Cloudera Runtime 1.0.0

Using Apache Hive

Date published: 2019-08-21
Date modified: 2024-05-30

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© ClouderaInc. 2024. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Apache Hive 3 tables.........oov i 5
Locating Hive tables and changing the TOCAIION..........cccoeiiiiriiirieeree e 6

Refer to a table USING Ot NOLELION..........cuiiiriiiriiet ettt sb e enas 7
Understanding CREATE TABLE DENAVION.......c.cociiiiiiiieresesees ettt 7
Creating @ CRUD transaCtional Al ..ot 9
Creating an insert-only transactional tahle.............cci i 9
Creating, using, and dropping an external table.............ccoiiiriiie e 10
Creating an Ozone-based exterNal tAhIE...........oo i e 11
ACCESSING HIVE FIlES 1N OZONE.......ceiuiieciiieiire ettt b et se b e ebeseene e 12
Recommended Hive configurations When USING OZONE..........ccoiviirieinieinieeniee et 14
Converting a managed non-transactional tale to eXternal............cccoeeveiriininnesee e 15
External tables based on a non-default SChemMaL...........cooiiii e 15

Using your schema in MariaDB...........ccviiiiiiiee e e 15

Using your SCEMa in MS SOL......ccoiiiiirieirieieriee sttt sttt b e b e b b e 16

USING YOUF SCNEMA TN OFBCIE.......oiiiiiieirieiirie ettt b e b e e eb e e ebeseebe e 17

Using your SChema in POSLOrESQL........c.coiiririeirieesieere ettt 18

USING CONSITAINTS. ...ttt sttt ettt sttt s eb e se bt se bt e e bt e st s b et b et e b et e b e e e b e s e e b e ne e b e se e bt s e e bt nb e bt s b e st e be st nbeneebene 19
Determining the taIE tYPE... ..o bbb e bbbt 21
Apache Hive 3 ACID transactions.........cccccueeceeieeeieesis e see e see e eveesnee s 21
ApPache HiVe QUENY DASICS........ccuiieiieeiee et 24
Querying the information_schema datalase...... ..o 24
INSErting data iNtO @ tADIE.........oi i ettt e b e b e b et e snenean 26
Updating data in @ tADIE..........eii et b e b b e e e ene 27
MeErging data iN TADIES.........coeiiee et b e b bt s e e bt e bt e e e se e e e e et et eneeneene b 27
Deleting data from @ tAl€.........c.oiiiee e bbb e et es 28
Creating @ temPOrary TADIE.........ooi ettt s h e e bbb e et et ne e e eaea 28
Configuring temporary table SIOFa0E........c.eiiiire et ene s 28

USING @ SUDGUETY ...ttt b bt et s b e b e s et e et e e e s e e e et et e aeese e Rt eaeebenbesbesbenbeseeseenean 29
ST 0To [0S VA == L o] SRRV 29

Use wildcards with SHOW DATABASES........oooireee sttt sttt 30
Aggregating and groUPING QAEAL..........coeeererirtere ettt ettt se e se et s be st e e e e e e e seesesaeeseebesbeseesaeeas 30
(181 VT aTo [ee (= F= 1 o [o = = USSR 30

USiNg COMMON A1 € EXPIESSIONS.......ciuieiieiereeeeee ettt ettt sttt e bt e e e se e e e e et eseeseeaeesesbesbesaesbesbesbesaens 31

U I WO I 1 1= W o (U< YRR 31

Comparing tables USING ANY /SOMESALL ..ottt s b e s 32
Escaping an inValid THENTIEN. ..o et s b e e e e 32
CHAR @ LY SUPPIOIT.....cteteieeieetesie ettt st sbe bt s eesbesbeseesbebese e e es s e e e e e neese e st esesbesbesbesbesbesbeseenbenbeseans 33

ORC VS PalQUEL FOMMIBLS....c..eitiitirteiteste ettt sttt et et st b sbesbesee st e besee e ene e e et ebesbesaesaeebesaeseenbebeseesenseneeneaneas 33
Creating a default directory for managed tables...........ccocoeeiieeviie e 34

Generating SUrrogate KEYS........ccveiieiieeiie ettt e e s re e s ees 35

Partitions and PerforManCe...........ccceeiiieeiiie ettt e e sae e 36

Repairing partitions manually uSing MSCK FEPEIT.........ccciiririririeiriees e 37
QUENY SCNEAUIING. ... eeeeiie et e e reesnne s 38
Enabling SChEAUIEA QUENIES........c.oieeecece ettt st et e e e eaestesnesrestesbesreneeeeneens 38
Enabling all SChedUIEH QUETTES.........coiiiiie ettt st e e st a e ene e e e e enenrennennens 39
Periodically rebuilding a MaterialiZEd VIEW.........ccvciiiii it et 39
Getting scheduled query information and mMoNitor the QUENY........cvceeirececire e enens 40
MaterialiZEA VIBWS.......oceeeiieeeeee ettt sne e 42
Creating and uSINg @ MEENTAlIZEU VIBW.........coui ittt st b e be b e 43
Creating the tables @N VIBW.........cooiiiii e bbb e 43

Using optimizations from @ SUDQUETY..........ciui ittt st e 44

Dropping & MaterialiZEA VIEW.........coeiuiiiiiiieiesie ettt sttt st bese e e e eneas 45

ShOWING MELENTAlIZEA VIBWS.......coueriiiiiiiiee ettt sttt a e sbesbe e e e 45

Describing @ MaterialiZEd VIEW.........cuoiiieeee e b e et 46

MaENEGING QUETY FEUWIITES.eiuiitiiuiiteitertertestes ettt et e e be b e s besbesbesbesee e e benee e eneene et eneebesaesaesbesbeses 48

Purposely using a stale MaterialiZed VIEW.........co.oueiiiiiieeeee e 48

Creating and using a partitioned MaterialiZed VIEW..........cccviiiiiiiiiinene e 48

(O DAVIVAES (o g= o [o] g0 ot o (U] =S PSR 51
SELtiNG UP 8 CDW ClIENL. ...ttt bbb e bbbt b et b et b et e b e neebese b e seebe e 52
Crealing @ FUNCHION. ...c.ccueieeeiieeee ettt b et bt b et b et b e e b e e b se bbbttt bene 53

Using the CUrsor t0 retUrn FECONT SELS........oiiiiiirieirieerte ettt b et b e sttt ebesnene s 54

Stored ProCeAUIrE BXAMPIES..........coiiiiretereee ettt et be e bbbt e st b et b et b e ebene et e se et e seebe e 55

Using JdbcStorageHandler to query RDBMS........ccoooeeiieiieccee e, 56

Cloudera Runtime

Apache Hive 3 tables

Apache Hive 3 tables

Table type definitions and a diagram of the relationship of table typesto ACID properties clarifies Hive tables. The
location of a table depends on the table type. Y ou might choose atable type based on its supported storage format.

Y ou can create ACID (atomic, consistent, isolated, and durable) tables for unlimited transactions or for insert-
only transactions. These tables are Hive managed tables. Alternatively, you can create an externa table for non-

transactional use. Because Hive control of the external table isweak, the table is not ACID compliant.

The following diagram depicts the Hive table types.

— — Hive — —

transactional

NO ACID

Hive Metastore

Managed tables

CRUD insert-only temporary

ORC any any

External

table

metadata

- data

The following matrix includes the types of tables you can create using Hive, whether or not ACID properties are

supported, required storage format, and key SQL operations.

Table Type ACID File For mat INSERT UPDATE/DELETE
Yes Yes Yes

Managed: CRUD ORC

transactional

Managed: Insert-only Yes Any Yes No
transactional

Managed: Temporary No Any Yes No
External No Any Yes No

Although you cannot use the SQL UPDATE or DELETE statements to delete data in some types of tables, you can

use DROP PARTITION on any table type to delete the data.

Table storage formats

The datain CRUD tables must be in ORC format. Implementing a storage handler that supports AcidlnputFormat and

AcidOutputFormat is equivalent to specifying ORC storage.

Insert-only tables support all file formats.

The managed table storage type is Optimized Row Column (ORC) by default. If you accept the default by not
specifying any storage during table creation, or if you specify ORC storage, you get an ACID table with insert,
update, and delete (CRUD) capahilities. If you specify any other storage type, such astext, CSV, AVRO, or JSON,
you get an insert-only ACID table. You cannot update or delete columns in the insert-only table.

Cloudera Runtime Apache Hive 3 tables

Transactional tables are ACID tables that reside in the Hive warehouse. To achieve ACID compliance, Hive has
to manage the table, including access to the table data. Only through Hive can you access and change the datain
managed tables. Because Hive has full control of managed tables, Hive can optimize these tables extensively.

Hive is designed to support arelatively low rate of transactions, as opposed to serving as an online analytical
processing (OLAP) system. Y ou can use the SHOW TRANSACTIONS command to list open and aborted
transactions.

Transactional tablesin Hive 3 are on a par with non-ACID tables. No bucketing or sorting is required in Hive 3
transactional tables. Bucketing does not affect performance. These tables are compatible with native cloud storage.

Hive supports one statement per transaction, which can include any number of rows, partitions, or tables.

External table datais not owned or controlled by Hive. Y ou typically use an external table when you want to access
datadirectly at the file level, using atool other than Hive.

Hive 3 does not support the following capabilities for external tables:

e Query cache

e Materialized views, except in alimited way

e Automatic runtime filtering

» Filemerging after insert

e ARCHIVE, UNARCHIVE, TRUNCATE, MERGE, and CONCATENATE. These statements only work for Hive
Managed tables.

When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the
DROP TABLE command to also remove the actual datain the external table, as DROP TABLE does on a managed
table, you need to set the external .table.purge property to true as described later.

Y ou need to know where Hive stores tables on your object store or file system. Also, right after installing Hive-on-
Tez, you might also want to change the warehouse location.

New tables that you create in CDP are stored in either the Hive warehouse for managed tables or the Hive warehouse
for external tables. The following default warehouse locations are in the HDFS file system:

» /warehouse/tabl espace/managed/hive
» /warehouse/tablespace/external/hive

Managed tables reside in the managed tablespace, which only Hive can access. By default, Hive assumes external
tables reside in the external tablespace.

To determine the managed or external table type, you can run the DESCRIBE EXTENDED table_name command.
Y ou need to set Ranger policies to access external tablesin the object store or file system, such as HDFS.

The capability to change the location of the Hive warehouse is intended for use immediately after installing the
service. Y ou can change the location of the warehouse using the Hive Metastore Action menu in Cloudera Manager
as described in the following steps:

Cloudera Runtime Apache Hive 3 tables

1. In Cloudera Manager, click Clusters Hive Action Menu Create Hive Warehouse Directory .
o &- H|VE—1 Actions =

Status Instances Cor

—_— Stop

Restart
Health Tests
Add Role Instances
& Hive Metastore Server Hy

Healthy Hive Metastora 5

Rename
Tolal Hive Metastore Sen
or eancerning: 100, 00%.
Delete
Enter Maintenance Mode
Status Summary e Mantenance Mo
Gateway ¢ Deploy Client Configuration
Create Hive User Direciory

Hive Metastore Server @1
Craate Hive Warehouse Directory

osts [D))
Create Hive Warehouse Extarnal Directory

2. In ClouderaManager, click Clusters Hive (the Hive Metastore service) Configuration , and change the hive.met
astore.warehouse.dir property value to the path for the new Hive warehouse directory.
3. Click Hive Hive Action Menu Create Hive Warehouse External Directory .

4. Change the hive.metastore.warehouse.external .dir property value to the path for the Hive warehouse external
directory.

5. Configure Ranger Hadoop SQL policy to access the URL of the directory on the object store, such as S3 or
Ozone, or file system, such as HDFS.

Hive 3.1 changes to table references using dot notation might require changes to your Hive scripts.

Hive 3.1 in CDP includes SQL compatibility (Hive-16907), which rejects “db.table’ in SQL queries. The dot (.) is not
alowed in table names. To reference the database and table in atable name, enclosed both in backticks as follows:

“db”. “tabl e’

Hive table creation has changed significantly since Hive 3 to improve useability and functionality. If you are
upgrading from CDH or HDP, you must understand the changes affecting legacy table creation behavior.

Hive has changed table creation in the following ways:

* Creates ACID-compliant table, which is the default in CDP
e Supports simple writes and inserts

e Writesto multiple partitions

» |Inserts multiple data updatesin asingle SELECT statement
« Eliminates the need for bucketing.

If you have an ETL pipeline that creates tables in Hive, the tables will be created as ACID. Hive now tightly controls
access and performs compaction periodically on the tables. Using ACID-compliant, transactional tables causes no

7

Cloudera Runtime Apache Hive 3 tables

performance or operational overload. The way you access managed Hive tables from Spark and other clients changes.
In CDP, access to external tables requires you to set up security access permissions.

Y ou must understand the behavior of the CREATE TABLE statement in legacy platforms like CDH or HDP and how
the behavior changes after you upgrade to CDP.

In CDH 5, CDH 6, and HDP 2, by default CREATE TABLE creates anon-ACID managed table in plain text format.

In HDP 3 and CDP 7.1.0 through 7.1.7.x, by default CREATE TABLE creates either afull ACID transactional table
in ORC format or insert-only ACID transactional tables for all other table formats.

e If you are upgrading from HDP 2, CDH 5, or CDH 6 to CDP 7.1.0 through CDP 7.1.8, by default CREATE
TABLE createsafull ACID transactional tablein ORC format or insert-only ACID transactional tablesfor all
other table formats.

» If you are upgrading from HDP 3 or CDP 7.1.0 through 7.1.7.x to CDP 7.1.8, the existing behavior persists and
CREATE TABLE creates either afull ACID transactional table in ORC format or insert-only ACID transactional
tablesfor all other table formats.

Now that you understand the behavior of the CREATE TABLE statement, you can choose to modify the default table
behavior by configuring certain properties. The order of preference for configuration is as follows:

Override default behavior when creating the table

Irrespective of the database, session, or site-level settings, you can override the default table
behavior by using the MANAGED or EXTERNAL keyword in the CREATE TABLE statement.

CREATE [MANAGED] [EXTERNAL] TABLE foo (id INT);

Set the default table type at a database level

Y ou can use the database property, defaultTableType=EXTERNAL or ACID to specify the default
table type to be created using the CREATE TABLE statement. Y ou can specify this property when
creating the database or at alater point using the ALTER DATABASE statement. For example:

CREATE DATABASE test_db W TH DBPROPERTI ES (' def aul t Tabl eType' =' E
XTERNAL') ;

In this example, tables created under the test_db database using the CREATE TABLE statement
creates external tables with the purge fucntionality enabled (external .table.purge = 'true).

Y ou can also choose to configure a database to allow only external tablesto be created and prevent
creation of ACID tables. While creating a database, you can set the database property, EXTER
NAL_TABLES_ONLY =true to ensure that only external tables are created in the database. For
example:

CREATE DATABASE test_db W TH DBPROPERTI ES (' EXTERNAL_TABLES ONLY
"='true');

Set the default table type at a session level

Y ou can configure the CREATE TABLE behavior within an existing beeline session by setting
hive.create.as.external .legacy to true or false. Setting the value to true resultsin configuring the
CREATE TABLE statement to create external tables by default.

When the session ends, the default CREATE TABLE behavior also ends.
Set the default tabletype at a site level

Cloudera Runtime Apache Hive 3 tables

Y ou can configure the CREATE TABLE behavior at the site level by configuring the hive.create.
as.insert.only and hive.create.as.acid propertiesin Cloudera Manager under Hive configuration.
When configured at the site level, the behavior persists from session to session. For more
information, see Configuring CREATE TABLE behavior.

If you are a Spark user, switching to legacy behavior is unnecessary. Calling ‘ create table’ from SparkSQL, for
example, creates an external table after upgrading to CDP asit did before the upgrade. Y ou can connect to Hive using
the Hive Warehouse Connector (HWC) to read Hive ACID tables from Spark. To write ACID tablesto Hive from
Spark, you use the HWC and HWC API. Spark creates an external table with the purge property when you do not use
the HWC API. For more information, see Hive Warehouse Connector for accessing Spark data.

Configuring legacy CREATE TABLE behavior

Y ou create a CRUD transactional table having ACID (atomic, consistent, isolated, and durable) properties when you
need a managed table that you can update, delete, and merge. Y ou learn by example how to determine the table type.

In thistask, you create a CRUD transactional table. Y ou cannot sort this type of table. To create a CRUD
transactional table, you must accept the default ORC format by not specifying any storage during table creation, or by
specifying ORC storage explicitly.

1. Start Hive.

2. Enter your user name and password.
The Hive 3 connection message, followed by the Hive prompt for entering SQL queries on the command line,

appesars.
3. Create a CRUD transactional table named T having two integer columns, aand b:

CREATE TABLE T(a int, b int);
4, Confirm that you created a managed, ACID table.

DESCRI BE FORMATTED T;

The table type says MANAGED_TABLE and transactional = true.

HMS storage

Y ou can cregte a transactional table using any storage format if you do not reguire update and delete capability. This
type of table has ACID properties, is a managed table, and accepts insert operations only. The storage format of an
insert-only tableis not restricted to ORC.

In thistask, you create an insert-only transactional table for storing text. In the CREATE TABLE statement,
specifying a storage type other than ORC, such astext, CSV, AVRO, or JSON, resultsin an insert-only ACID table.
Y ou can explicitly specify insert-only in the table properties clause.

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/configuring-apache-hive/topics/hive_create_table_default.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Apache Hive 3 tables

1. Start Hive.

2. Enter your user name and password.
The Hive 3 connection message, followed by the Hive prompt for entering SQL queries on the command line,
appears.

3. Create ainsert-only transactional table named T2 having two integer columns, aand b:

CREATE TABLE T2(a int, b int)
STORED AS ORC
TBLPROPERTI ES ('transactional'="true',
"transactional properties'="insert_only');

The 'transactional_properties='"insert_only' is required; otherwise, a CRUD table results. The STORED AS ORC
clauseis optional (default = ORC).

4. Create an insert-only transactional table for text data.

CREATE TABLE T3(a int, b int)
STORED AS TEXTFI LE;

The 'transactional_properties='"insert_only' is not required because the storage format is other than ORC.

HMS storage

You use an external table, which is atable that Hive does not manage, to import data from afile on afile system

into Hive. In contrast to the Hive managed table, an external table keeps its data outside the Hive metastore. Hive
metastore stores only the schema metadata of the external table. Hive does not manage, or restrict access, to the actual
external data.

Y ou need to set up access to externa tablesin the file system or object store using Ranger.

In thistask, you create an external table from CSV (commarseparated values) data stored on the file system. Next,
you want Hive to manage and store the actual data in the metastore. Y ou create a managed table and insert the
externa table data into the managed table.

This task demonstrates the following Hive principles:

« TheLOCATION clausein the CREATE TABLE specifies the location of external table data.

* A major difference between an external and a managed (internal) table: the persistence of table data on the files
system after aDROP TABLE statement.

« External table drop: Hive drops only the metadata, consisting mainly of the schema.
* Managed table drop: Hive deletes the data and the metadata stored in the Hive warehouse.

After dropping an external table, the datais not gone. To retrieve it, you issue another CREATE EXTERNAL
TABLE statement to load the data from the file system.

10

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Apache Hive 3 tables

1. Create atext file named students.csv that contains the following lines.

1, j ane, doe, seni or, mat hemati cs 2, ohn, snith,junior, engi neering

2. Movethefileto HDFSin adirectory called andrena, and put students.csv in the directory.

3. Start the Hive shell.
For example, substitute the URI of your HiveServer: beeline-u jdbc:hive2://myhiveserver.com:10000 -n hive -
p

4. Create an external table schema definition that specifies the text format, loads data from students.csv in /user/
andrena.

CREATE EXTERNAL TABLE | F NOT EXI STS nanes_t ext (

student | D I NT,

Fi rst Nane STRI NG

Last Nane STRI NG,

year STRI NG

Maj or STRI NG

COMVENT ' Student Nanmes' ROW FORMAT DELI M TED FI ELDS TERM NATED BY ',
STORED AS TEXTFI LE LOCATI ON ' /user/ andrena';

5. Verify that the Hive warehouse stores the student names in the external table.
SELECT * FROM names _text;

6. Create the schemafor a managed table.

CREATE TABLE | F NOT EXI STS Names(
student | D I NT,

Fi rst Name STRI NG

Last Nane STRI NG

year STRI NG

Maj or STRI NG

COMMVENT ' St udent Nanes';

7. Movethe external table data to the managed table.
INSERT OVERWRITE TABLE Names SELECT * FROM names_text;

8. Verify that the data from the external table resides in the managed table, and drop the external table, and verify
that the data still resides in the managed table.

SELECT * from Nanmes; DROP TABLE names_text; SELECT * from Nanes;

The results from the managed table Names appears.

9. Verify that the external table schema definition islost.
SELECT * from names_text;

Selecting all from names_text returns no results because the external table schemais|ost.
10. Check that the students.csv file on the file system or object store remains intact.

HMS storage
HDFSACLS

You use the LOCATION clause in the CREATE EXTERNAL TABLE statement to create an external table having
source datain Ozone.

11

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/hive-metastore/topics/hive-hms-table-storage.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/hdfs-acls/topics/hdfs-acls-examples.html

Cloudera Runtime Apache Hive 3 tables

In thistask, you create an external table and load datafrom a.csv file that is stored in Ozone. Y ou can use the
LOCATION clause in the CREATE EXTERNAL TABLE statement to specify the location of the external table data.
The metadatais stored in the Hive warehouse.

« |f you are running an insecure cluster, ensure that you set up the necessary policies and permissions in Ranger to
give user accessto Hive external filesin Ozone.

e You must have created a volume and bucket in Ozone. For example:

ozone sh volunme create vol 1
ozone sh bucket create vol 1/ bucket 1

* Itisrecommended that you set certain Hive configurations before querying Hive tablesin Ozone.

« For the Hive Table creation, the warehouse directory must be set at bucket level or directory level under the
hive.metastore.warehouse.dir or hive.metastore.warehouse.external .dir parameters. For more information, see
Changing the Hive warehouse location.

1. Create atext file named employee.csv that contains the following records.

1, Andr ew, 45000, Techni cal Manager
2, Sam 35000, Pr oof Reader

2. Movethe employee.csv file to adirectory called employee_hive in the Ozone filesystem.

3. Connect to the gateway node of the cluster and on the command line of the cluster, launch Beeline to start the
Hive shell.
beeline -u jdbc:hive2://myhiveserver.com:10000 -n hive -p
The Hive connection message appears, followed by the Hive prompt for entering queries on the command line.

4. Create an external table schema definition that specifies the text format and loads data from employee.csv in ofs://
ozonel/vol I/bucketl/employee hive.

CREATE EXTERNAL TABLE | F NOT EXI STS enpl oyee(
enpl oyee | D | NT,
nanme STRI NG
sal ary DOUBLE,
desi gnati on STRI NG
ROW FORMAT DELI M TED FI ELDS TERM NATED BY ',
STORED AS TEXTFI LE
LOCATI ON ' of s: // ozonel/ vol 1/ bucket 1/ enpl oyee_hi ve';

5. Verify that the Hive warehouse stores the employee.csv records in the external table.
SELECT * FROM employee;

Setting up Ranger policies to access Hive filesin Ozone
Commands for managing Ozone volumes and buckets
Recommended Hive configurations when using Ozone

Learn how to set up policiesto give users access to Hive externa filesin Ozone. For example, if Ozone users are
running SparkSQL statements that query Hive tables, you must set up an Ozone access policy and Ozone file system
access palicy.

12

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/hive-introduction/topics/hive_changing_warehouse.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/using-hiveql/topics/hive-ozone-policy.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/ozone-storing-data/topics/ozone-managing-storage-elements-by-using-the-command-line-interface.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/using-hiveql/topics/hive-ozone-recommended-configurations.html

Cloudera Runtime

Apache Hive 3 tables

About this task

When Ranger is enabled in the cluster, any user other than the default admin user, "ol

m" requires the necessary Ranger

permissions and policy updates to access the Ozone filesystem. To create a Hive external table that points to the

Ozone filesystem, the "hive" user should have the required permissionsin Ranger.

In thistask, you first enable Ozone in the Ranger service, and then set up the required policies.

Procedure

1. InClouderaManager, click Clusters Ozone Configuration to navigate to the configuration page for Ozone.
2. Search for ranger_service, and enable the property.

3. Click Clusters Ranger Ranger Admin Web Ul , enter your user name and password, then click Sign In.
The Service Manager for Resour ce Based Pohcms pageis displayed in the Ranger console.

Service Manager

+08a

- =1

= HDFs

em_hdts

=YARN + 8 &
- <0
= KAFKA + 8 B
S - |
aATLAS + @ 8

-« B

(= OZONE + B

- -0

CM_yarm

om_kafka

om_atias

com_ozone

4. Click thecm_ozone preloaded resource-based service to modify an Ozone policy.

5.

In the cm_ozone policies page, click the Policy ID or click

Security Zone: Sojoct Zone Mame

(= HBASE + @ B

em_hbase - = n
= KNOX + M@
cm_knox - # B
=NFIl +@88

aADLs + @B

[= SCHEMA-
REGISTRY +

cm_schema-regiatry

e - |

policy to modify the policy details.
6. Inthe Allow Conditions pane, add the "hive" user, choose the necessary permissions, and then click Save.

¥ om | | ¥ hive

Select User

& Iripet

(= HADOOP SQL
+

Hadoop SOL & | n

(SOLR + @8
-0

(= NIFI-REGISTRY
+

em_solr

~Kubu + 8

-0

cr_kudi

&

Policy
Conditions

Aad

_ondions

+

B Esxport

Edit against the "all - volume, bucket, key"

Permissions

mm
 List] Delete | Read ACL)

| Write_ACL
s

13

Cloudera Runtime Apache Hive 3 tables

7. Click the Service Manager link in the breadcrumb trail and then click the Hadoop SQL prel oaded resource-based
service to update the Hadoop SQL URL palicy.

g Ranger ' Access Manager

Sarvice Manager cmi_azone Policies

F

In the Hadoop SQL policies page, click the Policy ID or click Edit against the "all - url" policy to modify
the policy details.

By default, "hive", "hue", "impaad’, "admin” and afew other users are provided access to all the Ozone URLSs.

Y ou can select users and groups in addition to the default. To grant everyone access, add the "public" group to the
group list. Every user is then subject to your allow conditions.

Select Group Select User Permissions
[sclect | update | Create | Orop | atter | index
] (o] o
 pubi Service Admin
o s o) o) | R
#

What to do next
Create aHive external table having source datain Ozone.

Also, it isrecommended that you set certain Hive configurations before querying Hive tablesin Ozone.

Related Information

Using Ranger with Ozone

Creating an Ozone-based Hive external table

Creating partitions dynamically

Recommended Hive configurations when using Ozone

Recommended Hive configurations when using Ozone

It is recommended that you configure certain Hive properties if you are querying Hive tablesin Ozone.

Configurations

The following configurations can be specified through Beeline during runtime using the SET command. For example,
SET key=value;. The configuration persists only for the particular session or query. If you want to set it permanently,
then specify the propertiesin hive-sitexml using the Cloudera Manager Safety Valve:

Table 1:
Configuration Value
hive.optimize.sort.dynamic.partition true
hive.optimize.sort.dynamic.partition.threshold 0
hive.query.results.cache.enabled fase
hive.acid.direct.insert.enabled true
hive.orc.splits.includefileid fase

14

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/ozone-security/topics/ozone-using-with-ranger.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/using-hiveql/topics/hive-create-ozone-based-table.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/using-hiveql/topics/hive-create_partitions_dynamically.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/using-hiveql/topics/hive-ozone-recommended-configurations.html

Cloudera Runtime Apache Hive 3 tables

Important: If you notice that some queries are taking alonger time to complete or failing entirely (usually
noticed in large clusters), you can choose to revert the value of hive.optimize.sort.dynamic.partition.threshold
to "-1". The performance issue isrelated to HIV E-26283.

Creating an Ozone-based Hive external table
Setting up Ranger policies to access Hive filesin Ozone

You can easily convert amanaged table, if it isnot an ACID (transactional) table, to external using the ALTER
TABLE statement. Y ou might have a non-ACID, managed table after an upgrade from Hive 1 or 2.

The following pseudo-code changes a managed table, if it is not transactional, to external. The data and metadata is
dropped when the table is dropped.

ALTER TABLE ... SET TBLPROPERTI ES(' EXTERNAL' =' TRUE' , ' ext ernal . t abl e. pur ge' ='
true')

Before and After Upgrading Table Type Comparison

If you define a schema for external tables, you need to know how to create the table using the hive.sgl.schematable
property to prevent problems with client connections to the tables. Examples for widely-used databases show you
how to create such tables.

The handling of schema differs from DBMSto DBMS. In this task, you follow examples to create external tables that
the following databases can understand.

e MariaDB

e MSSQL

e Oracle

¢ PostgreSQL

Y ou follow an example of how to create an external table in MariaDB using your own schema.

GRANT INSERT ANY TABLE TO bob;
GRANT INSERT ANY TABLE TO dlice;

Using MariaDB, create an external table based on a user-defined schema.

CREATE SCHEMA bob;
CREATE TABLE bob. country

id int,
nane var char (20)

)

15

https://issues.apache.org/jira/browse/HIVE-26283
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/using-hiveql/topics/hive-create-ozone-based-table.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/using-hiveql/topics/hive-ozone-policy.html
https://docs.cloudera.com/cdp-private-cloud-upgrade/latest/upgrade-hdp/topics/ug_hdp_hive_check_locations.html

Cloudera Runtime Apache Hive 3 tables

insert into bob.country
values (1, 'India');
insert into bob.country
val ues (2, 'Russia');
insert into bob.country
val ues (3, 'USA);

CREATE SCHEMA al i ce;
CREATE TABLE alice.country
(

id int,

nane var char (20)
)
insert into alice.country
val ues (4, 'ltaly');
insert into alice.country
val ues (5, 'Geece');
insert into alice.country
val ues (6, 'China');
insert into alice.country
val ues (7, 'Japan');

Y ou follow an example of how to create an external tablein MS SQL using your own schema.

1. Using MS SQL, create an external table based on a user-defined schema.

CREATE DATABASE wor | d;
USE wor | d;

CREATE SCHEMA bob
CREATE TABLE bob. country
(

id int,

nane var char (20)

)

insert into bob.country
values (1, 'India');
insert into bob.country
val ues (2, 'Russia');
insert into bob.country
val ues (3, 'USA')

CREATE SCHEMA al i ce;
CREATE TABLE alice.country
(

id int,

nane var char (20)

)

insert into alice.country
values (4, 'ltaly');
insert into alice.country
val ues (5, 'Geece');
insert into alice.country
val ues (6, 'China');
insert into alice.country
val ues (7, 'Japan');

16

Cloudera Runtime Apache Hive 3 tables

2. InMS SQL, create a user and associate them with a default schema.

CREATE LOG N greg W TH PASSWORD = ' GregPass123! $';
CREATE USER greg FOR LOA N greg W TH DEFAULT_SCHEMA=boDb;

3. Allow the user to connect to the database and run queries. For example:

GRANT CONNECT, SELECT TO gr eg;

Y ou follow an example of how to create an external table in Oracle using your own schema.

In Oracle, dividing the tables into different namespaces/schemas is achieved through different users. The CREATE
SCHEMA statement exists in Oracle, but has different semantics from those defined by SQL Standard and those
adopted in other DBMS.

To create "local” usersin Oracle you heed to be connected to the Pluggable Database (PDB), not to the Container
Database (CDB). The following example was tested in Oracle XE edition, using only PDB -- XEPDBL1.

1. Using Oracle XE edition, connect to the PDB.

ALTER SESSI ON SET CONTAI NER = XEPDBI,;

2. Create the bob schemal/user and give appropriate connections to be able to connect to the database.

CREATE USER bob | DENTI FI ED BY bobpass;
ALTER USER bob QUOTA UNLI M TED ON users;
GRANT CREATE SESSI ON TO bob;

CREATE USER bob | DENTI FI ED BY bobpass;
ALTER USER bob QUOTA UNLI M TED ON users;
GRANT CREATE SESSI ON TO bob;

3. Create the alice schemaluser, give appropriate connections to be able to connect to the database, and create an
external table.

CREATE USER al i ce | DENTI FI ED BY al i cepass;
ALTER USER al i ce QUOTA UNLIM TED ON users;

GRANT CREATE SESSI ON TO al i ce;

CREATE TABLE alice.country
(

id int,

nane var char (20)

)

insert into alice.country
val ues (4, 'ltaly');
insert into alice.country
val ues (5, 'Geece');
insert into alice.country
val ues (6, 'China');
insert into alice.country
val ues (7, 'Japan');

17

Cloudera Runtime Apache Hive 3 tables

4. Grant the SELECT ANY privilegeto client users.

Without the SELECT ANY privilege, auser cannot see the tables/views of another user. When a user connects
to the database using a specific user and schemait is not possible to refer to tables in another user/schema --
namespace.

GRANT SELECT ANY TABLE TO bob;
GRANT SELECT ANY TABLE TO ali ce;

5. Allow the usersto perform inserts on any table/view in the database, not only those present on their own schema.

GRANT | NSERT ANY TABLE TO bob;
GRANT | NSERT ANY TABLE TO al i ce;

Y ou follow an example of how to create an external table in PostgreSQL using your own schema.

1. Using Postgres, create external tables based on a user-defined schema.

CREATE SCHEMA bob;
CREATE TABLE bob. country
(

id int,

nane var char (20)
)
insert into bob.country
values (1, 'India');
insert into bob.country
val ues (2, 'Russia');
insert into bob.country
val ues (3, 'USA')

CREATE SCHEMA al i ce;
CREATE TABLE alice.country

id int,

nane var char (20)
)
insert into alice.country
values (4, 'ltaly');
insert into alice.country
val ues (5, 'Geece');
insert into alice.country
val ues (6, 'China');
insert into alice.country
val ues (7, 'Japan');

2. Create auser and associate them with a default schema <=> search_path.

CREATE ROLE greg WTH LOG N PASSWORD ' G egPass123! $' ;
ALTER ROLE greg SET search_path TO bob;

3. Grant the necessary permissions to be able to access the schema.

GRANT USAGE ON SCHEMA bob TO greg;
GRANT SELECT ON ALL TABLES I N SCHEMA bob TO greg;

18

Cloudera Runtime Apache Hive 3 tables

Y ou can use SQL constraints to enforce data integrity and improve performance. Using constraints, the optimizer can
simplify queries. Constraints can make data predictable and easy to locate. Using constraints and supported modifiers,
you can follow examples to constrain queries to unique or not null values, for example.

Hive enforces DEFAULT, NOT NULL and CHECK only, not PRIMARY KEY, FOREIGN KEY, and UNIQUE.

Y ou can use the constraints listed below in your queries. Hive enforces DEFAULT, NOT NULL and CHECK only,
not PRIMARY KEY, FOREIGN KEY, and UNIQUE. DEFAULT even if enforced, does not support complex types
(array,map,struct). Constraint enforcement is limited to the metadata level. This limitation aids integration with third
party tools and optimization of constraints declarations, such as materialized view rewriting.

CHECK

Limits the range of values you can place in a column.
DEFAULT

Ensures avalue exists, which is useful in offloading data from a data warehouse.
PRIMARY KEY

Identifies each row in atable using a unique identifier.
FOREIGN KEY

Identifies arow in another table using a unique identifier.
UNIQUE KEY

Checks that values stored in a column are different.
NOT NULL

Ensures that a column cannot be set to NULL.

Y ou can use the following optional modifiers:
ENABLE

Ensures that al incoming data conforms to the constraint.
DISABLE

Does not ensure that all incoming data conforms to the constraint.
VALIDATE

Checksthat al existing datain the table conforms to the constraint.
NOVALIDATE

Does not check that all existing datain the table conforms to the constraint.
ENFORCED

Mapsto ENABLE NOVALIDATE.
NOT ENFORCED

Mapsto DISABLE NOVALIDATE.
RELY

Specifies abiding by a constraint; used by the optimizer to apply further optimizations.
NORELY

Specifies not abiding by a constraint.

19

Cloudera Runtime Apache Hive 3 tables

Y ou use modifiers as shown in the following syntax:

((((ENABLE | DI SABLE) (VALIDATE | NOVALIDATE)) | (ENFORCED | NOT ENFORC
ED)) (RELY | NORELY))

Default modfiers
The following default modifiers arein place:

¢ Thedefault modifier for ENABLE isNOVALIDATE RELY.
¢ Thedefault modifier for DISABLE isNOVALIDATE NORELY.

« If you do not specify amodifier when you declare a constraint, the default is ENABLE NOVALIDATE RELY.
The following constraints do not support ENABLE:

* PRIMARY KEY
« FOREIGN KEY
* UNIQUEKEY

To prevent an error, specify amodfier when using these constraints to override the default.

The optimizer uses the constraint information to make smart decisions. The following examples show the use of
constraints.

The following example shows how to create atable that declaresthe NOT NULL in-line constraint to constrain a
column.

CREATE TABLE t(a TINYINT, b SMALLINT NOT NULL ENABLE, c | NT);
The constrained column b acceptsa SMALLINT value as shown in the first INSERT statement.

I NSERT I NTO t val ues(2, 45, 5667) ;

1 row affected ...
The constrained column b will not accept a NULL value.

I NSERT | NTO t val ues(2, NULL, 5667) ;

Error: Error running query: org.apache. hadoop. hi ve. gl . exec. errors. Dat
aConstraintViolationError: /

Ei t her CHECK or NOT NULL constraint violated! (state=, code=0)

The following examples shows how to declare the FOREIGN KEY constraint out of line. Y ou can specify a
constraint name, in this case fk, in an out-of-line constraint

CREATE TABLE Persons (
I D I NT NOT NULL,
Name STRI NG NOT NULL,
Age | NT,
Creator STRI NG DEFAULT CURRENT_USER(),
Creat eDat e DATE DEFAULT CURRENT_DATE(),
PRI MARY KEY (| D) DI SABLE NOVALI DATE) ;

CREATE TABLE Busi nessUnit (

I D I NT NOT NULL,

Head | NT NOT NULL,

Creator STRI NG DEFAULT CURRENT_USER(),

20

Cloudera Runtime Apache Hive 3 ACID transactions

Creat eDat e DATE DEFAULT CURRENT_DATE(),

PRI MARY KEY (1 D) DI SABLE NOVALI DATE,

CONSTRAI NT fk FORElI GN KEY (Head) REFERENCES Persons(| D) DI SABLE NOVA
LI DATE

)

Y ou can determine the type of a Hive table, whether it has ACID properties, the storage format, such as ORC, and
other information. Knowing the table type is important for a number of reasons, such as understanding how to store
datain the table or to completely remove data from the cluster.

1. Inthe Hive shell, get an extended description of the table.
For example: DESCRIBE EXTENDED mydatabase.mytable;

2. Scrall to the bottom of the command output to see the table type.
The following output says the table type is managed. transaction=true indicates that the table has ACID properties:

| Detailed Table Information | Tabl e(tabl eNane:t2, dbName: nydat abase, o
wner: hdfs, createTinme: 1538152187, | ast AccessTinme: 0, retention: 0, sd: Stor
ageDescriptor(col s:[Fi el dSchema(nane: a, type:int, coment:null), FieldSc
hema(nane: b, type:int, coment:null)], .

HMS storage

Hive 3 achieves atomicity and isolation of operations on transactional tables by using techniques in write, read, insert,
create, delete, and update operations that involve deltafiles. Y ou can obtain query status information from these files
and use the files to troubleshoot query problems.

Hive 3 write and read operations improve the ACID qualities and performance of transactional tables. Transactional
tables perform as well as other tables. Hive supports al TPC Benchmark DS (TPC-DS) queries.

Hive 3 and later extends atomic operations from simple writes and inserts to support the following operations:

* Writing to multiple partitions
« Using multipleinsert clausesin asingle SELECT statement
A single statement can write to multiple partitions or multiple tables. If the operation fails, partial writes or inserts are

not visible to users. Operations remain fast even if data changes often, such as one percent per hour. Hive 3 and later
does not overwrite the entire partition to perform update or delete operations.

Hive compacts ACID transaction files automatically without impacting concurrent queries. Automatic compaction
improves query performance and the metadata footprint when you query many small, partitioned files.

Read semantics consist of snapshot isolation. Hive logically locksin the state of the warehouse when aread operation
starts. A read operation is not affected by changes that occur during the operation.

21

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/hive-metastore/topics/hive-hms-table-storage.html

Cloudera Runtime Apache Hive 3 ACID transactions

When an insert-only transaction begins, the transaction manager gets atransaction ID. For every write, the transaction
manager allocates awrite ID. This|D determines a path to which datais actually written. The following code shows
an example of a statement that creates insert-only transactional table:

CREATE TABLE tm (a int, b int) TBLPROPERTIES
("transactional'="true', 'transactional properties' ="insert_only"')

Assume that three insert operations occur, and the second one fails:

| NSERT | NTO t m VALUES(1, 1)
I NSERT | NTO tm VALUES(2,2); // Fails
| NSERT | NTO t m VALUES(3, 3)

For every write operation, Hive creates a delta directory to which the transaction manager writes datafiles. Hive
writes al datato deltafiles, designated by write IDs, and mapped to a transaction ID that represents an atomic
operation. If afailure occurs, the transaction is marked aborted, but it is atomic:

tm
___ delta_0000001_0000001_0000

000000_0

___ del ta_0000002_0000002_0000 //Fails
000000_0

___ del ta_0000003_0000003_0000

##% 000000_0

During the read process, the transaction manager maintains the state of every transaction. When the reader starts, it
asks for the snapshot information, represented by a high watermark. The watermark identifies the highest transaction
ID in the system followed by alist of exceptions that represent transactions that are still running or are aborted.

The reader looks at deltas and filters out, or skips, any IDs of transactions that are aborted or still running. The reader
uses this technique with any number of partitions or tables that participate in the transaction to achieve atomicity and
isolation of operations on transactional tables.

You create afull CRUD (create, retrieve, update, delete) transactional table using the following SQL statement:
CREATE TABLE acidtbl (a INT, b STRING;

Running SHOW CREATE TABLE acidtbl provides information about the defaults: transactional (ACID) and the

ORC data storage format:
FococococoCcoCoCoCoOCOCoOCOCOCOCOCOCOCOCOCOCOCoOCOCoCoooC +
| createtab_stnt |
feccoccococooccococoococococoococcooocooocooocococooooosoooc +

CREATE TABLE " acidthl " (
“a’ int,

I I
N Y |
| b™ string) |
| ROW FORVAT SERDE |
| ' or g. apache. hadoop. hive. gl .io.orc. OrcSerde' |

| STORED AS | NPUTFORNVAT |

| ' or g. apache. hadoop. hive. gl .io.orc. Orcl nput Format' |
| OUTPUTFORVAT [

| ' or g. apache. hadoop. hive. gl .i0.orc. O cCQut put Format"' |
| LOCATI ON

I

's3:// nyserver.com 8020/ war ehouse/ t abl espace/ managed/ hi ve/ aci dt b

| TBLPROPERTI ES (|

22

Cloudera Runtime Apache Hive 3 ACID transactions

[" bucketing version' ="' 2", |
["transactional ' ='true', |
| "transactional _properties' = default"', |
["transient_| astDdl Ti me' =' 1555090610') [

Tables that support updates and deletions require aslightly different technique to achieve atomicity and isolation.
Hive runs in append-only mode, which means Hive does not perform in-place updates or deletions. Isolation of
readers and writers cannot occur in the presence of in-place updates or deletions. In this situation, alock manager or
some other mechanism, is required for isolation. These mechanisms create a problem for long-running queries.

Instead of in-place updates, Hive decorates every row with arow ID. Therow ID isastruct that consists of the
following information:

* Thewrite ID that maps to the transaction that created the row
« Thebucket ID, abit-backed integer with several bits of information, of the physical writer that created the row
e Therow ID, which numbers rows as they were written to a datafile

Metadata Columns | original_write_id

bucket_id Ruw_l D

row_id
eurrent_write_id

User Columns col_1:

a:INT
col_2:

b : STRING

Instead of in-place deletions, Hive appends changes to the table when a deletion occurs. The deleted data becomes
unavailable and the compaction process takes care of the garbage collection later.

The following example inserts several rows of datainto afull CRUD transactional table, creates adeltafile, and adds
row IDsto adatafile.

I NSERT | NTO aci dtbl (a,b) VALUES (100, "oranges"), (200, "apples"), (300, "b
ananas");

This operation generates a directory and file, delta_ 00001 _00001/bucket 0000, that have the following data:

{1,0,0} 100 "oranges"
{1,0.1} 200 “apples’
{1,0,2} 300 "bananas’

A delete statement that matches a single row also creates a deltafile, called the delete-delta. The file stores a set of
row IDsfor the rows that match your query. At read time, the reader looks at thisinformation. When it finds a delete

23

Cloudera Runtime Apache Hive query basics

event that matches arow, it skips the row and that row is not included in the operator pipeline. The following example
deletes data from atransactional table:

DELETE FROM aci dTbl where a = 200;

This operation generates adirectory and file, delete_delta_ 00002_00002/bucket_0000 that have the following data:

{1,0,1} null null

An update combines the deletion and insertion of new data. The following example updates a transactional table:

UPDATE aci dTbl SET b = "pears" where a = 300;

One deltafile contains the delete event, and the other, the insert event:

ACD_.PK A B

100 | 100 | “oranges’

{1.0,1} 200 "apples” l l

{1,0,2% 300 | “bananas” ACID_PK A B el b A Z
delta_00001_00001/bucket_0000 | (20,0}] 300 I pears” | Leo2 oot [oun |

delta_ 00003 00003/bucket 0000 delate_delta_00003_00003/bucket_0000

The reader, which requires the AcidinputFormat, applies al the insert events and encapsulates all the logic to handle
delete events. A read operation first gets snapshot information from the transaction manager based on which it selects
filesthat are relevant to that read operation. Next, the process splits each data file into the number of pieces that each
process has to work on. Relevant delete events are localized to each processing task. Delete events are stored in a
sorted ORC file. The compressed, stored datais minimal, which is a significant advantage of Hive 3. Y ou no longer
need to worry about saturating the network with insert eventsin deltafiles.

Using Apache Hive, you can query distributed data storage. Y ou need to know ANSI SQL to view, maintain, or
analyze Hive data. Examples of the basics, such as how to insert, update, and delete data from a table, helps you get
started with Hive.

Hive supports ANSI SQL and atomic, consistent, isolated, and durable (ACID) transactions. For updating data, you
can use the MERGE statement, which meets ACID standards. Materialized views optimize queries based on access
patterns. Hive supports tables up to 300PB in Optimized Row Columnar (ORC) format. Other file formats are also
supported. Y ou can create tables that resemble those in atraditional relational database. Y ou use familiar insert,
update, delete, and merge SQL statements to query table data. The insert statement writes data to tables. Update and
delete statements modify and delete values already written to Hive. The merge statement streamlines updates, deletes,
and changes data capture operations by drawing on co-existing tables. These statements support auto-commit that
treats each statement as a separate transaction and commitsit after the SQL statement is executed.

ORC Language Manual on the Apache wiki

Hive supports the ANSI-standard information_schema database, which you can query for information about tables,
views, columns, and your Hive privileges. The information_schema data reveals the state of the system, similar to

24

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC/

Cloudera Runtime Apache Hive query basics

sys database data, but in a user-friendly, read-only way. Y ou can use joins, aggregates, filters, and projectionsin
information_schema queries.

One of the following steps involves changing the time interval for synchronization between HiveServer and the
policy. HiveServer responds to any policy changes within thistime interval. Y ou can query the information_schema
database for only your own privilege information.

1. Open Ranger Access Manager, and check that the preloaded default database tables columns and information_
schema database policies are enabled for group public.

Policy ID Policy Name Policy Labels Status Audit Logging Roles Groups Users.

all - global = Enab Enabled = =

=
]
e

all - database, table, column - Enab Enabled - -

el

+ More
9 all - database, table - Enabled Enabled - -

+ More
10 all - database - Enabled Enabled -

i More
11 all - hiveservice -~ Enabled Enabled - -

+ More
12 all - database, udf - Enabled Enabled — —

+ More
13 all - url - Enabled Enabled — -

+ More
14 default database tables columns - Enable nabled public
15 Informaticn_schema database .., — Enablec Enabled —

The information schema database is synchronized every half hour by default.
2. Start Hive, and check for the information schema database:

SHOW DATABASES;

feoccoocococcoococcooooo +
| dat abase_nane |
fooccooccoccococoocococooooo +
| default |
| information_schema |
| sys I
feoccoocococcoococcooooo +

3. Usetheinformation _schema database to list tables in the database.

USE i nf or mati on_schenm;

SHOW TABLES;
R .
| tab_nane

o e e e ememeeeo +

25

Cloudera Runtime Apache Hive query basics

col umm_pri vi | eges
col ums

schenat a

tabl e _privil eges
tabl es

Vi ews

4. Query theinformation_schema database to see, for example, information about tables into which you can insert
values.

SELECT * FROM i nformati on_schena. tabl es WHERE i s_insertabl e_i nto=" YES' |

imt 2;

e e R
| tabl es. tabl e_catal og|tabl es.tabl e schena|tabl es. tabl e nane
feccococococococooocoocoooo foccocoococoococooocoocooa fococcocooococoocooso
| def aul t | def aul t | student s2

| def aul t | def aul t [t3

To insert datainto atable you use afamiliar ANSI SQL statement. A simple example shows you have to accomplish
this basic task.

Toinsert datainto an ACID table, use the Optimized Row Columnar (ORC) storage format. To insert datainto a non-
ACID table, you can use other supported formats. Y ou can specify partitioning as shown in the following syntax:

INSERT INTO TABLE tablename [PARTITION (partcol1=vall, partcol2=val2 ...)] VALUES vaues row [, vau
es row...]

where
values row is(value[, vaue]) .
A value can be NULL or any SQL literal.

1. Create an ACID table to contain student information.
CREATE TABLE students (name VARCHAR(64), age INT, gpa DECIMAL(3,2));

2. Insert name, age, and gpavalues for afew students into the table.
INSERT INTO TABLE students VALUES (‘fred flintstone', 35, 1.28), (‘barney rubble', 32, 2.32):

3. Create atable called pageviews and assign null values to columns you do not want to assign avalue.
CREATE TABLE pagevi ews (userid VARCHAR(64), link STRING origin STRI NG

PARTI TI ONED BY (datestanp STRI NG CLUSTERED BY (userid) |NTO 256 BUCKETS;
| NSERT | NTO TABLE pagevi ews PARTI TI ON (dat estanp = '2014-09-23") VALUES ('

jsmth', "mail.com, 'sports.com), ('jdoe', "mail.com, null);

I NSERT | NTO TABLE pagevi ews PARTI TI ON (dat est anp) VALUES ('tjohnson', '

sports.com, 'finance.com, '2014-09-23"), ('tlee', 'finance.com, null,
'2014-09-21");

The ACID dataresides in the warehouse.

26

Cloudera Runtime Apache Hive query basics

The syntax describes the UPDATE statement you use to modify data already stored in atable. An example shows
how to apply the syntax.

Y ou construct an UPDATE statement using the following syntax:
UPDATE tablename SET column = value [, column = value...] [WHERE expression];

Depending on the condition specified in the optional WHERE clause, an UPDATE statement might affect every row
in atable. The expression in the WHERE clause must be an expression supported by a SELECT clause. Subqueries
are not allowed on the right side of the SET statement. Partition columns cannot be updated.

Y ou must have SELECT and UPDATE privilegesto use the UPDATE statement.

Create a statement that changes the values in the name column of all rows where the gpa column has the value of 1.0.
UPDATE students SET name = null WHERE gpa <= 1.0;

A sample statement shows how you can conditionally insert existing data in Hive tables using the ACID MERGE
statement. Additional merge operations are mentioned.

The MERGE statement is based on ANS|-standard SQL.

1. Construct a query to update the customers names and states in customer target table to match the names and states
of customers having the same IDs in the new_customer_stage source table.

2. Enhance the query to insert data from new_customer_stage table into the customer table if none already exists.
Update or delete data using MERGE in asimilar manner.

MERGE | NTO cust oner USI NG (SELECT * FROM new_cust oner _stage) AS sub ON s
ub.id = custoner.id

VWHEN MATCHED THEN UPDATE SET nane = sub. nane, state = sub.state

VWHEN NOT MATCHED THEN | NSERT VALUES (sub.id, sub.nane, sub.state);

Note: Y ou can map specific columnsin the INSERT clause of the query instead of passing values
IE (including null) for columnsin the target table that do not have any datato insert. The unspecified
columnsin the INSERT clause are either mapped to null or use default constraints, if any.

For example, you can construct the INSERT clause as WHEN NOT MATCHED THEN INSERT VAL
UES (customer.id=sub.id, customer.name=sub.name, customer.state=sub.state) instead of WHEN
NOT MATCHED THEN INSERT VALUES (sub.id, sub.name, 'null’, sub.state).

Merge documentation on the Apache wiki

27

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-Merge

Cloudera Runtime Apache Hive query basics

Y ou use the DELETE statement to del ete data already written to an ACID table.

Use the following syntax to delete data from a Hive table. DELETE FROM tablename [WHERE expression];

Delete any rows of data from the studentstable if the gpa column has avalue of 1 or 0.
DELETE FROM students WHERE gpa <= 1,0;

In CDP Private Cloud Base, you can create atemporary table to improve performance by storing data temporarily for
intermediate use, or reuse, by a complex query.

Temporary table data persists only during the current Apache Hive session. Hive drops the table at the end of the
session. If you use the name of a permanent table to create the temporary table, the permanent table isinaccessible
during the session unless you drop or rename the temporary table. Y ou can create a temporary table having the same
name as another user's temporary table because user sessions are independent. Temporary tables do not support
partitioned columns and indexes.

CDP Private Cloud Base only

1. Create atemporary table having one string column.
CREATE TEMPORARY TABLE tmpl (tname varchar(64));

2. Create atemporary table using the CREATE TABLE AS SELECT (CTAYS) statement.

CREATE TEMPORARY TABLE tnp2 AS SELECT c2, c¢3, c4 FROM myt abl e;
3. Create atemporary table using the CREATE TEMPORARY TABLE LIKE statement.

CREATE TEMPORARY TABLE tnp3 LI KE tnpl;

Create/Drop/Truncate Table on the Apache wiki

In CDP Private Cloud Base, you can change the storage of temporary table data to meet your system requirements.

By default, Apache Hive stores temporary table datain the default user scratch directory /tmp/
hive-[*** USERNAME***]. Often, thislocation is not set up by default to accommodate alarge amount of data such
as that resulting from temporary tables.

CDP Private Cloud Base only

28

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTableCreate/Drop/TruncateTable

Cloudera Runtime Apache Hive query basics

1. Configure Hiveto store temporary table data either in memory or on SSD by setting hive.exec.temporary.table.st
orage.
» Store datain memory. hive.exec.temporary.table.storage to memory
e Store dataon SSD. hive.exec.temporary.table.storage to ssd

2. Create and use temporary tables.

Hive drops temporary tables at the end of the session.

Hive supports subqueries in FROM clauses and WHERE clauses that you can use for many Apache Hive operations,
such as filtering data from one table based on contents of another table.

A subquery isa SQL expression in an inner query that returns aresult set to the outer query. From the result set, the
outer query is evaluated. The outer query isthe main query that contains the inner subquery. A subquery in aWHERE
clause includes a query predicate and predicate operator. A predicate is a condition that evaluates to a Boolean value.
The predicate in a subquery must also contain a predicate operator. The predicate operator specifies the relationship
tested in a predicate query.

Select all the state and net_payments values from the transfer_paymentstable if the value of the year columnin the
table matches ayear in the us_censustable.

SELECT state, net_paynents
FROM transfer _paynents
WHERE t ransfer _paynents.year |IN (SELECT year FROM us_census);

The predicate starts with the first WHERE keyword. The predicate operator isthe IN keyword.

The predicate returnstrue for arow in the transfer_payments table if the year value in at least one row of the
us_census table matches ayear value in the transfer_payments table.

To construct queries efficiently, you must understand the restrictions of subqueriesin WHERE clauses.

» Subqueries must appear on the right side of an expression.

» Nested subqgueries are not supported.

» Subquery predicates must appear as top-level conjuncts.

» Subqueries support four logical operatorsin query predicates: IN, NOT IN, EXISTS, and NOT EXISTS.
e ThelN and NOT IN logical operators may select only one column in a WHERE clause subquery.

e The EXISTS and NOT EXISTS operators must have at least one correlated predicate.

» Theleft side of a subquery must qualify all references to table columns.

» Referencesto columnsin the parent query are allowed only in the WHERE clause of the subquery.

« Subquery predicates that reference a column in a parent query must use the equals (=) predicate operator.
» Subquery predicates may refer only to columnsin the parent query.

» Correlated subqueries with an implied GROUP BY statement may return only one row.

e All unqualified references to columnsin a subquery must resolve to tables in the subquery.

» Correlated subqueries cannot contain windowing clauses.

29

Cloudera Runtime Apache Hive query basics

InaSHOW DATABASES LIKE statement, you can use wildcards and specify any character or asingle character.

SHOW DATABASES or SHOW SCHEMAS lists all of the databases defined in Hive metastore. Y ou can use the
following wildcards:
%

Matches any single character or multiple characters.

_ (underscore)
Matches any single character.

Matches either the part of the pattern on the left or the right side of the pipe.

For example, 'students, 'stu%', 'stu_ents' match the database named students.

You use AVG, SUM, or MAX functions to aggregate data, and the GROUP BY clause to group data query resultsin
one or more table columns..

The GROUP BY clause explicitly groups data. Hive supports implicit grouping, which occurs when aggregating the
tablein full.

1. Construct aquery that returns the average salary of all employeesin the engineering department grouped by year.

SELECT year, AV@ sal ary)
FROM Enpl oyees
WHERE Departnment = 'engi neering’ GROUP BY year;

2. Construct an implicit grouping query to get the highest paid employee.

SELECT MAX(sal ary) as hi ghest pay,
AVG sal ary) as average_pay

FROM Enpl oyees

WHERE Departnment = 'engineering';

Y ou can query one table relative to the datain another table.

A correlated query contains a query predicate with the equals (=) operator. One side of the operator must reference at
least one column from the parent query and the other side must reference at |east one column from the subquery. An
uncorrelated query does not reference any columns in the parent query.

30

Cloudera Runtime Apache Hive query basics

Select all state and net_payments values from the transfer_payments table for years during which the value of the
state column in the transfer_payments table matches the value of the state column in the us_census table.

SELECT state, net_paynents
FROM t ransf er _paynents
VHERE EXI STS
(SELECT year
FROM us_census
WHERE t ransfer_paynments.state = us_census. state);

This query is correlated because one side of the equals predicate operator in the subquery references the state column
in the transfer_payments table in the parent query and the other side of the operator references the state column in the
us_censustable.

This statement includes a conjunct in the WHERE clause.

A conjunct is equivalent to the AND condition, while adisjunct is the equivaent of the OR condition The following
subquery contains a conjunct:

... WHERE transfer_payments.year = "2018" AND us_census.state= "cdifornia’
The following subquery contains a disjunct:

... WHERE transfer_payments.year = "2018" OR us census.state= "california"

Using common table expression (CTE), you can create atemporary view that repeatedly references a subquery.

A CTE isaset of query results obtained from asimple query specified within aWITH clause that immediately
precedes a SELECT or INSERT keyword. A CTE exists only within the scope of asingle SQL statement and not
stored in the metastore. Y ou can include one or more CTEs in the following SQL statements:

 SELECT

* INSERT

» CREATETABLEASSELECT
« CREATEVIEW ASSELECT

Recursive queries are not supported and the WITH clause is not supported within subquery blocks.

Y ou can use acommon table expression (CTE) to simplify creating aview or table, selecting data, or inserting data.

1. UseaCTE to create atable based on another table that you select using the CREATE TABLE AS SELECT
(CTAS) clause.

CREATE TABLE s2 AS WTH ql AS (SELECT key FROM src WHERE key = '4') SELECT
* FROM q1;

2. UseaCTE to create aview.

CREATE VIEWv1 AS WTH g1 AS (SELECT key FROM src WHERE key='5') SELECT *
from ql;

3. UseaCTE to select data.

WTH ql AS (SELECT key fromsrc where key = '5")

31

Cloudera Runtime Apache Hive query basics

SELECT * from ql;

4, UseaCTE to insert data

CREATE TABLE s1 LIKE src;
W TH g1 AS (SELECT key, val ue FROM src WHERE key = '5') FROM gl | NSERT OV
ERWRI TE TABLE s1 SELECT *;

Y ou learn how to use quantified comparison predicates (ANY/SOME/ALL) in non-correlated subqueries according to
the SQL standard. SOME isany aliasfor ANY.

Y ou can use one of the following operators with a comparison predicate:

ALL:

« |f thetableis empty, or the comparison istrue for every row in subquery table, the predicate is true for that
predicand.

» |If the comparison isfalsefor at least one row, the predicate is false.
SOME or ANY:

» |If the comparison istrue for at least one row in the subquery table, the predicate is true for that predicand.
» If thetableis empty or the comparison is false for each row in subquery table, the predicate is false.

If the comparison is neither true nor false, the result is undefined.

For example, you run the following query to match any value in c2 of thl equal to any value in c1 from the same thl:
select cl1 fromtbl where cl = ANY (select c2 fromtbl);
Y ou run the following query to match al valuesin c1 of thl not equal to any valuein c2 from the same thl.

select cl1 fromtbl where cl <> ALL (select c2 fromthbl);

When you need to use reserved words, special characters, or a spacein acolumn or partition name, encloseit in
backticks ().

An identifier in SQL is a sequence of a phanumeric and underscore (_) characters enclosed in backtick characters. In
Hive, these identifiers are called quoted identifiers and are case-insensitive. Y ou can use the identifier instead of a
column or table partition name.

Y ou have set the following parameter to column in the hive-sitexml file to enable quoted identifiers:

32

Cloudera Runtime Apache Hive query basics

Set the hive.support.quoted.identifiers configuration parameter to column in the hive-sitexml file to enable quoted
identifiersin column names. Valid values are none and column. For example, in Hive execute the following
command: SET hive.support.quoted.identifiers = column.

Procedure

1. Create atable named test that has two columns of strings specified by quoted identifiers:
CREATE TABLE test (x+y" String, "a?b” String);

2. Create atable that defines a partition using a quoted identifier and aregion number:
CREATE TABLE partition_date-1 (key string, value string) PARTITIONED BY (‘dt+x" date, region int);

3. Create atable that defines clustering using a quoted identifier:
CREATE TABLE bucket_test("key?1" string, value string) CLUSTERED BY (‘key?1’) into 5 buckets;

CHAR data type support
Knowing how Hive supports the CHAR data type compared to other databases is critical during migration.

Table 2: Trailing Whitespace Characters on Various Databases

Data Type Hive Oracle SQL Server MySQL
CHAR Ignore Ignore Ignore Ignore Ignore
VARCHAR Compare Compare Configurable Ignore Ignore
STRING Compare N/A N/A N/A N/A

ORC vs Parquet formats

The differences between Optimized Row Columnar (ORC) file format for storing datain SQL engines are important
to understand. Query performance improves when you use the appropriate format for your application.

ORC and Parquet capabilities comparison

The following table compares SQL engine support for ORC and Parquet.

Table 3:

Capability Data War ehouse Parquet SQL Engine

Read non-transactional Apache Hive Hive
data

Read non-transactional Apache Impala # Impala
data

Read/Write Full ACID Apache Hive Hive
tables

Read Full ACID tables Apache Impala Impala
Read Insert-only managed | Apache Impaa # Impala
tables

Column index Apache Hive # Hive
Column index Apache Impala # Impala
CBO uses column Apache Hive Hive
metadata

Recommended format Apache Hive Hive

33

Cloudera Runtime Creating a default directory for managed tables

Recommended format Apache Impala # Impala
Vectorized reader Apache Hive # # Hive
Read complex types Apache Impala # # Impala
Read/write complex types | Apache Hive # # Hive

Y ou can specify atop-level directory for managed tables when creating a Hive database.

Create adefault directory for managed tables only after limiting CREATE DATABASE and ALTER DATABASE
statements to users having the Admin role, which has hive service user permissions. Permissions to the managed
directory must be limited to the hive service user. In addition to restricting permissions to the hive user, you can
further secure managed tables using Ranger fine-grained permissions, such as row-level filtering and column
masking.

As Admin, you specify a managed location within the default location specified by the hive.metastore.warehouse.dir
configuration property to give managed tables a common location for governance policies. The managed location
designates asingle root directory for all tenant tables, managed and external.

Use the following syntax to create a database that specifies alocation for managed tables:

CREATE (DATABASE| SCHEMA) [I F NOT EXI STS] dat abase_name
[COMMENT dat abase_comment]
[LOCATI ON ext ernal _tabl e path]
[MANAGEDLOCATI ON managed_t abl e_di rectory_pat h]
[WTH DBPROPERTI ES (property_nane=property value, ...)];

Do not set LOCATION and MANAGEDLOCATION to the same file system path.

Use the following syntax to set or change alocation for managed tables.

ALTER (DATABASE| SCHEMA) dat abase_nanme SET MANAGEDLOCATI ON [managed_t abl e dir
ectory_path];

1. Create a database mydatabase that specifies atop level directory named sales for managed tables.

CREATE DATABASE nydat abase MANAGEDLOCATI ON '/ war ehouse/ t abl espace/ managed/
hi ve/ sal es’ ;

2. Changethe abc_sales database location to the same location as mydatabase.

ALTER DATABASE abc_sal es SET MANAGEDLOCATI ON '/ war ehouse/ t abl espace/ mana
ged/ hi ve/ sal es' ;

Cloudera Runtime

Generating surrogate keys

Y ou can use the built-in SURROGATE_KEY user-defined function (UDF) to automatically generate numerical 1ds
for rows as you enter data into atable. The generated surrogate keys can replace wide, multiple composite keys.

Hive supports the surrogate keys on ACID tables only, as described in the following matrix of table types:

Managed: CRUD Yes Yes ORC Yes Yes
transactional

Managed: Insert-only | Yes Yes Any Yes No
transactional

Managed: Temporary | No No Any Yes No
Externa No No Any Yes No

The table you want to join using surrogate keys cannot have column types that need casting. These data types must be
primitives, such as INT or STRING.

Joins using the generated keys are faster than joins using strings. Using generated keys does not force datainto
asingle node by arow number. Y ou can generate keys as abstractions of natural keys. Surrogate keys have an
advantage over UUIDs, which are slower and probabilistic.

The SURROGATE_KEY UDF generates aunique Id for every row that you insert into atable. It generates keys
based on the execution environment in a distributed system, which includes a number of factors, such asinternal data
structures, the state of atable, and the last transaction id. Surrogate key generation does not require any coordination
between compute tasks.

The UDF takes either no arguments or two arguments:

Write |d bits
Task Id bits

Create a students table in the default ORC format that has ACID properties.

CREATE TABLE students (row_id I NT, name VARCHAR(64), dorm I NT);

Insert data into the table. For example:

I NSERT | NTO TABLE students VALUES (1,
rubbl e', 200);

"fred flintstone', 100), (2,

Create a version of the students table using the SURROGATE_KEY UDF.

CREATE TABLE students_v2
("ID BIG NT DEFAULT SURROGATE_KEY(),
row_id I NT,
name VARCHAR(64),
dorm | NT,
PRI MARY KEY (1 D) DI SABLE NOVALI DATE) ;

' bar ney

35

Cloudera Runtime Partitions and performance

4. Insert data, which automatically generates surrogate keys for the primary keys.

I NSERT | NTO students_v2 (row_id, name, dorn) SELECT * FROM students;

5. Takealook at the surrogate keys.

SELECT * FROM students_v2;

Fococcoccoccoocooooooo Fococcoccococococooooooo Fococcoccococoocoocooooo Fococcococooooo
-------- +
| students v2.id | students v2.row.id | students _v2.nanme | students_v2.
dorm |
fococcocooococoocooso occocococoococoococooccooooo foccocoococoococooocoocooa focococooooooo
-------- +
| 1099511627776 | 1 | fred flintstone | 100

I
| 1099511627777 | 2 | barney rubble | 200
+—————|— ——————————— B T T I
------ +

6. Add the surrogate keys as aforeign key to another table, such as a student_grades table, to speed up subsequent
joins of the tables.

ALTER TABLE st udent grades ADD COLUMNS (gen_id Bl G NT);

MERGE | NTO student _grades g USI NG students_v2 s ONg.row.id = s.row.id
VWHEN MATCHED THEN UPDATE SET gen_id = s.id;

Now you can achieve fast joins on the surrogate keys.

A brief description of partitions and the performance benefits includes characters you must avoid when creating
a partition. Examples of creating a partition and inserting data in a partition introduce basic partition syntax. Best
practices for partitioning are mentioned.

A table you create without partitioning puts the datain asingle directory. Partitioning divides the datainto multiple
directories. Queries of one or more columns based on the directories can run faster. Lengthy full table scans are
avoided. Only datain the relevant directory is scanned. For example, a school_records table partitioned on a year
column, segregates values by year into separate directories. A WHERE condiition such as YEAR=2020, YEAR IN

(2020,2019), or YEAR BETWEEN 2001 AND 2010 scans only the data in the appropriate directory to resolve the
query. Using partitions typically improves query performance.

Ina SQL query, you define the partition as shown in the following example:

CREATE TABLE sal e(id in, anount decimal) PARTITI ONED BY (xdate string, state
string);

To insert datainto thistable, you specify the partition key for fast loading:

I NSERT | NTO sal e (xdat e='2016-03-08', state='CA') SELECT * FROM st agi ng_t abl
e WHERE xdat e=' 2016- 03-08' AND state='CA';

Y ou do not need to specify dynamic partition columns. Hive generates a partition specification if you enable dynamic
partitions.

36

Cloudera Runtime Partitions and performance

I NSERT | NTO sal e (xdate, state)
SELECT * FROM st agi ng_t abl e;

Follow these best practices when you partition tables and query partitioned tables:

» Never partition on aunique ID.
« Size partitions to greater than or equal to 1 GB on average.
« Design queries to process not more than 1000 partitions.

When you create a partition, do not use the following characters in a partition name:

e colon
e question mark
e percent

If you use these charactersin a partition name, your directories will be named using the URL encoding of these
characters, as described in "Why some specia characters should not be used in a partition name in Hive/lmpala.”

Why some specia characters should not be used in a partition name in Hive/lmpala

The MSCK REPAIR TABLE command was designed to manually add partitions that are added to or removed from
the file system, but are not present in the Hive metastore.

This task assumes you created a partitioned external table named emp_part that stores partitions outside the
warehouse. Y ou remove one of the partition directories on the file system. This action renders the metastore
inconsistent with the file system. Y ou repair the discrepancy manually to synchronize the metastore with the file
system.

1. Remove the dept=sales object from the file system.
2. From the Hive command line, ook at the emp_part table partitions.

SHOW PARTI T1 ONS enp_part ;

Thelist of partitionsis stale; it still includes the dept=sales directory.

| dept=finance |
| dept=sales |
| dept=service |

3. Repair the partition manually.

MSCK REPAI R TABLE enp_part DROP PARTI TI ONS;

37

https://community.cloudera.com/t5/Customer/Why-some-special-characters-should-not-be-used-in-a/ta-p/304028

Cloudera Runtime Query scheduling

Apache Hive scheduled queriesis a simple, secure way to create, manage, and monitor scheduled jobs. For
applications that require OS-level schedulers like cron, Apache Oozie, or Apache Airflow, you can use scheduled
queries.

Using SQL statements, you can schedule Hive queries to run on arecurring basis, monitor query progress, and
optionally disable a query schedule. Y ou can run queries to ingest data periodically, refresh materialized views,
replicate data, and perform other repetitive tasks. For example, you can insert data from a stream into a transactional
table every 10 minutes, refresh amaterialized view used for Bl reporting every hour, and replicate data from one
cluster to another on a daily basis.

A Hive scheduled query consists of the following parts:

e A unigque name for the schedule
e The SQL statement to be executed
» The execution schedule defined by a Quartz cron expression.

Quartz cron expressions are expressive and flexible. For instance, expressions can describe simple schedules such as
every 10 minutes, but also an execution happening at 10 AM on the first Sunday of the month in January, February in
2021, 2022. Y ou can describe common schedules in an easily comprehensible format, for example every 20 minutes
or every day at ‘3:25:00'.

A scheduled query belongs to a namespace, which is a collection of HiveServer (HS2) instances that are responsible
for executing the query. Scheduled queries are stored in the Hive metastore. The metastore stores scheduled queries,
the status of ongoing and previously executed statements, and other information. HiveServer periodically polls

the metastore to retrieve scheduled queries that are due to be executed. If you run multiple HiveServer roles, the
metastore guarantees that only one of them executes a certain scheduled query at any given time.

Y ou create, ater, and drop scheduled queries using dedicated SQL statements.

Apache Hive Language Manual--Scheduled Queries

Y ou need to know how to enable and disable scheduled queries and understand how the default state can prevent you
from running a query unintentionally.

Scheduled queries are created in disabled mode by default in CDP. This default hel ps prevent you from running new
scheduled queries inadvertantly. Y ou must explicitly enable new scheduled queries. A scheduled query can keep
the cluster awake at the wrong time. To enable a particular schedule, for example schedulel, you run the ALTER
SCHEDULED QUERY statement:

ALTER SCHEDULED QUERY schedul el ENABLE;

To disable this schedule: ALTER SCHEDULED QUERY schedulel DISABLE;

Apache Hive Language Manual--Scheduled Queries

38

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries
https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Query scheduling

Y ou can enable asingle scheduled query using a SQL command, but to enable multiple scheduled queries you need
perform afew stepsin Cloudera Manager.

To enable al newly created schedulesin CDP Private Cloud Base, follow these steps:

1. InClouderaManager, click Clusters Hive on TEZ Configuration
2. In Search, enter safety.

3. InHive Service Advanced Configuration Snippet (Safety Valve) for hive-sitexml HIVE_ON_TEZ-1 (Service-
Wide), click + and add the following property: hive.scheduled.queries.create.as.enabled

4, Setthevaueto true.
5. Save and restart Hive on Tez.

Using materialized views can enhance query performance. Y ou need to update materialized view contents when new
datais added to the underlying table. Instead of rebuilding the materialized view manually, you can schedule this task.
Automatic rebuilding then occurs periodically and transparently to users.

This task assumes you created the following schemas for storing employee and departmental information:

CREATE TABLE enps (
enpi d | NTEGER,

dept no | NTEGER,

name VARCHAR(256),
sal ary FLOAT,
hire_date TI MESTAMP);

CREATE TABLE depts (
dept no | NTEGER,

dept nane VARCHAR(256) ,
| ocationi d | NTEGER);

Imagine that you add data for a number of employees to the table. Assume many users of your database issue queries
to access to data about the employees hired during last year including the department they belong to.

Y ou perform the steps below to create a materialized view of the table to address these queries. Imagine new
employees are hired and you add their records to the table. These changes render the materialized view contents
outdated. Y ou need to update its contents. Y ou create a scheduled query to perform this task. The scheduled
rebuilding will not occur unless there are changes to the input tables. Y ou test the scheduled query by bypassing the
schedule and executing the schedule immediately. Finally, you change the schedul e to rebuild less often.

1. To handle many queriesto access recently hired employee and departmental data, create a materialized view.

CREATE MATERI ALI ZED VI EW nv_recently hired AS
SELECT enpi d, nane, deptnane, hire_date FROM enps
JO N depts ON (enps.deptno = depts. dept no)

39

Cloudera Runtime Query scheduling

VWHERE hire_date >= '2020-01-01 00: 00: 00' ;

2. Usethe materialized view by querying the employee data.

SELECT enpi d, nanme FROM enps
JO N depts ON (enps. deptno = depts. dept no)
WHERE hire_date >= '2020-03-01 00: 00: 00' AND dept name = 'finance';

3. Assuming new hiring occurred and you added new records to the emps table, rebuild the materialized view.

ALTER MATERI ALI ZED VI EW nmv_r ecent | y_hi red REBUI LD;

The rebuilding updates the contents of the materialized view.
4. Create a scheduled query to invoke the rebuild statement every 10 minutes.
CREATE SCHEDULED QUERY schedul ed _rebuil d
EVERY 10 M NUTES AS
ALTER MATERI ALI ZED VI EW mv_recent|y_hired REBUI LD;

A rebuild executes every 10 minutes, assuming changes to the emp table occur within that period. If amaterialized
view can be rebuilt incrementally, the scheduled rebuild does not occur unless there are changes to the input
tables.

5. To test the schedule, run a scheduled query immediately.

ALTER SCHEDULED QUERY schedul ed _rebui |l d EXECUTE;

6. Change the frequency of the rebuilding.

ALTER SCHEDULED QUERY schedul ed_rebuild EVERY 20 M NUTES;

Apache Hive Language Manual--Scheduled Queries

After you create a scheduled query you can access information about it in the scheduled_queries table of the Hive
information schema. Y ou can also use the information schema to monitor scheduled query execution.

1. Query the information schemato get information about a schedule.

SELECT *
FROM i nf or mati on_schena. schedul ed_queri es

40

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime

Query scheduling

WHERE schedul e_name = 'schedul ed_rebuild';

The following information appears about the scheduled query:
scheduled_query id

Unique numeric identifier for a scheduled query.
schedule_name

Name of the scheduled query.
enabled

Whether the scheduled query is currently enabled or not.

cluster_namespace

Namespace that the scheduled query belongs to.
schedule

Schedul e described as a Quartz cron expression.
user

Owner of the scheduled query.
query

SQL query to be executed.
next_execution

When the next execution of this scheduled query is due.

2. Monitor the most recent scheduled query execution.

SELECT *

41

Cloudera Runtime Materialized views

FROM i nf or mati on_schena. schedul ed_execut i ons;

Y ou can configure the retention period for thisinformation in the Hive metastore.
scheduled_execution_id

Unique numeric identifier for a scheduled query execution.
schedule_name

Name of the scheduled query associated with this execution.

executor_query id
Query 1D assigned to the execution by HiveServer (HS2).

state
One of the following phases of execution.

e STARTED. A scheduled query is due and a HiveServer instance has retrieved itsinformation.

» EXECUTING. HiveServer is executing the query and reporting progress in configurable
intervals.

e FAILED. The query execution was stopped due to an error or exception.
* FINISHED. The query execution was successful.
 TIMED_OUT. HiveServer did not provide an update on the query status for more than a

configurable timeout.

start_time

Start time of execution.
end_time

End time of execution.
elapsed

Difference between start and end time.
error_message

If the scheduled query failed, it contains the error message associated with its failure.
last_update time

Time of the last update of the query status by HiveServer.

Apache Hive Language Manual--Scheduled Queries

A materialized view is a Hive-managed database object that holds a query result you can use to speed up the
execution of aquery workload. If your queries are repetitive, you can reduce latency and resource consumption by
using materialized views. Y ou create materialized views to optimize your queries automatically.

Using a materialized view, the optimizer can compare old and new tables, rewrite queries to accelerate processing,
and manage maintenance of the materialized view when data updates occur. The optimizer can use a materialized
view to fully or partially rewrite projections, filters, joins, and aggregations.

Y ou can perform the following materialized view operations:
» Create amaterialized view of queries or subqueries
» Drop amateriaized view

e Show materialized views
» Describe amaterialized view

42

https://cwiki.apache.org/confluence/display/Hive/Scheduled+Queries

Cloudera Runtime Materialized views

» Enable or disable query rewriting based on a materialized view
* Globally enable or disable rewriting based on any materialized view
« Use partitioning to improve the performance of materialized views

Materialized view commands

Y ou can create amaterialized view of a query to calculate and store results of an expensive operation, such as
aparticular join, on amanaged, ACID table that you repeatedly run. When you issue queries specified by that
materialized view, the optimizer rewrites the query based on it. This action saves reprocessing. Query performance
improves.

In the tasks that follow, you create and popul ate example tables. The tables are managed tables. Y ou cannot create
amaterialized view of an external table. Y ou create a materialized view of ajoin of the tables. Subsequently, you
run aquery to join the tables, and the query plan takes advantage of the precomputed join to accelerate processing.
These over-simplified tasks show the syntax and output of a materialized view, and do not demonstrate accel erated
processing that occurs in area-world task, processing alarge amount of data.

Materialized view commands

Y ou see how to create simple tables, insert the data, and join the tables using a materialized view. Y ou run the query,
and the optimizer takes advantage of the precomputation performed by the materialized view to speed response time.

1. Createtwo ACID tables:

CREATE TABLE enps (
enpid | NT,

dept no | NT,

name VARCHAR(256),
sal ary FLOAT,
hire_date TI MESTAWP);

CREATE TABLE depts (
dept no | NT,

dept nane VARCHAR(256) ,
| ocationid I NT);

2. Insert some datainto the tables for example purposes:

I NSERT | NTO TABLE enps VALUES (10001, 101, ' jane doe', 250000, ' 2018-01-10');
I NSERT | NTO TABLE enps VALUES (10002, 100, ' sonporn kl ai |l ee', 210000, ' 2017-12

-25");
I NSERT | NTO TABLE enps VALUES (10003, 200, 'jei ranan thongnopneua', 175000, '
2018-05-05");

| NSERT | NTO TABLE depts VALUES (100,' HR , 10);
| NSERT | NTO TABLE depts VALUES (101,' Eng', 11);
| NSERT | NTO TABLE depts VALUES (200, Sup', 20);

Tables must be ACID (managed) tables.

43

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Materialized views

3. Create amaterialized view to join the tables:

CREATE MATERI ALI ZED VI EW nv1

AS SELECT enpid, deptnane, hire_date
FROM enps JO N depts

ON (enps. dept no = depts. dept no)
VWHERE hire_date >= '2017-01-01";

4. Runaquery that takes advantage of the precomputation performed by the materialized view:

SELECT enpi d, deptnane

FROM enps

JO N depts

ON (enps. deptno = depts. dept no)
VHERE hire_date >= '2017-01-01'
AND hire_date <= '2019-01-01";

Output is:
foccoocooo feccoococooo +
| enmpid | deptname |
feoocooooo foococoooccoooo +
| 10003 | Sup |
| 10002 | HR [
| 10001 | Eng [
fococoocooo foccoococooo +

Y ou can create a query having a subguery that the optimizer rewrites based on a materialized view. You create a
materialized view, and then run a query that uses the materialized view.

In thistask, you create a materialized view and use it in a subquery to return the number of destination-origin pairs.
Suppose the data resides in a table named flights_data that has the following columns:

1 Chicago Hyderabad

2 London Moscow

1. Create atable schema definition named flights_data for destination and origin data.

CREATE TABLE flights_dat a(
c_id INT,
dest VARCHAR(256),
ori gi n VARCHAR(256));

2. Create amaterialized view that counts destinations and origins.

CREATE MATERI ALI ZED VI EW nmv1
AS
SELECT dest, origin, count(*)
FROM flights_data
GROUP BY dest, origin;

Cloudera Runtime Materialized views

3. Take advantage of the materialized view to speed your queries when you have to count destinations and origins
again.
For example, use a subquery to select the number of destination-origin pairs like the materialized view.

SELECT count (*)/2

FROM
SELECT dest, origin, count(*)
FROM flights_data
CGROUP BY dest, origin

) AS t;

Transparently, the SQL engine uses the work already in place since creation of the materialized view instead of
reprocessing.

Materialized view commands

Y ou must understand when to drop a materialized view to successfully drop related tables.

Drop amaterialized view before performing a DROP TABLE operation on arelated table. Y ou cannot drop atable
that has a relationship with a materialized view.

In this task, you drop a materialized view named mv1 from the database named default.

Drop amaterialized view in my_database named mv1.
DROP MATERIALIZED VIEW default.mv;

Materialized view commands

You can list all materialized views in the current database or in another database. Y ou can filter alist of materiaized
views in a specified database using regular expression wildcards.

Y ou can use regular expression wildcards to filter the list of materialized views you want to see. The following
wildcards are supported:

o Asterisk (*)

Represents one or more characters.
* Pipesymbol (|)

Represents a choice.

For example, mv_g* and *mv|ql* match the materialized view mv_q1. Finding no match does not cause an error.

1. List materialized viewsin the current database.
SHOW MATERIALIZED VIEWS;

2. List materialized views in a particul ar database.
SHOW MATERIALIZED VIEWS IN ancther_database;

45

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Materialized views

Materialized view commands

Y ou can get summary, detailed, and formatted information about a materialized view.

This task builds on the task that creates a materialized view named mv1.

1. Get summary information about the materialized view named mv1.

DESCRI BE nv1;

Focococococoo Fococcoccococooooooo Fococococoo +
| col _name | data_type | coment |
feccoocoocoon feccoccocoooococo feccococooo +
enpid	int	
dept nane	varchar(256)	
hire_date	tinmestanp	
Focococococoo Fococcoccococooooooo Fococococoo +

2. Get detailed information about the materialized view named mv1.

DESCRI BE EXTENDED nv1;

fooocococcoccoccoocoococooocoocooc foccococcocccoccoccoocooocoooocoocoooo
| col _nane | data_type
feccoccococooccocooococcooooooo feccoococcococoococcooocococooocoocooo
| enpid | int

| deptnane | varchar (256)

| hire_date | tinestanp

[NULL

| Detailed Table Information | Tabl e(tabl eNane: nv1l, dbNane: default, own
er: hive, createTine: 1532466307, | astAccessTinme:0, retention:0, sd: Storag
eDescriptor(col s:[Fi el dSschema(nane: enpid, type:int, comment:null), Field
Schema(nane: dept nane, type:varchar(256), coment:null), FieldSchenma(nane
:hire_date, type:tinmestanp, comment:null)], |ocation:hdfs://nyserver.com
: 8020/ war ehouse/ t abl espace/ managed/ hi ve/ mv1, i nput For mat: or g. apache. hado
op. hive.qgl.io.orc. Ocl nput Format, out put For mat: or g. apache. hadoop. hi ve. gl
.i0.orc. O cCut put Format, conpressed: fal se, nunBuckets:-1, serdelnfo: SerD
el nfo(nane: null, serializationLib:org.apache. hadoop. hive.qgl.io.orc. O cSe
rde, paraneters:{}), bucketCols:[], sortCols:[], paraneters:{}, skewedln
f o: Skewedl nf o(skewedCol Nanmes: [], skewedCol Val ues:[], skewedCol Val ueLocat
i onMaps: {}), storedAsSubDirectories:false), partitionKeys:[], paraneters
:{total Si ze=488, nunmRows=4, rawDataSi ze=520, COLUWN _STATS ACCURATE={\" BA
SIC STATS\":\"true\"}, nunFiles=1, transient | astDdl Ti ne=1532466307, buc
keting_version=2}, view(Oiginal Text: SELECT enpi d, deptnane, hire_date\nF
ROM enps2 JO N dept s\ nON (enps2. deptno = depts. dept no)\ nVHERE hire_date >=

'2017-01-17', vi ewexpandedText: SELECT “enps2 . enpid , “depts . deptnane’
, enps2 . hire_date \nFROM "default™ . enps2° JON “default’ . depts \nON

(Tenps2’. deptno = “depts’ . deptno)\nWHERE “enps2’. hire_date’ >="'20
17-01-17', tabl eType: MATERI ALI ZED VI EW rewiteEnabl ed: true, creationMet
adat a: Cr eati onMet adat a(cat Nane: hi ve, dbNane: defaul t, tbl Nanme: mv1, tables
Used: [defaul t.depts, default.enps2], validTxnList:53%defaul t.depts: 2:922
3372036854775807: : $def aul t . enps2: 4: 9223372036854775807: :, materializatio
nTi me: 1532466307861), cat Nane: hi ve, owner Type: USER)

46

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime

Materialized views

3. Get formatting details about the materialized view named mv1.

DESCRI BE FORVMATTED nmv1;

col _nane
enpi d

dept nane
hire_date

Detailed Table Information
Dat abase:

Oaner Type:

Oowner :

Cr eat eTi ne:

Last AccessTi ne:

Ret enti on:

Locati on:

Tabl e Type:

Tabl e Par anet ers:

Storage Information
Ser De Library:

| nput For mat :

Cut put For mat :

Conpr essed:

Num Bucket s:

Bucket Col ums:

Sort Col umms:
View | nfornmation
View Origi nal Text:

Vi ew Expanded Text:
Vi ew Rewri te Enabl ed:

Materialized view commands

data_t ype

i nt

var char (256)
ti mestanp
NULL
NULL
def aul t
USER

hi ve
Tue Jul
UNKNOWN
0

hdfs:// nyserver. ..
MATERI ALI ZED VI EW
NULL

24 21:05:07 UTC 2019

COLUMN_STATS_ACCURATE
bucketi ng_versi on
nunFi | es

nunmRows

rawDat aSi ze

total Si ze

transi ent | astDdl Ti ne
NUL L

NULL

or g. apache. hadoop. hive. gl .io.or...

or g. apache. hadoop. hive. gl .io.or...
or g. apache. hadoop. hive. gl .io.or. ..

-1
[]

[]
NULL

SELECT enpid, deptnane, hire_da...

SELECT "enps2’. enpid’,
Yes

“depts. ..

47

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime Materialized views

After changes to base tables, the datain a materialized view is stale. Y ou heed to know how to prevent the SQL
optimizer from rewriting queries in this situation. If you want a query executed without regard to a materialized view,
for example to measure the execution time difference, you can disable rewriting and then enable it again.

As administrator, you can globally enable or disable al query rewrites based on materialized views. By default, the
optimizer rewrites a query based on amaterialized view.

1. Disable rewriting of aquery based on a materialized view named mv1 in the default database.

ALTER MATERI ALl ZED VI EW def aul t. nvl DI SABLE REVRI TE;

2. Enablerewriting of a query based on materialized view mv1.

ALTER MATERI ALI ZED VI EW def aul t. mv1l ENABLE REWRI TE;

3. Globally enable rewriting of queries based on materialized views by setting a global property.

SET hive.materializedview rewiting=true;

Materialized view commands

A rewrite of aquery based on a stale materialized view does not occur automatically. If you want arewrite of astale
or possibly stale materialized view, you can force arewrite.

For example, you might want to use the contents of a materialized view of a non-transactional table because the
freshness of such atable is unknown. The optimizer cannot determine the data freshness if you use external tables.
Y ou can purposely rewrite a query based on a stale materialized views using these techniques:

» Schedule the materialized view for rebuilding. For example, schedule arebuild to occur every x minutes.

« Adjust the rewriting time window to use stale or possibly stale data for a period of time. For example, schedule the
window within which to use stale datafor x + y minutes.

1. Create a scheduled query to invoke the rebuild statement every 10 minutes.

CREATE SCHEDULED QUERY schedul ed_rebuil d
EVERY 10 M NUTES AS
ALTER MATERI ALI ZED VI EW nv_recently hired REBU LD;

2. Definethe window of time for using stale data.

SET hive.materializedview rewiting.tinme. w ndow=10m n;

When creating a materialized view, you can partition selected columns to improve performance. Partitioning
separates the view of atable into parts, which often improves query rewrites of partition-wise joins of materialized
views with tables or other materialized views.

48

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime

About this task

This task assumes you created a materialized view of the emps and depts tables and assumes you created these tables.
The emps table contains the following data:

empid deptno name hire date

10001 jane doe 250000 2018-01-10
10005 100 somporn klailee 210000 2017-12-25
10006 200 jeiranan thongnopneua 175000 2018-05-05

The depts table contains the following data:

deptno deptname locationid

100 HR 10
101 Eng 11
200 Sup 20

In thistask, you create two materialized views. one partitions data on department; the other partitions data on hire
date. Y ou select data, filtered by department,from the origina table, not from either one of the materialized views.
The explain plan shows that Hive rewrites your query for efficiency to select data from the materialized view that
partitions data by department. In thistask, you also see the effects of rebuilding a materialized view.

Procedure

1. Create amaterialized view of the empstable that partitions data into departments.

CREATE MATERI ALI ZED VI EW partition_nmv_1 PARTI TI ONED ON (dept no)
AS SELECT hire_date, deptno FROM enps WHERE deptno > 100 AND deptno < 200;

2. Create asecond materialized view that partitions the data on the hire date instead of the department number.

CREATE MATERI ALI ZED VI EW partition_nv_2 PARTI TI ONED ON (hire_date)
AS SELECT deptno, hire_date FROM enps where deptno > 100 AND deptno < 2
00;

3. Generate an extended explain plan by selecting data for department 101 directly from the emps table without
using the materialized view.

EXPLAI N EXTENDED SELECT deptno, hire_date FROM enps where deptno = 101;

The explain plan shows that Hive rewrites your query for efficiency, using the better of the two materialized views
for the job: partition_mv_1.

| OPTIM ZED SQL: SELECT CAST(101 AS INTEGER) AS “deptno’, “hire date' |
| FROM “default™. partition_nmv_1° [

| WHERE 101 = " deptno’ |

| STAGE DEPENDENCI ES: |

| Stage-0 is a root stage

4. Correct Jane Doe's hire date to February 12, 2018, rebuild one of the materialized views, but not the other, and
compare contents of both materialized views.

I NSERT | NTO enps VALUES (10001, 101, ' j ane doe', 250000, ' 2018-02-12");
ALTER MATERI ALI ZED VI EW partition_nmv_1 REBUI LD,

49

Materialized views

Cloudera Runtime

Materialized views

SELECT * FROM partition_m/_1 where deptno
SELECT * FROM partition_nv_2 where deptno

101;
101;

The output of selecting the rebuilt partition_mv_1 includes the original row and newly inserted row because

INSERT does not perform in-place updates (overwrites).

feccoccococcoccococooccocooooo foccoccococoococococoococooo +
| partition_nv_1.hire_date | partition_nv_1.deptno |
foocococcoccooccoocoooocoocoooo focccococoocococcoccoocoocoo +
| 2018-01-10 00: 00: 00. 0 | 101 |
| 2018-02-12 00: 00: 00. O | 101 |
feccoccococcoccococooccocooooo feccoccoccocoococcocoococooo +

5. Create a second employees table and a materialized view of the tables joined on the department number.

CREATE TABLE enps2 AS SELECT * FROM enps;

CREATE MATERI ALI ZED VI EW partition_m/_3 PARTI TI ONED ON (deptno) AS

SELECT enps. hire_dat e,

VWHERE enps. dept no = enps2. dept no

enps. dept no FROM enps,

enps2

AND enps. deptno > 100 AND enps. deptno < 200;

6. Generate an explain plan that joins tables emps and emps2 on department number using a query that omits the

partitioned materialized view.

EXPLAI N EXTENDED SELECT enps. hire_dat e,
VWHERE enps. dept no = enps2. dept no

enps. dept no FROM enps,

enps2

AND enps. deptno > 100 AND enps. deptno < 200;

The output shows that Hive rewrites the query to use the partitioned materialized view partition_ mv_3 even

though your query omitted the materialized view.

7. Verify that the partition_mv_3 sets up the partition for deptno=101 for partition_mv_3.

SHOW PARTI TI ONS partition_mv_3;

Output is:
foccoccocooooo +
| partition |
foccocoococoocooc +
| deptno=101 |
feccoccocooooo +

Creating and using a materialized view
Materialized view commands

50

https://docs.cloudera.com/cdp-private-cloud-base/7.1.9/materialized-view-commands/topics/hive_alter_materialized_view_rebuild.html

Cloudera Runtime CDW stored procedures

CDW stored procedures

Cloudera Data Warehouse (CDW) supports Hive Hybrid Procedural SQL (HPL/SQL). HPL/SQL is an Apache open
source procedural extension for SQL for Hive users. Y ou connect over JDBC to CDW from a client to run HPL/SQL
queries. You can also run stored procedures from Hue in CDW.

HPL/SQL includes imperative programming structures (variables, procedures, control flow, and exceptions), and
istypically used for ETL. The HPL/SQL language understands the syntax and semantics of most procedural SQL
dialects, such as Oracle PL/SQL.

HPL/SQL hasits own grammar. For more information about the HPL/SQL language, see the HPL/SQL Reference.

HPL/SQL architecture

HPL/SQL has been re-architected from a command line tool to an integrated part of HiveServer (HS2). From a JDBC
client, such as Beeline, you connect to HiveServer through CDW in CDP Public Cloud. The interpreter executes

the abstract syntax tree (AST) from the parser. Hive metastore securely stores the function and procedure code
permanently. The procedure is loaded and cached on demand to the interpreter's memory when needed. Y ou can close
the session or restart Hive without losing the definitions.

CDP/CDW

HiveServer (HS2)

Client
JDBC (mode=hplsql)

HPLSQLParser

|

|

- |

f_ _I |
|

|

| (Hplsqgl.g4, ANTLR)

Beeline —JDBC—»>]

AST Interpreter Metastore

|

|

| Hive
| Language
|
|
|

HiveCompiler

I
I
I
I
I
I
I
<&Thrift—- S |
I
I
I
I
I
I
I

Y ou can enable and use HPL/SQL from any host or third-party tool that can make a JDBC connection to HiveServer.
Beelineisapopular client for use with HPL/SQL because other third-party tools do not show you some of the error
messages about syntax mistakes.

Enabling HPL/SQL in the beeline connection string

beeline -u "jdbc: hive2://<H veServer host>: 10000/ def aul t; nrode=hpl sqgl "

Cloudera Runtime CDW stored procedures

* Flow of Control Statements (FOR, WHILE, IF, CASE, LOOP, LEAVE, RETURN)
» Functions, procedures, and packages

» Built-in functions (string manipulations, datetime functions, conversions)

» Exception handling and conditions

» Constants and variable, assignment (DECLARE count INT := 1)

* Processing results using a CURSOR

e UDFto run HPL/SQL scripts from Hive queries

(SELECT hpl sql (' mycustonfunc(:1)', nane) FROM users;)
» Bulk data processing with BULK COLLECT statement

» Some of the Hive specific CREATE TABLE parameters are missing.

* No colon syntax to parametrize SQL strings.

* No quoted string literals.

* NoGOTO and Label.

« EXECUTE does not have output parameters.

» Some complex data types, such as Arrays and Records are not supported.
* No object-oriented extension.

« DataAnalytics Studio (DAS) does not support HPL/SQL .

AsaHive user who connectsto CDW from aclient, you need to know how to set up the client for using HPL/SQL.

* You have created a Database Catal og that is popul ated with data.

Y ou can select an option to load sampl e airline data when you create the catal og.

* You have an existing Hive Virtual Warehouse, or you added a new one, that is configured to connect to the
Database Catalog with data.

1. Ontheclient end, download the latest version of the Hive JDBC driver from Cloudera Downloads page.
2. Install the driver on the client end.
Typically, you add the JAR file to the Libraries folder.
3. Log into the CDP web interface and navigate to the Data Warehouse service.
4. Inthe Data Warehouse service, click Virtual Warehouse in the |eft navigation panel.

52

https://www.cloudera.com/downloads/connectors/hive/jdbc/2-6-15.html

Cloudera Runtime CDW stored procedures

5. Onthe Virtual Warehouses page, click the options menu of the Hive VW you want to connect to, and select Copy
JDBC URL.

>

(1 1]

Clone
Edit
Delete

Upgrade

\

Copy JDBC URL

Download JDBC Jar
6. Pastethe copied JDBC URL into atext file.

P
-]
I~

jdbc: hive2://<your-virtual - war ehouse>. <your - envi r onnent >. <dwx. conpany. co
m>/ def aul t; transport Mbde=htt p; htt pPat h=cl i service; ssl =true;retri es=3

7. Append mode=hplsgl to the end of the JIDBC URL for connecting to CDW from the client.

jdbc: hive2://<your-virtual - war ehouse>. <your - envi r onnent >. <dwx. conpany. co
m>/ def aul t; transport Mbde=htt p; htt pPat h=cl i servi ce; ssl =true;retri es=3; nod
e=hpl sql

8. Ontheclient end, use the URL in Beeline to connect to CDW and enable HPL/SQL.

beeline -n <csso_usernane> -p <password> -u "jdbc: hive2://<your-virtual -
war ehouse>. <your - envi r onnent >. <dwx. conpany. con®/ def aul t ; t ransport Mode=ht
tp; htt pPat h=cl i servi ce; ssl =true; retri es=3; node=hpl sql "

At the Hive prompt, you can run HPL/SQL. Y ou can use the forward slash (/) as a statement delimiter because a
HPL/SQL statement can have multiple rows consisting of multiple SQL statements.

Y ou need to know the syntax of HPL/SQL, which closely resembles Oracle’ s PL/SQL. An example of creating a
function and calling it in aHive SELECT statement demonstrates the HPL/SQL basics.

1. Create atable and populate it with some numbers.

create table nunmbers (n int);

for i in 1..10 | oop
insert into nunbers val ues(i);
end | oop;

2. Create afunction called fizzbuzz to return numbers.

create function fizzbuzz(n int) returns string
begi n
if nod(n, 15) == 0 then
return ' Fl ZZBUZZ'

53

Cloudera Runtime CDW stored procedures

el seif mod(n, 5) == 0 then
return ' BUZZ' ;

el seif nmod(n, 3) == 0 then
return 'Fl ZZ';

el se
return n;

end if;

end;

3. Cadll the function from a Hive select statement.
sel ect fizzbuzz(n) from nunbers;

Output looks something like this:

Fl zZ
BUZZ

Fl zZ

BUZZ
Fl zZ

Fl zZ
BUZZ

Y ou use a cursor to return recordsets from stored procedures and functions. A cursor defines a set of rows and row-
by-row operations on the set. Y ou need to know how to open a cursor, fetch datainto local variables row-by-row, and
close acursor.

A function called fizzbuzz2 calls another function fizzbuzz, created in the previous topic. The new function declares a
cursor of type SYS _REFCURSOR to fetch the contents of the numbers table, also created in the previous topic.

* You created the fizzbuzz function.
* You created the numbers table.

Use an OPEN-FOR statement to select the number in each row of the numbers table, iteratively FETCH the numerical
content of the each row INTO cursor variable num, close the cursor, and print the results.

create function fizzbuzz2() returns string
begi n

declare numint = O;

declare result string =

declare curs SYS_ REFCURS(P

open curs for sel ect n from nunbers;
fetch curs into num

54

Cloudera Runtime CDW stored procedures

while (SQLCODE = 0) do

result = result || fizzbuzz(num || " ';
fetch curs I NTO num
end whil e;

cl ose curs;
return result;
end;
print fizzbuzz2();

The output looks something like this:

12 FlzZz 4BUZZ 12 FIZZ 4 BUZZ FIZZ 7 8 Fl ZZ BUZZ
No rows affected

Y ou see by example some of the frequently used and useful HPL/SQL code. HPL/SQL is an Apache open source
procedural extension for SQL for Hive users.

The following example creates a function that takes the input of your name and returns "hello <name>":

CREATE PROCEDURE gr eet (nane STRI NG
BEG N

PRINT "Hello ' || nane;
END;

This example of a procedure, called from another procedure, takes a cursor parameter declared OUT; an OPEN-FOR
statement opens the cursor and executes the SELECT query. The query returns a subset of the records to the test_even
procedure from the numbers table, created in a previous topic.

CREATE PROCEDURE even(cur OUT SYS REFCURSOR)
BEGA N

OPEN cur FOR

SELECT n FROM nunbers

WHERE MOD(n, 2) == 0;

END;

Thetest_even procedure below calls the even procedure above, passing the cursor of type SYS REFCURSOR to
fetch each row containing an even number.

CREATE PROCEDURE t est even()

BEGA N

DECLARE curs SYS REFCURSOR;

DECLARE n | NT = 0;

DECLARE result STRING = ' Even nunbers are: ';
even(curs);

FETCH curs I NTO n;

VWHI LE (SQLCODE = 0) DO

result =result || n || " ";
FETCH curs I NTO n;

END WHI LE;

CLCSE curs;

PRI NT result;

55

Cloudera Runtime Using JdbcStorageHandler to query RDBMS

END;

Y ou can set up table types and reference fields in records using indexing. This example assumes you created the emp
table.

-- CREATE TABLE enp (name string, age int);

TYPE enp_type IS TABLE OF enpROMYPE | NDEX BY Bl NARY_| NTEGER;
TYPE enp_age_type | S TABLE OF enp. age% YPE | NDEX BY BI NARY_| NTECER;
TYPE enp_nanme_type |'S TABLE OF STRI NG | NDEX BY BI NARY_| NTEGER;

DECLARE rows enp_type;
DECLARE ages enp_age_type;

SELECT * INTO rows(1l) FROM enp WHERE name = 'alice';
PRINT 'name=" || rows(1l).name || ' age='" || rows(1).age;

SELECT age | NTO ages(1) FROM enp WHERE nanme = 'alice';
PRI NT 'age=" || ages(1);

Using BULK COLLECT, you can retrieve multiple rows in asingle fetch quickly.

TYPE enp_type IS TABLE OF enp¥ROMYPE | NDEX BY Bl NARY_| NTEGER;
DECLARE rows enp_type;

SELECT * BULK COLLECT I NTO rows FROM enp;

DECLARE i dx INT = rows. FI RST;
VWH LE idx |I'S NOT NULL LOOP

PRINT rows(idx).nane || ' ="' || rows(idx).age;
i dx = rows. NEXT(i dx);
END LOOP;

Using the JdbcStorageHandl er, you can connect Apache Hive to aMySQL, PostgreSQL , Oracle, DB2, or Derby data
source. Y ou can then create an external table to represent the data, and query the table.

This task assumes you are a CDP Private Cloud Base user. Y ou create an external table that uses the
JdbcStorageHandler to connect to and read alocal JDBC data source.

1. Load datainto a supported SQL database, such as MySQL, on anodein your cluster, or familiarize yourself with
existing data in the your database.

2. Create an external table using the JdbcStorageHandler and table properties that specify the minimum information:
database type, driver, database connection string, user name and password for querying hive, table name, and
number of active connections to Hive.

CREATE EXTERNAL TABLE nyt abl e_j dbc(
col 1 string,

56

Cloudera Runtime Using JdbcStorageHandler to query RDBMS

col 2 int,
col 3 doubl e

)
STORED BY ' or g. apache. hi ve. st orage. j dbc. JdbcSt or ageHand! er'
TBLPROPERTI ES (

"hi ve. sql . dat abase. type" = "MYSQ",
"hive.sql.jdbc.driver" = "comnysql.jdbc.Driver",
"hive.sql.jdbc.url" = "jdbc: mysqgl://Iocal host/sanple",
"hi ve. sql . dbcp. usernane" = "hive",

"hi ve. sql . dbcp. password" = "hive",

"hive.sql.table" = "MYTABLE",

"hi ve. sql . dbcp. maxActive" = "1"

)
3. Query the external table.

SELECT * FROM nyt abl e_j dbc WHERE col 2 = 19;

Apache Wiki: JdbcStorageHandler

57

https://cwiki.apache.org/confluence/display/Hive/JDBC+Storage+Handler

	Contents
	Apache Hive 3 tables
	Locating Hive tables and changing the location
	Refer to a table using dot notation
	Understanding CREATE TABLE behavior
	Creating a CRUD transactional table
	Creating an insert-only transactional table
	Creating, using, and dropping an external table
	Creating an Ozone-based external table
	Accessing Hive files in Ozone
	Recommended Hive configurations when using Ozone
	Converting a managed non-transactional table to external
	External tables based on a non-default schema
	Using your schema in MariaDB
	Using your schema in MS SQL
	Using your schema in Oracle
	Using your schema in PostgreSQL

	Using constraints
	Determining the table type

	Apache Hive 3 ACID transactions
	Apache Hive query basics
	Querying the information_schema database
	Inserting data into a table
	Updating data in a table
	Merging data in tables
	Deleting data from a table
	Creating a temporary table
	Configuring temporary table storage

	Using a subquery
	Subquery restrictions

	Use wildcards with SHOW DATABASES
	Aggregating and grouping data
	Querying correlated data
	Using common table expressions
	Use a CTE in a query

	Comparing tables using ANY/SOME/ALL
	Escaping an invalid identifier
	CHAR data type support
	ORC vs Parquet formats

	Creating a default directory for managed tables
	Generating surrogate keys
	Partitions and performance
	Repairing partitions manually using MSCK repair

	Query scheduling
	Enabling scheduled queries
	Enabling all scheduled queries
	Periodically rebuilding a materialized view
	Getting scheduled query information and monitor the query

	Materialized views
	Creating and using a materialized view
	Creating the tables and view
	Using optimizations from a subquery
	Dropping a materialized view
	Showing materialized views
	Describing a materialized view
	Managing query rewrites
	Purposely using a stale materialized view
	Creating and using a partitioned materialized view

	CDW stored procedures
	Setting up a CDW client
	Creating a function
	Using the cursor to return record sets
	Stored procedure examples

	Using JdbcStorageHandler to query RDBMS

