Although Python is a popular choice for data scientists, it is not straightforward to
make a Python library available on a distributed PySpark cluster. To determine which
dependencies are required on the cluster, you must understand that Spark code applications run
in Spark executor processes distributed throughout the cluster. If the Python code you are
running uses any third-party libraries, Spark executors require access to those libraries when
they run on remote executors.
This example demonstrates a way to run the following Python
code (nltk_sample.py
), that includes pure Python libraries (nltk), on a distributed
PySpark cluster.
-
(Prerequisites)
-
Make sure the Anaconda parcel has been distributed and activated on your cluster.
-
Create a new project in Cloudera Data Science Workbench. In that project, create a
new file called
nltk_sample.py
with the following sample
script.
nltk_sample.py
# This code uses NLTK, a Python natural language processing library.
# NLTK is not installed with conda by default.
# You can use 'import' within your Python UDFs, to use Python libraries.
# The goal here is to distribute NLTK with the conda environment.
import os
import sys
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.appName("spark-nltk") \
.getOrCreate()
data = spark.sparkContext.textFile('1970-Nixon.txt')
def word_tokenize(x):
import nltk
return nltk.word_tokenize(x)
def pos_tag(x):
import nltk
return nltk.pos_tag([x])
words = data.flatMap(word_tokenize)
words.saveAsTextFile('nixon_tokens')
pos_word = words.map(pos_tag)
pos_word.saveAsTextFile('nixon_token_pos')
-
Go to the project you created and launch a new PySpark session.
-
Click Terminal Access and run the following command to pack the
Python environment into conda.
conda create -n nltk_env --copy -y -q python=2.7.11 nltk numpy
The --copy
option allows you to copy whole dependent packages into
certain directory of a conda environment. If you want to add extra pip packages without
conda, you should copy packages manually after using pip install
. In
Cloudera Data Science Workbench, pip will install packages into the
~/.local
directory in a project.
pip install some-awesome-package
cp -r ~/.local/lib ~/.conda/envs/nltk_env/
Zip the conda environment for shipping on PySpark cluster.
cd ~/.conda/envs
zip -r ../../nltk_env.zip nltk_env
-
(Specific to NLTK) For this example, you can use NLTK data as input.
cd ~/
source activate nltk_env
# download nltk data
(nltk_env)$ python -m nltk.downloader -d nltk_data all
(nltk_env)$ hdfs dfs -put nltk_data/corpora/state_union/1970-Nixon.txt ./
# archive nltk data for distribution
cd ~/nltk_data/tokenizers/
zip -r ../../tokenizers.zip *
cd ~/nltk_data/taggers/
zip -r ../../taggers.zip *
-
Set
spark-submit
options in
spark-defaults.conf
.
spark.yarn.appMasterEnv.PYSPARK_PYTHON=./NLTK/nltk_env/bin/python
spark.yarn.appMasterEnv.NLTK_DATA=./
spark.executorEnv.NLTK_DATA=./
spark.yarn.dist.archives=nltk_env.zip#NLTK,tokenizers.zip#tokenizers,taggers.zip#taggers
With these settings, PySpark unzips nltk_env.zip
into the NLTK
directory. NLTK_DATA
is the environmental variable where NLTK data is
stored.
-
In Cloudera Data Science Workbench, set the
PYSPARK_PYTHON
environment
variable to the newly-created environment.
-
To do this, navigate back to the Project Overview page and click .
-
Set
PYSPARK_PYTHON
to ./NLTK/nltk_env/bin/python
and click Add.
-
Then click Save Environment.
-
Launch a new PySpark session and run the
nltk_sample.py
script in the
workbench. You can test whether the script ran successfully using the following
command:
!hdfs dfs -cat ./nixon_tokens/* | head -n 20
Annual
Message
to
the
Congress
on
the
State
of
the
Union
.
January
22
,
1970
Mr.
Speaker
,
Mr.
! hdfs dfs -cat nixon_token_pos/* | head -n 20
[(u'Annual', 'JJ')]
[(u'Message', 'NN')]
[(u'to', 'TO')]
[(u'the', 'DT')]
[(u'Congress', 'NNP')]
[(u'on', 'IN')]
[(u'the', 'DT')]
[(u'State', 'NNP')]
[(u'of', 'IN')]
[(u'the', 'DT')]
[(u'Union', 'NN')]
[(u'.', '.')]
[(u'January', 'NNP')]
[(u'22', 'CD')]
[(u',', ',')]
[(u'1970', 'CD')]
[(u'Mr.', 'NNP')]
[(u'Speaker', 'NN')]
[(u',', ',')]
[(u'Mr.', 'NNP')]