-out.

* 2019fallcampaign (hive_table)

Classifications:

Term:

Properties Relationships Classifications Audits Schema

O Current Entity X In Progress — Impact | 2 | | (o] | | & | | T | | Q | | ala |

y

In some cases, it may be appropriate to remove entities for deleted assets from Atlas. For example, in a development
or test environment, you may choose to clean out specific entities rather than clearing the entire Atlas database. Be
careful not to purge entities in a production environment without understanding the impact of removing entities on
compliance processes in your organization.

Deleted entities can be removed completely from Atlas by using the REST API call PUT /admin/purge.

]
[

P

When you purge a deleted entity:

* Theentity isremoved from Atlas.

» Related, dependent entities are also removed. For example, when purging a deleted Hive table, the deleted entities
for the table columns, DLL, and storage description are also purged.

* Theentity isno longer available in search results, even with Show historical entities enabled.

« Lineage relationships that include the purged entities are removed, which breaks lineages that depend upon a
purged entity to show connections between ancestors and descendents.

» Classifications propagated across the purged entities are removed in all descendent entities.

» Classifications assigned to the purged entities and set to propagate are removed from all descendent entities.

Note that classifications can propagate to an entity from more than one source; if one source is purged, the
classification will remain on the entity as propagated from the other source.

Purged entities cannot be restored.

Atlas retains an audit record of the purge operations, which is available through the REST API call POST /admin/
audit. This call allowsyou to retrieve alist of entities purged in agiven time interval. In addition, the Administration
Audit tab in the Atlas Ul records entities that were successfully purged.

17



Cloudera Runtime Purging deleted entities

The results of a successful entity purge appear in the Audits tab of the Administration page in Atlas.
To see an audit of successful purges:

1. LogintoAtlas.

2. To accessthe Atlas Administration features, choose Administration from the user menu in the top right of the
Atlas window.

bl &

Administration
Bulk Import

Help

= Logout

Users need administrator privileges to access the Administration panel features.
3. Goto the Audits tab.
4. Open the Filtersto set one or more filters to reduce the volume of entries.

Business Metadata Enumerations Audits
Filters All M

Admin v

OR + Add filter | © Add filter group
--Select Attribute--
v UserMame (string) ] admin n

StartTime (date)

EndTime (date)
Clientld (string)

Params (string) Close
Result (string)

ResultCount (long)

For example:

e Set Operation = PURGE to show only purge audits.
e Set Start Time and End Time to reduce the range of audits.
5. Open apurge audit entry to show alist of GUIDs that were purged.

Use the arrow on the | eft end of the row to show the details of the audit entry.

18



Cloudera Runtime Purging deleted entities

6. Click aGUID to show details about that purged entity.

Purged Entity Details: e779fa97-c6c9-40ea-911f-1cc61270e0cl

Users Timestamp ¢ Actions 2

v admin Thu Apr 30 2020 16:35:17 GMT-0700 (Pacific Daylight Time) Entity Purged

Name: 2020springcampaign

w Technical properties

name 2020springcampaign
owner admin

qualifiedName default. 2020springcampaign@cm

impala Thu Apr 30 2020 16:34:15 GMT-0700 (Pacific Daylight Time) Entity Deleted
admin Thu Apr 30 2020 16:33:57 GMT-0700 (Pacific Daylight Time) Entity Updated

impala Thu Apr 30 2020 16:33:57 GMT-0700 (Pacific Daylight Time) Entity Created

Showing 4 records From 1 -

PUT /admin/purge/ API
The PUT /admin/purge/ APl endpoint allows you to remove alist of deleted entities from Atlas.

To purge deleted entities, use the PUT method on the /admin/purge/ endpoint with a payload containing a JSON list
of Atlas GUIDs:

PUT /api/atl as/ adm n/ pur ge/

This call takes alist of GUIDsfor Atlas entities; each entity in thelist is purged from Atlasif the entity is already
marked as deleted. This call requires auser account with Atlas administrator privileges. The successfully purged
entities are listed in the audit log, referenced by their GUIDs.

The parametersinclude:

Parameter Format / Value Description

body JSON list: One or more Atlas entity GUIDs for deleted entities that you want to purge from
[*GUID", "GUID" ] Atlas. If thelist includes an entity that is not already marked as deleted, the entity
’ o will beignored and Atlas will process the remaining entitiesin the list.

Entity GUIDs appear on the URL for the entity detail page and in the metadata
returned from an API search call such as GET /search/dsl or POST  /search/bas
ic.

header: content type application/json Atlas expects the payload of the call to bein JSON format.

19



Cloudera Runtime Purging deleted entities

header: authorization Per your environment Atlas requires authentication, which you can provide with username and password
asaparameter inacURL cal (-u  username:password) or using cookies or
other generated methods to pass appropriate credentials. The user must have Atlas
administrator privileges.

The response from a PUT /admin/purge call is a JSON-formatted list of the entities that were successfully

purged. The content includes the GUID and qualified name of each entity, its status ("DELETED"), and lists of
classifications, terms, labels, and related entities that were associated with the purged entity. If no entities are purged,
the response isan empty list {}.

Note that the number of entities provided in the request may not match the number of entitiesincluded in the
response. When Atlas purges an entity, it also purges all additional entities dependent on the indicated entity. Thusif
you request to purge a single Hive table, the response includes an entry for the Hive table and entries for each of the
table's columns, its DDL, and its storage description.

For example, acURL command to purge two Hive tables might ook like the following, where the authorization is
passed in the call as an encrypted string:

curl -X PUT 'http://host3.acne.com 31000/ api / at | as/ admi n/ purge/"' \
-H ' Content-Type: application/json' \
-H " Aut hori zation: Basic YWRt aW6YWRt aWMi=" \

-d ' ["b9355eab- bbf 5- 4cd6- b711- 12f 85a3e9d01", "9f ed31f5-0a27-40dc-ba97-96d1
53fc297b"]"

The response would include each table, its DDL, its storage description, and al its columns:

{
"mut atedEntities": {
"PURGE": [
{
"typeNanme": "hive_ table ddl",
"attributes": {
"qual i fi edNane": "default.2020spri ngcanpai gn@m 157896

8155000"

} il
"gui d": "6cfb43ba-d6ec-4628-b98c-dal3a7fe35a0",
"status": "DELETED',

"di splayText": "default.2020spri ngcanpai gn@m 1578968155000

"classificationNanes": [],
"meani ngNanes": [],

"meani ngs": [],

"i sl nconpl ete": false,

"l abel s": []

"typeNane": "hive_table",
"attributes": {
"owner": "“adm n",
"createTime": 1578968155000,
"qual i fi edNane": "default.2020spri ngcanpai gn@ni',
"name": "2020spri ngcanpai gn"
}1
"guid": "9f ed31f5-0a27-40dc- ba97-96d153f c297b",
"status": "DELETED',
"di splayText": "2020spri ngcanpai gn"
"cl assi ficati onNanes": [
"Fact"
]1
"meani ngNames": [],
"meani ngs": [],

20



Cloudera Runtime

Purging deleted entities

68156001"

o

—

)

—

"islnconplete": fal se,
"l abel s": [

"Revi ewConpl et e"
]

"typeNane": "hive_storagedesc",
"attributes": {

"qual i fi edNanme": "default.2020spri ngcanpai gn@m st or age"
}

"guid": "ed59c502- 64d9- 485a- b5b7-f d2f 3d41e2b8"
"status": "DELETED',

"di splayText": "default.2020spri ngcanpai gn@m st or age"
"classificationNanes": [],

"meani ngNames": [],

"meani ngs": [],

"islnconpl ete": false,

"l abel s": []

"typeNane": "hive_colum",

"attributes": {
"owner": "adm n",
"qual i fi edNane": "default.2020spri ngcanpai gn.id@ni,
"name": "id"

} il

"guid": "1f 8c8d86-f 9d8-4810-889b- 0dbf ee2c73ff",
"status": "DELETED',

"di splayText": "id",

"classificationNanes": [],

"meani ngNanes": [],

"meani ngs": [],

"i sl nconpl ete": false,

"l abel s": []

"typeNane": "hive_colum",

"attributes": {
"owner": "admin",
"qual i fi edNanme": "default.2020spri ngcanpai gn. nane@ni',
"name": "name"

} L]

"guid": "72d689d2- 6f ae- 4de3- bb75-27ab764e1083"
"status": "DELETED',

"di spl ayText": "nane",

"classificationNanes": [],

"meani ngNames": [],

"meani ngs": [],

"islnconplete": fal se,

"l abel s": []

"typeName": "hive_table_ddl",
"attributes": {
"qual i fiedNane": "default.2019wi nt ercanpai gn@m 14889

} il
"gui d": "6cfb43ba-d6ec-4628-c98c-bcl3a7fe3982"
"status": "DELETED',

"di splayText": "default.2019w nt er canpai gn@m 148896815600

"classificationNanes": [],
"meani ngNames": [],
"meani ngs": [],

21



Cloudera Runtime Purging deleted entities

"islnconplete": fal se,
"l abel s": []

"typeNane": "hive_table",
"attributes": {
"owner": "adm n",
"createTine": 1488968156001,
"qual ifiedNane": "default.2019w nt ercanpai gn@ni',
"nanme": "2019w nt er canpai gn"

s
"guid": "9f ed31f5-0a27-40dc- ba98- bcl3a7fe3983",
"status": "DELETED',
"di splayText": "2019wi nt er canpai gn",
"cl assi ficati onNanes":

"Fact"
¥
"meani ngNames": [],
"meani ngs": [],
"islnconplete": fal se,
"l abel s": [

" Revi ewConpl et e"

}, <additional entries for Hive table colums, ddl, storage de
scri ption>

]
}

The POST /admin/audits/ API endpoint can be used to retrieve the entity purge operations that have occurred in a
given time period.

To report what entities were purged, use the POST method on the /admin/audits/ endpoint with a payload containing a
JSON-formated query for purged entities:

PCST /api/ atl as/ adm n/ audi ts/

where the parameters include:

body: auditFilters JSON-formatted query including: The payload describes a query that returns PURGE operations
performed by a specific user. The query can include afilter for a
specific time range, where the start and end times are specified

i in UNIX epoch time. The query results can also be paged using
+ Sarttime aresult count (limit) and offset so multiple calls can be made to
e endtime retrieve unique result sets.

e username (required)
e purge operation (required)

The results can further be controlled with:

o limit

e oOffset

e sort by (required)

e sortorder
header: content type application/json Atlas expects the payload of the call to be in JSON format.
header: authorization Per your environment Atlas requires authentication, which you can provide with a

username and password as a parameter in acURL call (-u

username:password) or using cookies or other generated
methods to pass appropriate credentials. The user must have Atlas
administrator privileges.

22



Cloudera Runtime Purging deleted entities

The audit filter in this call uses the same syntax as Atlas search filters. Here are some guidelines that are useful for
using thisinterface for purge auditing:

» Valid operators for the time criteriainclude less than (It), greater than (gt), less than or equal to (Ite), greater than
or equal to (gte), equal to (eq), and not equal to (neq).

» Vadlid operators for the string criteriainclude like, startswith, endsWith, contains, isNull, notNull, and equals (eq).

* ThesortOrder can be ASCENDING or DESCENDING.

The response from a POST /admin/audits call is a JISON-formatted list of the purge operations that occurred in the
specified time range. The content includes the parameters passed in the purge call and the list of GUIDs for the
entities that were successfully purged. If no entities are purged, the responseis an empty list [].

For example, acURL command to return the most recent 10 purge operations might look like the following where the
authorization is passed in the call as a username and clear-text password:

curl -X POST 'http://host3.acnme. com 31000/ api /atl as/adm n/audits/' \
-H ' Content-Type: application/json \
-d ' {
"auditFilters": {
"condition": "AND',
"criterion": |

"attributeNanme": "userNane",
"operator": "like",
"attributeVal ue": "admin"
e
{ . .
"attri buteNane": "operation",
"operator”: "like",
"attributeVval ue": "PURGE"
}
]
b
"limt": 10,
"of fset": O,
"sortBy": "endTi ne",

"sortOrder": " DESCENDI NG'
}

-u usernane: passwor d
The responseincludes alist of purge operations (this example is shortened to only two entries):

[

"guid": "d93c7664-6e41-4aa9- aed8- b740b985c9a0",

"user Nane": "adm n",

"operation": "PURGE",

"parans": "[ac2772e8-984d-4ab6-9e99- 323f 1be2d3c0, 90231026- 6581- 4
168-8828-f 010aa9b097c] ",

"startTime": 1576261685009,

"endTi nme": 1576261685197,

"clientld": "10.16. 1. 255",

"result": "ac2772e8-984d- 4ab6- 9e99- 323f 1be2d3c0, ael43e74- 48d4- 4f 4b
- 8164- 192bc842ed3b, dd742369- 2a2c- 44ee- 902c- 4d78a55b7100, 90231026- 6581- 4168- 8
828- f 010aa9b097c"

% :

"guid": "b964079d- 1f 55- 43f 3- af 7b- 3a3701378826",

"user Nane": "adm n",

"operation": "PURGE",

"parans": "[35b7aaad- 2aaf - 4af 8- a043-e7b524el1314e] ",

"startTi me": 1576028426951,

"endTi nme": 1576028427165,

23



Cloudera Runtime Apache Atlas technical metadata migration reference

"clientld": "10.16. 1. 255",
"result": "35b7aaad-2aaf - 4af 8-a043-e7b524e1314e, add45b8a- 4bef - 4ebb-
a8d0- 0b8b920f 068d"

Y.
]

Related Information
Auditing purged entities

Apache Atlas technical metadata migration reference

This documentation includes an exhaustive reference of how Cloudera Navigator technical metadatais migrated into
Atlas entities.

The migration process moves technical metadata from Navigator to Atlasin one of these ways:

e One-to-one mapping. There are no field mapping notes.
» Type conversion. The field mapping notes indicate the new type applied.

» Data conversion. The field mapping notes indicate how the data was converted, such as from a string to a Boolean
value (for example, type=FILE to isFile=True).

« Noreason to migrate. Navigator stored a value that has no use in Atlas, such as the system ID. The field mapping
notes indicate that the value is not used in Atlas.

« Novauein Navigator. In most cases, if an Atlasfield does not have an equivalent in Navigator, the Atlasfield is
left as null. The migration notesindicate if avalueisfilled in by defaullt.

» Not migrated. There is one case where metadata in Navigator is not migrated and potentially the information is
lost: the Spark operation (spark_process) metadata for principal is not migrated to Atlas. The principal is migrated
at the operation execution (spark_process_execution) entity level. The field mapping notes indicate this case.

All Atlas entities share "system" attributes. The mapping for these attributes is described once but apply to all entities.

Related Information
Mapping Navigator business metadata to Atlas

System metadata migration

All migrated entitiesin Atlas include the same top-level metadata attributes, such as name, description, and creation
time.

The following sections describe how Navigator "common” entity metadatais mapped to Atlas "system" metadata.
If Atlas requires metadata that wasn't availablein Navigator, the migration notes describe how the Atlas metadata

values are generated.
Navigator Atlas M etadata Migration Notes
Metadata
created createTime Converted to date type.
deleted status If Truein Navigator, Atlas statusis set to "DELETED"; otherwise status is set to

"ACTIVE".

description attributes.userDescription
extractorRunld No equivalent in Atlas.
identity guid Converted to Atlas value
internal Type typeName Converted to Atlas values.
lastModified updateTime Converted to date type.
lastModifiedBy updatedBy

24


https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-cdh/topics/atlas-migrating-mapping.html

Cloudera Runtime

Apache Atlas technical metadata migration reference

Navigator Atlas Metadata Migration Notes
Metadata

name attributes.displayName

originalName attributes.name

original Description

attributes.description

owner attributes.owner

packageName No equivaent in Atlas.

properties customALttribues Added to the Atlas entity custom attributes as a key value pair with the Navigator name
asthe key.

sourceld Inferred rather than migrated.

technicalProperties | customAttribues Added to the Atlas entity custom attributes as a key value pair with the Navigator name
asthekey.

tags labels

attributes.qualifiedName

Atlas uniquely identifies entity instances with the qualified name. See the entity-specific
migration reference to see how these values are generated.

clusterName Supplied in nav2atlas migration command.
homeld Not used currently in Atlas.
isProxy Not used currently in Atlas.
provenanceType Not used currently in Atlas.
version Not used currently in Atlas.

HDFS entity metadata migration

HDFS metadata entities are migrated from Navigator to Atlas when they appear in alineage relationship from Hive,
Impala, or Spark processes.

The following sections describe how metadata is mapped from Navigator to Atlas; if Atlas requires metadata that
wasn't available in Navigator, the migration notes describe how the Atlas metadata values are generated.

Migrated entities include:

« HDFS Directory on page 25
» HDFSFile on page 26

For entity metadata that is common to al entities, see System metadata migration on page 24.

HDFS Directory
Navigator fselement entities of type=DIRECTORY are migrated to Atlas hdfs_path entities with the isFile attribute

set to false.
Navigator Atlas M etadata Migration Notes
Metadata
blockSize Null for directories.
created attributes.createTime Converted to date type.
ezKeyName Null for directories.
fileSystemPath attributes.path
group attributes.group
lastAccessed attributes.modifiedTime Converted to date type.
mimeType Null for directories.

25



Cloudera Runtime Apache Atlas technical metadata migration reference

Navigator Atlas Metadata Migration Notes
Metadata

owner attributes.owner
permissions attributes.posixPermissions Converted to Atlas values.
replication attributes.numberOf Replicas Null for directories.
size attributes.fileSize Null for directories.
type attributes.isFile The Navigator type=DIRECTORY property is converted to isFile=FAL SE.
attributes.isSymLink Defaultsto FALSE.
attributes.nameServiceld Optional in Atlas.
attributes.qualifiedName Generated as a string in the format <path>@clustername.
HDFS File

Navigator fselement entities of type=FILE are migrated to Atlas hdfs_path entities with the isFile attribute set to true.

Navigator Metadata | Atlas Metadata Migration Notes

blockSize Added to the Atlas entity custom attributes as a key value pair with the Navigator name as the
key.
created attributes.createTime | Converted to date type.
ezKeyName Added to the Atlas entity custom attributes as a key value pair with the Navigator name as the
key.
fileSystemPath attributes.path
group attributes.group
|astAccessed attributes.modifiedTime Converted to date type.
mimeType Added to the Atlas entity custom attributes as a key value pair with the Navigator name as the
key.
owner attributes.owner
parentPath attributes.extendedAttributes
permissions attributes.posixPermiss dbenverted to Atlas values.
replication attributes.numberOfReplicas
size attributes.fileSize
type attributes.isFile The Navigator type=FILE property is converted to isFile=TRUE.
attributes.isSymLink | Defaultsto FALSE.
attributes.nameServiceldOptional in Atlas.
attributes.qualifiedNameGenerated as a string in the format <path>@clustername.

Hive entity metadata migration
Hive metadata entities are fully migrated from Navigator to Atlas.

The following sections describe how metadata is mapped from Navigator to Atlas; if Atlas requires metadata that
wasn't available in Navigator, the migration notes describe how the Atlas metadata values are generated.

Migrated entities include:

« Hive Database on page 27
» Hive Table on page 27
* HiveView on page 28

26



Cloudera Runtime Apache Atlas technical metadata migration reference

Hive Storage Description on page 28
Hive Column on page 28

Hive Process on page 28

Hive Column Lineage on page 29
Hive Process Execution on page 29

Hive Database

Navigator hv_database entities are migrated to Atlas hive_db entities.

Navigator Atlas M etadata Migration Notes
Metadata
fileSystemPath attributes.location
firstClassParentld Not needed in Atlas
params attributes.parameters
parentPath Not needed in Atlas.
technicalProperties | customAttributes
type Inferred rather than migrated.
attributes.ownerType
attributes.parameters
attributes.qualifiedName Generated as a string in the format dbname@clustername.
Hive Table

Navigator hv_table entities are migrated to Atlas hive table entities.

Atlas M etadata Migration Notes

Navigator
Metadata

clusterByColNames | bucketCols Not needed in Atlas.

group attributes.parameters Added to Atlas entity as a key value pair with the Navigator name as the key.
params attributes.parameters Added to Atlas entity as a key value pair with the Navigator name as the key.
partColNames relationshi pAttributes.partitionK eys
sortByColName attributes.sortCols Converted from string to array type.
technical Properties | attributes.parameters Added to the Atlas entity attributes as akey value pair with the Navigator name as the
key.
attributes.aliases Defaultsto null.
attributes.comment Defaultsto null.
attributes.lastAccessTime Defaults to null.

attributes.qualifiedName

Generated as a string in the format <parent_db>.<tablename>@<clustername>.

attributes.retention Defaultsto null.
attributes.tableType Defaults to null.
attributes.temporary Defaultsto null.
attributes.viewOriginal Text Defaultsto null.
attributes.viewExpandedText Defaults to null.

27



Cloudera Runtime Apache Atlas technical metadata migration reference

Hive View

Navigator hv_view entities are migrated to Atlas hive_table entities. Atlas does not distinguish between Hive tables
and Hive views.

Hive Storage Description

Atlasincludes a separate entity that represents how Hive table datais stored. Navigator included this metadata as part
of itshv_table entity and the logical-physical lineage relationship. The migration creates the Atlas hive_storagedesc
entity using metadata from the HM S table information.

Navigator Atlas M etadata Migration Notes
Metadata

compressed attributes.compressed

fileSystemPath attributes.location

inputFormat attributes.inputFormat

outputFormat attributes.outputFormat

partColNames attributes.bucketColNames

serdelibName attributes.serdel nfo.serializationL.ib

serdeProps attributes.serdelnfo

sortByColNames attributes.sortCols Converted from string to array type.
attributes.numBuckets
attributes.parameters
attributes.qualifiedName Generated as a string in the format <parent_db>.<tablename>@<clustername>_storage.
attributes.sortedAsSubDirectories

Hive Column

Navigator hv_column entities are migrated to Atlas hive_column entities. Note that the Atlas owner valueis not
available from Navigator and remains blank.

Navigator Atlas Metadata Migration Notes
Metadata

dataType attributes.type
firstClassParentld Not used in Atlas.
fieldindex attributes.position
parentPath Not used in Atlas.
attributes.comment Defaultsto null.
attributes.owner Defaults to null.
attributes.qualifiedName Generated as a string in the format <parent_db>.<tablename>.<columnname>@-<cluste
rname>.

Hive Process

Navigator hv_query entities are migrated to Atlas hive_process entities.

Navigator Atlas Metadata Migration Notes
Metadata

inputs inputs Points to the input entities as relationship attributes.

outputs outputs Points to the output entities as relationship attributes.

28



Cloudera Runtime Apache Atlas technical metadata migration reference

Navigator Atlas Metadata Migration Notes
Metadata

queryHash Not used in Atlas.
queryText attributes.query Text Not used currently in Atlas.
sourceld Not used in Atlas.
unparsed Not used in Atlas.
wflds Not used in Atlas.
attributes.startTime Not used currently in Atlas.
attributes.endTime Not used currently in Atlas.
attributes.userName Not used currently in Atlas.
attributes.operationType Defaultsto null.
attributes.qualifiedName Generated as a string with the operation, input entities, and output entities, where each

entity is noted by <asset_qualifiedName>:<createTime> and entries are separated by
colons, and an arrow shows the break between input and output entities. For example:

dbbl ue. t abl e_aqua@!| ust ercol or: 1589373411000-
>dbbl ue. t abl e_t eal @l ust ercol or: 1589394039000

attributes.queryld Defaults to null.
attributes.queryGraph Defaults to null.
attributes.recentQueries Defaults to null.

Hive Column Lineage

Navigator hv_query part entities are migrated to Atlas hive_column_lineage entities.

Navigator Atlas M etadata Migration Notes
Metadata

inputs attributes.inputs Points to the input column entities as relationship attributes.

outputs attributes.outputs Points to the output column entities as relationship attributes.

firstClassParentld attributes.query Points to the parent hive_process entity as a relationship attribute.

originaName attributes.qualifiedName Generated as a string with the operation, input entities, output entities, and target column

name, where each entity is noted by <column_qualifiedName>:<createTime> and
entries are separated by colons, and an arrow shows the break between input and output
entities. For example:

dbbl ue. t abl e_aqua@! ust er col or: 1589373411000
->dbbl ue. tabl e_t eal @m 1589390050000: col unm__
beach

attributes.dependency Type Setto "SIMPLE".

attributes.expression Defaults to null.

Hive Process Execution

Navigator hv_query execution entities are migrated to Atlas hive_process_execution entities.

Navigator Atlas M etadata Migration Notes
Metadata

inputs inputs Points to the input entities as relationship attributes.

outputs outputs Points to the output entities as relationship attributes.

29



Cloudera Runtime Apache Atlas technical metadata migration reference

Navigator Atlas Metadata Migration Notes
Metadata

ended attributes.endTime
operation attributes.process Points to the parent hive_process entity as a relationship attribute.
originalName attributes.query Text
principal attributes.userName
started attributes.startTime
attributes.hostName Defaultsto null.
attributes.qualifiedName Generated as a string with the operation, input entities, output entities, and execution
start and end timestamps, where each entity is noted by <asset_qualifiedName>:<creat
eTime> and entries are separated by colons, and an arrow shows the break between
input and output entities. For example:
dbbl ue. t abl e_aqua@l ust er col or: 1589373411000
->dbbl ue. t abl e_t eal @I ust er col or: 15893900500
00: 1589394047386: 1589394064097
attributes.queryGraph Defaults to null.
attributes.queryld Defaultsto null.
attributes.queryPlan Set to "Not Supported”.

Impala entity metadata migration
Impala metadata entities are fully migrated from Navigator to Atlas.

The following sections describe how metadata is mapped from Navigator to Atlas; if Atlas requires metadata that
wasn't available in Navigator, the migration notes describe how the Atlas metadata values are generated.

Migrated entities include:

e Impala Process on page 30
» Impala Column Lineage on page 31
» Impala Process Execution on page 31

For entity metadata that is common to al entities, see System metadata migration on page 24.

Impala Process

Navigator impala_operation entities are migrated to Atlasimpala_process entities.

Navigator Atlas M etadata Migration Notes
Metadata

inputs inputs Points to the input entities as relationship attributes.
outputs outputs Points to the output entities as relationship attributes.
queryHash Not used in Atlas.
queryText attributes.query Text Not used currently in Atlas (see Impala Process Execution on page 31).
sourceld Not used in Atlas.
unparsed Not used in Atlas.
wflds Not used in Atlas.
attributes.endTime Not used currently in Atlas.
attributes.operationType Defaultsto null.

30



Cloudera Runtime

Apache Atlas technical metadata migration reference

Navigator
Metadata

Atlas M etadata

attributes.qualifiedName

Migration Notes

Generated as a string with the input entities and output entities, where each entity is
noted by <asset_qualifiedName>:<createTime> and entries are separated by colons, and
an arrow shows the break between input and output entities. For example:

dbbl ue. t abl e_aqua@l ust er col or: 1589373411000-
>dbbl ue. t abl e_t eal @I ust ercol or: 1589390050000

attributes.queryGraph Defaults to null.
attributes.queryld Defaultsto null.
attributes.recentQueries Defaultsto null.

attributes.startTime

Not used currently in Atlas.

attributes.userName

Not used currently in Atlas.

Impala Column Lineage

Navigator impala_sub_operation entities are migrated to Atlasimpala_column_lineage entities.

Navigator
M etadata

inputs

Atlas M etadata

attributes.inputs

Migration Notes

Points to the input column entities as relationship attributes.

outputs

attributes.outputs

Points to the output column entities as relationship attributes.

firstClassParentld

attributes.query

Points to the parent impala_process entity as a relationship attribute.

originalName

attributes.qualifiedName

Generated as a string with the input entities, output entities, and target column name,
where each entity is noted by <column_qualifiedName>:<createTime> and entries are
separated by colons, and an arrow shows the break between input and output entities.
For example:

dbbl ue. t abl e_aqua@l ust er col or: 1589373411000
- >dbbl ue. t abl e_t eal @m 1589390050000: col umrm_
beach

attributes.dependency Type Set to "SIMPLE".
attributes.expression Defaultsto null.

Impala Process Execution

Navigator impala_operation_execution entities are migrated to Atlas impala_process_execution entities.

Navigator Atlas Metadata Migration Notes
Metadata
inputs inputs Points to the input entities as relationship attributes.
outputs outputs Points to the output entities as relationship attributes.
ended attributes.endTime
operation attributes.process Points to the parent impala_process entity as a relationship attribute.
originalName attributes.query Text
principal attributes.userName
started attributes.startTime
attributes.hostName Defaultsto null.




Cloudera Runtime Apache Atlas technical metadata migration reference

Navigator Atlas Metadata Migration Notes
Metadata

attributes.qualifiedName Generated as a string with the input entities, output entities, and execution start and end
timestamps, where each entity is noted by <asset_qualifiedName>:<createTime> and
entries are separated by colons, and an arrow shows the break between input and output
entities. For example:

dbbl ue. t abl e_aqua@! ust er col or: 1589373411000
->dbbl ue. t abl e_t eal @I ust er col or: 15893900500
00: 1589390056000: 1589390058000

attributes.queryGraph Defaultsto null.
attributes.queryld Defaultsto null.
attributes.queryPlan Set to "Not Supported”.

Spark entity metadata migration
Spark metadata entities are fully migrated from Navigator to Atlas.

The following sections describe how metadata is mapped from Navigator to Atlas; if Atlas requires metadata that
wasn't available in Navigator, the migration notes describe how the Atlas metadata values are generated.

Migrated entities include:

e Spark Process on page 32
e Spark Process Execution on page 32

For entity metadata that is common to al entities, see System metadata migration on page 24.

Spark Process
Navigator spark_operation entities are migrated to Atlas spark_process entities.

E Notice: The metadata for the principal from Navigator is not migrated to Atlas.

Navigator Metadata Atlas M etadata Migration Notes

inputs rel ationshipAttributes.inputs Points to the input directories as relationship attributes.
outputs rel ationshipAttributes.outputs Points to the output directory as arelationship attribute.
principal Not mapped.
attributes.currUser Defaultsto null.
attributes.details Defaultsto null.
attributes.executionld Defaultsto null.
attributes.remoteUser Defaultsto null.
attributes.sparkPlanDescription
attributes.qualifiedName Generated as a string in the format process_id@clustername. For
example, application_1589303388872_0001@clustercolor.20324.

Spark Process Execution

Navigator spark_operation_execution entities are migrated to Atlas spark_process _execution entities.

Navigator M etadata Atlas Metadata Migration Notes

inputs relationshipAttributes.inputs Points to the input files as relationship attributes.

32



Cloudera Runtime Apache Atlas technical metadata migration reference

Navigator Metadata Atlas Metadata Migration Notes

outputs rel ati onshi pAttributes.outputs Points to the output files as relationship attributes.
ended attributes.endTime
operation attributes.process Points to the parent spark_process entity as a relationship attribute.
originalName attributes.query Text
principal attributes.userName
started attributes.startTime
attributes.hostName Defaultsto null.
attributes.qualifiedName Generated as a string in the format process_id-exec.timestamp@cluste
rname. For example, application_1589303388872_0001-exec.1589
331800580@clustercolor.

AWS S3 entity metadata migration
S3 metadata entities are migrated from Navigator to Atlas.

The following sections describe how metadata is mapped from Navigator to Atlas; if Atlas requires metadata that
wasn't available in Navigator, the migration notes describe how the Atlas metadata values are generated.

Migrated entities include:

e S3 Bucket on page 33
e S3 Object: Directory on page 33
* S3Object: File on page 34

For entity metadata that is common to al entities, see System metadata migration on page 24.

S3 Bucket
Navigator s3_bucket entities are migrated to Atlas aws s3 v2_bucket entities.

Navigator Atlas M etadata Migration Notes
Metadata

encryption attributes.encryption
eTag attributes.eTag
owner attributes.owner
ownerld attributes.ownerld
region attributes.region
attributes.qualifiedName Generated as a string in the format <bucket_name>@-<cluster_name>. For example yell
ow_bucket@clustercolor.

S3 Object: Directory
Navigator s3_object entities of type=DIRECTORY is converted to aws s3 v2_directory entities.

Navigator Atlas Metadata Migration Notes
Metadata

bucketName attributes.bucketName

depth customALttributes Added to the Atlas entity custom attributes as a key value pair with the Navigator name
asthekey.

encryption attributes.encryption

eTag attributes.eTag

33



Cloudera Runtime Apache Atlas technical metadata migration reference

Navigator Atlas Metadata Migration Notes
Metadata

fileSystemPath attributes.storagel ocation

firstClassParentld relationshipAttributes.container | Points to the parent directory or bucket as a relationship attribute.

implicit attributes.implicit

newObject customALttributes Added to the Atlas entity custom attributes as a key value pair with the Navigator name
asthe key.

owner attributes.owner

ownerld attributes.ownerld

parentPath attributes.objectPrefix The Atlas value is derived from the Navigator value (no one-to-one migration).

region attributes.region

sequencer customALttributes Added to the Atlas entity custom attributes as a key value pair with the Navigator name
asthe key.

size attributes.size

storageClass attributes.storageClass

type Used to determine the Atlas entity type.

attributes.qualifiedName Generated as a string in the format <object_prefix>://<bucket_name>/<directory_name>

S(t?;g:) llj(s)trer_nama. For example s3a//yellow_bucket/hive_storage color_table dir@clu

S3 Object: File
Navigator s3_object entities of type=fileis converted to aws s3 v2_object entities.

Navigator Atlas Metadata Migration Notes
Metadata

bucketName attributes.bucketName

depth customAttributes Added to the Atlas entity custom attributes as a key value pair with the Navigator name
asthe key.

encryption attributes.encryption

eTag attributes.eTag

fileSystemPath customALttributes Ad?]ed kto the Atlas entity custom attributes as a key value pair with the Navigator name
asthekey.

firstClassParentld relationshipAttributes.container | Points to the parent directory or bucket as a relationship attribute.

implicit attributes.implicit

newObject customAttributes Added to the Atlas entity custom attributes as a key value pair with the Navigator name
asthe key.

owner attributes.owner

ownerld attributes.ownerld

parentPath attributes.objectPrefix The Atlas valueis derived from the Navigator value (no one-to-one migration).

region attributes.region

size attributes.size

storageClass attributes.storageClass

type Used to determine the Atlas entity type.




Cloudera Runtime NiFi metadata collection

attributes.qualifiedName Generated as a string in the format <object_prefix>://<bucket_name>/<directory_name>
I<file_name>@=<cluster_name>. For example s3a//yellow_bucket/hive_storage color_t
able_dir/.hive-staging_hive 2020-03-20_01-43-14_862_995309273321986325-1@clu
stercolor.

Atlas collects metadata of events from NiFi clustersto illustrate the high-level relationships among processes and data
sets and potentially detailed NiFi event-level lineage.

The metadata connector between NiFi and Atlasisimplemented as the NiFi reporting task ReportLineageToAtlas.
This reporting task stores two types of NiFi flow information:

* NiFi flow structure describes the components running within a NiFi flow and how they are connected.
» NiFi datalineage describes how NiFi flowsinteract with different data assets such as HDFS files or Hive tables.
Lineageis determined by analyzing NiFi provenance events.

When the Atlas reporting task runsin aNiFi cluster, the primary node performs the one-time task of inserting the
NiFi-specific entity typesin Atlas. The primary node sends metadata to Atlas as and when an event occursin the
NiFi cluster. Every node (including primary node) analyzes NiFi provenance events stored in a provenance event
repository to create lineage between NiFi and other data assets such as Hive tables and HDFS paths.

The NiFi reporting tasks provide a number of propertiesto control what metadata is collected and at what level of
NiFi events are described in lineage. The implementation details to be aware of are:

1. Mapping the NiFi cluster to a cluster name identifier in the Atlas environment.
Y ou must specifically note the following:

« Which cluster name should be used to represent the current NiFi cluster?
«  When NiFi components perform operations on data assets, which cluster does the data asset reside in?

The mapping can be defined by Dynamic Properties with a name in the 'hostnamePattern.ClusterName' format,
having its value as a set of Regular Expression Patterns to match | P addresses or host namesto a particular cluster
name.

This mapping is described in detail in Cluster Hostname Resolution in the Apache NiFi documentation.
2. Level of lineage graph detail.

NiFi Lineage Strategy
Choose a strategy for showing lineage information in Atlas by using one of the following:
e Simple Path

A high-level view of NiFi processes that summarizes how each data asset and NiFi process are related when the

data flows among services. Specifically, this strategy maps data /O provenance events such as SEND/RECEIVE to
nifi_flow_path' created by NiFi flow structure analysis. Theresult isthat if different data assets go through the same
nifi_flow_path', the lineage picture gives the impression that there is a relationship among the data assets because
they are processed in the same flow. No information is lost; however, as you can use the NiFi provenance eventsto
investigate the details.

This strategy generates the least amount of datain Atlas.
e Complete Path

Lineage s created by traversing provenance events backwards from a DROP event, reporting the entire lineage for
agiven FlowFile including where it is created, and where it goes. This strategy generates more detail and shows
separate lineage pictures for data sets that are not related but happen to be processed through the same flow path.

35


https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Cloudera Runtime NiFi metadata collection

However, reporting complete flow paths for every single FlowFile produces too many entities in Atlas and needs
more computing resources to collect the relevant metadata.

Choose the strategy before implementing lineage collection in a production environment because switching among
strategies can leave you with residual entities shown in lineage pictures and the lineage pictures may show different
entities for otherwise equivalent processes.

An entity in Atlas can be identified either by its GUID for any existing objects, or type name and unique attribute if
GUID isnot known. A qualified name is commonly used as the unique attribute.

One Atlas instance can be used to manage multiple environments, and objects in different environments may have
the same name. For example, a Hive table 'request_logs' in two different clusters, ‘cluster-A' and 'cluster-B'. For this
reason the qualified names contain a so-called metadata namespace.

It is common practice to provide the cluster name as the namespace, but the cluster name it can be any arbitrary
string.

With this, a qualified name has a'‘componentld@namespace’ format. For example, a Hive table qualified nameis
dbName.tableName@namespace (default.request_logs@cluster-A).

From this NiFi reporting task standpoint, a namespace is needed to be resolved in the following situations:

« Toregister NiFi component entities. Which namespace should be used to represent the current NiFi environment?
« To create lineages from NiFi components to other datasets. Which environment does the dataset reside in?

To answer such questions, ReportLineageToAtlas reporting task provides a way to define mappings from |P

address or hostname to a namespace. The mapping can be defined by Dynamic Properties with aname in the
'hostnamePattern.namespace’ format, having its value as a set of Regular Expression Patterns to match | P addresses or
host names to a particular namespace.

As an example, following mapping definition resolves namespace 'namespace-A' for | P address such as
'192.168.30.123' or hostname 'namenodel.a.example.com’, and 'namespace-B' for '192.168.40.223' or
'nifi3.b.example.com'.

# Dynamic Property Name for namespace-A

hostnamePattern.namespace-A

# Value can have multiple Regular Expression patterns separated by new line
192\.168\.30\.\d+

[M.]+\.a\.example\.com

# Dynamic Property Name for namespace-B

hostnamePattern.namespace-B

# Values

192\.168\.40\.\d+

[M\.]+\.b\.example\.com

If no namespace mapping matches, then a name defined at 'Atlas Default Metadata Namespace' is used.

To illustrate the difference between lineage strategies, consider a sample NiFi flow.

36



Cloudera Runtime

NiFi metadata collection

from
[} GetFile . ConsumeKafkaRecord_0_10
/tmp/input
n 0 Al.csy, Bl.csv In y from Name success
Read/Write 0 bytes /0 bytes =~ Name success Read/Write 0 bytes / 0 bytes - Queued 0
oa - Queued 0 Out 0 nifi-test
Tasks/Time 0 /00:00:00.000 / Tasks/Time 297 / 00:00:03.122 /
to PartitionRecord
- Putfile Name success
/tmp/output o = == Queued 0 (0 byte
In

Read/Write 0 bytes / 0 bytes

— Name success

Read/Write 0 bytes /0 bytes
Out 0

partition’'msgs
to A V

Queued 0
oot - Tasks/Time 0 /00:00:00.000
Tasks/Time 0/ 00:00:00.000
UpdateAttribute
PublishKafkaRecord_0_10 Name success
In 0 Y = Queued 0 (0 by
Read/Write 0 bytes /0 bytes
L Qut 0
Rea t bytes / 0 bytes to Tasks/Time 0 /00:00:00.000
Out ~
Tasks/Time 0 ).00( nifi-test
! PutFile
to
1
o /tmp/consumed
Read/Write 0 bytes / 0 bytes E
Out o
Tasks/Time 0 / 00:00:00.000

With 'Simple Path’, Atlas lineage is reported as seen in the following image, when '/tmp/input/Al.csv' is selected.

Because 'Simple Path' maps 1/0 eventsto a'nifi_flow_path', /tmp/output/B1.csv' is shown in the lineage graph as the
file that iswritten by the 'GetFile, PutFile..." process.

A1l.csv did not affect Bl.csv
_—

With 'Complete Path’, Atlas lineage is reported as seen in the following image. In this use case, 'GetFile, PutFile...'
processis not linked to ‘/tmp/output/B1.csv'.

The 'Complete Path' strategy creates two different 'nifi_flow_path' entities. One for ‘/tmp/input/Al.csv -> /tmp/output/
Al.csv' and ancther for '/tmp/input/B1.csv -> /tmp/output/B1.csv'.

However, after the data records ingest from A.csv and B.csv into abigger dataset, 'nifi-test' Kafkatopic in the
following example (or whatever dataset such as a database table or a concatenated file ... and so on), record level
lineage tracking about where it came from can no longer be tracked.

The resulting '/tmp/consumed/B_2.." is shown in the same lineage graph, although the file does not contain any data
that came from '/tmp/input/Al.csv'.

37



Cloudera Runtime NiFi metadata collection

FORK PartitionRecord ftmp/consumed/B_2.

nifi-test CO”SUV"E‘Ka’ : In fact inputlAlr:,-c‘sv didn't
affect consumed/B 2..

Amp/inputA1.csv GetFile pLV—’ G\ FORK PartitionRecord ftmp/consumed/A_2

ARmp/output/A1.csv

Understanding the data that flow into Atlas
The reporting task stores two types of NiFi flow information.

* NiFi flow structure
« NiFi datalineage

‘NiFi flow structure' indicates what components are running within a NiFi flow and how these are connected. It is
reported by analyzing current NiFi flow structure, specifically NiFi component relationships.

‘NiFi datalineage' indicates what part of NiFi flow interacts with different datasets such as HDFSfiles or Hive tables.
Itisreported by analyzing NiFi provenance events.

NiFi Atlas

AtlasNifi

FlowLineAge NiFi Flow Structure
(Reporting Task)

Notification NiFi Data Lineage

Provenance
Repository

Kafka: ATLAS_HOOK

NiFi lineage

Atlas collects metadata from NiFi to represent the lineage among data assets in the Lineage tab.

38



Cloudera Runtime NiFi metadata collection

Properties  Lincage  Relationships  Classifications  Audits

OCurrent Entity — — Impact

(o]2) (W

The Atlas lineage graph shows the input and output processes that the current entity participated in, specifically those
relationships modeled as “inputToProcesses’ and “outputFromProcesses.” Entities are included if they are provided
as an input to processes that lead to the current entity or they are output from processes for which the current entity is
aninput. NiFi processes follow this pattern.

Atlas NiFi relationships
Atlas shows the related entities in the Relationships tab in the Dashboard.

39



Cloudera Runtime NiFi metadata collection

Properties Lineage

outputs

an

outputs

The Relationship tab shows the relationships that exist for an entity. Use this view to navigate among related entities.

40



Cloudera Runtime NiFi metadata collection

Atlas NiFi audit entries
Atlaslists changes to metadata entities in the Audits tab in the Dashboard.

Properties Lineage Relationships Classifications Audits

Showing 1 records From 1 - 25

Users Timestamp Actions Tools

admin Mon Nov 29 2021 12:25:51 GMT-0500 (Eastern Standard Time) Entity Created ( Detail

Atlas tracks the lifecycle of each NiFi entity, including its creation and updation. User access and actions that affect
the data content of the source asset are not included in the audit.

Note: If the datais active while the entity is created, it displays some additional information. Y ou must be aware that
after the entity is created, the flow files do not create an event, unless the processor is listed.

How the reporting task runs in a NiFi cluster
When the reporting task runsin aNiFi cluster, the following tasks are executed only by the primary node:

e Create NiFi Atlastypesin the Atlas type system.

e Maintain NiFi flow structure and metadatain Atlas both which consists of NiF component entities such as
nifi_flow', 'nifi_flow_path', and 'nifi_input(output)_port'.

Every node (including primary node) analyzes NiFi provenance events stored in a provenance event repository, to
create lineage between 'nifi_flow_path' and other dataset (for example: Hive tables and HDFS path).

NiFi Atlas Types

The reporting task creates the following NiFi specific typesin Atlas Type system if these type definitions are not
found.

Green boxes represent sub-types of dataset and blue ones are sub-types of Process. Gray lines represent entity

ownership. Red lines represent lineage.
-ﬁ nifi_output_port
—
mH nifi_flow_path —w
Other DataSet e = Other DataSet

nifi_input_port

41



Cloudera Runtime NiFi metadata collection

Nifi_flow: Represents a NiFi dataflow. As shown in the diagram, nifi_flow owns other nifi_component types. This
owning relationship is defined by Atlas 'owned' constraint so that when a'nifi_flow' entity is removed, all owned NiFi
component entities are removed in a cascading manner.

When the reporting task runs, it analyzes and traverses the entire flow structure, and creates NiFi component entities
in Atlas. During later runs, it compares the current flow structure with the one stored in Atlas to figure out if any
changes have been made since the last time the flow was reported. The reporting task updates NiFi component entities
in Atlas if needed.

NiFi components that are removed from aNiFi flow also get deleted from Atlas. However those entities can be seen
in Atlas search results or lineage graphs because Atlas uses 'Soft Delete' by default.

* Attributes:

« qualifiedName: Root ProcessGroup |D@namespace (For example, 86420a14-2fab-3ele-4331-
fb6ab42f58e0@nsl)

« name: Name of the Root ProcessGroup.
< url: URL of the NiFi instance. This can be specified using the reporting task 'NiFi URL for Atlas' property.

Nifi_flow_path: Part of aNiFi data flow containing one or more processing NiFi components such as Processors and
RemoteGroupPorts. The reporting task divides a NiFi flow into multiple flow paths.

o Attributes:

» qudifiedName: Thefirst NiFi component Id in a path@namespace (for example:
529e6722-9b49-3b66-9c94-00da9863ca2d@nsl)

« name: NiFi component names within a path are concatenated (for example: GenerateFlowFile, PutFile,
LogAttribute)

e url: A deep link to the first NiFi component in corresponding NiFi Ul

nifi_input/output_port: Represents a RootGroupPort which can be accessed by RemoteProcessGroup through Site-to-
Site protocol.

* Attributes:

» qualifiedName: Port | D@namespace (for example: 3f6d405e-6e3d-38c9-c5af-ce158f8e593d@nsl)
* name: Name of the Port.

Nifi_data: Represents unknown datasets created by CREATE/SEND/RECEIVE NiFi provenance events that do not
have a particular provenance event analyzer.

* Attributes:

» quaifiedName: ID of a Processor which generated the provenance event@namespace (for example:
db8bb12c-5cd3-3011-c971-579f460ebedf @nsl)

* name: Name of the Processor.

Nifi_queue: Aninternal dataset of NiFi flows which connects nifi_flow_paths. Atlas lineage graph requires a dataset
in between Process entities.

o Attributes:

» quaifiedName: ID of the first Processor in the destination nifi_flow_path.
» name: Name of the Processor.

To create lineage describing which NiFi component interacts with what datasets, dataset entity, and Process entity
need to be created in Atlas. Specifically, at least three entities are required to draw a lineage graph on Atlas Ul.

42



Cloudera Runtime NiFi metadata collection

A Process entity, and a dataset which is referred by a Process 'inputs attribute, and a dataset referred from an ‘outputs
attribute. For example:

# Wth following entities
guid: 1
typeNane: fs path (extends dataset)
qual i fi edNanme: /data/Al. csv@ranchO ficel
guid: 2
typeNane: nifi_flow path (extends Process)
nane: CetFile, PutHDFS
qual i fi edNanme: 529e6722- 9b49- 3b66- 9c94- 00da9863ca2d@r anchCF f
i cel
i nputs: refer guid(1)
out puts: refer guid(3)

guid: 3

typeNane: hdfs_path (extends dataset)

qual i fi edNanme: /data/input/Al. csv@nal ytics

# Atlas draws |ineage graph

/data/ Al.csv -> CetFile, PutHDFS -> /data/input/Al.csv

To identify such Process and dataset Atlas entities, this reporting task uses NiFi Provenance Events. At the minimum,
the reporting task needs to derive the following details from a NiFi Provenance event record:

» typeName (for example: fs_path, hive_table)
» qualifiedName in uniquel d@namespace (for example: /data/A1l.csv@nsl)

'namespace’ in ‘qualifiedName’ attribute is resolved by mapping an |P address or hostname available at the NiFi
Provenance event 'transitUri' to a namespace.

For 'typeName' and 'qualifiedName’, different analysis rules are needed for different datasets. ReportLineageToAtlas
provides an extension point called 'NiFiProvenanceEventAnalyzer' to implement such analysislogic for particular
datasets.

When a Provenance event is analyzed, registered NiFiProvenanceEventAnalyzer implementations are searched in the
following order to find a best matching analyzer implementation:

1. By component type (for example: KafkaTopic)
2. By transit URI protocol (for example: HDFSPath)
3. By event type, if none of above analyzers matches (for example: Create)

Some limitations of thisintegration.

* Requires Atlas 0.8-incubating or later. The reporting task requires Atlas REST API version 2, which isintroduced
in Atlas 0.8-incubating. Older versions of Atlas are not supported.

« Supports limited datasets and Processors. To report lineage to Atlas, the reporting task should be familiar with
what a given processor does with a certain dataset. Later, create an 'Atlas Object Id' for a dataset which uniquely
identifies an entity in Atlas. Atlas Object ID has a unique properties map, and mostly ‘qualifiedName' is set in the
unique properties map to identify an entity. The format of a qualifiedName depends on each dataset. To create this
Atlas Object ID, you must implement Processor-specific code that analyzes configured properties.

» Requiresrestart of NiFi to update some ReportingTask properties. As the underlying Atlas client library caches
configurations when it runs the first time, some properties of this reporting task can not be updated by stopping,
configuring, and restarting the reporting task. The NiFi process needs to be restarted in such cases.

43



Cloudera Runtime HiveServer metadata collection

HiveServer metadata collection

Atlas can collect metadata from HiveServer, including queries and the data assets the queries affect.

An Atlas hook runsin each HiveServer instance. This hook sends metadata to Atlas for both Hive operations and
Hive data assets. Operations are represented by process and process execution entitiesin Atlas. Hive databases,
tables, views, and columns are represented by entitiesin Atlas. When a Hive operation involves files, the metadata for
the file system and files are represented in Atlas as file system paths.

Kafka Stream

1 Hive Server 2
6 &>@o

2  Atlas Hook Atlas —| Entities
L
i ——
o0
Lineage

,__.../"_-

When an action occurs in the HiveServer instance...
The corresponding Atlas hook collects information for the action into metadata entities.
The hook publishes the metadata on a Kafka topic.

Atlas reads the message from the topic and determines what information will create new entities and what
information updates existing entities.
5. Atlas creates and updates the appropriate entities and determines lineage from existing entities to the new entities.

A wbdh PR

The Atlas bridge for HBase pulls the same metadata as the hook, but instead of sending the metadata through Kafka,
it passes message in bulk in an API call. The bridge creates entitiesin Atlasfor all of the existing HBase namespaces,
tables, columns, and column families.

HiveServer actions that produce Atlas entities

Operations that create, update, or delete Hive metadata will affect Atlas entities; operations that only affect data do
not show up in Atlas.

The following table lists the HiveServer actions that produce or update metadatain Atlas.

ThisAction in HiveServer ... ...Produces metadata for these Atlas entities

ALTER DATABASE, hive_db, hive_db_ddl

CREATE DATABASE,
DROP DATABASE

hive_process, hive_process_execution, hive_table, hive_table ddl, hive_column,

ALTERTABLE, hive_column_lineage, hive_storagedesc, hdfs_path

CREATE TABLE,
CREATE TABLE AS SELECT,
DROP TABLE




Cloudera Runtime HiveServer metadata collection

ThisAction in HiveServer ... ...Produces metadata for these Atlas entities

hive_process, hive_process_execution, hive_table, hive_column, hive_column_lineage,

ALTER VIEW, hive table ddl
ALTERVIEW_AS _SELECT,
CREATE VIEW,

CREATE VIEW AS SELECT,
DROP VIEW

INSERT INTO (SELECT), hive process, hive_process_execution

INSERT OVERWRITE

Notable actions in HiveServer that do NOT produce process or process execution entities in Atlas, meaning that no
lineage is produced for these operations:

 SELECT

HiveServer entities created in Atlas
Each HiveServer entity in Atlas includes detailed metadata collected from Hive.

The following diagrams show a summary of the entities created in Atlas for Hive operations and assets. The
supertypes that contribute attributes to the entity types are shaded.

Figure 1: Atlas Entity Types for HiveServer Data Sets

45



Cloudera Runtime

HiveServer metadata collection

Asset

name
description
owner
ownerType

T

v

DataSet

DDL

queryText
execTime
userName
serviceType

table——,
c

schema

é

avro_schema

namespace

associatedEntities

7de

hive_storagedesc

location
inputFormat
outputFormat
compressed
numBuckets
serdelnfo
bucketCols
sortCols
parameters

storedAsSubDirectories

array<hive_order>

| struct: hive_order ‘

____________________________ -
tables X
le
‘ ~—table ! |' ekl
db — v
| [_db hive_table
E— hive_db createTime
clusterName lastAccessTime
location comment
parameters retention
ownerType aliases
ddiQueries parameters
O—J viewOriginal Text
hive_db_ddl
= - - viewExpandedText
tableType
temporary
>(—columns——
- 4;::-[ hive_column |
type
comment =
ddlQueries
position
L
—————————— {>‘ hive_table_ddl |
order
col
&
struct: hive_serde ‘
name

serializationLib

parameters

Figure 2: Atlas Entity Types for HiveServer Processes

46




Cloudera Runtime

HiveServer metadata collection

queryGraph

!

| hive_process_execution

Asset
name
description
owner
ownerType
T
1
v
Process -+ hive_process _query<>| hive_column_lineage |<)—-input-o hive_column
inputs : startTime depenendencyType type
outputs ; endTime expression ’ comment
: userdName position
: operationType
: queryText
} queryPlan output—_| hive_column
| queryld type
1 |recentQueries comment
' |clustername position
1
]
1
1
1
LIS

startTime
endTime
userMame
queryText
queryGraph
queryld
queryPlan

hostName

The metadata collected for each entity typeisasfollows:

Hive Process

I dentifier Example content

typeName hive_process
guid System generated ID. Thisvalue is used to identify the entity in the Atlas Dashboard URL.
qualifiedName <database>.<target  table>@<clustername>:<generated ID>

The generated 1D is distinct from the GUID.
name Text of the query.
inputs List of theinput tables or views, including each entity’ s type name and the qualified name.
outputs List of the output objects, including each entity’s type name and the qualified name.
recentQueries Last query executed (duplicated in process_execution).
operationType One of the operations that triggers metadata collection.
queryPlan Reserved for future use.

47




Cloudera Runtime

HiveServer metadata collection

Hive Process Execution

I dentifier Example Content

typeName hive_process_execution

guid System generated ID. Thisvalueis used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>.<target  table>@<clustername>:<ID from process qualified  name>:<ID from the process ex
ecution name>:<generated 1D for this process execution>

name Text of the query with a system-generated ID added to the end.

queryText Text of the query.

queryPlan Reserved for future use.

queryld impala_<dateas yyyymmddhhmmss>_<generated id>

startTime Query start time.

endTime Query end time.

userName The user who ran the query.

Relationship: Process

One process to one or more process executions. hive_process _process _execution

Hive Database

I dentifier Example Content

typeName hive_db

guid System generated ID. Thisvalue is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>@<clustername>

name Database name as reported from Hive.

clusterName Cluster name.

location Thefile system path where the backing files for the database are stored. This could be an HDFS path, an AWS
S3 object, or an Azure data storage location.

owner The user who initially created the database.

ownerType The principal type of the database owner. Could be USER, ROLE, or GROUP.

parameters Additional key-value pair metadata that comes from Hive such as table size, number of rows, and number of

storagefiles.

Relationship: Table

One database to many tables. hive_table db

Relationship: Database DDL

One database to many database DDL entities. hive_db_ddl_queries

Hive Table

Identifier Example Content

typeName hive table

guid System generated ID. Thisvalueis used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>.<tablename>@<clustername>

name Table name.

columns List of the columns defined in the table. The Atlas Dashboard shows these as links to the column entity
details.

owner The user who created the table.




Cloudera Runtime

HiveServer metadata collection

I dentifier Example Content

parameters

Table details from HiveServer such as:

* totalSize

¢ Externa

¢ numFiles

e transent_lastDdITime
*  bucketing_version

retention

Provided by HS2. Integer value

d

The location of the table data, the storage description.
<database>.<table>@<clustername>_storage

tableType

How the table was created: one of EXTERNAL_TABLE, VIRTUAL_VIEW, or MANAGED_TABLE.

Relationship: Database

One database to many tables. hive_table_db

Relationship: Columns

One table to one or more columns. hive_table_columns

Relationship: Partition Key
Column

One table to one or more columns that are partition keys. hive_table partitionkeys

Relationship: Storage Description

One table to one storage description. hive_table storagedesc

Relationship: DDL

Onetable to many DDL entities. hive_table_dd_queries

Hive Column

I dentifier Example Content

typeName hive_column

comment Metadata from Hive from the column description.

name Column name as reported by HMS.

owner Table owner name as reported by HMS.

position This column’s position in the list of columnsin a zero-based index.
qualifiedName <database>.<table>.<column>@<clustername>

table Table name. Also modeled as relationship.

type Column data type as reported by HMS.

Relationship: table

One table to one or more columns. hive_table_columns

Relationship: inputToProcesses

The hive_column_lineage entities that include this column in the input to a transformation. The relationship
typeisdataset_process_inputs.

Relationship:
outputFromProcesses

The hive_column_lineage entities that include this column in the output to atransformation. The relationship
typeisprocess_dataset_outputs.

Relationship: Table

One table to one or more columns. hive_table_columns

Relationship: Partition Key
Column

One table to one or more columns that are partition keys. hive_table partitionkeys

Hive Column Lineage

Identifier Example Content

typeName hive_column_lineage

dependency Type The type of relationship between the input and output columns; one of SIMPLE, EXPRESSION, or
SCRIPT.

name <database>.<table>@<clustername>:<generated | D>:<output_column>

49




Cloudera Runtime HiveServer metadata collection

I dentifier Example Content

inputs List of 0 or more hive_column entities that contributed to the output columns. Thisis alegacy model
component: the more current model uses arelationship attribute.

outputs Thisisalegacy model component: the more current model uses a relationship attribute.
qualifiedName Same as hame.
query Name of the hive_process entity that produced this lineage. Thisis alegacy model component: the more

current model uses a relationship attribute.

Relationship: Process Name of the hive_process entity that produced this lineage. hive_process column_lineage

Relationship: inputToProcesses List of 0 or more hive_column entities that contributed to the output columns.

Relationship: outputFromProcesses | List of 0 or more hive_column entities that were produced in the process.

Hive Storage Description

Identifier Example Content

typeName hive_storagedesc

compressed Metadata from Hive indicating whether the table is stored compressed.

inputFormat Metadata from Hive indicating the storage input format.

outputFormat Metadata from Hive indicating the storage output format.

parameters Additional metadata from Hive in the form of key-value pairs.

qualifiedName <database>.<table>@<clustername>_storage

serdelnfo Metadata from Hive indicating the serialization/deserialization implementation used to write/read table data.
sortCols Metadata from Hive listing the column or columns used to sort the table data.

storedAsSubDirectories

Metadata from Hive indicating whether a skewed table uses the list bucketing feature, which creates
subdirectories for skewed values.

numBuckets Metadata from Hive indicating the number of buckets for bucketed tables. Non-bucketed tables are indicated
by -1.
table The table that this storage description holds data for. Also represented as arelationship.

Relationship: table

The table that this storage description holds data for.

HiveServer relationships
Atlas shows the entities related to this entity in the Relationships tab in the Dashboard.
The Relationship tab shows the relationships that exist for an entity. Use this view to navigate among related entities.




Cloudera Runtime HiveServer metadata collection

Properties Lineage Relationships Classifications

Graph - Table

outputFrom Processes
hive_table

inputToProcesses

HiveServer lineage
Atlas collects metadata from HiveServer to represent the lineage among data assets.

The Atlas lineage graph shows the input and output processes that the current entity participated in, specifically those
relationships modeled as “inputToProcesses’ and “outputFromProcesses.” Entities are included if they were inputs

to processes that lead to the current entity or they are output from processes for which the current entity was an input.
HiveServer processes follow this pattern.

51



HiveServer metadata collection

Cloudera Runtime

claim_savings (hive_table)

Classifications: DATA_QUALITY x || + |

Term: |4
Properties Lineage Relationships Classifications Audits Schema
O Current Entity — Lineage —Impact E| @| E| E] IQ M |z|
claims_view

create external t... claim_savings create view if no...

Related Information
Viewing lineage

Y
-
-

HiveServer audit entries
Atlas lists changes to metadata entities in the Audit tab in the Dashboard.
Atlas tracks the lifecycle of each Hive entity, including its creation, update, and deletion. User access and actions that

affect the data content of the source asset are not included in the audit.

52



https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/atlas-exploring-using-lineage/topics/atlas-viewing-lineage.html

Cloudera Runtime HBase metadata collection

@ finance_reporting_db (hive_db)

Classifications: |T|
Term: |T|

Properties Relationships Classifications Audits Tables

Showing 8 records From 1- 25

Users s Timestamp & Actions 3 Tools

hive Fri Jul 12 2019 19:48:58 GMT-0700 (Pacific Daylight Time) Entity Updated |E|
hive Fri Jul 12 2019 18:36:51 GMT-0700 (Pacific Daylight Time) Entity Updated |E|
hive Fri Jul 12 2019 18:36:50 GMT-0700 (Pacific Daylight Time) Entity Updated |E|
hive Fri Jul 12 2019 18:36:4% GMT-0700 (Pacific Daylight Time) Entity Updated |@|
hive FriJul 12 2019 18:36:47 GMT-0700 (Pacific Daylight Time) Entity Updated |E|
hive Fri Jul 12 2019 18:36:46 GMT-0700 (Pacific Daylight Time) Entity Updated |E|
hive Fri Jul 12 2019 18:36:45 GMT-0700 (Pacific Daylight Time) Entity Updated |@|
hive Fri Jul 12 2019 18:36:44 GMT-0700 (Pacific Daylight Time) Entity Created |E|

HBase metadata collection

Atlas can collect metadata from HBase that describes the data assets HBase manages.

An Atlas hook runsin each HBase instance. This hook sends metadatato Atlas for HBase data assets. HBase
namespaces, tables, columns, and column families are represented by entitiesin Atlas.

Kafka Stream

[ ]
]

2 Atlas Hook

Atlas

5
Entities

]
[ ]

53



Cloudera Runtime HBase metadata collection

When an action occurs in the HBase instance...

The corresponding Atlas hook collects information for the action into metadata entities.

The hook publishes the metadata on a Kafka topic.

Atlas reads the message from the topic and determines what information will create new entities and what
information updates existing entities.

5. Atlas creates and updates the appropriate entities.

The Atlas bridge for HBase pulls the same metadata as the hook, but instead of sending the metadata through Kafka,

it passes message in bulk in an API call. The bridge creates entities in Atlas for all of the existing HBase namespaces,
tables, columns, and column families.

AW

As data assets are created in HBase, Atlas generates entities to represent those assets. Atlas does not create processes
to represent HBase operations.

The following table lists the HBase actions that produce or update metadatain Atlas.

alter_asyne hbase namespace,
hbase table,
hbase_column_family

create_namespace, hbase_namespace

alter_namespace,
drop_namespace

create table, alter table (create column family),
alter table, alter table (alter column family),
drop table, alter table (delete column family)
drop_all tables

. hive_process, hive_process_execution
alter table (create column family), P P -

alter table (alter column family),
alter table (delete column family)

Notable actions in HBase that do NOT produce metadata entities include any actions that affect only data and not
metadata. In addition, Atlas does not collect metadata for HBase columns. Actions that do not create Atlas entities
include:

¢ Truncate table
e Put (cell value)]
+ Disable/enabletable

Each HBase data set entity in Atlasincludes detailed metadata collected from HBase.

The following diagrams show a summary of the entities created in Atlas for Hive operations and assets. The
supertypes that contribute attributes to the entity types are shaded.




Cloudera Runtime

HBase metadata collection

.
|
I
|

Asset L

s
name |
L I
description I
owner :
ownerType :
T i
| [
v I
I
DataSet

____________________________ -
I
tables :
1
------ ~ namespace table :
¢ 4%
hbase_namespace , hbase_table
clusterName createTime
createTime durability
modifiedTime isCompationEnabled
isNormalizationEnabled
7 column_families— isReadOnly
V <£ maxFileSize
hbase_column_family modifiedTime
storagePolicy parameters
blockCacheEnabled uri

bloomFilterType
cacheBLoomsOnWrite
cacheDataOnWrite
cachelndexesOnWrite
columns
compationCompreesionType
isMobEnabled
keepDeletedCells
max\Versions

minVersions
mobCompactPartitionPolicy
modifiedTime
newVersionBehavior
prefetchBlocksOnOpen

ttl

The metadata collected for each entity typeisasfollows:

HBase Namespace

Identifier Example content

typeName hbase_namespace

guid System generated ID. Thisvalue is used to identify the entity in the Atlas Dashboard URL.
qualifiedName <name>@<clustername>

name Namespace name as reported from HBase.

55



Cloudera Runtime HBase metadata collection

I dentifier Example content

description String description metadata from HBase.

modifiedTime Time from HBase indicating a change to the namespace. Formatted as in this example: “Wed Apr 17 2019
18:32:14 GMT-0700 (Pacific Daylight Time)”

owner Owner as reported from HBase.

parameters Reserved for future use.

replicatedFrom Reserved for future use.

replicatedTo Reserved for future use.

Relationship: tables One namespace to many tables. hbase_table namespace

HBase Table

Identifier Example content

typeName hbase_table

guid System generated ID. Thisvalueis used to identify the entity in the Atlas Dashboard URL.

qualifiedName <namespace>:<tablename>@-<clustername>

name Table name as reported from HBase.

description String description metadata from HBase.

modifiedTime Time from HBase indicating a change to the table. Formatted asin this example: “Wed Apr 17 2019 18:32:14
GMT-0700 (Pacific Daylight Time)”

owner Owner as reported from HBase.

parameters Reserved for future use.

replicatedFrom Reserved for future use.

replicatedTo Reserved for future use.

durability Storage property as reported from HBase. Values include true or false.

isCompactionEnabled Storage property as reported from HBase. Values include true or false.

isNormalizationEnabled Storage property as reported from HBase. Values include true or false.

isReadOnly
maxFileSize Storage property as reported from HBase. -1 indicates that no maximum was set.
uri Table name.

Relationship: namespace One namespace to many tables. hbase_table_namespace

Relationship: column Column families associated with this table. hbase_table_column_families
families

HBase Column Family

I dentifier Example content

typeName hbase_column_family

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.

qualifiedName <namespace>: <tablename>.<columnfamily>@<clustername>

name Column family name as reported from HBase.

description String description metadata from HBase.

modifiedTime Time from HBase indicating a change to the column family. Formatted asin this example: “Wed Apr 17 2019
18:32:14 GMT-0700 (Pacific Daylight Time)”

56



Cloudera Runtime

HBase metadata collection

I dentifier Example content

owner Owner as reported from HBase.

StoragePolicy Value for the storagePolicy property for the column family. Vauesinclude N/A, ALL_SSD, ONE_SSD, HOT,
WARM, COLD.

blockCacheEnabled Storage property as reported from HBase. Values include true or false.

bloomFilterType

Value for the BLOOM_FILTER_TY PE property for the column family. Values include NONE, ROW, or ROWC
OL.

cacheBloomsOnWrite

Boolean value for the CACHE_BLOOMS_ON_WRITE property for the column family.

cacheDataOnWirite Boolean value for the CACHE_DATA_ON_WRITE property for the column family.
cachelndexesOnWrite Boolean value for the CACHE_INDEX_ON_WRITE property for the column family.
columns List of columns included in the column family.

compactionCompressionType

Storage property as reported from HBase.

compressionType Value for the COMPRESSION property for the column family. Vauesinclude NONE, SNAPPY, LZO, LZ4, GZ.
The default value is SNAPPY .
E Note: Atlasisonly certified to use Snappy and Gzip for HBase table compaction.
createTime Time from HBase indicating when the column family was created. Formatted as in this example: “Wed Apr 17

2019 18:32:14 GMT-0700 (Pacific Daylight Time)”

dataBlockEncoding

The DATA_BLOCK_ENCODING property for the column family. Vauesinclude NONE, PREFI X, DIFF,
FAST_DIFF, ROW_INDEX_V1.

encryptionType

Column family encryption property. Vauesinclude “N/A”, and AES.

evictBlocksOnClose

Boolean value for the EVICT_BLOCKS_ON_CLOSE property for the column family.

inMemoryCompactionPolicy

In memory compaction behavior (IN_MEMORY_COMPACTION) set for the column family. Vaues include
NONE, BASIC, EAGER, ADAPTIVE, or “N/A".

isMobEnabled Boolean value for Medium OBject (MOB) properties for the column family (IS_MOB).
keepDeletedCells Boolean value for the KEEP_DELETED_CELLS property of the column family.
maxVersions The maximum number of row versions this column family is configured to store.
minVersions The minimum number of row versions this column family is configured to store.

mobCompactPartitionPolicy

The MOB_COMPACT_PARTITION_POLICY for this column family. Vauesinclude DAILY, WEEKLY,
MONTHLY.

modifiedTime

Time from HBase indicating a change to the column family. Formatted as in this example: “Wed Apr 17 2019
18:32:14 GMT-0700 (Pacific Daylight Time)”

newV ersionBehavior

Boolean value for the NEW_VERSION_BEHAVIOR property for this column family.

prefetchBlocksOnOpen

Boolean value for PREFETCH_BLOCKS_ON_OPEN property of the column family.

replicatedFrom Not used.
replicatedTo Not used.
table The table that the column family corresponds to. Also modeled as arelationship.

ttl

Timeto live (TTL) length in seconds. The TTL time encoded in the HBase for the row is specified in UTC.

Relationship: columns

Not used.

Relationship: table

One table to many column families. hbase_table column_families

57




Cloudera Runtime HBase metadata collection

Learn how to configure compression types. Changing the default Snappy algorithm to Gzip might be required
depending on your use case and operational requirements.

Ij Note: Atlasisonly certified to use Snappy and Gzip for HBase table compaction.

1. Add the atlas.graph.storage.hbase.compression-algorithm property in Atlas Server Advanced Configuration
Snippet for conf/atlas-application.properties.

2. Enter the desired compression type in the property.
atlas.graph.storage.hbase.compression-algorithm=GzZ

3. Select the Master-(Active) Role Type for the HBase Instance from Cloudera Manager. Then, log in by using SSH
in the terminal.

4. Run kinit -kt ***PATH TO HBASE.KEYTAB*** hbase to authenticate into HBase.
5. Enter the HBase shell.
a) Runlist to seethe available HBase tables.
6. Run'desc 'atlas janus' to see all column descriptions.
7. Change the compression type for each required table:

alter "atlas_janus', {NAME => 'e' , COWRESSION => ''G&Z''}
alter "atlas_janus', {NAME => 'f' , COWPRESSION => 'GZ'}
alter "atlas_janus', {NAME => 'g' , COWRESSION => '&X'}
alter "atlas_janus', {NAME => 'h' , COWPRESSION => 'GZ'}
alter "atlas_janus', {NAME => 'i' , COWRESSION => 'G&Z'}
alter "atlas_janus', {NAME => '|' , COWRESSION => '&'}
alter "atlas_janus', {NAME => 'm , COWPRESSION => 'GZ'}
alter '"atlas_janus', {NAME =>"'s' , COWRESSION => 'G&Z'}
alter "atlas_janus', {NAME => 't' , COWRESSION => '&Z'}

8. Run major_compact 'atlas janus only in HBase Shell to start compacting your tables.

Y our HBase column family uses the newly set compression type.

Atlas collects lineage information for HBase data assets when HBase tables are referenced in HiveServer or Impala
operations.

The Atlas lineage graph shows the input and output processes that the current entity participated in, specifically those
relationships modeled as “inputToProcesses’ and “outputFromProcesses.” Entities are included if they were inputsto
processes that lead to the current entity or they are output from processes for which the current entity was an input.

No lineage metadata is collected directly from HBase.

Viewing lineage

58


https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/atlas-exploring-using-lineage/topics/atlas-viewing-lineage.html

Cloudera Runtime Schema Registry metadata collection

Atlas lists changes to metadata entities in the Audit tab in the Dashboard.

Atlas tracks the lifecycle of each HBase entity, including its creation, update, and deletion. User access and actions
that affect the data content of the source asset are not included in the audit.

Integrating Schema Registry with Atlas will enable you to persist and view the schemasin Atlas.

Atlas serves as a metadata catal ogue that shows rel ationships between entities. Additionally, when Kafkais also
integrated with Atlas you can connect Kafka topics and schemas.

As an example, an ETL job which reads encoded data from Hadoop, performs some operations on it and writes it
into Kafka. In order to read the encoded data, the ETL job needs access to Schema Registry to obtain the schema. To
write the datainto Kafka, it needs to be encoded again, perhaps with a different schema. A relationship graph for this
exampleis detailed in the following diagram.

HDFS
//,
/7 read data
//,
¥
Schema _
Registy [~~~ s oolcation
* PP
"N write data

In area-world environment, however, we can have many components communicating with each other and it might
become hard to track the relations and data flows.

Atlasinits core is a metadata catal og which uses a graph database to store entities and its relationships, which lets
users track the data flows as discussed earlier in this section. The graph would be built automatically for the end-user.
The corresponding services (Hadoop, Schema Registry, Kafka, Hive (HiveServer2 and HMS), Impala, Spark, HBase,
Sqgoop, Storm, NiFi) send updates to Atlas and build the graph on the go.

59



Schema Registry metadata collection

Cloudera Runtime

HDFS
read data
<HDFS File> <Schema=>
Idataffile.json InputData
Regist Client
e Application

write data

Y
<Kafka Topic> <Schema>
my_topic OutputData

E Note: The implementation of how those updates are sent varies between services.

There are two scenarios with which this integration works:




Cloudera Runtime Schema Registry metadata collection

*  When Kafkatopic is created:

A Kafka topic is created

The kafka_topic entity is created in Atlas via the Atlas/Kafka
hook

The client starts writing data with Kafka and using the
KafkaAvroSerializer

The KafkaAvroSerializer sends information about the schema to‘
Schema Registry

The schema is created and stored in Schema Registry

The schema is created in Atlas

Search for a topic which has the same name as the schema

If such a topic exists, we connect the schema and the topic

* When Schemadatais created in Atlas:

The schema is created and stored in Schema Registry

The schema is created in Atlas

.

Configuring Atlas and Schema Registry

Y ou must configure the settings in your Cloudera Manager instance

61



Cloudera Runtime Schema Registry metadata collection

1. Navigateto the Configuration tab of the Schema Registry in your Cloudera Manager instance and enter “Atlas’.
2. Check the Atlas Service checkbox.
3. Click Save Changes and restart Schema Registry.

Once Apache Atlasintegration is enabled, you can create new schemas which show up in Atlas. Note that the process
which mirrors schemas from Schema Registry to Atlas is asynchronous and runs once every minute. A schemawhich
is created does not show up immediately, but only after one minute.

SCHEMAREGISTRY-1  ctions- £ug 10, 11108 AM UTC
Status  Instances  Configuration  Commands  Charts Library  Audits  Schema Registry Web Ul ' Quick Links -
| Q M\ae\ ) Filters  Role Groups History & Rollback
ilte
Filters Show All Descriptions
Atlas Service SCHEMAREGISTRY-1 (Service-Wide) *y
SCOPE
o8 atlas_service B9 ATLAS 1

SCHEMAREGISTRY-1 (Service-..1

Note: If aKafkatopic exists with the same name as the schema, then arélationship is created between them
E in Atlas. If no such topic exists, only the schemais created.

Once the Schema Registry application is integrated with Atlas, entities are created in Atlasto represent the metadata.
The following table shows a summary of the entities created in Atlasto represent the metadata.

Atlas Entity Description

Schema metadata Contains the properties of a schema.

Schemaversion A schema can have one or more versions. They are all connected to one
metadata.

Kafkatopic If aKafkatopic exists and the Atlas-Kafkaintegration is enabled, then

atopic entity is created. When a schemais created with the same name
asthetopic then arelationship is created between them.

Atlas shows the entities related to this entity in the Relationships tab in the Dashboard.
The Relationship tab shows the relationships that exist for an entity. Use this view to navigate among related entities.

62



Cloudera Runtime Schema Registry metadata collection

Car2 (schema_metadata_info)

Classifications:
Termas:

Properties Relationships Classifications Audits Tasks
Graph - Table — Adiive —Deleted
kafka_topic p

1. Car2 (kafka_topic)

£chema_metadata_info

versions

Employee (schema_metadata_info)

Classifications: F|

Terms: B

Properties Relationships Classifications Audits Tasks

Graph - Table —+ Adtive = Deleted

[

schema_metadata_info

O

wversions

63



Cloudera Runtime Impala metadata collection

Atlas lists changes to metadata entities in the Audits tab in the Dashboard.

Atlas tracks the lifecycle of each Schema Registry entity, including its creation and update. User access and actions
that affect the data content of the source asset are not included in the audit.

@ Car2 vl (schema_version_info)

Classifications:

Terms:
Properties Relationships Classifications Tasks

Userss Timestamp ~ Actions =

schemaregistry 09/13/2021 03:52:13 PM (CEST) Entity Created

S| i 1 ) Pao . aE
Showing 1 records From 1 -25 age Limit: 25 v

What do you do if you are not able to view Atlas metadata from Schema Registry?

Mirroring schemas from Schema Registry to Atlas is done by an asynchronous process. When a schema or schema
version is created, the information about this event is generally stored in the database table atlas_events. When an
event has been processed, its status will be updated to either success or failure.

Mirroring a schemato Atlas can fail for multiple reasons but not limited to the following:

« Atlas may be down
* Network connection failure

If you have analyzed the problem and can fix it by “replaying” the event, you must update the table and set the failure
flag to false. In this case, the event will be picked up again and processed once again.

The SQL format to perform the above:
update atlas_events set processed=0, failed=0 whereid = <event id>

Atlas can collect metadata for queries from Impala. It collects metadata for affected data assets from Hive Metastore
(HMS).

An Atlas hook runs in each Impalad instance. This hook sends metadata to Atlas for Impala operations, which are
represented by process and process execution entitiesin Atlas.

In addition, an Atlas hook runsin Hive Metastore (HMS). Before sending metadata to Atlas, Impala synchronizesits
metadata with HM S. This synchronization makes sure that Impala uses the same names and IDs as HMS.




Cloudera Runtime Impala metadata collection

Kafka Stream
o >o

[
Entities

Atlas Hook 3  Atlas Hook ____,/"‘:

0

1. When an action occurs in the Impalainstance...

. Impala updates HM S with information about the assets affected by the action.

3. The Atlas hook for HMS collects information for the changed and new assets and forms it into metadata entities. It
publishes the metadata to a Kafka topic.

4. The Atlas hook for the Impalainstance collects information for the action and forms it into metadata entities. It
publishes the metadata to a Kafka topic.

5. Atlas reads the messages from the topic and determines what information will create new entities and what
information updates existing entities. Atlasis able to determine the correct entities regardless of the order in which
Atlas receives messages from the Kafka topic.

6. Atlas creates the appropriate entities and determines lineage from existing entities to the new entities.

# Entity Metadata

N

Impala actions that produce Atlas entities

Impala operations that create, update, or delete Hive metadata will affect Atlas entities; operations that only affect
data do not show up in Atlas.

The following table lists the Impala actions that produce or update metadatain Atlas.

ThisAction in Impala... ...Produces metadata for these ...TriggersHM Sto produce ...Produces metadata for these
Atlas entities metadata for these Atlas entities | Atlasrelationships

CREATETABLE_AS SELECT

impala_process, hive_table, hive_table db,
impala_process_execution, | hive_column(s), hive table columns,
impala_column_lineage, hive_storagedesc, hive table partitionkeys,

hive _db hive_db hive table storagedesc,

hive table ddl hive table ddl hive_process process_execution,

hive_process_columnlineage,
hive table ddl_queries,
hive db_dd_queries

CREATEVIEW

impala_process, hive table, hive table db,
impala_process_execution, | hive_column(s), hive_table columns,
impala_column_lineage, hive_db hive_table partitionkeys,

hive table ddl hive_process process_execution,

hive_process_columnlineage,
hive table ddl_queries

65



Cloudera Runtime Impala metadata collection

ThisAction in Impala... ...Produces metadata for these | ...TriggersHM Sto produce ...Produces metadata for these
Atlas entities metadata for these Atlasentities | Atlasrelationships

ALTERVIEW_AS SELECT

impala_process, Updates to: hive process process execution,
impala_process_execution, | hive table, hive process columnlineage,
impala_column_lineage, hive_column(s) hive table ddl_queries
hive table ddl
INSERT INTO, impala_process, z;%:;@&;:ggzﬂdiﬁs hive_process_process_execution
INSERT, impala_process_execution | in the query:
OVERWRITE )
hive table,

hive_column(s),
hive_storagedesc,
hive_db

Notable actionsin Impala that do NOT produce process or process execution entities in Atlas, meaning that no
lineageis produced for these operations:

+ LOAD DATA INPATH

e CREATE TABLE (table metadata produced by HMS)
« ALTER VIEW (table metadata produced by HMS)

e SELECT or other queriesthat don’t produce output

Impala entities created in Atlas
Each Impala entity in Atlas includes detailed metadata for Impala queries.

The following diagrams show a summary of the entities created in Atlas for Impala operations. The supertypes that
contribute attributes to the entity types are shaded.

Figure 4: Atlas Entity Types for Impala Operations

66



Cloudera Runtime

Impala metadata collection

process_execution

__________________________________ =
name ]
description E
owner input——_pataSet s
ownerType : r utput——_ DataSet i
¥ ) ey ¥

l Process F —— impala_process DataSet |
inputs : recentQueries process
outputs : queryText

: operationType

| queryPlan

X startTime

: endTime

]

]

]

1

i

<£ process_execution

impala_process_execution

startTime
endTime
userhame
queryText
queryld
queryPlan

(ﬁ column_lineage

impala_column_lineage

depenendencyType

EXPression

The metadata collected for each entity typeis asfollows:

Impala Process

I dentifier Example content

typeName impala_process
guid System generated ID. This valueis used to identify the entity in the Atlas Dashboard URL.
qualifiedName <database>.<target  table>@<clustername>:<generated D>
The generated ID is distinct from the GUID.
name Text of the query.
inputs List of theinput tables or views, including each entity’ s type name and the qualified name.
outputs List of the output objects, including each entity’ s type name and the qualified name.
recentQueries Last query executed (duplicated in process_execution).
operationType One of the operations that triggers metadata collection.
queryPlan Reserved for future use.
startTime Most recent query start time.
endTime Most recent query end time.

Relationship: Process
Execution

One process to one or more process executions. impala_process_process_execution

Relationship: Column
Lineage

One process to one or more column lineages. impala_process_column_lineage

67



Cloudera Runtime Impala metadata collection

Impala Process Execution

I dentifier Example Content

typeName impala_process_execution

guid System generated ID. Thisvalueis used to identify the entity in the Atlas Dashboard URL.

qualifiedName <database>.<target  table>@<clustername>:<ID from process qualified  name>:<ID from the process ex
ecution name>:<generated 1D for this process execution>

name Text of the query with a system-generated ID added to the end.

queryText Text of the query.

queryPlan Reserved for future use.

queryld impala_<dateas yyyymmddhhmmss>_<generated id>

startTime Query start time.

endTime Query end time.

userName The user who ran the query.

Relationship: Process One process to one or more process executions. impala_process _process_execution

Impala Column Lineage

I dentifier Example Content

typeName impala_column_lineage

dependency Type The type of relationship between the input and output columns; one of SIMPLE, EXPRESSION, or
SCRIPT.

name <database>.<table>@<clustername>:<generated  |D>:<output_column>

inputs List of 0 or more hive_column entities that contributed to the output columns. Thisis alegacy model

component: the more current model uses a relationship attribute.

outputs Thisisalegacy model component: the more current model uses a relationship attribute.

qualifiedName Same as name.

query Name of the impala_process entity that produced this lineage. Thisis alegacy model component: the
more current model uses a relationship attribute.

Relationship: Process Name of the impala_process entity that produced this lineage. impala_process_column_lineage

Relationship: inputToProcesses List of 0 or more hive_column entities that contributed to the output columns.

Relationship: outputFromProcesses | List of 0 or more hive_column entities that were produced in the process.

Impala lineage

Y ou can use the Atlas lineage graph to understand the source and impact of data and changes to data over time and
across al your data.

Atlas collects metadata from Impala to represent the lineage among data assets. The Atlas lineage graph shows the
input and output processes that the current entity participated in. Entities are included if they were inputs to processes
that lead to the current entity or they are output from processes for which the current entity was an input. Impala
processes follow this pattern.

Note that lineage is not updated between atable and views that the table is a part of when an Impala ALTER TABLE
operation runs on the table.

Related Information
Viewing lineage

68


https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/atlas-exploring-using-lineage/topics/atlas-viewing-lineage.html

Cloudera Runtime Kafka metadata collection

Impala audit entries
Atlas lists changes to metadata entities in the Audit tab in the Dashboard.
Atlas tracks the lifecycle of each Impala entity, including its creation, update, and deletion.

Kafka metadata collection

Atlas can collect metadata from Kafka using the concept called metadata namespace.

When the Kafka cluster is configured to audit using Atlas, the Kafka brokers start notifying Atlas about metadata
changes in the Kafka cluster. Clients do not have to be integrated with Atlas.

IE Note: Atlasauditing of Kafkatopicsis not supported for Kafka consumers using the version lower than 2.5.

Kafka Stream

Kafka Broker

3
Atlas Hook Entity Metadata w

Atlasis used to track the metadata of multiple clusters. Metadata namespace in Atlasis used to categorise entities into
groups. To avoid entity collision between clusters, entities belonging to different clusters can be grouped together,
into separate metadata namespaces.

An Atlas hook runsin each Kafka instance. This hook transfers the metadata of Kafka assets to Atlas. The Kafka-
Atlas auditing involves two metadata namespaces, one each for topics and clients.

The topic entities are created in the topic metadata namespace. Producer, Consumer and ConsumerGroup entities are
created in the client metadata namespace.

For asimple use case, as a default configuration, the auditor can be configured to use the same namespace for both
types.

Client metadata namespace can be used to insert entities representing an application spanning multiple Kafka clusters
in the same namespace.

For example, if an application is connecting to a couple of Kafka clusters, and they have separate namespaces, the
client entities are created twice, because each Kafka cluster will create them in its own client namespace. If Kafka
clusters use the same client namespace, they will create and update the same client entity, so the application will be
represented by a single producer and/or consumer entity.

Important: If Atlasauditing is enabled for an existing Kafka cluster with multiple topics that are not pushed

& into Atlas, the topics can be imported using the import-kafka tool manually or using the Import Kafka Topics
Into Atlas action available in Cloudera Manager. Next, the auditor within the Kafka brokers retains the
metadata of the Kafka cluster in sync with Atlas.

69



Cloudera Runtime K afka metadata collection

Related Information
Configuring the Atlas hook in Kafka
Importing Kafka entitiesinto Atlas

Kafka actions that produce Atlas entities
After the Kafka application isintegrated with Atlas, entities are created in Atlas to represent the metadata.
The following table show a summary of the entities created in Atlas to represent the metadata.

Atlas Entity Description

Topic entities Represents a Kafka topic

Producer entity Represents a Kafka producer client. Producers are identified by their
client.id.

Consumer entity Represents a Kafka consumer client. Consumers are identified by their
client.id.

ConsumerGroup entity Represents a consumer group. Consumer groups are identified by their

consumer group ID.

Producer lineage entity Artificial process type entity to support the lineage of producers.

Consumer lineage entity Artificial process type entity to support the lineage of consumers

Kafka relationships
Atlas shows the entities related to this entity in the Relationships tab in the Dashboard.
The Relationship tab shows the relationships that exist for an entity. Use this view to navigate among related entities.

download_accumulator (kafka_consumer)

Classifications:
Terms:

Properties Lineage Relationships Classifications Audits
Graph - Table — Active — Deleted

kafkaConsumerGroups x

1. download_accumulator_group
(kafka_consumer_group)

kaflkaConsumerGroups

70


https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/kafka-securing/topics/kafka-secure-govern-enable-hook.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/kafka-securing/topics/kafka-secure-govern-atlas-import.html

Cloudera Runtime Kafka metadata collection

Kafka lineage
Using the Lineage tab, Atlas collects metadata from Kafka to represent the lineage among data assets.

The Atlas lineage graph shows the input and output processes that the current entity participated in, specifically those
relationships modeled as “inputToProcesses’ and “ outputFromProcesses.” Entities are included if they were inputs
to processes that lead to the current entity or they are output from processes for which the current entity was an input.

Kafka processes follow this pattern.

app_downloads (kafka_topic)

Classifications: |T|

Terms: |T|
Properties Lineage Relationships Classifications Audits
O Current Entity X In Progress — Lineage — Impact @ @ E]

play_store_produc...

.m app_downloads download_accumula...

& |
app_store_producer
katka

Kafka audit entries
Atlas lists changes to metadata entities in the Audits tab in the Dashboard.

Atlas tracks the lifecycle of each Kafka entity, including its creation, update, and deletion. User access and actions
that affect the data content of the source asset are not included in the audit.

71



Cloudera Runtime Spark metadata collection

app_downloads (kafka_topic)

Classifications: |T|

Terms: |:|
Properties Lineage Relationships Classifications Audits
Users = Timestamp = Actions %
> kafka 03/22/2021 11:47:03 AM (CET) Entity Updated
> kafka 03/22/2021 11:46:58 AM (CET) Entity Updated
?»  hkafka 03/22/2021 11:46:57 AM (CET) Entity Updated
> kafka 03/22/2021 11:46:55 AM (CET) Entity Created

Showing 4 records From 1- 25

Spark metadata collection

Atlas can collect metadata from Spark, including queries on Hive tables. The Spark Atlas Connector (SAC) is
available as of Spark 2.4 and Atlas 2.1 and Spark 3.

An Atlas hook runsin each Spark instance. This hook sends metadata to Atlas for Spark operations. Operations are
represented by process entities in Atlas. Hive databases, tables, views, and columns that are referenced in the Spark
operations are also represented in Atlas, but the metadata for these entities is collected from HMS. When a Spark
operation involves files, the metadata for the file system and files are represented in Atlas as file system paths.

Kafka Stream

6 Fovel

Entities

il

¢

—

Atlas Hook 3 Atlas Hook Enii_t{_‘ll‘;‘lﬁt_j!&a1a

72



Cloudera Runtime Spark metadata collection

1. When an action occursin the Spark instance...

It updates HM S with information about the assets affected by the action.

3. The Atlas hook corresponding to HMS collects information for the changed and new assets and formsit into
metadata entities. It publishes the metadata to the Kafka topic named ATLAS HOOK.

4. The Atlas hook corresponding to the Spark instance collects information for the action and forms it into metadata
entities. It publishes the metadata to a different Kafka topic named ATLAS SPARK_HOOK.

5. Atlas reads the messages from the topics and determines what information will create new entities and what
information updates existing entities. Atlasis able to determine the correct entities regardless of the order in which
Atlas receives messages from the Kafka topics.

6. Atlas creates the appropriate entities and the relationships among them and determines lineage from existing
entities to the new entities.

N

Spark jobs create Spark application and process entities and create, update, or delete the data assets affected by those
operations will affect Atlas entities; operations that only affect data do not show up in Atlas.

The following table lists the Spark actions that produce or update metadata in Atlas.

ark lication, spark_column_lineage, spark_process, hive_table, hive_column,
CREATE TABLE USING hive Sorgeese. | InGRgS, SR PTOSESS e -

CREATE TABLE AS SELECT,
CREATE TABLE USING ... ASSELECT

CREATE VIEW AS SELECT, spark_application, spark_process, hive_table, hive_column, hive_storagedesc

INSERT INTO (SELECT), spark_application, spark_process

LOAD DATA [LOCAL] INPATH

Notable actions in Spark that do NOT produce process entitiesin Atlas, meaning that no lineage is produced for these
operations:

« LOAD DATA INPATH (when not coming from alocal file source)
« CREATE TABLE (hive_table metadata produced by HMYS)

e« ALTERVIEW (hive_table metadata produced by HMS)

e SELECT or other queries that don’t change table metadata

Each Spark entity in Atlas includes detailed metadata collected from Spark.

The following diagrams show a summary of the entities created in Atlas for Spark operations. The data assets that
Spark operations act upon are collected through HMS. The supertypes that contribute attributes to the entity types are
shaded.

73



Cloudera Runtime

Spark metadata collection

The metadata collected for each entity type is asfollows:

Spark Application

T e et S
name :
description :
]
e inpus———— DataSet !
UL F outputs——pataSet :
v | $ ;
Process | Tc>| spark_application ] DataSet <t 4
inputs . [currUser :
outputs : remotelUser J :
i |
: inputstmaSm‘<L :
| —" -
: outputs LREES <t
I
I
' ) r : inputs 1
e — spark_process | spark_column_lineage | . DataSet
executionld
currUser
remoteUser outputs
details — BataSet
sparkPlanDescription
gueryText

Identifier Example content

typeName spark_application

guid System generated ID. This valueis used to identify the entity in the Atlas Dashboard URL.
qualifiedName <Spark application ID>

name Spark Job + <Spark application D>

description Metadata from Spark. Reserved for future use.

displayName Reserved for future use.

owner Metadata from Spark. Reserved for future use.

currentUser Metadata from Spark. In a Kerberized environment, this value contains the principal name.
remoteUser Metadata from Spark. In a Kerberized environment, this value contains the principal name.

userDescription

Metadata from Spark. Reserved for future use.

replicatedFrom Reserved for future use.
replicatedTo Reserved for future use.
Relationship: inputs Reserved for future use.
Relationship: outputs Reserved for future use.

Relationship: processes

List of Spark process entities created as part of the processing accomplished in this Spark job.

74



Cloudera Runtime

Spark metadata collection

Spark Process

I dentifier Example content

typeName spark_process
guid System generated ID. This valueis used to identify the entity in the Atlas Dashboard URL.
qualifiedName APPLICATION-ID-execution-N
where N is asequential integer assigned by the Spark engine and the application ID is for the parent Spark job.
name execution-N
where N is asequential integer assigned by the Spark engine. The number is unique only for thejob, soitis
possible to have Spark processes with duplicate namesin Atlas.
description Metadata from Spark. Reserved for future use.
owner Metadata from Spark. Reserved for future use.
details Metadata from Spark describing the logical plan.
displayName Reserved for future use.
executionld Metadata from Spark.
inputs List of theinput tables or views, including each entity’ s type name and the qualified name.
outputs List of the output objects, including each entity’ s type name and the qualified name.
queryText Metadata from Spark. Reserved for future use.
currUser Metadata from Spark. In a Kerberized environment, this value contains the principal name.
remoteUser Metadata from Spark. In a Kerberized environment, this value contains the principal name.

executionTime

Metadata from Spark.

details Query plan text, including parsed logical plan, analyzed logical plan, optimized logical plan, and physical plan.
sparkPlanDescription Physical plan text.

replicatedFrom Reserved for future use.

replicatedTo Reserved for future use.

userDescription

Metadata from Spark. Reserved for future use.

Relationship: inputs

List of theinput tables or views, including each entity’ s type name and the qualified name.

Relationship: outputs

List of the output objects, including each entity’ s type name and the qualified name.

Relationship: application

The Spark application entity that describes the Spark job in which this process was created.

Spark Column Lineage

I dentifier Example Content

typeName spark_column_lineage

guid System generated ID. This value is used to identify the entity in the Atlas Dashboard URL.
qualifiedName <OUTPUT_TABLE_NAME>-<TIMESTAMP>-< QUTPUT_COLUMN_NAME>

name Same as qualifiedName.

Relationship: Process

Name of the spark_process entity that produced this lineage. spark_process_column_lineages

Relationship: inputs

List of theinput columns, including each entity’ s type name and the qualified name.

Relationship: outputs

Output column, including each entity type name and the qualified name.

75




Cloudera Runtime Spark metadata collection

Spark lineage
Atlas collects metadata from Spark to represent the lineage among data assets.

The Atlas lineage graph shows the input and output processes that the current entity participated in, specifically

those rel ationships modeled as “inputToProcesses’ and “ outputFromProcesses.” Entities are included if they were
inputs to processes that lead to the current entity or they are output from processes for which the current entity was an
input. In the context of Spark, a Spark job is modeled as a spark_application entity. Each application entity includes
relationships to one or more processes that were executed in the job. The spark_process entities are automatically
named "execution-N" where N is an integer incremented sequentially.

customer_uk (hive_table)

Classifications: ‘T‘

rems: [+]
Properties  Lineage  Relationships  Classifications  Audits  Schema
Oauransaty Binprogrs e s (=)(@) () () () (ala)7]
exeeution 3 fa
&
jwarshousetables.. 4b001 H1@om: 15816... customer execuion-4 ’

@

— D
axacution-2 12

It is possible to have two spark process entities with the same name in alineage graph; be sure to check the qualified
name to make sure you are looking at the appropriate process.

Related Information
Viewing lineage

Spark relationships
Atlas shows the entities related to this entity in the Relationships tab in the Dashboard.
The Relationship tab shows the relationships that exist for an entity. Use this view to navigate among related entities.

76


https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/atlas-exploring-using-lineage/topics/atlas-viewing-lineage.html

Cloudera Runtime Spark metadata collection

execution-8 (spark_process)

Classifications: | 4 |

Terms: | 5 |
Properties Lineage Relationships Classifications Audits
Graph - Table
Key Value Show Empty Values
application Spark Job + application_1590708448746_0015_blue
inputs |.l.| table_customer_uk
outputs (1) table_customer_uk_refined

Atlas lists changes to metadata entities in the Audit tab in the Dashboard.

Atlas tracks the lifecycle of each Spark entity, including its creation, update, and deletion. Note that if you change the
name of an application in Atlas, the change will cause each related Spark process entity to be updated. User access
and actions that affect the data content of the source asset are not included in the audit.

Learn to configure the Spark Atlas Connector so that Spark jobs can run even when Kafka brokers are down. This
ensures that your job submissions do not fail.

Before you begin the configuration, you must enable the following properties in Cloudera Manager:
Atlas Service:

Log in to Cloudera Manager.

Select the Spark service.

Select the Configurations tab.

Search for and select the Atlas Service (atlas_service) parameter.
Click Save Changes.

Spark Lineage:

Log in to Cloudera Manager.

Select the Spark service.

Select the Configurations tab.

Search for and select the Spark Lineage (spark.lineage.enabled) parameter.
Click Save Changes.

g rwbdheE

g rwbdheE

Using the spark.lineage.kafka.fault-toler ant.timeout.ms par ameter

77



Cloudera Runtime Spark metadata collection

If all Kafka brokers are down, the deploy mode is cluster mode without the keytab/principal. Spark
Atlaslineage is a so enabled which does not allow a delegation token from the Kafka broker.
Therefore, the job submission fails. As aresult, --deploy-mode is set but --principal PRINCIPAL
and --keytab KEY TAB are not set. Use spark.lineage.kafka.fault-tol erant.timeout.ms parameter to
resolve this case.

The default timeout value for the Kafka delegation token creation is 0. This means that the fault
tolerant mode is disabled. If the value is greater than O, the fault tolerant mode is enabled with the
configured timeout value.

See the example PySpark code below:

from pyspark.sql inport SparkSession

i mport tinme

i mport sys

id string = str(tine.tine()).split(".")[0]

spark = SparkSessi on. bui | der. appNanme(" Pyt hon CTAS exanpl e").getOr
Create()

spar k. sqgl (" CREATE TABLE parquet _sparkl " + id_string +" ( id bi
gint, data string, category string) using parquet")

spar k. sql (" CREATE TABLE parquet _spark2 " + id_string +" USING pa
rquet AS SELECT * from parquet _sparkl " + id_string)

Example commands:

spark-submt --conf spark.|ineage. kafka.fault-tolerant.tinmeout.m
s=8000 --depl oy-node cl uster test.py

spark3-subnmit --conf spark.lineage. kafka.fault-tolerant.tineout.
nms=8000 - - depl oy-node cluster test.py

Limitation:
This timeout will permit the job submission in cluster mode if all Kafka Brokers are down. There

will be no Spark Atlas Connector lineage because we do not have Kafka del egation token which is
required for the lineage creation.

Note: Cloudera Runtime 7.3.1.400 introduces the atlas.spark.plan.enabled option in Cloudera M anager

Ij Clusters Atlas Configuration Atlas Client Advanced Configuration Snippet (Safety Valve) for atlas-conf/
atlas-client.properties . Setting this parameter to fal se prevents sending the attributes details and sparkPlanDes
cription in the Spark process entity. This greatly reduces the memory consumption.

What do you do if you do not see Apache Atlas metadata from Spark or face any related issues.

Spark runs an Atlas "hook" or plugin called Spark Atlas Connector (SAC) on every host where Spark runs. To
troubleshoot problems, consider the following methods for narrowing down where the problem is:

* Areyou missing all metadata?

Make sure that all the services supporting Atlas are configured and running. For Cloudera, the configuration is
done for you; look in Cloudera Manager to see that Kafka, Solr, and Atlas services are running in the data lake.

e Areyou missing al Spark process metadata?

By default, Spark operations are configured to send metadata to Atlas. To check that these settings have not been
rolled back, look at the Spark On Y ARN service configuration page in Cloudera Manager to ensure that Spark is
configured to send metadata to Atlas (Atlas Service property). Assuming this configuration is enabled, you can
next check the Kafka topic queue to make sure that metadata messages are being produced in Spark and making it
to the Kafka topic.

78



Cloudera Runtime Spark metadata collection

e Missing only some Spark metadata?
Because each instance of Spark collects metadata independently of other instances, it is possible that one instance
failed to send metadata to Atlas. To determineif thisisthe problem, check the Kafka topic queue to see if one of
the Spark hostsis not sending metadata.

*  When customer is running a standard Spark structured streaming application in DataHub Data Engineering
cluster, the Spark job might throw exceptionsin the YARN App logs.

For example:

WARN clients.NetworkClient: [Producer clientld=producer-1] Error while fetching metadata with correlation id
1:{ATLAS HOOK=TOPIC_AUTHORIZATION_FAILED} ERROR hook.AtlasHook: Giving up after 3 failed
attempts to send notification to Atlas

The Spark application tries to publish the metadata to the Kafka topic named ATLAS_HOOK. At that stage it was
failing because of the permission issue for the spark application user. For example: ‘csso_jonathan’.

To overcome this permission issue, you must provide the Ranger permission for the application user
'csso_jonathan’ using following steps:

Go to Ranger Admin> Kafka policies> Provide "publish" permission to "csso_jonathan” user for the following:
« ATLAS HOOK
« ATLAS ENTITIES
+ ATLAS SPARK_HOOK poalicies.

Later, re-run the Spark job and verify if the Atlasrelated errors are till visible in the application logs.

79



	Contents
	Apache Atlas Advanced Search language reference
	Apache Atlas Statistics reference
	Apache Atlas metadata attributes
	Dynamic handling of failure in updating index
	Configurations used for index recovery
	List of REST API for dynamic index recovery


	Defining Apache Atlas enumerations
	Purging deleted entities
	Auditing purged entities
	PUT /admin/purge/ API
	POST /admin/audits/ API

	Apache Atlas technical metadata migration reference
	System metadata migration
	HDFS entity metadata migration
	Hive entity metadata migration
	Impala entity metadata migration
	Spark entity metadata migration
	AWS S3 entity metadata migration

	NiFi metadata collection
	How Lineage strategy works
	Understanding the data that flow into Atlas
	NiFi lineage
	Atlas NiFi relationships
	Atlas NiFi audit entries
	How the reporting task runs in a NiFi cluster
	Analysing event analysis
	Limitations of Atlas-NiFi integration

	HiveServer metadata collection
	HiveServer actions that produce Atlas entities
	HiveServer entities created in Atlas
	HiveServer relationships
	HiveServer lineage
	HiveServer audit entries

	HBase metadata collection
	HBase actions that produce Atlas entities
	HBase entities created in Atlas
	Changing the column family compression type
	Hbase lineage
	HBase audit entries

	Schema Registry metadata collection
	Configuring Atlas and Schema Registry
	Schema Registry actions that produce Atlas entities
	Schema relationships
	Schema Registry audit entries
	Troubleshooting Schema Registry

	Impala metadata collection
	Impala actions that produce Atlas entities
	Impala entities created in Atlas
	Impala lineage
	Impala audit entries

	Kafka metadata collection
	Kafka actions that produce Atlas entities
	Kafka relationships
	Kafka lineage
	Kafka audit entries

	Spark metadata collection
	Spark actions that produce Atlas entities
	Spark entities created in Apache Atlas
	Spark lineage
	Spark relationships
	Spark audit entries
	Spark Connector configuration in Apache Atlas
	Spark troubleshooting


