
Cloudera Runtime 7.1.9

Managing Apache Hive
Date published: 2019-08-21
Date modified: 2023-09-07

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

ACID operations..4
Configuring partitions for transactions.. 4
Options to monitor transactions... 4
Options to monitor transaction locks... 6

Data compaction... 8
Compaction tasks..8
Initiating automatic compaction in Cloudera Manager..9
Starting compaction manually.. 10
Options to monitor compactions.. 11
Disabling automatic compaction.. 12
Configuring compaction using table properties... 13
Configuring compaction in Cloudera Manager..13
Configuring the compaction check interval... 14
Compactor properties..14

Compaction observability in Cloudera Manager.. 17
Configuring compaction health monitoring... 17
Monitoring compaction health in Cloudera Manager.. 18
Hive ACID metric properties for compaction observability..18

Query vectorization.. 20
Vectorization default...20
Query vectorization properties... 21
Checking query execution.. 22

Tracking Hive on Tez query execution.. 22

Tracking an Apache Hive query in YARN..24

Application not running message..25

Cloudera Runtime ACID operations

 ACID operations

Apache Hive supports ACID (atomicity, consistency, isolation, and durability) v2 transactions at the row level
without any configuration. Knowing what this support entails helps you determine the table type you create.

By default, managed tables are ACID tables. You cannot disable ACID transactions on managed tables, but you
can change the Hive default behavior to create external tables by default to mimic legacy releases. Application
development and operations are simplified with strong transactional guarantees and simple semantics for SQL
commands. You do not need to bucket ACID v2 tables, so maintenance is easier. With improvements in transactional
semantics, advanced optimizations, such as materialized view rewrites and automatic query cache, are available. With
these optimizations, you can deploy new Hive application types.

A Hive operation is atomic. The operation either succeeds completely or fails; it does not result in partial data. A Hive
operation is also consistent: After an application performs an operation, the results are visible to the application in
every subsequent operation. Hive operations are isolated. Your operations do not cause unexpected side effects for
other users. Finally, a Hive operation is durable. A completed operation is preserved in the event of a failure.

Hive operations are atomic at the row level instead of the table or partition level. A Hive client can read from a
partition at the same time another client adds rows to the partition. Transaction streaming rapidly inserts data into
Hive tables and partitions.

Related Information
Understanding CREATE TABLE behavior

Configuring partitions for transactions
You set a couple of parameters, to prevent or permit dynamic partitioning, that inserts, updates, or deletes data into
partitions implicitly created on the table.

About this task
Configuring partitioning involves changing the following parameters to meet your needs:

• hive.exec.max.dynamic.partitions
• hive.exec.max.dynamic.partitions.pernode

You set hive.exec.dynamic.partition.mode to strict to prevent dynamic partitioning or to nonstrict (the default) to
include INSERT, UPDATE, and DELETE statements in your transaction applications.

Procedure

1. In Cloudera Manager Clusters select the Hive service. Click Configuration, and search for hive-site.xml.

2. In HiveServer2 Advanced Configuration Snippet (Safety Valve) for hive-site.xml, click + and add the hive.exe
c.dynamic.partition.mode property.

3. Set the value to nonstrict.

4. Save the changes and restart the Hive service.

Related Information
Hive Configuration Properties documentation on the Apache wiki

Options to monitor transactions
As a Hive administrator, you can view the list of all currently open and aborted transactions using the SHOW TRA
NSACTIONS statement or by querying the TRANSACTIONS view within the SYS database.

The query statements display the following details about transactions:

4

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/using-hiveql/topics/cdp-data-migration-table-create.html
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties#ConfigurationProperties-hive.exec.dynamic.partition

Cloudera Runtime ACID operations

• TXN_ID: Unique internal transaction ID
• STATE: Transaction state
• STARTED: Timestamp when the transaction was started
• LAST_HEARTBEAT: Timestamp of the latest heartbeat
• USER: Hive user who initiated the transaction
• HOST: Host machine or virtual machine where the transaction was initiated
• HEARTBEAT_COUNT: Total number of heartbeats
• TYPE: Transaction type

• DEFAULT
• REPL_CREATED
• READ_ONLY
• COMPACTION

• TC_DATABASE: Hive database name
• TC_TABLE: Table name
• TC_PARTITION: Partition name (if the table is partitioned)
• TC_OPERATION_TYPE:

• SELECT
• INSERT
• UPDATE
• COMPACT

• TC_WRITEID: Unique internal write ID

The following sections describe the various options that you can use to monitor transactions.

SHOW TRANSACTIONS

You can run the SHOW TRANSACTIONS statement to view details about all open and aborted transactions.

SHOW TRANSACTIONS;

This statement lists all the transactions and you cannot filter or limit the results as required. Alternatively, you can use
the SYS database to query and filter specific transactions.

Querying the SYS database

You can query the TRANSACTIONS view within the SYS database to filter and view specific transactions.

For example, you can run the following query to view transactions in a particular state:

SELECT *
FROM SYS.TRANSACTIONS
WHERE STATE='aborted';

Important: Currently, you cannot retrieve information about old or aborted transactions from the SYS
database that is preventing the Cleanup phase. This is because the MIN_HISTORY_LEVEL table is not
exposed in the SYS database. As a workaround, you can run the following query directly on the backend
database:

SELECT * from TXNS where txn_id = (
 SELECT MIN(res.id) FROM (
 SELECT ntxn_next id from next_txn_id
 UNION ALL
 SELECT MIN(mhl_min_open_txnid) id FROM min_history_level
 UNION ALL
 SELECT MIN(txn_id) id FROM txns WHERE txn_state = 'a'
) res);

5

Cloudera Runtime ACID operations

Note: Similarly, you can also query the INFORMATION_SCHEMA database for details about transactions.
You must use the Ranger service and set up access policies for Hive users on this database to make it
accessible.

Options to monitor transaction locks
As a Hive administrator, you can view information about locks on a table, partition, or schema that are created as a
result of transactions. You can either use the SHOW LOCKS statement or query the LOCKS view within the SYS
database to view transaction locks.

Hive transactions, enabled by default, disable ZooKeeper locking. DbLockManager stores and manages all
transaction lock information in the Hive Metastore. Heartbeats are sent regularly from lock holders and transaction
initiators to the Hive metastore to prevent stale locks and transactions. The lock or transaction is aborted if the
metastore does not receive a heartbeat within the amount of time specified by the hive.txn.timeout configuration
property.

The query statements display the following details about transaction locks unless ZooKeeper or in-memory lock
managers are used:

• LOCK_EXT_ID: Unique internal ID of a lock request that might be requesting multiple lock entries on several
resources (tables or partitions).

• LOCK_INT_ID: Unique internal ID of a lock entry that has been requested by a LOCK_EXT_ID
• TXNID: Transaction ID associated with the lock, if one exists
• DB: Hive database name
• TABLE: Table name
• PARTITION: Partition name (if the table is partitioned)
• LOCK_STATE:

• acquired: transaction initiator holds the lock
• waiting: transaction initiator is waiting for the lock
• aborted: the lock has timed out but has not yet been cleaned

• LOCK_TYPE:

• exclusive: lock cannot be shared. No one else can hold the lock at the same time.
• shared_read: any number of other shared_read locks can lock the same resource at the same time
• shared_write: any number of shared_read locks can lock the same resource at the same time, but no other

shared_write locks are allowed
• LAST_HEARTBEAT: Last time the holder of this lock sent a heartbeat
• ACQUIRED_AT: Time when the lock was acquired, if it has been acquired
• USER: Hive user who requested the lock
• HOST: Host machine or virtual machine on which the Hive user is running a Hive client
• HEARTBEAT_COUNT: Total number of heartbeats
• BLOCKEDBY_EXT_ID: ID of the lock (LOCK_EXT_ID) causing current lock to be in “waiting” mode, if the

lock is in this mode
• BLOCKEDBY_INT_ID: ID of the lock (LOCK_INT_ID) causing current lock to be in “waiting” mode, if the

lock is in this mode

The following sections describe the various options that you can use to monitor transaction locks.

SHOW LOCKS

You can run the SHOW LOCKS statement to view details about all transaction locks. Ensure that transactions are
enabled

SHOW LOCKS;

The following examples illustrate some sample queries that you can run:

6

Cloudera Runtime ACID operations

Query to check table locks

SHOW LOCKS mytable EXTENDED;

Query to check partition locks

SHOW LOCKS mytable PARTITION(ds='2018-05-01', hr='12') EXTENDED;

Query to check schema locks

SHOW LOCKS SCHEMA mydatabase;

The SHOW LOCKS SCHEMA cannot be used with ZooKeeper or in-memory lock managers.

The SHOW LOCKS statement lists all the transaction locks and you cannot filter or limit the results as required.
Alternatively, you can use the SYS database to query and filter specific locks.

Querying the SYS database

You can query the LOCKS view within the SYS database to filter and view specific locks.

The following examples illustrate how you can run queries on the SYS.LOCKS view to monitor transaction locks:

Query to view locks requested on a particular resource (table or partition)

SELECT *
FROM SYS.LOCKS
WHERE db='default'
AND table='tab_acid';

Query to view list of acquired locks

SELECT *
 FROM SYS.LOCKS
 WHERE lock_state='acquired';

Query to view blocking transactions that are preventing locks requested by a user- defined transaction,
from being acquired

SELECT *
FROM SYS.TRANSACTIONS
WHERE txn_id IN (
 SELECT txnid
 FROM SYS.LOCKS
 INNER JOIN (
 SELECT blockedby_ext_id, blockedby_int_id
 FROM SYS.LOCKS
 WHERE txnid=4534) b
 ON lock_ext_id = b.blockedby_ext_id
 AND lock_int_id = b.blockedby_int_id
);

Note: Similarly, you can also query the INFORMATION_SCHEMA database for details about transaction
locks. You must use the Ranger service and set up access policies for Hive users on this database to make it
accessible.

Related Information
Apache wiki transaction configuration documentation

7

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions#HiveTransactions-Configuration

Cloudera Runtime Data compaction

Data compaction

As administrator, you need to manage compaction of delta files that accumulate during data ingestion. Compaction is
a process that performs critical cleanup of files.

Hive creates a set of delta files for each transaction that alters a table or partition. By default, compaction of delta and
base files occurs at regular intervals. Compactions occur in the background without affecting concurrent reads and
writes.

There are two types of compaction:

• Minor

Rewrites a set of delta files to a single delta file for a bucket.
• Major

Rewrites one or more delta files and the base file as a new base file for a bucket.

Carefully consider the need for a major compaction as this process can consume significant system resources and
take a long time. Base and delta files for a table or partition are compacted.

You can configure automatic compactions or do manual compactions. Start a major compaction during periods
of low traffic. You use an ALTER TABLE statement to start compaction manually. A manual compaction either
returns the accepted compaction request ID or shows the ID (and current state) of a compaction request for the
very same target. The request is stored in the COMPACTION_QUEUE table.

The compactor initiator must run on only one HMS instance at a time.

Related Information
Apache Wiki transactions and compaction documentation

Compaction tasks
Compaction in Hive goes hand-in-hand with Hive ACID. Compaction is not, however, necessarily required for Hive
ACID. You need to understand when you want, or do not want, compaction to occur.

If you confine your ACID operations tables to full reloads and some delta merges, the performance is steady. As
tables are always rewritten (dropped and recreated), there is no need for compaction. Consider disabling compaction
by

Compaction occurs for the following reasons:

• You explicitly trigger compaction on a table or partition.
• Automatic compaction finds something to compact.

You run an ALTER TABLE statement to start explicit compaction. Automatic compaction happens without your
intervention when Hive periodically crawls through the transaction information, finds tables/partitions affected and
those fit for the pre-defined conditions, and marks them for compaction. Conditions are based on the number of
deltas, amount of change, and so on.

Compaction of sorted tables is not supported.

In a data pipeline, creating staging or temporary tables can significantly increase the compaction throughput. Avoid
compaction of these tables.

8

https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions/

Cloudera Runtime Data compaction

Initiating automatic compaction in Cloudera Manager
Several properties in the Hive and Hive metastore service configurations must be set to enable automatic compaction.
You need to check that the property settings are correct and to add one of the properties to the Hive on Tez service.
Automatic compaction will then occur at regular intervals, but only if necessary.

About this task
Initiator threads should run in only one metastore server/HA configuration. Disable Initiator threads in other
metastore server/HA configurations. The following properties must be set in Hive metastore (Hive-1) and Hive on
Tez services as follows:

• hive.compactor.initiator.on = true (default)
• hive.compactor.worker.threads = <a value greater than 0> (default and recommended value = 5)
• hive.metastore.runworker.in = hs2 (default)

You must run the compactor initiator on only one HMS instance at a time.

Before you begin
Tables or partitions you are compacting must be full ACID or insert-only ACID tables.

Procedure

1. In Cloudera Manager, select the Hive metastore service: Clusters Hive-1 Configuration .

2. Search for compact.

3. Check that Turn on Compactor Initiator Thread (hive.compactor.initiator.on), Number of Threads Used by
Compactor (hive.compactor.worker.threads), and Run Compactor on Hive Metastore or HiveServer2 (hive.met
astore.runworker.in) are set to the values shown above.

4. Save the changes.

5. In Cloudera Manager, select the Hive on Tez service: Clusters HIVE_ON_TEZ-1 Configuration .

9

Cloudera Runtime Data compaction

6. Search for compact.

7. Check that the Number of Threads Used by Compactor (hive.compactor.worker.threads), and Run compactor on
Hive Metastore or HiveServer2 (hive.metastore.runworker.in) is set to hs2.

8. Save the changes and restart the Hive on Tez and Hive (HIVE-1) metastore services at an appropriate time.

Starting compaction manually
You manually start compaction when automatic compaction fails for some reason. You can start compaction by
running a Hive statement.

About this task
You can run compaction pseudo-synchronously using the AND WAIT clause. Compaction actually occurs
asynchronously, but seems synchronous. The compaction request is recorded and queued, and remains in a waiting
cycle, querying the status of the compaction in the background until a failure, success, or timeout occurs. The hive
.compactor.wait.timeout (default: 300s) property sets the timeout.

Start compaction using a query

You use the following syntax to issue a query that starts compaction:

 ALTER TABLE tablename [PARTITION (partition_key='partition_value' [,...])]
COMPACT 'compaction_type'

Before you begin

• Tables or partitions you are compacting must be full ACID or insert-only ACID tables.
• Compaction must be enabled (initiator hive.compactor.initiator.on=true)

Procedure

1. Run a query to start a major compaction of a table.

ALTER TABLE mytable COMPACT 'major'

Use the COMPACT 'minor' clause to run a minor compaction. ALTER TABLE compacts tables even if the NO_A
UTO_COMPACTION table property is set.

2. Start compaction in a pseudo-synchronous way.

ALTER TABLE mydb.mytable PARTITION (mypart='myval') COMPACT 'MAJOR' AND
WAIT;

10

Cloudera Runtime Data compaction

Options to monitor compactions
You can view the progress of compactions using the SHOW COMPACTIONS statement or by querying the COMP
ACTIONS view within the SYS database.

The query statement displays the following details about compactions:

• C_ID: Unique internal compaction ID
• C_DATABASE: Hive database name
• C_TABLE: Table name
• C_PARTITION: Partition name (if the table is partitioned)
• C_TYPE: Major or minor compaction
• C_STATE: Compaction state

• initiated: waiting in queue to be compacted
• working: currently being compacted
• ready for cleaning: compaction completed and old files scheduled for removal
• failed: compaction job failed. Details are printed to the metastore log.
• succeeded: compaction job completed successfully
• attempted: initiator attempted to schedule a compaction but failed or hive.compactor.initiator.failed.compacts

.threshold is breached and compaction is skipped . Details are printed to the metastore log.
• C_WORKER_HOST: Thread ID of the worker thread performing the compaction
• C_WORKER_ID: Unique internal worker ID
• C_WORKER_VERSION: Version of distribution with running worker
• C_ENQUEUE_TIME: Time when compaction request was placed
• C_START: Start time of the compaction job
• C_DURATION: Duration (in ms) of the compaction job
• C_HADOOP_JOB_ID: ID of the submitted MapReduce job for MR compaction. 'None' for query-based

compaction.
• C_INITIATOR_HOST: Host where initiator is configured
• C_INITIATOR_ID: Unique internal initiator ID
• C_INITIATOR_VERSION: Version of distribution with active initiator

Note: Details about "initiators" and "workers" are new additions that you can use to investigate the
compaction setup in an environment. If you are unable to retrieve these details using the options listed here,
you can run the following query on the backend database:

SELECT activity.pid,
 activity.usename,
 activity.client_addr,
 activity.client_hostname,
 activity.query,
 blocking.pid AS blocking_pid,
 blocking.query AS blocking_query,
 blocking.client_addr AS blocking_client_addr,
 blocking.client_hostname AS blocking_client_hostname
FROM pg_stat_activity AS activity
JOIN pg_stat_activity AS blocking
 ON blocking.pid = ANY(pg_blocking_pids(activity.pid))
WHERE blocking.query like '%AUX_TABLE%';

The following sections describe the various options that you can use to monitor compactions.

SHOW COMPACTIONS

You can run the SHOW COMPACTIONS statement to view details about all the compaction jobs.

11

Cloudera Runtime Data compaction

SHOW COMPACTIONS;

Authorization is not required to use the SHOW COMPACTIONS statement. Therefore, every user can view
compactions and their current state.

Since the statement lists all the compaction jobs, you cannot filter or limit the results as required. Alternatively, you
can use the SYS database to query and filter specific compactions.

Querying the SYS database

The SYS database in the Hive metastore contains the following sources that you can use to monitor compactions:

• COMPACTION_QUEUE: Stores information about compaction requests - both explicit user submitted and
compactions discovered by the initiator and enqueued.

• COMPLETED_COMPACTIONS: Stores the same information present in COMPACTION_QUEUE along with
the compaction’s end time. Records are moved to the completed table when the cleaner finishes the job on the
compaction request.

• COMPACTIONS: A view over the COMPACTION_QUEUE and COMPLETED_COMPACTIONS tables that
resolves the column values to human readable format.

The SYS database tables and views are treated as normal Hive external tables or views, and therefore, standard access
policies can be configured against these sources.

The following examples illustrate how you can run queries on the SYS.COMPACTIONS view to monitor
compactions:

Query to display the last 10 failed compactions

SELECT *
FROM SYS.COMPACTIONS
WHERE C_STATE='failed'
ORDERBY C_ID DESC
LIMIT 10;

Query to check the status of a specific compaction using the compaction ID

SELECT *
 FROM SYS.COMPACTIONS
 WHERE C_ID='1234';

Query to view the total number of compactions in a particular state

SELECT COUNT(*)
 FROM SYS.COMPACTIONS
 WHERE C_STATE='ready for cleaning';

Note: Similarly, you can also query the INFORMATION_SCHEMA database for details about compactions.
You must use the Ranger service and set up access policies for Hive users on this database to make it
accessible.

Disabling automatic compaction
You can disable automatic compaction of a particular Hive ACID table by setting a Hive table property. By default,
compaction is enabled, so you must enter an ALTER TABLE command to disable it.

About this task
Compaction of a full ACID table is skipped under the following conditions:

• Another compaction is either running or already initiated for the target.
• The compaction target table is already dropped.

12

Cloudera Runtime Data compaction

• Table is explicitly configured to be skipped by the auto-compaction

Compaction of an insert-only, ACID table is skipped if hive.compactor.compact.insert.only is set to false (turned off).
The default is true. Although you can disable automatic compaction, tables still can be compacted if you explicitly
request compaction.Disabling automatic compaction does not prevent you from performing manual compaction.

The compaction auto-initiator can be disabled on service instance level (disabled by default). You can independently
enable or disable compaction workers on service instance level. Compaction merges only the bucket files with the
same index and keeps the same number of bucket files in base. Compaction does not rebalance the rows between the
buckets.

Procedure

At the Hive JDBC client prompt, in the database of the target table, alter the TBLPROPERTIES.

ALTER TABLE my_t SET TBLPROPERTIES ('NO_AUTO_COMPACTION'='true');

Configuring compaction using table properties
You see how to configure compaction using table properties and learn about the advantage of using this method of
configuration.

About this task
You can configure compaction using table properties. Using table properties, you can group all table and partition
compactions into a specific queue to match your use case. You can also size the compactor job based on the tables
parameters like size and compression.

Procedure

Set table properties to adjust the compaction initiator properties.

ALTER TABLE mydb.mytable
SET TBLPROPERTIES (
'compactorthreshold.hive.compactor.delta.pct.threshold'='0.2f',
'compactorthreshold.hive.compactor.delta.num.threshold'='20');

These properties change thresholds, as the names imply: the deltas/base size percentage override threshold and the
number of deltas threshold.

Configuring compaction in Cloudera Manager
You see how to configure compaction properties exposed in Cloudera Manager. You rarely need to configure other
compaction properties, but need to know how to do this.

About this task

You can configure Hive metastore (HMS) and HiveServer (HS2) properties. Compaction properties you typically
configure appear in Cloudera Manager. You search for a property to change it. Occasionally, you might add a
property to hive-site or core-site using the Cloudera Manager Safety Valve.

13

Cloudera Runtime Data compaction

Procedure

1. In Cloudera Manager, click Clusters Hive Configuration , and search for a property, such as
hive.compactor.worker.threads.

2. Change the value, and save.

3. Restart the Hive cluster.

Configuring the compaction check interval
You need to know when and how to control the compaction process checking, performed in the background, of the
file system for changes that require compaction.

When you turn on the compaction initiator, consider setting the hive.compactor.check.interval property. This property
determines how often the initiator should search for possible tables, partitions, or compaction. By default, the value
for this property is set to 300 seconds. Decreasing hive.compactor.check.interval has the following effect:

• Reduces the time it takes for compaction to be started for a table or partition that requires compaction.
• Requires several calls to the file system for each table or partition that has undergone a transaction since the last

major compaction, resulting in increases to the load on the filesystem.

The compaction initiator first checks the completed transactions (COMPLETED_TXN_COMPONENTS), excluding
those that already have completed compactions, searching for potential compaction targets. The search of the first
iteration includes all transactions. Further searching of iterations are limited to the time-frame since the last iteration.

To configure the compaction check interval, set the hive.compactor.check.interval. For example:

From Cloudera Manager, go to Clusters HIVE-1 Configuration and set the value for the hive.compactor.check.int
erval parameter in the Hive Metastore Server Advanced Configuration Snippet (Safety Valve) for hive-site.xml file.

Compactor properties
You check and change a number of Apache Hive properties to configure the compaction of delta files that accumulate
during data ingestion. You need to know the defaults and valid values.

Basic compactor properties
hive.compactor.initiator.on

Default=false

Whether to run the initiator and cleaner threads on this metastore instance or not. Set in only one
instance.

hive.compactor.worker.threads

Default=0

Set this to a positive number to enable Hive transactions, which are required to trigger transactions.
Worker threads spawn jobs to perform compactions, but do not perform the compactions
themselves. Increasing the number of worker threads decreases the time that it takes tables or

14

Cloudera Runtime Data compaction

partitions to be compacted. However, increasing the number of worker threads also increases the
background load on the CDP cluster because they cause more jobs to run in the background.

hive.metastore.runworker.in

Default=HS2

Specifies where to run the Worker threads that spawn jobs to perform compactions. Valid values are
HiveServer (HS2) or Hive metastore (HMS).

hive.compactor.abortedtxn.threshold

Default=1000 aborts

The number of aborted transactions that triggers compaction on a table/partition.

hive.compactor.aborted.txn.time.threshold

Default=12 hours

The hours of aborted transactions that trigger compaction on a table/partition.

Advanced compactor properties
hive.compactor.worker.timeout

Default=86400s

Expects a time value using d/day, h/hour, m/min, s/sec, ms/msec, us/usec, or ns/nsec (default is sec).
Time in seconds after which a compaction job will be declared failed and the compaction re-queued.

hive.compactor.check.interval

Default=300s

A valid value is a time with unit (d/day, h/hour, m/min, s/sec, ms/msec, us/usec, ns/nsec), which is
sec if not specified.

Time in seconds between checks to see if any tables or partitions need to be compacted. This value
should be kept high because each check for compaction requires many calls against the NameNode.
Decreasing this value reduces the time it takes to start compaction for a table or partition that
requires it. However, checking if compaction is needed requires several calls to the NameNode for
each table or partition involved in a transaction done since the last major compaction. Consequently,
decreasing this value increases the load on the NameNode.

hive.compactor.delta.num.threshold

Default=10

Number of delta directories in a table or partition that triggers a minor compaction.

hive.compactor.delta.pct.threshold

Default=0.1

Percentage (fractional) size of the delta files relative to the base that triggers a major compaction.
(1.0 = 100%, so the default 0.1 = 10%.)

hive.compactor.max.num.delta

Default=500

Maximum number of delta files that the compactor attempts to handle in a single job.

hive.compactor.wait.timeout

Default=300000

The value must be greater than 2000 milliseconds.

Time out in milliseconds for blocking compaction.

hive.compactor.initiator.failed.compacts.threshold

Default=2

A valid value is between 1 and 20, and must be less than hive.compactor.history.retention.failed.

15

Cloudera Runtime Data compaction

The number of consecutive compaction failures (per table/partition) after which automatic
compactions are not scheduled any longer.

hive.compactor.cleaner.run.interval

Default=5000ms

A valid value is a time with unit (d/day, h/hour, m/min, s/sec, ms/msec, us/usec, ns/nsec), which is
msec if not specified.

The time between runs of the cleaner thread.

hive.compactor.job.queue

Specifies the Hadoop queue name to which compaction jobs are submitted. If the value is an empty
string, Hadoop chooses the default queue to submit compaction jobs.

Providing an invalid queue name results in compaction job failures.

hive.compactor.compact.insert.only

Default=true

The compactor compacts insert-only tables, or not (false). A safety switch.

hive.compactor.crud.query.based

Default=false

Performs major compaction on full CRUD tables as a query, and disables minor compaction.

hive.split.grouping.mode

Default=query

A valid value is either query or compactor.

This property is set to compactor from within the query-based compactor. This setting enables
the Tez SplitGrouper to group splits based on their bucket number, so that all rows from different
bucket files for the same bucket number can end up in the same bucket file after the compaction.

hive.compactor.history.retention.succeeded

Default=3

A valid value is between 0 and 100.

Determines how many successful compaction records are retained in compaction history for a given
table/partition.

hive.compactor.history.retention.failed

Default=3

A valid value is between 0 and 100.

Determines how many failed compaction records are retained in compaction history for a given
table/partition.

hive.compactor.history.retention.attempted

Default=2

A valid value is between 0 and 100.

Determines how many attempted compaction records are retained in compaction history for a given
table/partition.

hive.compactor.history.reaper.interval

Default=2m

A valid value is a time with unit (d/day, h/hour, m/min, s/sec, ms/msec, us/usec, ns/nsec), which is
msec if not specified.

Determines how often the compaction history reaper runs.

16

Cloudera Runtime Compaction observability in Cloudera Manager

Compaction observability in Cloudera Manager

Compaction observability is a notification and information system based on metrics about the health of the
compaction process. A healthy compaction process is critical to query performance, availability, and uptime of your
data warehouse. You learn how to use compaction observability to prevent serious problems from developing.

Compaction runs in the background. At regular intervals, Hive accesses the health of the compaction process, and
logs an error in the event of a problem. The assessment is based on metrics, such as the number of rows in the
metadata table TXN_TO_WRITE_ID and the age of the longest running transaction (oldest_open_txn_age_in_sec).
For example, if compaction is not running, the TXN_TO_WRITE_ID table in the HMS backend database becomes
bloated and queries slow down.

Compaction health monitoring provides the following information to help you proactively address the problems
before the problems become an emergency:

• Warnings and errors indicating problems in compaction processes
• Charts of various metrics that provide information about compaction health
• Recommended actions to address suboptimal configurations

Compaction observability does not attempt to do root cause analysis (RCA) and does not attempt to fix the underlying
problem. Compaction observability helps you quickly respond to symptoms of compaction problems.

Using Cloudera Manager, you can view compaction health checks for the Hive Metastore and Hive on Tez services,
view actions and advice related to configurations and thresholds, and use the Compaction tab from the Hive
Metastore service to view compaction-related charts based on the collected metrics.

Configuring compaction health monitoring
As an administrator, you can use Cloudera Manager to enable or disable compaction health tests for the Hive
Metastore (HMS) and HiveServer (HS2) services, configure how those health tests factor into the overall health of the
service, and modify thresholds for the status of certain health tests.

About this task
You can configure HMS and HS2 compaction properties that are exposed in Cloudera Manager by searching for the
property. Occasionally, you might add a property to hive-site.xml or core-site.xml using the Hive Service Advanced
Configuration Snippet (Safety Valve).

Procedure

1. In Cloudera Manager, click Clusters Hive Configuration to navigate to the configuration page for HMS.

2. Search for Hive Compaction Health Test, enable the property, and save the changes.

3. Enable the Hive Compaction Health Test property for the HS2 service by going to Clusters Hive on Tez
Configuration .

4. To configure the Health Check thresholds, go to Clusters Hive Configuration .

5. Select the Category Monitoring filter.

6. Modify the warning and critical (error) threshold values for the required compaction-related thresholds and save
the changes.

Results
The Health Tests panel of HMS and HS2 service displays the compaction health test results, typically with specific
metrics that the test returned.

Note: For the HS2 service, if there is no delta metric data (metric values are too low to be collected), then the
health check displays a "Disabled" status.

17

Cloudera Runtime Compaction observability in Cloudera Manager

Monitoring compaction health in Cloudera Manager
Using Cloudera Manager, you can view compaction health checks for the Hive Metastore (HMS) and Hive on Tez
services, view actions and advice related to configurations and thresholds, and use the Compaction tab from the Hive
Metastore service to view compaction-related charts based on the collected metrics.

Before you begin

• You must have enabled compaction health checks.
• You must have enabled the Hive ACID metrics service to collect ACID-related metrics.

Procedure

1. Sign in to Cloudera Manager as an Administrator.

2. Go to the HMS service by clicking Clusters Hive .
The Health Tests panel in the Status tab displays the compaction health test results, typically with the specific
metrics that the test returned.

Similarly, you can view the compaction health test results for the HiveServer (HS2) service by going to Clusters
Hive on Tez .

3. From the HMS service page, click the Compactions tab to view dashboards of compaction-related charts of
various metrics.

You can create triggers for the charts that allow you to define actions to be taken when a specified condition is
met.

Related Information
Configuring compaction health monitoring

Hive ACID metric properties for compaction observability

Hive ACID metric properties for compaction observability
As an administrator, you must configure certain properties related to the Hive ACID metrics service to enable
the collection of Hive ACID metrics that are required to display compaction-related alerts and charts in Cloudera
Manager.

Basic properties

You must configure the following metrics to enable Hive ACID metrics collection:
hive.metastore.metrics.enabled

Default value: True

Enables or disables Hive metrics subsystem for the Hive Metastore (HMS) role.

hive.server2.metrics.enabled

Default value: True

Enables or disables Hive metrics subsystem for the HiveServer (HS2) role.

hive.metastore.acidmetrics.ext.on

Default value: False

Set this to property to True to collect additional acid related metrics outside of the Hive ACID
metrics service. Enable this property for both HMS and HS2 roles.

Note: Ensure that you have also enabled the hive.metastore.metrics.enabled property
for HMS and the hive.server2.metrics.enabled property for HS2.

metastore.acidmetrics.thread.on

18

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/managing-hive/topics/hive-configure-compact-health-check.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/managing-hive/topics/hive-compact-acidmetrics-properties.html

Cloudera Runtime Compaction observability in Cloudera Manager

Default value: True

Specifies whether to run Hive ACID related metrics collection on this metastore instance. Enable
this property in only one HMS instance and disable the property in all other instances.

Advanced properties

Set these additional properties to configure how Hive ACID metrics service collects metric data:

The following properties have to be configured in the HMS instance where metastore.acidmetrics.thread.on is
enabled:
metastore.acidmetrics.check.interval

Default value: 300 seconds

Specifies the time (in seconds) between Hive ACID metric collection jobs.

metastore.acidmetrics.table.aborted.txns.threshold

Default value: 1500

Hive metrics subsystem collects the number of tables that have a large number of aborted
transactions. This property specifies the minimum number of aborted transactions required to
consider a table.

metastore.compactor.acid.metrics.logger.frequency

Default value: 360m

Specifies the logging frequency (in minutes) of Hive ACID metrics. Set this property in only one
HMS instance and set the property to 0 in all other HMS instances to disable logging.

The following properties have to be configured in the HS2 (Hive on Tez) service:
hive.txn.acid.metrics.cache.size

Default value: 100

Specifies the size of the ACID metrics cache, which is the maximum number of partitioned and
unpartitioned tables with the most deltas that is included in the list of active, obsolete, and small
deltas. Valid values are between 0 to 500.

hive.txn.acid.metrics.cache.duration

Default value: 7200 seconds

Specifies the maximum lifetime (in seconds) for an entry in the ACID metrics cache.

hive.txn.acid.metrics.reporting.interval

Default value: 30 seconds

Specifies the reporting period (in seconds) for ACID metrics.

hive.txn.acid.metrics.delta.num.threshold

Default value: 100

Specifies the minimum number of active delta files that a table or partition must have to be included
in the ACID metrics report.

hive.txn.acid.metrics.obsolete.delta.num.threshold

Default value: 100

Specifies the minimum number of obsolete delta files that a table or partition must have to be
included in the ACID metrics report.

hive.txn.acid.metrics.delta.check.threshold

Default value: 300 seconds

Specifies the minimum age (in seconds) for delta files to be included in the ACID metrics report.
Delta files less than this age are not included in the report.

hive.txn.acid.metrics.delta.pct.threshold

19

Cloudera Runtime Query vectorization

Default value: 0.01

Specifies the percentage size of the delta files relative to the base directory. Delta files whose size
is smaller than this threshold value are considered as small deltas and are not included in the ACID
metrics report. (1 = 100%, so the default 0.01 = 1%)

Query vectorization

You can use vectorization to improve instruction pipelines for certain data and queries and to optimize how Hive uses
the cache. Vectorization processes batches of primitive types on the entire column rather than one row at a time.

Unsupported functionality on vectorized data

Some functionality is not supported on vectorized data:

• DDL queries
• DML queries other than single table, read-only queries
• Formats other than Optimized Row Columnar (ORC)

Supported functionality on vectorized data

The following functionality is supported on vectorized data:

• Single table, read-only queries

Selecting, filtering, and grouping data is supported.
• Partitioned tables
• The following expressions:

• Comparison: >, >=, <, <=, =, !=
• Arithmetic plus, minus, multiply, divide, and modulo
• Logical AND and OR
• Aggregates sum, avg, count, min, and max

Supported data types

You can query data of the following types using vectorized queries:

• tinyint
• smallint
• int
• bigint
• date
• boolean
• float
• double
• timestamp
• stringchar
• varchar
• binary

Vectorization default
Vectorized query execution can affect performance. You need to be aware of the Boolean default value of
hive.vectorized.execution.enabled.

20

Cloudera Runtime Query vectorization

Vectorized query execution is enabled by default (true). Vectorized query execution processes Hive data in batch,
channeling a large number of rows of data into columns, foregoing intermediate results. This technique is more
efficient than the MapReduce execution process that stores temporary files.

Query vectorization properties
You can manage query vectorization by setting properties in Cloudera Manager. The names of each property and its
description helps set up vectorization.

Vectorization properties
hive.vectorized.groupby.checkinterval

In vectorized group-by, the number of row entries added to the hash table before re-checking
average variable size for memory usage estimation.

hive.vectorized.groupby.flush.percent

Ratio between 0.0 and 1.0 of entries in the vectorized group-by aggregation hash that is flushed
when the memory threshold is exceeded.

hive.vectorized.execution.enabled

Enable optimization that vectorizes query execution by streamlining operations by processing a
block of 1024 rows at a time.

hive.vectorized.execution.reduce.enabled

Whether to vectorize the reduce side of query execution.

hive.vectorized.use.vectorized.input.format

If enabled, Hive uses the native vectorized input format for vectorized query execution when it is
available.

hive.vectorized.use.checked.expressions

To enhance performance, vectorized expressions operate using wide data types like long and
double. When wide data types are used, numeric overflows can occur during expression evaluation
in a different manner for vectorized expressions than they do for non-vectorized expressions.
Consequently, different query results can be returned for vectorized expressions compared to results
returned for non-vectorized expressions. When this configuration is enabled, Hive uses vectorized
expressions that handle numeric overflows in the same way as non-vectorized expressions are
handled.

hive.vectorized.adaptor.usage.mode

Vectorized Adaptor Usage Mode specifies the extent to which the vectorization engine tries to
vectorize UDFs that do not have native vectorized versions available. Selecting the "none" option
specifies that only queries using native vectorized UDFs are vectorized. Selecting the "chosen"
option specifies that Hive choses to vectorize a subset of the UDFs based on performance benefits
using the Vectorized Adaptor. Selecting the "all" option specifies that the Vectorized Adaptor be
used for all UDFs even when native vectorized versions are not available.

hive.vectorized.use.vector.serde.deserialize

If enabled, Hive uses built-in vector SerDes to process text and sequencefile tables for vectorized
query execution.

hive.vectorized.input.format.excludes

Specifies a list of file input format classnames to exclude from vectorized query execution using the
vectorized input format. Note that vectorized execution can still occur for an excluded input format
based on whether row SerDes or vector SerDes are enabled.

21

Cloudera Runtime Tracking Hive on Tez query execution

Checking query execution
You can determine if query vectorization occurred during execution by running the EXPLAIN VECTORIZATION
query statement.

Procedure

1. Start Hive from Beeline.

$ hive

2. Set hive.explain.user to false to see vector values.

SET hive.explain.user=false;

3. Run the EXPLAIN VECTORIZATION statement on the query you want CDP to process using vectorization.

EXPLAIN VECTORIZATION SELECT COUNT(*) FROM employees where emp_no>10;

The following output confirms that vectorization occurs:

+--+
| Explain |
+--+
| Plan optimized by CBO. |
| |
| Vertex dependency in root stage |
| Reducer 2 <- Map 1 [CUSTOM_SIMPLE_EDGE] *vectorized* |
| File Output Operator [FS_14] |
| Group By Operator [GBY_13] (rows=1 width=12) |
| Output:["_col0"],aggregations:["count(VALUE._col0)"] |
| <-Map 1 [CUSTOM_SIMPLE_EDGE] vectorized |
| PARTITION_ONLY_SHUFFLE [RS_12] |
| Group By Operator [GBY_11] (rows=1 width=12) |
| Output:["_col0"],aggregations:["count()"] |
| Select Operator [SEL_10] (rows=1 width=4) |
| Filter Operator [FIL_9] (rows=1 width=4) |
| predicate:(emp_no > 10) |
| TableScan [TS_0] (rows=1 width=4) |
| default@employees,employees,Tbl:COMPLETE,Col:NONE,Ou
tput:["emp_no"] |
| |
+--+
23 rows selected (1.542 seconds)

Tracking Hive on Tez query execution

You need to know how to monitor Hive on Tez queries during execution. Several tools provide query details, such as
execution time.

About this task
You can retrieve local fetch details about queries from HiveServer (HS2) logs, assuming you enable a fetch task. You
configure the following properties:
hive.fetch.task.conversion

Value: minimal

22

Cloudera Runtime Tracking Hive on Tez query execution

Some select queries can be converted to a single FETCH task instead of a MapReduce task,
minimizing latency. A value of none disables all conversion, minimal converts simple queries
such as SELECT * and filter on partition columns, and more converts SELECT queries including
FILTERS.

hive.fetch.task.conversion.threshold

Value: 1 GiB

Above this size, queries are converted to fetch tasks.

Increasing the static pool does not speed reads and there is not recommended.

Procedure

1. In Cloudera Manager, click Clusters Hive on Tez Configuration , and search for fetch.

2. Accept, or change, the default values of the fetch task properties.

3. Navigate to the HiveServer log directory and look at the log files.

In Cloudera Manager, you can find the location of this directory as the value of HiveServer2 Log Directory.

23

Cloudera Runtime Tracking an Apache Hive query in YARN

4. In Cloudera Manager, click Clusters Hive on Tez Configuration , and click to the HiveServer Web UI.

5. Use Hue to track query progress.

Tracking an Apache Hive query in YARN

You need to know how to monitor Apache Hive queries in YARN. Using information from the output of query
execution in Beeline, you can accomplish this task.

About this task

Procedure

1. Run a query in Beeline.

0: jdbc:hive2://ip-10-10-10-10.cloudera.site:> select * from depts;
INFO : Compiling command(queryId=hive_1599978188515_5723b397-c375-48c2-
ab38-7be298603de9): select * from depts
...

2. Scroll down the output until you find the INFO containing the YARN App id.

...
INFO : Status: Running (Executing on YARN cluster with App id applicatio
n_1599978188515_0010)

24

Cloudera Runtime Application not running message

--

 VERTICES MODE STATUS TOTAL COMPLETED RUNNING PE
NDING FAILED KILLED
--

...

3. In Cloudera Manager, click Clusters Yarn Instances Web UI .

4. Click Resource Web UI Applications

5. Find the match for the App id and gather information you want.

Application not running message

Understanding the Application not running message from TEZ that appears in the YARN application log prevents
confusion when inspecting Hive queries.

During startup, HiveServer starts sessions that are available until tez.session.am.dag.submit.timeout.secs expires, and
then the Application Masters are killed. HiveServer transparently restarts dead AMs on demand when you run another
query. HiveServer tries to clean up sessions from the Tez pool during shutdown. "Application not running" message
in a stack trace logging is not an issue. This message is just a trace logged when the session is closed or restarted and
the AM has timed out.

25

	Contents
	ACID operations
	Configuring partitions for transactions
	Options to monitor transactions
	Options to monitor transaction locks

	Data compaction
	Compaction tasks
	Initiating automatic compaction in Cloudera Manager
	Starting compaction manually
	Options to monitor compactions
	Disabling automatic compaction
	Configuring compaction using table properties
	Configuring compaction in Cloudera Manager
	Configuring the compaction check interval
	Compactor properties

	Compaction observability in Cloudera Manager
	Configuring compaction health monitoring
	Monitoring compaction health in Cloudera Manager
	Hive ACID metric properties for compaction observability

	Query vectorization
	Vectorization default
	Query vectorization properties
	Checking query execution

	Tracking Hive on Tez query execution
	Tracking an Apache Hive query in YARN
	Application not running message

