
Cloudera Data Science Workbench

Distributed Computing with Workers
Date published: 2020-02-28
Date modified:

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Data Science Workbench | Contents | iii

Contents

Distributed Computing with Workers... 4
Workers API... 4

Launch Workers..4
List Workers... 5
Await Workers..5
Stop Workers.. 5

Example: Worker Network Communications...6

Cloudera Data Science Workbench Distributed Computing with Workers

Distributed Computing with Workers

Cloudera Data Science Workbench provides basic support for launching multiple engine instances, known as
workers, from a single interactive session. Any R or Python session can be used to spawn workers. These workers can
be configured to run a script (e.g. a Python file) or a command when they start up.

Workers can be launched using the launch_workers function. Other supported functions are list_workers and stop
_workers. Output from all the workers is displayed in the workbench console of the session that launched them. These
workers are terminated when the session exits.

Using Workers for Machine Learning

The simplest example of using this feature would involve launching multiple workers from a session, where each
one prints 'hello world' and then terminates right after. To extend this example, you can remove the print command
and configure the workers to run a more elaborate script instead. For example, you can set up a queue of parameters
(inputs to a function) in your main interactive session, and then configure the workers to run a script that pulls
parameters off the queue, applies a function, and keeps doing this until the parameter queue is empty. This generic
idea can be applied to multiple real-world use-cases. For example, if the queue is a list of URLs and the workers
apply a function that scrapes a URL and saves it to a database, CDSW can easily be used to do parallelized web
crawling.

Hyperparameter optimization is a common task in machine learning, and workers can use the same parameter queue
pattern described above to perform this task. In this case, the parameter queue would be a list of possible values of
the hyperparameters of a machine learning model. Each worker would apply a function that trains a machine learning
model. The workers run until the queue is empty, and save snapshots of the model and its performance.

Workers API
This section lists the functions available as part of the workers API.

Launch Workers
Launches worker engines into the cluster.
Syntax

launch_workers(n, cpu, memory, nvidia_gpu=0, kernel="python3", s
cript="", code="", env={})

Parameters

• n (int) - The number of engines to launch.
• cpu (float) - The number of CPU cores to allocate to the engine.
• memory (float) - The number of gigabytes of memory to allocate to the engine.
• nvidia_gpu (int, optional) - The number of GPU's to allocate to the engine.
• kernel (str, optional) - The kernel. Can be "r", "python2", "python3" or "scala". This parameter is

only available for projects that use legacy engines.
• script (str, optional) - The name of a Python source file the worker should run as soon as it starts

up.
• code (str, optional) - Python code the engine should run as soon as it starts up. If a script is

specified, code will be ignored.
• env (dict, optional) - Environment variables to set in the engine.

Example Usage

4

Cloudera Data Science Workbench Distributed Computing with Workers

Python

import cdsw
workers = cdsw.launch_workers(n=2, cpu=0.2, memory=0.5, code="pr
int('Hello from a CDSW Worker')")

R

library("cdsw")
workers <- launch.workers(n=2, cpu=0.2, memory=0.5, env="", cod
e="print('Hello from a CDSW Worker')")

Note: Due to a bug, the env parameter must been defined when calling the launch.w
orkers function in R. If you do not wish to pass environment variables, simply set it
to an empty string. When not defined, the env parameter is serialized internally into
a format that is incompatible with Cloudera Data Science Workbench. This bug does
not affect the Python engine.

List Workers
Returns all information on all the workers in the cluster.
Syntax

list_workers()

Await Workers
Waits for workers to either reach the running status, or to complete and exit.
Syntax

await_workers(ids, wait_for_completion=True, timeout_seconds=60)

Parameters

• ids: int or list of worker descriptions, optional The id's of the worker engines to stop or the
worker's description dicts as returned by launch_workers or list_workers. If not provided, all
workers in the cluster will be stopped.

• wait_for_completion: boolean, optional If True, will wait for all workers to exit successfully. If
False, will wait for all workers to reach the running status. Defaults to True.

• timeout_seconds: int, optional Maximum number of seconds to wait for workers to reach the
desired status. Defaults to 60. If equal to 0, there is no timeout. Workers that have not reached
the desired status by the timeout will be returned in the failures key. See the return value
documentation.

Returns

• dict - A dict with keys workers and failures. The workers key contains a list of dicts describing
the workers that reached the desired status. The failures key contains a list of descriptions of the
workers that did not.

• Note: If wait_for_completion is False, the workers in the 'workers' key will
contain a key called 'ip_address' which contains each worker's external IP address.
This can be useful for running distributed frameworks on workers.

Stop Workers
Stops worker engines.
Syntax

stop_workers(*worker_id)

5

Cloudera Data Science Workbench Distributed Computing with Workers

Parameter

• worker_id (int, optional) - The ID numbers of the worker engines that must be stopped. If an ID
is not provided, all the worker engines on the cluster will be stopped.

 Example: Worker Network Communications
Workers are a low-level feature to help use higher level libraries that can operate across multiple hosts. As such, you
will generally want to use workers only to launch the backends for these libraries.

To help you get your workers or distributed computing framework components talking to one another, every worker
engine run includes an environmental variable CDSW_MASTER_IP with the fully addressable IP of the master
engine. Every engine has a dedicated IP access with no possibility of port conflicts.

For instance, the following are trivial examples of two worker engines talking to the master engine.

R

From the master engine, the following master.r script will launch two workers and accept incoming connections from
them.

master.r

library("cdsw")
Launch two CDSW workers. These are engines that will run in
the same project, execute a given code or script, and exit.
workers <- launch.workers(n=2, cpu=0.2, memory=0.5, env="", script="worker
.r")

Accept two connections, one from each worker. Workers will
execute worker.r.
for(i in c(1,2)) {
 # Receive a message from each worker and return a response.
 con <- socketConnection(host="0.0.0.0", port = 6000, blocking=TRUE, server
=TRUE, open="r+")
 data <- readLines(con, 1)
 print(paste("Server received:", data))
 writeLines("Hello from master!", con)
 close(con)
}

The workers will run the following worker.r script and respond to the master.

worker.r

print(Sys.getenv("CDSW_MASTER_IP"))
con <- socketConnection(host=Sys.getenv("CDSW_MASTER_IP"), port = 6000, bloc
king=TRUE, server=FALSE, open="r+")
write_resp <- writeLines("Hello from Worker", con)
server_resp <- readLines(con, 1)
print(paste("Worker received: ", server_resp))
close(con)

Python

From the master engine, the following master.py script will launch two workers and accept incoming connections
from them.

master.py
import cdsw, socket

6

Cloudera Data Science Workbench Distributed Computing with Workers

Launch two CDSW workers. These are engines that will run in
the same project, execute a given code or script, and exit.
workers = cdsw.launch_workers(n=2, cpu=0.2, memory=0.5, script="worker.py")

Listen on TCP port 6000
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(("0.0.0.0", 6000))
s.listen(1)

Accept two connections, one from each worker. Workers will
execute worker.py.
conn, addr = s.accept()
for i in range(2):
 # Receive a message from each worker and return a response.
 data = conn.recv(20)
 if not data: break
 print("Master received:", data)
 conn.send("Hello From Server!".encode())
conn.close()

The workers will run the following worker.py script and respond to the master.

worker.py
import os, socket

Open a TCP connection to the master.
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((os.environ["CDSW_MASTER_IP"], 6000))

Send some data and receive a response.
s.send("Hello From Worker!".encode())
data = s.recv(1024)
s.close()

print("Worker received:", data)

7

	Contents
	Distributed Computing with Workers
	Workers API
	Launch Workers
	List Workers
	Await Workers
	Stop Workers

	Example: Worker Network Communications

