
Cloudera Runtime 7.1.8

Securing Apache Impala
Date published: 2020-11-30
Date modified: 2022-08-25

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Impala Authorization..4

Cloudera Runtime Impala Authorization

Impala Authorization

Authorization determines which users are allowed to access which resources, and what operations they are allowed to
perform. You use Apache Ranger to enable and manage authorization in Impala.

Supported Ranger Features in Impala

• Resource-based and tag-based authorization policies
• Resource-based and tag-based column masking
• Row-level filtering is enabled by default

Using Resource-based Authorization Policies for Impala

In the Ranger Service Manager, you can use the Hadoop SQL preloaded resource-based and tag-based services and
policies to authorize access to Impala:

You can configure services for Impala as described in Using Ranger to Provide Authorization in CDP.

For example, you can edit the all-global policy for an Impala user:

For information about using tag-based policies, see Tag-based column masking in Hive with Ranger policies.

4

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/security-ranger-authorization/topics/security-ranger-provide-authorization-cdp.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/security-ranger-authorization/topics/security-ranger-tag-based-column-masking-in-hive-with-ranger-policies.html

Cloudera Runtime Impala Authorization

Privilege Model

You set up privileges through the GRANT and REVOKE statements in either Impala or Hive. Then both components
use those same privileges automatically.

By default, when authorization is not enabled, Impala does all read and write operations with the privileges of the
impala user, which is suitable for a development/test environment but not for a secure production environment. When
authorization is enabled, Impala uses the OS user ID of the user who runs impala-shell or other client programs,
and associates various privileges with each user.

Privileges can be granted on different resources in the schema and are associated with a level in the resource
hierarchy. A privilege on a particular resource automatically inherits the same privilege of its parent.

The resource hierarchy is:

Server
 URI
 Database
 Table
 Column
 Function

The table-level privileges apply to views as well. Anywhere you specify a table name, you can specify a view name
instead.

You can specify privileges for individual columns.

The table below lists the minimum level of privileges and the scope required to run SQL statements in Impala. The
following notations are used:

• The SERVER resource type in Ranger implies all databases, all tables, all columns, all UDFs, and all URLs.

• Note: For Impala server level access, you must add the user to the below listed default policies in
Ranger:

all - database, table, column

all - database, udf

all - url
• ANY denotes the CREATE, ALTER, DROP, SELECT, INSERT, or REFRESH privilege.
• ALL privilege denotes the SELECT, INSERT, CREATE, ALTER, DROP, and REFRESH privileges.
• VIEW_METADATA privilege denotes the SELECT, INSERT, or REFRESH privileges.
• The parent levels of the specified scope are implicitly supported. For example, if a privilege is listed with the

TABLE scope, the same privilege granted on DATABASE and SERVER will allow the user to run that specific
SQL statement on TABLE.

Note: For an "impala" user to access any managed tables under the warehouse root directory or external
tables with directories outside the warehouse root directory, the "impala" user must have HDFS RW access to
the underlying paths that are referenced in a query.

Without this HDFS RW access, you may see Impala queries failing with HDFS errors such as this:

Error(13): Permission denied

Root cause: RemoteException: Permission denied: user=impala, access=WRITE, inode="/path/external/
table":hive:supergroup:drwxr-xr-x

For example, to be able to run CREATE VIEW, you need the CREATE privilege on the database and the SELECT
privilege on the source table.

SQL Statement Privileges Object Type /

Resource Type

SELECT SELECT TABLE

5

Cloudera Runtime Impala Authorization

WITH SELECT SELECT TABLE

EXPLAIN SELECT SELECT TABLE

INSERT INSERT TABLE

EXPLAIN INSERT INSERT TABLE

TRUNCATE INSERT TABLE

INSERT TABLELOAD

ALL URI

CREATE DATABASE CREATE SERVER

CREATE SERVERCREATE DATABASE LOCATION

ALL URI

CREATE TABLE CREATE DATABASE

CREATE DATABASECREATE TABLE LIKE

VIEW_METADATA TABLE

CREATE DATABASE

INSERT DATABASE

CREATE TABLE AS SELECT

SELECT TABLE

CREATE DATABASE

INSERT DATABASE

EXPLAIN CREATE TABLE AS SELECT

SELECT TABLE

CREATE TABLECREATE TABLE LOCATION

ALL URI

CREATE DATABASECREATE VIEW

SELECT TABLE

ALTER DATABASE SET OWNER ALL WITH GRANT DATABASE

ALTER TABLE ALL TABLE

ALL TABLEALTER TABLE SET LOCATION

ALL URI

CREATE DATABASEALTER TABLE RENAME

ALL TABLE

ALTER TABLE SET OWNER ALL WITH GRANT TABLE

ALL TABLEALTER VIEW

SELECT TABLE

CREATE DATABASEALTER VIEW RENAME

ALL TABLE

ALTER VIEW SET OWNER ALL WITH GRANT VIEW

DROP DATABASE ALL DATABASE

DROP TABLE ALL TABLE

DROP VIEW ALL TABLE

CREATE DATABASECREATE FUNCTION

ALL URI

6

Cloudera Runtime Impala Authorization

DROP FUNCTION ALL DATABASE

COMPUTE STATS ALL TABLE

DROP STATS ALL TABLE

INVALIDATE METADATA REFRESH SERVER

INVALIDATE METADATA <table> REFRESH TABLE

REFRESH <table> REFRESH TABLE

REFRESH AUTHORIZATION REFRESH SERVER

REFRESH FUNCTIONS REFRESH DATABASE

COMMENT ON DATABASE ALL DATABASE

COMMENT ON TABLE ALL TABLE

COMMENT ON VIEW ALL TABLE

COMMENT ON COLUMN ALL TABLE

DESCRIBE DATABASE VIEW_METADATA DATABASE

VIEW_METADATA TABLEDESCRIBE <table/view>

If the user has the SELECT privilege at the
COLUMN level, only the columns the user
has access will show.

SELECT COLUMN

USE ANY TABLE

SHOW DATABASES ANY TABLE

SHOW TABLES ANY TABLE

SHOW FUNCTIONS VIEW_METADATA DATABASE

SHOW PARTITIONS VIEW_METADATA TABLE

SHOW TABLE STATS VIEW_METADATA TABLE

SHOW COLUMN STATS VIEW_METADATA TABLE

SHOW FILES VIEW_METADATA TABLE

SHOW CREATE TABLE VIEW_METADATA TABLE

SHOW CREATE VIEW VIEW_METADATA TABLE

SHOW CREATE FUNCTION VIEW_METADATA DATABASE

SHOW RANGE PARTITIONS (Kudu only) VIEW_METADATA TABLE

UPDATE (Kudu only) ALL TABLE

EXPLAIN UPDATE (Kudu only) ALL TABLE

UPSERT (Kudu only) ALL TABLE

WITH UPSERT (Kudu only) ALL TABLE

EXPLAIN UPSERT (Kudu only) ALL TABLE

DELETE (Kudu only) ALL TABLE

EXPLAIN DELETE (Kudu only) ALL TABLE

The privileges not listed in the table above will be silently ignored by Impala.

Changing Privileges in Impala

Privileges are managed via the GRANT and REVOKE SQL statements that require the Ranger service enabled.

7

Cloudera Runtime Impala Authorization

Privileges can be also managed in Ranger UI. Especially, for attribute-based access control, Ranger UI is required to
manage authorization.

Impala authorization policies are listed in the Hive service section in Ranger UI.

REFRESH AUTHORIZATION is not required when you make the changes to privileges within Impala. The changes
are automatically propagated.

Changing Privileges from Outside of Impala

If you make a change to privileges in Ranger from outside of Impala, e.g. adding a user, removing a user, modifying
privileges, there are two options to propagate the change:

• Use the ranger.plugin.hive.policy.pollIntervalMs property to specify how often to do a Ranger refresh. The
property is specified in ranger-impala-security.xml in the conf directory under your Impala home directory.

• Run the REFRESH AUTHORIZATION statement to force a refresh.

Warning: As INVALIDATE METADATA is an expensive operation, you should use it judiciously.

Granting Privileges on URI

URIs represent the file paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD
 DATA. Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdfs:// to
make clear that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege
applies to all the files in that directory and any directories underneath it.

URIs must start with hdfs://, s3a://, adl://, or file://. If a URI starts with an absolute path, the path will be appended to
the default filesystem prefix. For example, if you specify:

GRANT ALL ON URI '/tmp';

The above statement effectively becomes the following where the default filesystem is HDFS.

GRANT ALL ON URI 'hdfs://localhost:20500/tmp';

When defining URIs for HDFS, you must also specify the NameNode. For example:

GRANT ALL ON URI file:///path/to/dir TO <principal>
 GRANT ALL ON URI hdfs://namenode:port/path/to/dir TO <principal>

Warning: Because the NameNode host and port must be specified, it is strongly recommended that you use
High Availability (HA). This ensures that the URI will remain constant even if the NameNode changes. For
example:

GRANT ALL ON URI hdfs://ha-nn-uri/path/to/dir TO <principal>

Note:

• If a user uses Impala SQL engine to access the resource of the specified URL/URI provided as part of the
SQL statement and as an admin if you must deny access permissions to this location for this particular
user, you must add the permission "All" in the "HADOOP SQL" policy.

• However, if the user is using Hive as the execution engine and to deny access permission to a location,
then you must add both the “Read” and “Write” permissions in the field of ‘Permissions’ for the
corresponding deny conditions.

• If the same Ranger policy is shared by both Hive and Impala, then you must add “All”, “Read”, and
“Write” to the field of ‘Permissions’ to enforce the policy.

8

Cloudera Runtime Impala Authorization

Object Ownership

Object ownership for tables, views and databases is enabled by default in Impala.

To define owner specific privileges, go to Ranger UI and define appropriate policies on the {OWNER} user.

The CREATE statements implicitly make the user running the statement the owner of the object. For example, if
User A creates a database, foo, via the CREATE DATABASE statement, User A now owns the foo database and is
authorized to perform any operation on the foo database.

An ownership can be transferred to another user or role via the ALTER DATABASE, ALTER TABLE, or ALTER
VIEW with the SET OWNER clause.

Note: Currently, due to a known issue (IMPALA-8937), until the ownership information is fully loaded
in the coordinator catalog cache, the owner of a table might not be able to see the table when executing the
SHOW TABLES statement. The owner can still query the table.

Ranger Column Masking for Impala

Ranger column masking hides sensitive columnar data in Impala query output. For example, you can define a policy
that reveals only the first or last four characters of column data. Column masking is enabled by default. To disable
column masking, modify the following configuration property in all coordinators:

--enable_column_masking=false

This flag might be removed in a future release. The Impala behavior mimics Hive behavior with respect to column
masking.

The following table lists all Impala-supported, built-in mask types for defining column masking in a policy using the
Ranger REST API or Ranger UI:

Type Name Description Transformer

MASK Redact Replace lowercase with 'x',
uppercase with 'X', digits with '0'

mask({col})

MASK_SHOW_LAST_4 Partial mask: show last 4 Show last 4 characters; replace
rest with 'x'

mask_show_last_n({col}, 4, 'x',
'x', 'x', -1, '1')

MASK_SHOW_FIRST_4 Partial mask: show first 4 Show first 4 characters; replace
rest with 'x'

mask_show_first_n({col}, 4, 'x',
'x', 'x', -1, '1')

MASK_HASH Hash Hash the value mask_hash({col})

MASK_NULL Nullify Replace with NULL N/A

MASK_NONE Unmasked (retain original value) No masking N/A

MASK_DATE_SHOW_YEAR Date: show only year Date: show only year mask({col}, 'x', 'x', 'x', -1, '1', 1, 0,
-1)

CUSTOM Custom Custom N/A

The table includes the mask name as it appears in the Ranger UI.

9

https://issues.apache.org/jira/browse/IMPALA-8937

Cloudera Runtime Impala Authorization

Ranger Column Masking Limitations in Impala

• Column masking introduces unused columns during the query analysis and, consequently, additional SELECT
privileges checks on all columns of the masked table.

• Impala might produce more than one audit log entry for a column involved in a column masking policy under all
of these conditions: the column appears in multiple places in a query, the query is rewritten, or the query is re-
analyzed.

• Column masking policies, shared between Hive and Impala, might be affected by SQL/UDF differences between
Hive and Impala, as shown in the following example.

For instance, UTF-8 strings containing non-ASCII characters are not guaranteed to work properly. Suppose a
column masking policy masks the last two characters of a string: s => mask_last_n(s, 2, 'x', 'x', 'x', 'x'). Applying
this policy, Hive properly masks SQL## to SQLxx, but the Impala masking produces SQL##xx because each
Chinese character is encoded in 3 bytes. Impala and Hive do not handle different lengths in the same way.

Limitations on Mask Functions

The mask functions in Hive are implemented through GenericUDFs. Even though Impala users can call Hive UDFs,
Impala does not yet support Hive GenericUDFs, so you cannot use Hive's mask functions in Impala. However, Impala
has builtin mask functions that are implemented through overloads. In Impala, when using mask functions, not all
parameter combinations are supported. These mask functions are introduced in Impala 3.4

The following list includes all the implemented overloads.

• Overloads used by Ranger default masking policies,
• Overloads with simple arguments,
• Overload with all arguments in int type for full functionality. Char argument needs to be converted to their ASCII

value.

To list the available overloads, use the following query:

show functions in _impala_builtins like "mask*";

Note: An error message that states "No matching function with signature: mask..." implies that Impala does
not contain the corresponding overload.

Related Information
GRANT statement

10

https://docs.cloudera.com/cdw-runtime/1.5.3/impala-sql-reference/topics/impala-grant.html

Cloudera Runtime Impala Authorization

REVOKE statement

Apache Ranger documentation

11

https://docs.cloudera.com/cdw-runtime/1.5.3/impala-sql-reference/topics/impala-revoke.html
https://cwiki.apache.org/confluence/display/RANGER/Row-level+filtering+and+column-masking+using+Apache+Ranger+policies+in+Apache+Hive

	Contents
	Impala Authorization

