155

Using Apache Iceberg

Date published: 2022-03-15
Date modified: 2025-11-08

CLOUD=RA

https://docs.cloudera.com/


https://docs.cloudera.com/

© ClouderaInc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.



| Contents | iii

APACHE 1 CEDEI G TEALUINES......oeieie ettt sttt st sa et e seesae e aeeneenre s 5
ATLEr TI01E FEALUIE. ...ttt e bbbt e st e st b et bt R e e b e seer e ne b e nnebennene 5
Creale taDIE TEAIUNE.......e ittt h bt b e bt e b bt e et n bt b et n s 6
Create table as SEIECE TEALUIE...........c it 9
Create partitioned table 8S SElECE FEALUNE.........c.oii i e 9
Create tahle ... [IKE FEAIUNE.......cu ittt bbb s 10
D= = W eo 0107 oi (oo FEUU NSRS 10
DEEE AAA FEAIUIE.........cveeeeieeiee et b b et s et e et b e bbbt e e 12
Describe table Metadatal fFEBIUIE..........c.cireeirece ettt r e r e er e 13
Drop Partition FEALUE..........eii ittt sttt h e a et b e s b e sb e sb et e b e re et e e et e neebeeneeaesbeseeee 14
Drop ta1€ FEBLUIE.........eoeiieie ettt bttt s e et b st e e et et e a e e aeeaeeheeb e beebeebenbesee b e b s 15
EXPIre SNBPSNOLS FEBLUIE.........coiiieeeeeeeeter ettt ettt b e bbbt b e b s e et e beseese e e e e e e et eneeneeneeneas 15
INSErt tablE aEA FEBIUNE.......c.e ittt r et et et r et r e 17
Load data iNPEth fEALUIE..........couiieeiee et b b et b e b et e e e e e e se e it ebeebesaeenen 17
Load or replace partition data FEAIUNE............oiiiiie ettt ae e eae 18
MaLErTaliZEA VIBW FEEIUE.......veeiteecterecte ettt b et 19
Materialized VIew rebUIld FEALUE...........ooveireeice et 20
L o TR L= LU= SRR 22
Migrate Hive table tO 1CEDEIg FEAIUIE.........oiu ittt en 23

Securing 1CeDErg tale dala.........coo i e e 24
LS (T o L= 7= (] (e 01 o USRS 24
Partition @VOIULION TEAIUNE..........ceiriiieiieice et 24
Partition transform FEAIUIE.............ciieiee et 25
Query metadata tableS FEALUIE..........ccciiiieeie et et e e e e st sbesbesaesae 27
ROIDACK A€ FEBIUNE. ... .. ettt p et r e bt e 29
SeleCt 1CEDErg data FEAIUIE........ .ot e ettt b e b sbe e 29
SChEMA EVOIULION FEALUIE. ...ttt ettt e et bt r et r et r e 30
SChEMA INFEIENCE TEALUNE.......coviiiteectee ettt b e bbbt e bt e et b et b e e n e b s er e 31
SNAPSNOL MEBNBGEIMENL. .......tete ettt ettt eb et sbe et e tese e e e e et e st ebeeaeeaeebesbeseeseenbeseeseenseneeneeneeresaesaesbesbees 32
BranChing FEBIUIE.........co.oiiiiiie ettt bbb e e bttt e e ebesbe e sbeneas 32
IR0 oo TR = (0 TP 33
THIME TrAVEL TEALUIE. ...ttt bbb bbbt et b et bt b e e 34
TrUNCEALE A1 TEAIUNE.......c.eceieeeie ettt n e n e 35
UPELE LA FEBIUIE. ... ettt ettt et a e b e bt b e s b e b se e e et e e e e emeeseeneebeebesbesbesbesbeseens 35

Best practices for 1ceberg in ClOUdEr a........ccooeoieiiieiice e 36
Making row-level changes 0N V2 tablES ONlY ..o s e 37

Per fOr MANCE TUNING....coeiiiieieie ettt st e e s be et e saeesbeeeeeneesbeeneenreenes 37
CaChiNg MANITESE FIIES.... .ot bbbt bbb e e e et e e s e e aeeaesneebe e e 37

Unsupported features and [IMiItations..........ccooiiieririinieneee e 38

Pr I EOUISITES......e ettt b et s ae e b e et e e s e e beeabesae e nbeente s Rt e beentesaeeneeenee e 40

ACCESSING [ CEDEN G LADIES. ... et re e e 40
Editing a storage handler policy to access Iceberg files on the file System..........coovierenciencicceeee, 41
Creating a SQL policy to query an [Ceberg table.........ooi i e 44

Accessing [ ceberg filleS iN OZONE.......ccoiiiiiieee et 45

Creating an Iceberg partitioned table..........c.ooeoiiiiiii e a7

EXPITING SNAPSNOLS......eiiiiieieeee et sttt et ne e s neene s 48

Inserting data iNt0 @ tADIE.......c.oiiee e e nae s 48

TabIe MIGratioN OVENVIBW........ooieieiiesie ettt e e sb e e be e e s e e nbe e e e sreeneas 48

Migrating a Hive table tO I CEDEI Q.. oo et 49



Selecting an 1CehErg tabIe........ooi e e 50

RUNNING tIME traVEl QUENTES..... .ottt et sttt b e e e nns 50
Updating an 1Ceberg PartitioN.........coooieeieieseee et sa e sne e 51
Test driving [ceberg from IMPala.........ccooieeiee e e 52
[ AV 2SN 0 [ 0 0T I b L= TSRS 54
Test driving 1CeDErg fromM HiVe.........oo i e e 56
Kol o1 o o F= 1= T 4 1= 59

oS olc ol E=T o] LN o g0] o1 o (=TSR PRRRN 61



Apache | ceberg features

Y ou can quickly build on your past experience with SQL to analyze |ceberg tables.

From Hive or Impala, you run SQL queriesto create and query |ceberg tables. Impala queries are table-format
agnostic. For example, Impala options are supported in queries of Iceberg tables. Y ou can run nested, correlated, or
analytic queries on all supported table types. Most Hive queries are also table-format agnostic.

This documentation does not attempt to show every possible query supported from Impala. Many examples of how to
run queries on Iceberg tables from Impala are covered.

If your environment uses HDFS HA, you must enable it before creating | ceberg tables. For instructions, see Enable
HDFS HA before you create | ceberg tables.

| ceberg supports atomic and isolated database transaction properties. Writers work in isolation, not affecting the live
table, and perform a metadata swap only when the write is complete, making the changes in one atomic commit.

| ceberg uses snapshots to guarantee isolated reads and writes. Y ou see a consistent version of table data without
locking the table. Readers always see a consistent version of the data without the need to lock the table. Writers work
in isolation, not affecting the live table, and perform a metadata swap only when the write is complete, making the
changes in one atomic commit.

The | ceberg partitioning technique has performance advantages over conventional partitioning, such as Apache Hive
partitioning. Iceberg hidden partitioning is easier to use. Iceberg supports in-place partition evolution; to change a
partition, you do not rewrite the entire table to add a new partition column, and queries do not need to be rewritten
for the updated table. Iceberg continuously gathers data statistics, which supports additional optimizations, such as
partition pruning.

| ceberg uses multiple layers of metadata files to find and prune data. Hive and Impala keep track of data at the folder
level and not at the file level, performing file list operations when working with datain a table. Performance problems
occur during the execution of multiple list operations. | ceberg keeps track of a complete list of fileswithin atable
using a persistent tree structure. Changes to an | ceberg table use an atomic object/file level commit to update the path
to a new snapshot file. The snapshot points to the individual data files through manifest files.

The manifest files track several datafiles across many partitions. These files store partition information and column
metrics for each datafile. A manifest list is an additional index for pruning entire manifests. File pruning increases
efficiency.

I ceberg relieves Hive metastore (HMS) pressure by storing partition information in metadata files on the file system/
object store instead of within the HMS. This architecture supports rapid scaling without performance hits.

In Hive or Impala, you can use ALTER TABLE to set table properties. From Impala, you can use ALTER TABLE
to rename atable, to change the table owner, or to change the role of the table owner. From Hive, you can alter the
metadata location of the table if the new metadata does not belong to another table; otherwise, an exception occurs.

Y ou can convert an Iceberg vl table to v2 by setting atable property as follows: format-version' = '2'.

ALTER TABLE t abl e _nane SET TBLPROPERTI ES t abl e _properti es;



https://docs.cloudera.com/cdw-runtime/1.5.5/iceberg-how-to/topics/iceberg-table-creation.html
https://docs.cloudera.com/cdw-runtime/1.5.5/iceberg-how-to/topics/iceberg-table-creation.html

Apache | ceberg features

» table properties

A list of properties and values using the following syntax:

('key' = "'value', '"key' = 'value', ... )

ALTER TABLE t abl e_name RENAME TO new_t abl e_nane;
ALTER TABLE t abl e _name SET OMNER USER user _nane;

ALTER TABLE t abl e name SET OWNER RCOLE rol e_nane;

ALTER TABLE test_table SET TBLPROPERTI ES(' net adata | ocation' =" hdfs://ice_tab
| e/ net adat a/ v1. net adat a. j son');
ALTER TABLE test table2 SET TBLPROPERTI ES(' fornmat-version' = "'2");

ALTER TABLE t1 RENAME TO t 2;
ALTER TABLE i ce_tabl el set OMER USER j ohn_doe;

ALTER TABLE ice_tabl e2 set OMER RCLE sone_rol e;
ALTER TABLE ice_8 SET TBLPROPERTIES ('read.split.target-size' =" 268435456');

ALTER TABLE ice_tabl e3 SET TBLPROPERTI ES(' format -version' = '2');

You use CREATE TABLE from Impalaor CREATE EXTERNAL TABLE from Hive to create an external tablein
Iceberg. You learn the subtle differences in these features for creating I ceberg tables from Hive and Impala. Y ou aso
learn about partitioning.

Hive and Impala handle external table creation alittle differently, and that extends to creating tablesin Iceberg. By
default, Iceberg tables you create are v1. To create an Iceberg v2 table from Hive or Impala, you need to set atable
property as follows:'format-version' = ‘2.

Learn about how Apache | ceberg stores absolute paths in its metadata manifest files, and how HDFS HA ensures that
the table is accessible regardless of which NameNode is active.

Background

Apache | ceberg stores absolute paths in its metadata manifest files for Iceberg tables. Opposed to this, Apache
Hive writes the relative path to the table into the metadata, while building the absolute path based on the HDFS
configuration.

The format of these paths depends on your HDFS configuration at the time of table creation. Without HDFS HA,
| ceberg writes the paths using the specific hostname and port of the active NameNode. With HDFS HA, Iceberg
writes the paths using the logical nameservice. Using the HDFS nameservice ensures that the paths remain valid
regardless of which NameNode is active.




Apache | ceberg features

To avoid possible data loss when switching from one HDFS configuration to another, Cloudera highly recommends
enabling HDFS HA in the environment.

Explanation
Writing atable in Hadoop in either Hive or Iceberg format includes the data itself and the metadata of the table.

While Cloudera stores the metadata in the Hive Metastore (HMS) for both Hive and I ceberg tables, the method that
table location is written in the metadata varies:

* Hiveusesarelative path, where the table location is concatenated with the relative path in the metadata and the
HDFS definition for the NameNode or NameService that is active.

» lceberg uses an absolute path in the table metadata to describe the location of the table at the time of its creation.
If HDFS runsin non-HA mode, the cluster uses either the Active NameNode and Standby NameNode, and the
used one iswritten to the table information in the hdfs://node4.cloudera.com:8020/warehouse/tabl espace/external /
hive/test.db/ice_table/ format.

That path is accessible as long as that NameNode ( hoded.cloudera.com) is active. However, if the node becomes
unavailable, and the secondary (standby) node takes over, the table becomes inaccessible because the original
node that was used to write the table is not active. This appliesto both the table information itself and the manifest
JSON file associated with it, containing the absolute path to the table location.

When you enable HDFS HA, the service removes the NameNode references, and uses nameservice as the only
reference. The nameservice internally manages its NameNodes, such as L oad Balancer, exposing only the
nameservice as the access point.

Tables created after HDFS HA is enabled use the following format (assuming the nameservice is named
nameservice0l): hdfs://nameservice0l/warehouse/tabl espace/external /hive/test.db/ice_table/

This format ensures that the table is accessible regardless of which NameNode is active, asthe NameService takes
care of the path, thereby supporting the failover cases.

Note: If the solution includes another cluster to which the primary cluster synchronizes data, such asin the
Ij case of Disaster Recovery, the same NameService name must be maintained on the destination cluster.

From Hive, CREATE EXTERNAL TABLE isrecommended to create an | ceberg table in Cloudera.

When you use the EXTERNAL keyword to create the |ceberg table, by default only the schemais dropped when you
drop the table. The actual datais not purged. Conversely, if you do not use EXTERNAL, by default the schema and
actual datais purged. Y ou can override the default behavior. For more information, see the Drop table feature.

From Hive, you can create atable that reuses existing metadata by setting the metadata location table property to
the object store path of the metadata. The operation skips generation of new metadata and re-registers the existing
metadata. Use the following syntax:

CREATE EXTERNAL TABLE ice_fmhive (i int) STORED BY | CEBERG TBLPROPERTI ES ('

nmet adat a_| ocati on' =' <obj ect store or file system path>')

See exampl es below.

From Impala, CREATE TABLE isrecommended to create an I ceberg table in Cloudera. Impala creates the I ceberg
table metadata in the metastore and also initializes the actual 1ceberg table datain the object store.

The difference between Hive and Impala with regard to creating an Iceberg table is related to Impala compatibility
with Kudu, HBase, and other tables. For more information, see the Apache documentation, "Using Impalawith
Iceberg Tables'.



https://impala.apache.org/docs/build/html/topics/impala_iceberg.html
https://impala.apache.org/docs/build/html/topics/impala_iceberg.html

Apache | ceberg features

When you create an Iceberg table using CREATE EXTERNAL TABLE in Hive or using CREATE TABLE in
Impala, HiveCatalog creates an HM S table and also stores some metadata about the table on your object store, such
as S3. Creating an | ceberg table generates a metadata.json file, but not a snapshot. In the metadata.json, the snapshot-
id of anew tableis-1. Inserting, deleting, or updating table data generates a snapshot. The |ceberg metadata files and
datafiles are stored in the table directory under the warehouse folder. Any optional partition datais converted into

| ceberg partitions instead of creating partitions in the Hive Metastore, thereby removing the bottleneck.

To create an | ceberg table from Hive or from Impala, you associate the |ceberg storage handler with the table using
one of the following clauses, respectively:

* Hive: STORED BY ICEBERG
* Impalas STORED ASICEBERG or STORED BY ICEBERG

Y ou can write Iceberg tables in the following formats:

e From Hive: Parquet (default), Avro, ORC
e From Impala: Parquet

Impala supports writing lceberg tables in only Parquet format. Impala does not support defining both file format and
storage engine. For example, CREATE TABLE thl ... STORED AS PARQUET STORED BY ICEBERG works
from Hive, but not from Impala.

Y ou can read | ceberg tables in the following formats:

e From Hive: Parquet, Avro, ORC
* From Impala Parquet, Avro, ORC

Note: Reading Iceberg tablesin Avro format from Impalais available as atechnical preview. Cloudera
Ij recommends that you use this feature in test and development environments. It is not recommended for
production deployments.

CREATE [ EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
[ (col _name data_type, ...
[ PARTI TI ONED BY [ SPEC] ([ col _nane] [, spec(value)][, spec(value)]...)]]
STORED BY | CEBERG
[ STORED AS file fornmat]

[ TBLPROPERTI ES (' key' = val ue', 'key' = value', ...)]

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e _nane
[(col _name data_type, ... )]
[ PARTI TI ONED BY [ SPEC] ([ col _nane] [, spec(value)][, spec(value)]...)]]
STORED {AS | BY} | CEBERG
[ TBLPROPERTI ES (property_nane=property_value, ...)]

CREATE EXTERNAL TABLE ice_1 (i INT, t TIMESTAMP, j BI G NT) STORED BY | CEBERG
, CREATE EXTERNAL TABLE ice_2 (i INT, t TIMESTAMP) PARTI TI ONED BY (j B
| @ NT) STORED BY | CEBERG

CREATE EXTERNAL TABLE ice_4 (i int) STORED BY | CEBERG STORED AS ORC,




Apache | ceberg features

CREATE EXTERNAL TABLE ice_5 (i int) STORED BY | CEBERG TBLPROPERTI ES (
'metadata_| ocation' =" hdfs://ice_tabl e/ netadata/vl. netadata.json')

CREATE EXTERNAL TABLE ice_6 (i int) STORED BY | CEBERG STORED AS ORC
TBLPROPERTI ES (' format-version' = '2');

CREATE TABLE ice_7 (i INT, t TIMESTAMP, j BIG NT) STORED BY | CEBERG //creat

es only the schema

CREATE TABLE ice_8 (i INT, t TIMESTAMP) PARTI TI ONED BY (j BIG NT) STORED BY
| CEBERG //creates schena and initializes data

CREATE TABLE ice_v2 (i INT, t TIMESTAMP) PARTI TI ONED BY (j BI G NT) STORED BY
| CEBERG TBLPROPERTIES (' format-version' = '2'); //creates a v2 table

Y ou can create an | ceberg table based on an existing Hive or Impala table.
The create table as select (CTAS) query can optionally include a partitioning spec for the table being created.

CREATE EXTERNAL TABLE ctas STORED BY | CEBERG AS SELECT i, t, j FROMice_1;

CREATE TABLE ctas STORED BY | CEBERG AS SELECT i, b FROMice_11;

Y ou can create a partitioned | ceberg table by selecting another table. Y ou see an example of how to use
PARTITIONED BY and TBLPROPERTIES to declare the partition spec and table properties for the new table.

Y ou see an example of using a partition transform with the PARTITIONED BY SPEC clause.

The newly created table does not inherit the partition spec and table properties from the source table in SELECT.
The I ceberg table and the corresponding Hive tableis created at the beginning of the query execution. The datais
inserted / committed when the query finishes. So for atransient period the table exists but contains no data.

CREATE [ EXTERNAL] TABLE prod. db. sanpl e
USI NG i ceberg
PARTI TI ONED BY (part)
TBLPROPERTI ES (' key' =" val ue')
AS SELECT ...

CREATE EXTERNAL TABLE ctas STORED BY | CEBERG AS SELECT i, t, j FROMice_1;

CREATE EXTERNAL TABLE ctas_part PARTI TI ONED BY(z) STORED BY | CEBERG TBLPROPE
RTIES (' format-version' = 2")
AS SELECT x, ts, z FROM t;



https://docs.cloudera.com/cdw-runtime/1.5.5/iceberg-how-to/topics/iceberg-partition-transformation.html

Apache | ceberg features

CREATE EXTERNAL TABLE ctas_part_spec PARTI TI ONED BY SPEC (nont h(d)) STORED
BY | CEBERG TBLPROPERTI ES (' format-version' = 2")
AS SELECT x, ts, d FROM source_t;

CREATE TABLE ctas STORED BY | CEBERG AS SELECT i, b FROMice_11;

CREATE TABLE ctas_part PARTI TI ONED BY(b) STORED BY | CEBERG AS SELECT i, s, b
FROM i ce_11;

CREATE TABLE ctas_part _spec PARTI TI ONED BY SPEC (nmonth(d)) STORED BY | CEBERG
TBLPROPERTI ES (' format-version' ='2")

AS SELECT x, ts, d FROM source_t;

Y ou learn by example how to create an empty table based on another table.

From Hive or Impala, you can create an | ceberg table schema based on another table. The table contains no data. The
table properties of the original table are carried over to the new table definition. The following examples show how to
use this feature:

CREATE EXTERNAL TABLE target LIKE source STORED BY | CEBERG

CREATE TABLE target LIKE source STORED BY | CEBERG

From Hive and Impala, you can compact | ceberg tables and optimize them for read operations. Compaction is an
essential table maintenance activity that creates a new snapshot, which contains the table content in a compact form.

Frequent updates and row-level modifications on Iceberg tables can result in many small data files and delete files,
which have to be merged-on-read. This degrades the query performance over time. Y ou can use the following Hive
and Impala SQL statements to compact | ceberg tables and optimize the table for reading.

OPTI M ZE TABLE [db_nane. ]tabl e_name [FILE_SI ZE THRESHOLD MB=<val ue>] ;

The FILE_SIZE THRESHOLD_MB enables you to specify the maximum size of files (in MB) that should be
considered for compaction. Data files larger than the specified limit are rewritten only if they are referenced from
deletefiles.

10



Apache | ceberg features

K

Note:

e If FILE_SIZE THRESHOLD_MB is specified, only the files meeting the file size criteria are rewritten
according to the latest schema and partition spec and the remaining data files might still have an older
schema or partition layout. Therefore, run the OPTIMIZE TABLE statement without the file size
threshold option to rewrite the entire table according to the latest schema and partititon layout.

e OPTIMIZE TABLE statement without a specified FILE_SIZE_THRESHOLD_MB rewrites the
entire table and the operation can take longer to complete depending on the table size. Therefore, it is
recommended that you specify afile size threshold for recurring table maintenance jobs to save compute
resources.

OPTI M ZE TABLE ice_table FILE_SI ZE_THRESHOLD MB=100;

ALTER TABLE [ dat abase_nan®e. ] tabl e_name COWPACT ' conpaction_type' [AND WAI T];

OPTI M ZE TABLE [ dat abase nane. ]t abl e_nane REWRI TE DATA,;

ALTER TABLE ice_table COWACT ' MAICR ;

OPTI M ZE TABLE ice_tabl e REWRI TE DATA;

Important: When Cloudera Data Warehouse and Cloudera Data Hub are deployed in the same environment
and use the same Hive Metastore (HM S) instance, the Cloudera Data Hub compaction workers can
inadvertently pick up Iceberg compaction tasks. Since Iceberg compaction is not yet supported in the latest
Cloudera Data Hub version, the compaction tasks will fail when they are processed by the Cloudera Data Hub
compaction workers.

In such a scenario where both Cloudera Data Warehouse and Cloudera Data Hub share the same HMS
instance and there is requirement to run both Hive ACID and | ceberg compaction jobs, it is recommended
that you use the Cloudera Data Warehouse environment for these jobs. If you want to run only Hive ACID
compaction tasks, you can choose to use either the Cloudera Data Warehouse or Cloudera Data Hub
environments.

If you want to run the compaction jobs without changing the environment, it is recommended that you use
Cloudera Data Warehouse. To avoid interference from Cloudera Data Hub, change the value of the hive
.compactor.worker.threads Hive Server (HS2) property in Cloudera Data Hub to '0'. This ensures that the
compaction jobs are not processed by Cloudera Data Hub. Y ou can find this property in Cloudera Manager
Hive Configuration .

To perform table optimization, ensure that the following prerequisites are met:

» The user performing compaction must have the 'ALL" permissions on the table, which can be set through Ranger.

« Impalacan only write Parquet files, therefore the write.format.default table property must be set to parquet. Hive
can write both Parquet and ORC file formats.

« |Impala cannot compact tables with complex data types.

* Impala cannot compact views.

The OPTIMIZE TABLE statement rewrites the entire table, performing the following tasks:

e Compact small filesinto larger files

11



Apache | ceberg features

* Merge delete files created due to previously run DELETE and UPDATE operations

« Rewriteal files, converting them to the latest table schema

* Rewritedl partitions according to the latest partition specification

e Compact tables with partition evolution

When an Iceberg table is optimized, a new snapshot is created where all the old files of the table are replaced with
newly written files. Note that if the FILE_SIZE_THRESHOLD_MB option is specified, only the files meeting the file
size threshold limit are replaced. The old table state and old files can still be queried using time travel, because the

rewritten data and del ete files are not removed from the system. This can lead to the accumulation of unused files that
belong to old snapshots. Use the Expire Shapshots feature to permanently remove the old files from the file system.

Note: For full compaction, since the compaction process rewrites the entire table, the operation can take a
IE long time to complete depending on the table size.

Cloudera supports row-level deletesin Iceberg V2 tables.
From Hive and Impala, you can use the following formatting types defined by the |ceberg Spec:

e position deletes
e equality deletes

Note: The equality deletes featureisin technical preview and not recommended for use in production
deployments. Cloudera recommends that you try this feature in test and development environments.

For equality deletes, you must be aware of the following considerations:

« |If you are using Apache Flink or Apache NiFi to write equality deletes, then ensure that you provide a PRIMARY
KEY for thetable. Thisisrequired for engines to know which columnsto write into the equality delete files.

« |f thetableis partitioned then the partition columns have to be part of the PRIMARY KEY

» For Apache Flink, the table should be in 'upsert-mode' to write equality deletes

» Partition evolution is not allowed for Iceberg tables that have PRIMARY KEY's

Position delete files contain the following information:

» file_path, whichisafull URI
* pos, thefile position of the row

Delete files are sorted by file_path and pos. The following table shows an example of delete filesin a partitioned
table:

YEAR(ts)=2022 ts year=2022/data-abcd. parquet ts year=2022/del ete-wxyz.parquet
ts_year=2022/data-bcde.parquet

Y EAR(ts)=2023 ts_year=2023/data-efgh.parquet ts_year=2023/del ete-hxkw.parquet
MONTH(ts)=2023-06 ts_month=2023-06/data-ijkl.parquet ts_month=2023-06/del ete-uzwd.parquet
MONTH(ts)=2023-07 ts_month=2023-07/data-mnop.parquet ts_month=2023-07/del ete-udgx.parquet

Inserting, deleting, or updating table data generates a snapshot.
Y ou use aWHERE clause in your DEL ETE statement. For example:

delete fromthbl ice where a <= 2, 1;

12


https://iceberg.apache.org/spec/#row-level-deletes
https://iceberg.apache.org/spec/#delete-formats
https://iceberg.apache.org/spec/#row-level-deletes

Apache | ceberg features

Hive and Impala evaluate rows from one table against a WHERE clause, and delete all the rows that match WHERE
conditions. If you want delete all rows, use the Truncate feature. The WHERE expression is similar to the WHERE
expression used in SELECT. The conditions in the WHERE clause can refer to any columns.

Concurrent operations that include DELETE do not introduce inconsistent table states. |ceberg runs validation
checksto check for concurrent modifications, such as DELETE+INSERT. Only one will succeed. On the other hand,
DELETE+DELETE, and INSERT+INSERT can both succeed, but in the case of a concurrent DELETE+UPDATE,
UPDATE+UPDATE, DELETE+INSERT, UPDATE+INSERT from Hive, only the first operation will succeed.

From joined tables, you can delete all matching rows from one of the tables. Y ou can join tables of any kind, but
the table from which the rows are deleted must be an Iceberg table. The FROM keyword is required in this case, to
separate the name of the table whose rows are being deleted from the table names of the join clauses.

del ete fromtabl enane [where expression]

del ete joined_tabl enanme from[joi ned_tabl ename, joined_tablename2, ...] [ wh
ere expression |

create external table tbhl _ice(a int, b string, ¢ int) stored by iceberg thlp
roperties ('format-version' = 2");

insert into tbl _ice values (1, 'one', 50), (2, '"tw', 51), (3, 'three', 5
2), (4, '"four', 53), (5, 'five', 54), (111, 'one', 55), (333, 'tw', 56);

delete fromthl ice where a <= 2, 1;
The following example deletes 0, 1, or more rows of the table. If coll isaprimary key, O or 1 rows are deleted:

delete fromice_table where coll = 100;

Y ou can use certain Hive and Impala show and describe commands to get information about table metadata. Y ou can
also query metadata tables.

The following table lists SHOW and DESCRIBE commands supported by Hive and Impala.

SHOW CREATE TABLE table_name Revedls the schema that created the table. Hive and Impala
SHOW FILESIN table_name Liststhefilesrelated to the table. Impala
SHOW PARTITIONS table_name Returns the | ceberg partition spec, just the Impala
column information, not actual partitions or
files.
DESCRIBE [EXTENDED] table_name The optional EXTENDED shows al the Hive and Impala

metadata for the table in Thrift serialized form,
which is useful for debugging.

DESCRIBE [FORMATTED] table_name The optional FORMATTED shows the Hive
- metadata in tabular format.

DESCRIBE HISTORY table_name [BET Optionally limits the output history to aperiod | Impala

WEEN timestampl AND  timestamp?2] of time.

13



Apache | ceberg features

Hive example
DESCRI BE t;

Hive output includes the following information:

col_name data_type comment

X int
y int

NULL NULL
# Partition Transform Information NULL NULL
# col_name transform_type NULL
y IDENTITY NULL

The output of DESCRIBE HISTORY includes the following columns about the snapshot. The first three are self-
explanatory. Theis_current_ancestor column valueis TRUE if the snapshot is the ancestor of the table:

e creation_time

» snapshot_id

e parent_id

e is current_ancestor

Impala examples

DESCRI BE HI STORY ice_t FROM'2022-01-04 10:00:00';

DESCRI BE HI STORY ice t FROM now() - interval 5 days;

DESCRI BE HI STORY ice_t BETWEEN '2022-01-04 10: 00: 00" AND ' 2022-01-05 10:00:0
0" ;

Drop partition feature
Y ou can easily remove a partition from an |ceberg partition using an alter table statement from Hive or Impala

Removing a partition does not affect the table schema. The column is not removed from the schema.

Prerequisites

» Thefilter expression in the drop partition syntax below is a combination of, or at least one of, the following
predicates:

e Minimum of one binary predicate
e IN predicate
e ISNULL predicate

* Theargument of the predicate in the filter expression must be a partition transform, such as 'Y EARS(col-name)’
or ‘column’.

« Any non-identity transform must be included in the select statement. For example, if you partition a column by
days, the filter must be days.

Hive or Impala syntax
alter table table-name drop partition (<filter expression>)

The following operators are supported in the predicate: =, I=,<, >, <=, >=

14



Apache | ceberg features

CREATE TABLE ice_t abl e PARTI TI ONED BY SPEC (day(d)) STORED BY | CEBERG TBLPRO
PERTIES ('format-version'='2"') AS SELECT x, ts, d FROM source_t;

I NSERT | NTO i ce_tabl e(d) VALUES (' 2024-04-30');
ALTER TABLE i ce_tabl e DROP PARTI TION (day(d) = '2024-04-30");

The syntax you use to create the table determines the default behavior when you drop the Iceberg table from Hive or
Impala.

If you use CREATE TABLE, the external.table.purge flag is set to true. When the table is dropped, the contents

of the table directory (actual data) are removed. If you use CREATE EXTERNAL TABLE from Hive, the

external .table.purge flag is set to false. Dropping a table purges the schema only. The actual datais not removed. You
can explicitly set the external .table.purge property to true to drop the data as well as the schema.

To prevent dataloss during migration of atable to Iceberg, do not drop or move the table during migration.
Exception: If you set the table property ‘external .table.purge="FALSE', no dataloss occursif you drop the table.

DROP TABLE [I F EXI STS] tabl e _nane

ALTER TABLE t SET TBLPROPERTI ES(' external . tabl e. purge' ="true');
DROP TABLE t;

Create table feature

Y ou can expire snapshots that | ceberg generates when you create or modify atable. During the lifetime of atable the
number of snapshots of the table accumulate. Y ou learn how to remove snapshots you no longer need.

Y ou should periodically expire snapshots to delete data files that are no longer needed, and to reduce the size of
table metadata. Each write to an | ceberg table from Hive creates a new snapshot, or version, of atable. Snapshots
accumulate until expired.

Y ou can expire snapshots based on the following conditions:

« All snapshots older than a timestamp or timestamp expression
« A snapshot having agiven ID

*  Snapshots having IDs matching a given list of IDs

*  Snapshots within the range of two timestamps

Y ou can keep snapshots you are likely to need, for example recent snapshots, and expire old snapshots. For example,
you can keep daily snapshots for the last 30 days, then weekly snapshots for the past year, then monthly snapshots for
thelast 10 years. Y ou can remove specific snapshots to meet GDPR “right to be forgotten” requirements.

15


https://docs.cloudera.com/cdw-runtime/1.5.5/iceberg-how-to/topics/iceberg-table-creation.html

Apache | ceberg features

ALTER TABLE <tabl e Nane> EXECUTE EXPlI RE_SNAPSHOTS( <t i nestanp expressi on>)
ALTER TABLE <t abl e Nanme> EXECUTE EXPI RE_SNAPSHOTS(' <Snapshot 1d>")

ALTER TABLE <t abl e Nanme> EXECUTE EXPl RE_SNAPSHOTS(' <Snapshot | d1>, <Snapshot
1d2>... ")

ALTER TABLE <t abl e Name> EXECUTE EXPI RE_SNAPSHOTS BETWEEN (<ti mestanp exp
ression>) AND (<tinmestanp expression>)

The first example removes snapshots having a timestamp older than August 15, 2022 1:50 pm. The second example
removes snapshots from 10 days ago and before.

ALTER TABLE ice_11 EXECUTE EXPI RE_SNAPSHOTS(' 2022- 08- 15 13:50: 00');
ALTER TABLE i ce_t EXECUTE EXPlI RE_SNAPSHOTS( CURRENT Tl MESTAMP - interval 10
days);

The first example removes snapshots having a timestamp older than August 15, 2022 1:50 pm. The second example
removes snapshots from 10 days ago and before.

ALTER TABLE ice_11 EXECUTE EXPlI RE_SNAPSHOTS(' 2022-08- 15 13:50:00');
ALTER TABLE i ce_t EXECUTE EXPlI RE_SNAPSHOTS(now() - interval 10 days);

Y ou can prevent expiration of recent snapshots by configuring the history.expire.min-snapshots-to-keep table
property. Y ou can use the ater table feature to set a property. The history.expire.min-snapshots-to-keep property
refers to anumber of snapshots, not atime delta. For example, assume you always want to keep all snapshots of your
table for the last 24 hours. Y ou configure history.expire.min-snapshots-to-keep as a safety mechanism to enforce
this. If your table receives only one modification (insert / update / merge) per hour, then setting history.expire.min-
snapshots-to-keep = 24 is sufficient to meet your requirement. However, if your table was consistently receiving
updates every minute, then the last 24 hour period would entail 1440 snapshots, and the history.expire.min-snapshots-
to-keep setting would need to be configured appropriately.

The contents of the table directory (actual data) might, or might not, be removed when you drop the table. An orphan
data file can remain when you drop an | ceberg table, depending on the external .table.purge flag table property. An
orphaned datafileis one that has contents in the table directory, but no snapshot.

Expiring a snapshot does not remove old metadata files by default. Y ou must clean up metadata files using writ
e.metadata.del ete-after-commit.enabled=true and write.metadata.previous-versions-max table properties. For more
information, see "lceberg table properties” below. Setting this property controls automatic metadata file removal after
metadata operations, such as expiring snapshots or inserting data.

Expiring snapshots
| ceberg table properties

16


https://docs.cloudera.com/cdw-runtime/1.5.5/iceberg-how-to/topics/iceberg-expiring-snapshots.html
https://docs.cloudera.com/cdw-runtime/1.5.5/iceberg-how-to/topics/iceberg-table-properties.html

Apache | ceberg features

From Hive and Impala, you can insert datainto Iceberg tables using the standard INSERT INTO asingletable.
INSERT statements work for V1 and V2 tables.

Y ou can replace datain the table with the result of a query. To replace data, Hive and Impala dynamically overwrite
partitions that have rows returned by the SELECT query. Partitions that do not have rows returned by the SELECT
query, are not replaced. Using INSERT OVERWRITE on tables that use the BUCKET partition transform is not
recommended. Results are unpredictable because dynamic overwrite behavior would be too random in this case.

From Hive, Cloudera also supports inserting into multiple tables as a technical preview; however, this operation is
not atomic, so data consistency of Iceberg tablesis equivalent to that of Hive external tables. Changes within asingle
table will remain atomic.

Inserting, deleting, or updating table data generates a snapshot. A new snapshot corresponds to a new manifest list.
Manifest lists are named snap-*.avro.

I ceberg specification defines sort orders. At this point, Hive doesn’t support defining sort orders. But if there are sort
orders defined by using other engines Hive can utilize them on write operations. For more information about sorting,
see sort orders specification.

I NSERT | NTO TABLE t abl enane VALUES val ues row [, values row ...]
I NSERT | NTO TABLE t abl enanel sel ect _statenentl FROM t abl enane2

| NSERT OVERWRI TE TABLE t abl enanel sel ect _statenent1l FROM t abl enane2

CREATE TABLE ice_10 (i INT, s STRING b BOOLEAN) STORED BY | CEBERG
I NSERT I NTO i ce_10 VALUES (1, 'asf', true);

CREATE TABLE ice_11 (i INT, s STRING b BOOLEAN) STORED BY | CEBERG
I NSERT | NTO i ce_11 VALUES (2, 'apache', false);

I NSERT INTO ice_11 SELECT * FROM i ce_10;

SELECT * FROM ice_11;

| NSERT OVERWRI TE ice_11 SELECT * FROM i ce_10;

FROM cust oner s
I NSERT | NTO targetl SELECT custoner _id, first_nane;
I NSERT | NTO target2 SELECT | ast_nane, customer _id;

From Hive or Impala, you can load Parquet or ORC data from afile in a directory on your file system or object store
into an Iceberg table. For Impala, you might need to set the mem_limit or pool configuration (max-query-mem-limit,
min-query-mem-limit) to accommodate the load.

LOAD DATA [LOCAL] | NPATH '<path to file> [OVERWRI TE] | NTO TABLE t abl enane;

17


https://iceberg.apache.org/spec/#sort-orders

Apache | ceberg features

LOAD DATA LOCAL | NPATH '/tnp/sone_db/files/part.orc' |NTO TABLE ice_orc;

LOAD DATA LOCAL | NPATH ' /tnp/ some_db/files/part.orc’ OVERWRI TE | NTO TABLE
i ce_orc;

Note:
E « Specifying the LOCAL keyword looks for afile path in the local file system.

* The OVERWRITE keyword deletes the recordsin the target table and replaces it with the files specified in
the filepath, else, the command adds to the existing content in the target table.

LOAD DATA | NPATH '<path to file>" | NTO TABLE tabl enane;

In this example, you create a table using the LIKE clause to point to a table stored as Parquet. Thisis required for
Iceberg to infer the schema. Y ou also load data stored as ORC.

CREATE TABLE test _iceberg LIKE my_parquet table STORED AS | CEBERG
SET MEM LI M T=1MB;

LOAD DATA | NPATH '/t np/ sone_db/ parquet files/' |INTO TABLE iceberg thl;

LOAD DATA I NPATH '/t np/ some_db/orc_files/' | NTO TABLE iceberg2_thbl;

Thereis no difference in the way you insert data into a partitioned or unpartitioned Iceberg table.
Working with partitions is easy because you write the query in the same way for the following operations:

* Insert into, or replace, an unpartitioned table
* Insert into, or replace, an identity partitioned table
* Insertinto, or replace, atransform-partitioned table

Do not use INSERT OVERWRITE on tables that went through partition evolution. Truncate such tablesfirst, and
then INSERT the tables.

CREATE TABLE ice_12 (i int, s string, t tinestanp, t2 tinmestanp) STORED BY |
CEBERG,

I NSERT I NTO ice_12 VALUES (42, 'inpala', now), to_date(now)));
I NSERT OVERWRI TE ice_t VALUES (42, 'inpala', now), to_date(now)));

18



Apache | ceberg features

Using amaterialized view can accelerate query execution. Creating a materialized view on top of Iceberg tablesin
Cloudera can further accelerate the performance. Y ou can create a materialized view of an Iceberg V1 or V2 table
based on an existing Hive or | ceberg table.

The materialized view is stored in Hive ACID or Iceberg format. Materialized view source tables either must be
native ACID tables or must support table snapshots. Automatic rewriting of a materialized view occurs under the
following conditions:

« Theview definition contains the following operators only:

e TableScan
e Project
e Filter
e Join(inner)
e Aggregate
» Sourcetables are native ACID or Iceberg v1 or v2
» Theview isnot based on time travel queries because those views do not have up-to-date data by definition.

The following example creates a materialized view of an Iceberg table from Hive.

drop table if exists tbl _ice;
create external table tbl _ice(a int, b string, ¢ int) stored by iceberg st
ored as orc thlproperties ('format-version' ='2");

create materialized view matl as
select b, ¢ fromtbl _ice for systemversion as of 5422037307753150798;

The following example creates a materialized view of two |ceberg tables. Joined tables must be in the same table
format, either Iceberg or Hive ACID.

drop table if exists thl _ice2;

create table thl _ice2(a int, b string, ¢ int) stored as orc TBLPROPERTIES ('
transactional'="true');

I NSERT | NTO tbl ice2 VALUES (2, 'apache', 3);

drop table if exists tbl _ice;

create external table tbl _ice(a int, b string, c¢c int) stored by iceberg sto
red as orc tblproperties ('format-version' = 2');

I NSERT | NTO tbl _acid VALUES (4, 'iceberg', 5);

create materialized view matl as

select tbl _ice2.b, tbl _ice2.c fromtbl _ice join tbl _ice2 on tbhl ice.a =1tb
| ice2. a;

The following example uses explain to examine a materialized view and then creates a materialized view of an
Iceberg V1 table from Hive.

drop materialized viewif exists matl;
drop table if exists tbl_ice;

create table tbl _ice(a int, b string, c int) stored by iceberg stored as orc
t bl properties (' format-version' ="1");

insert into tbl _ice values (1, 'one', 50), (2, "tw', 51), (3, '"three', 52),
(4, 'four', 53), (5, 'five', 54);

explain create materialized view matl stored by iceberg stored as orc tblpr

operties ('format-version' ='1') as

19



Apache | ceberg features

select tbl _ice.b, thl _ice.c fromtbl _ice where tbl _ice.c > 52;

create materialized view natl stored by iceberg stored as orc tbl properties
('format-version' ='1') as
select tbl _ice.b, tbl _ice.c fromtbl _ice where tbl _ice.c > 52;

Materialized view rebuild feature

Updates to materialized view contents when new data is added to the underlying table are critical; otherwise, queries
can return stale data.

An update can occur under the following conditions:
» Asarow-level incremental rebuild of the view after inserting data into atable

Source tables can be Iceberg V2 or Hive full ACID.
» Asafull rebuild of the view

A full rebuild can be expensive. An incremental rebuild updates only the affected parts of the materialized view,
decreasing rebuild step execution time.

An incremental rebuild occurs automatically when you insert (append) data into a source table; otherwise, after you
make some other type of change, for example a delete, you must manually start a full rebuild.

Y ou use the ALTER command to manually start afull rebuild of the materialized view from Hive as follows:

ALTER MATERI ALI ZED VI EW <nane of vi ew> REBUI LD;

In this example, first you set required properties. Next, you create |ceberg tables, aV1 table and a V2 table, from
Hive. You insert datainto the tables and create a materialized view of the joined tables. Y ou insert some new values
into one of the source tables, rendering the materialized view stale. Finally, you rebuild the materialized view using
explain cho to show the rebuild plan The rebuild plan indicates a full rebuild will occur, which means the definition
query will be executed.

drop table if exists tbl _ice;

drop table if exists thl _ice_v2;

create external table tbl _ice(a int, b string, c¢c int) stored by iceberg sto
red as orc tblproperties ('format-version' = 1');

create external table tbl _ice v2(d int, e string, f int) stored by iceberg

stored as orc tblproperties ('format-version' = 2");

insert into tbl _ice v2 values (1, 'one v2', 50), (4, 'four v2', 53), (5, 'f
ive v2', 54);

create materialized view mat1l as

select thl _ice.b, tbl ice.c, tbl ice v2.e fromthl ice

join tbl ice v2 on thl _ice.a=tbl _ice v2.d where tbl _ice.c > 52;
group by tbhl ice.b tbl _ice.c;

-- view should be enpty
select * from mat 1;

-- viewis up-to-date, use it

20



Apache | ceberg features

expl ain cbho
select tbl _ice.b, tbl_ice.c, tbl _ice_v2.e fromtbl_ice join tbhl _ice_v2 on
tbl ice.a=tbl _ice v2.d where tbl _ice.c > 52;

-- insert sonme new val ues to one of the source tables
insert into tbl _ice values (1, 'one', 50), (2, "tw', 51), (3, 'three', 52),
(4, 'four', 53), (5, 'five', 54);

-- view is outdated, cannot be used

expl ain cbo

select tbl _ice.b, tbhl _ice.c, tbl _ice v2.e fromtbl _ice join tbl _ice v2 ontb
| ice.a=tbl _ice v2.d where tbl _ice.c > 52;

expl ain cbho
alter materialized view matl rebuil d;

-- view should contain data
select * from mat 1;

-- viewis up-to-date again, use it

expl ain cbo

select thl ice.b, thl ice.c, tbl ice v2.e fromtbl _ice join tbl _ice v2 ontbh
| ice.a=tbl _ice_v2.d where tbhl _ice.c > 52;

group by tbl ice.b tbl _ice.c;

In this example, you create an |ceberg table, insert some values, and create the materialized view. The view is
partitioned using a partition specification and stored in the I ceberg ORC format. The v1 format version is specified
in this example (the v2 format is also supported). Y ou then look at a description of the view and see that the query
rewrite option is enabled by default. An automatic incremental rebuild is possible when this option is enabled.

drop table if exists tbl _ice;
create external table tbl _ice(a int, b string, ¢ int) stored by iceberg
stored as orc tblproperties ('format-version'="1");

-- insert sone new val ues into one of the source tables

insert into tbl _ice values (1, 'one', 50), (2, 'tw', 51), (3, "three', 5
2), (4, 'four', 53), (5, 'five', 54);

expl ai n

create materialized view natl partitioned on spec (bucket (16, b), trunc
ate(3, c)) stored by lceberg stored as orc thl properties(‘'format-version’ =1
")as

select tbl _ice.b, thl)ice.c fromtbl ice where tbl _ice.c > 52;

-- the output query plan query indicates a rewite is enabl ed

POSTHOOK: query: explain
create materialized view matl ...

STAGE PLANS
——”fn stage one, the materialized viewis created by calling the Iceberg

APl to create the table object.
rewite enabl ed

21



Apache | ceberg features

Y ou use the DESCRIBE command to see the output query plan, which shows details about the view, including if it
can be used in automatic query rewrites.

-- check the materialized view details
descri be formatted mat 1;

#col _nane data_type conment
b string
c i nt

#Partiti on Transform | nf ormati on

#col _nane transformtype
b bucket (16)
c TRUNCATE] 3]

#detail ed tabl e i nformati on

Tabl e_t ype: MATERI ALI ZED VI EW
Tabl e Par anet er s:

current-snapshot-id  563939E424367334713
ﬁ.ét adata_| ocati on
"I:ébl e_type | ceberg

#Mat erialized View | nfornation
Oiginal Qery: ..
Expanded Query: ...
Rewite Enabl ed: Ye

With the query rewrite option enabled, you insert data into the source table, and incremental rebuild occurs
automatically. Y ou do not need to rebuild the view manually before running queries.

Materialized view feature

From Hive and Impala, you can perform actions on an | ceberg table based on the results of ajoin between atarget and
source v2 Iceberg table.

The MERGE statement supports multiple WHEN clauses, where each clause can specify actions like UPDATE,
DELETE, or INSERT. Actions are applied based on the join conditions defined between the source and target tables.

MERGE | NTO <target table> AS T USI NG <source expression/table> AS S

ON <bool ean expressi onl>

WHEN MATCHED [ AND <bool ean expressi on2>] THEN UPDATE SET <set cl ause |ist>
WHEN MATCHED [ AND <bool ean expressi on3>] THEN DELETE

VHEN NOT MATCHED [ AND <bool ean expressi on4>] THEN | NSERT VALUES <val ue |ist>

Use the MERGE INTO statement to update an | ceberg table based on a staging table;

MERGE | NTO cust oner USI NG new_cust omer _st age source ON source.id = custoner.
id

22



Apache | ceberg features

VWHEN MATCHED THEN UPDATE SET nanme = source.nane, state = source.new stat
e

WHEN NOT MATCHED THEN | NSERT VALUES (source.id, source.name, source.s
tate);

Create an | ceberg table and merge it with a non-Iceberg table.

create external table target _ice(a int, b string, c int) partitioned by spec
(bucket (16, a), truncate(3, b)) stored by iceberg stored as orc tblproperti
es ('format-version' ='2");

create table source(a int, b string, c int);

merge into target_ice as t using source src ONt.a = src.a
when matched and t.a > 100 THEN DELETE

when nmat ched then update set b = "Merged', ¢ =t.c + 10
when not matched then insert values (src.a, src.b, src.c);

The Impala MERGE INTO statement supports the following capabilities:
*  WHEN NOT MATCHED BY SOURCE merge clause - Useful in situations when a source table's rows do not
match the target table rows. For example:

MERGE INTO target ice t using source s ont.id =s.id
VWHEN NOT MATCHED BY SOURCE THEN UPDATE set t.columm = "a";

e Supports INSERT * syntax for the WHEN NOT MATCHED clause and UPDATE SET * syntax for the WHEN
MATCHED clause.

INSERT * enumerates all expressions from the source table or subquery to simplify inserting for target tables with
large number of columns. The semanticsis the same as the regular WHEN NOT MATCHED THEN INSERT
clause.

UPDATE SET * creates assignments for each target table column by enumerating the table columns and assigning
source expressions by index.

Cloudera supports Hive table migration from Hive to Iceberg tables using ALTER TABLE to set the table properties.

Note: Do not drop or move the old table during a migration operation. Doing so will delete the data files of
IE the old and new tables. Exception: If you set the table property 'external .table.purge’="FAL SE', no dataloss
occurs when you drop the table.

In-place table migration saves time generating | ceberg tables. Thereis no need to regenerate data files. Only
metadata, which points to source datafiles, is regenerated.

To convert aHive table to an Iceberg V1 table, use the following syntax:
ALTER TABLE t abl e _nane CONVERT TO | CEBERG
To convert aHive table to an Iceberg V2 table, you must run two queries. Use the following syntax:

ALTER TABLE t abl e_nane CONVERT TO | CEBERG

ALTER TABLE t abl e_name SET TBLPROPERTIES (' format-version' = '2'
-)

23



Apache | ceberg features

In-place table migration saves time generating | ceberg tables. Thereis no need to regenerate data files. Only
metadata, which points to source datafiles, is regenerated.

Learn how to prevent Hive and Impala from reading data files from an | ceberg table that are outside of the table
location.

An unauthorized user who knows the underlying file layout of atable can gain access to the datain an Iceberg tablein
the following way:

Userl owns atable, tablel, which User2 does not have permission to read. However, User2 could execute an attack as
follows: User2 creates a new table, table2, to which they have access rights. User2 then modifies the metadata files of
their own table (table2) to reference datafiles from Userl’ s table (tablel), effectively including these files as part of
table2. By accessing their own table (table2), User2 can then read the data files that belong to User1’ stable (tablel).

Y ou can prevent this by configuring Hive and Impala to prevent reading data files that are outside of the I ceberg table
location.

Hive
Add the following property to HiveServer2 Advanced Configuration Snippet (Safety Valve) for
hive-site.xml and set the value to "true":
hi ve.iceberg.all ow datafiles.in.table.location.only
Impala

Ensure that the following Impala startup flag is set to "true". The value of thisflag is set to true by
default.

i ceberg_allow datafiles _in_table |ocation_only

| ceberg partition evolution, which is a unique Iceberg feature, and the partition transform feature, greatly simplify
partitioning tables and changing partitions.

Partitions based on transforms are stored in the | ceberg metadata layer, not in the directory structure. Y ou can change
the partitioning completely, or just refine existing partitioning, and write new data based on the new partition layout--
no need to rewrite existing data files. For example, change a partition by month to a partition by day.

Use partition transforms, such as IDENTITY, TRUNCATE, BUCKET, YEAR, MONTH, DAY, HOUR. Iceberg
solves scalability problems caused by having too many partitions. Partitioning can also include columns with alarge
number of distinct values. Partitioning is hidden in the Iceberg metadata layer, eliminating the need to explicitly write
partition columns (YEAR, MONTH for example) or to add extra predicates to queries for partition pruning.

SELECT * FROM tbl WHERE ts = ‘2023-04-21 20: 56: 08’
AND YEAR = 2023 AND MONTH = 4 AND DAY = 21

Y ear, month, and day can be automatically extracted from ‘2023-04-21 20:56:08' if the table is partitioned by
DAY (ts)

Partition evolution means you can change the partition layout of the table without rewriting existing data files. Old
data files can remain partitioned by the old partition layout, while newly added data files are partitioned based on the
new layout.

You can usethe ALTER TABLE SET PARTITION SPEC statement to change the partition layout of an Iceberg
table. A change to the partition spec results in a new metadata.json and a commit, but does not create a new snapshot.

24



Apache | ceberg features

ALTER TABLE t abl e_name SET PARTI TI ON SPEC ([ col _nane] [, spec(value)][, spec(
value)]...)]

[ Sp&
The specification for atransform listed in the next topic, "Partition transform feature'.

ALTER TABLE t

SET PARTI TI ON SPEC ( TRUNCATE(5, level), HOUR(event tine),

BUCKET( 15, nessage), price);

ALTER TABLE ice_p

SET PARTI TI ON SPEC (VA D(i), VA D(d), TRUNCATE(3, s), HOUR(t), i);

Partition transform feature

From Hive or Impala, you can use one or more partition transforms to partition your data. Each transform is applied
to a single column. Identity-transform means no transformation; the column values are used for partitioning. The
other transforms apply a function to the column values and the datais partitioned by the transformed values.

Using CREATE TABLE ... PARTITIONED BY you create identity-partitioned |ceberg tables. |dentity-partitioned

| ceberg tables are similar to the Hive or Impala partitioned tables, which are stored in the same directory structure
asthe datafiles. Iceberg stores the partitioning columns of identity-partitioned | ceberg tablesin a different directory
structure from the data files if the tables are migrated to | ceberg from Hive external tables. Iceberg handles the tables
and files regardless of the location.

Hive and Impala support | ceberg advanced partitioning through the PARTITION BY SPEC clause. Using this clause,
you can define the | ceberg partition fields and partition transforms.

The following table lists the available transformations of partitions and corresponding transform spec.

Partition by year years(time_stamp) | year(time_stamp) Hive and Impala
Partition by month months(time_stamp) | month(time_stamp) Hive and Impala
Partition by a date value stored asint (dateint) | days(time_stamp) | date(time_stamp) Hive
Partition by hours hours(time_stamp) Hive
Partition by a dateint in hours date_hour(time_stamp) Hive
Partition by hashed value mod N buckets bucket(N, col) Hive and Impala
Partition by value truncated to L, whichisa truncate(L, col) Hive and Impala

number of characters

Strings are truncated to length L. Integers and longs are truncated to bins. For example, truncate(10, i) yields
partitions 0, 10, 20, 30 ...

The idea behind transformation partition by hashed value mod N buckets is the same as hash bucketing for Hive
tables. A hashing algorithm calculates the bucketed column value (modulus). For example, for 10 buckets, datais
stored in column value % 10, ranging from 0-9 (O to n-1) buckets.

You use the PARTITIONED BY SPEC clause to partition atable by an identity transform.

25


https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL+BucketedTables

Apache | ceberg features

CREATE [ EXTERNAL] TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
[(col _nane data_type][, time_stanp TI MESTAMP] )]

[ PARTI TI ONED BY SPEC([ col nane] [, spec(value)][, spec(value)]..

[ STORED AS file fornmat]
STORED BY | CEBERG
[ TBLPROPERTI ES (property_name=property_value, ...)]

Where spec(value)represents one or more of the following transforms:

* YEARS(col_name)

« MONTHS(col_name)

* DAY S(col_name)

e BUCKET(bucket_num,col _name)
 TRUNCATE(length, col_name)

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
[ (col _name data_type,

[ PARTI TI ONED BY SPEC( [ coI _|)”|ama] [, spec(value)][, spec(value)]..

STORED (AS | BY) | CEBERG
[ TBLPROPERTI ES (property_nane=property_value, ...)]

Where spec(value) represents one or more of the following transforms:

*  YEARS(col_name)

e MONTHS(col_name)

* DAYS(col_name)

e BUCKET(bucket_num,col_name)
* TRUNCATE(Iength, col_name)

)

)

The following example creates atop level partition based on column i, a second level partition based on the hour part

of the timestamp, and athird level partition based on the first 1000 charactersin column j.

CREATE EXTERNAL TABLE ice_3 (i INT, t TIMESTAMP, j BI G NT) PARTITI ONED BY SP

EC (i, HOUR(t), TRUNCATE(1000, j)) STORED BY | CEBERG

CREATE TABLE ice_13 (i INT, t TIMESTAMP, j BI G NT) PARTITI ONED BY SPEC (i, H

OUR(t), TRUNCATE(1000, j)) STORED BY | CEBERG

The following examples show how to use the PARTITION BY SPEC clausein a CREATE TABLE query from

Impala.The same transforms are availablein a CREATE EXTERNAL TABLE query from Hive.

CREATE TABLE ice_t(id INT, name STRING dept STRI NG
PARTI TI ONED BY SPEC (bucket (19, id), dept)

STORED BY | CEBERG

TBLPROPERTI ES (' format-version' = 2");

CREATE TABLE ice_ctas
PARTI TI ONED BY SPEC (truncate(1000, id))
STORED BY | CEBERG

26



Apache | ceberg features

TBLPROPERTI ES (' format-version' =" 2")
AS SELECT id, int_col, string_col FROM source_table;

Creating an | ceberg partitioned table
Create table feature
Partition evolution feature

Apache | ceberg stores extensive metadata for its tables. From Hive and Impala, you can query the metadata tables as
you would query aregular table. For example, you can use projections, joins, filters, and so on.

| ceberg metadata tables include information that is useful for efficient table maintenance (about snapshots, manifests,
data, deletefiles, etc.) aswell as statistics that help query engines plan and execute queries more efficiently (value
count, min-max values, number of NULLS, etc.).

Note: Iceberg metadata tables are read-only. Y ou cannot add, remove, or modify recordsin the tables. Also,
you cannot drop or create new metadata tables.
For more information about the Apache |ceberg | ceberg metadata tabl e types, see the Apache Iceberg
MetadataTableType enumeration.
For more information about querying Iceberg metadata, see the Apache | ceberg Spark documentation.

The following sections describe how you can interact with and query |ceberg metadata tables:

The SHOW METADATA TABLES statement lists all metadata tables belonging to an | ceberg table. Y ou can also
filter the tables according to a specific pattern.

Note: The SHOW METADATA TABLES statement is only availablein Impalaand is not supported in
Hive.

Impala Syntax:
SHOW METADATA TABLES | N [ dat abase_name.]tabl e _nane [[LIKE] "pattern"];
Impala Example:

SHOW METADATA TABLES I N default.ice table;

Qut put

fooccocoocococcooccooccoocooc +
| name [
do e e mmeeeeeacaaas +

| all _data files
| all _delete files
| all _entries
| all _files

| all _manifests
| data files

| delete files
| entries

| files

| history

| manifests

| netadata | og entries
| partitions

27


https://docs.cloudera.com/cdw-runtime/1.5.5/iceberg-how-to/topics/iceberg-table-creation.html

Apache | ceberg features

| position_deletes |
| refs [
| snapshots |

Y ou can use the regular SELECT statement from Hive or Impalato query Iceberg metadata tables. To reference a
metadata table, use the fully qualified path as shown in the syntax.

Hive or Impala Syntax:

SELECT ... FROM dat abase_nan®e. t abl e_nane. net adat a_t abl e_nane;
Hive or Impala Example:

SELECT * FROM default.ice table.files;

Y ou can select any subset of the columns or al of them using ‘*’. In comparison to regular tables, running a SELE
CT * from Impala on metadata tables always includes complex-typed columns in the result. The Impala query option,
EXPAND_COMPLEX_TYPES only appliesto regular tables. However, Hive adways includes complex columns
irresepctive of whether SELECT queries are run on regular tables or metadata tabl es.

For Impala queries that have amix of regular tables and metadata tables, a SELECT * expression where the sources
are metadata tables always includes complex types, whereas for SELECT * expressions where the sources are regular
tables, complex types are included only if the EXPAND_COMPLEX_TYPES query option is set to 'true'.

In the case of Hive, columns with complex types are aways included.

Y ou can also filter the result set using a WHERE clause, use aggregate functions such as MAX or SUM, JOIN
metadata tables with other metadata tables or regular tables, and so on.

Example:

SELECT

S. operation,

h.is _current _ancestor,

S. sunmary
FROM def aul t.ice_table. history h
JO N default.ice_table.snapshots s

ON h. snapshot _id = s.snapshot _id

WHERE s. operation = 'append'
ORDER BY nmade_current _at;

» Impaladoes not support the DATE and BINARY datatypes. NULL isreturned instead of their actual values.
« Impaladoes not support unnesting collections from metadata tables.

Like regular tables, Iceberg metadata tables have schemas that can be explored using the DESCRIBE statement. The
DESCRIBE statement displays metadata about a table, such as the column names and their data types.

To reference the metadata table, use the fully qualified path as shown in the syntax.

Note: DESCRIBE FORMATTED|EXTENDED is not available for metadata tables. In Impala, using this
statement results in an error whereas Hive displays the same output as the regular DESCRIBE statement.

28



Apache | ceberg features

Hive or Impala Syntax:
DESCRI BE dat abase _nane. t abl e_nane. net adat a_t abl e_nane;
Hive or Impala Example:

DESCRI BE default.ice_table. history;

Cut put :

eccocoococoococooccoocoocoe fecococoococooas feocococooooc fesccocoooooc +
| nane | type | corment | nullable |
Focococcoccococoocoocooooe Fococcoccooooe Fococooooe Focococococ +
| made_current _at | timestanp | | true |
| snapshot _id | bigint [ | true [
| parent _id | bigint | | true |
| is_current_ancestor | bool ean [ | true [
fooccocoocococcooccoocoocos feocococooccooac feoococooooc feoococooccoac +

Apache |ceberg MetadataT ableType
Apache Spark documentation

In the event of a problem with your table, you can reset atable to agood state as long as the snapshot of the good
table isavailable. Y ou can roll back the table data based on a snapshot id or a timestamp.

When you modify an Iceberg table, a new snapshot of the earlier version of the table is created. When you roll back a
table to a snapshot, a new snapshot is created. The creation date of the new snapshot is based on the Timezone of your
session. The snapshot id does not change.

ALTER TABLE test_tabl e EXECUTE rol | back(snapshot|D);
ALTER TABLE test _table EXECUTE rol | back('tinmestanp');

The following example rolls back to an earlier table, creating a new snapshot having a new creation date timestamp,
but keeping the same snapshot id 3088747670581784990.

ALTER TABLE ice_t EXECUTE ROLLBACK(3088747670581784990);

The following example rolls the table back to the latest snapshot having a creation timestamp earlier than '2022-08-08
00:00:00.

ALTER TABLE ice_7 EXECUTE ROLLBACK(' 2022-08-08 00: 00: 00")

Y ou can read I ceberg tables from Impala as you would any table. Joins, aggregations, and analytical queries, for
example, are supported.

Impala supports reading V2 tables with position deletes.

29


https://github.com/apache/iceberg/blob/main/core/src/main/java/org/apache/iceberg/MetadataTableType.java
https://iceberg.apache.org/docs/latest/spark-queries/#inspecting-tables
https://iceberg.apache.org/spec/#row-level-deletes

Apache | ceberg features

SELECT * FROMice t;

SELECT count(*) FROMice t i LEFT OUTER JON other t b
ON (i.id = other_t.fid)
VWHERE i .col = 42;

Y ou learn that the Hive or Impala schema changes when the associated | ceberg table changes. Y ou see examples of
changing the schema.

Although you can change the schema of your table over time, you can still read old data files because | ceberg
uniquely identifies schema elements. A schema change results in a new metadata.json and a commit, but does not
create a new snapshot.

The | ceberg table schemais synchronized with the Hive/lmpala table schema. A change to the schema of the Iceberg
table by an outside entity, such as Spark, changes the corresponding Hive/lmpala table. Y ou can change the Iceberg
table using ALTER TABLE to make the following changes:

From Hive:

e Addacolumn
* Replace acolumn
« Change acolumn type or its position in the table

From Impala:

e Addacolumn

* Renameacolumn

e Dropacolumn

» Change a column type

An unsafe change to a column type, which would require updating each row of the table for example, is not allowed.
The following type changes are safe:

e inttolong
« float to double
e decima(P, S) to decimal (P, S) if precision isincreased

Y ou can drop a column by changing the old column to the new column.

ALTER TABLE t abl e_name ADD COLUMNS (col _name type[, .])
ALTER TABLE t abl e _name CHANGE COLUWN col ol d_nane col new nane type

ALTER TABLE t abl e _nane CHANGE COLUWN col ol d_nane col new nane type [ Fl RST|
AFTER col nane] [existing col nane

]
ALTER TABLE t abl e_name REPLACE COLUWNS (col _nanme type)

ALTER TABLE t abl e nane ADD COLUWNS(col name type[, .])

ALTER TABLE t abl e_name CHANGE COLUMWN col _ol d_nane col _new _nane type
ALTER TABLE t abl e_name DROP COLUMN col _name

30



Apache | ceberg features

ALTER TABLE t ADD COLUWNS(nessage STRING price DECIMAL(8,1));

ALTER TABLE t REPLACE COLUWNS (i int comment ‘...’', a string, ...);
ALTER TABLE t CHANGE COLUMWN col _x col _x DECI MAL (22, 3) AFTER col _y;

ALTER TABLE ice_12 ADD COLUWNS(nessage STRING price DECI MAL(8,1));
ALTER TABLE ice_12 DROP COLUW i ;

ALTER TABLE ice_12 CHANGE COLUWN s str STRI NG

From Hive or Impala, you can base a new |ceberg table on a schemain a Parquet file. Y ou see adifferencein the
Hive and Impala syntax and examples.

From Hive, you must use FILE inthe CREATE TABLE LIKE ... statement. From Impala, you must omit FILE in the
CREATE TABLE LIKE ... statement. The column definitions in the Iceberg table are inferred from the Parquet data
file when you create atable like Parquet from Hive or Impala. Set the following table property for creating the table:

hi ve. parquet.infer.binary.as = <val ue>

Where <value> is binary (the default) or string.

This property determines the interpretation of the unannotated Parquet binary type. Some systems expect binary to be
interpreted as string.

CREATE [ EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nanme LI KE FI LE PARQU
ET 'obj ect storage path_of parquet file'

[ PARTI TI ONED BY [ SPEC] ([ col _nane] [, spec(value)][, spec(value)]...)]]

[ STORED AS fil e_format]

STORED BY | CEBERG

[ TBLPROPERTI ES (property_nane=property_value, ...)]

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_name LI KE PARQUET 'object_stora
ge_path_of parquet file'

[ PARTI TI ONED BY [ SPEC] ([ col _nane] [, spec(value)][, spec(value)]...)]]

STORED (AS | BY) | CEBERG

[ TBLPROPERTI ES (property_nane=property value, ...)]

CREATE TABLE ctlf_table LIKE FILE PARQUET ' hdfs://fil es/schema. parq'
STORED BY | CEBERG,

CREATE TABLE ctlf_table LIKE PARQUET ' hdfs://fil es/schema. parq'

31



Apache | ceberg features

STORED BY | CEBERG

From Hive, you can manage the lifecycle of snapshots using branches and tags. Branches are references to snapshots
that have alifecycle of their own. Tags identify snapshots you need for auditing and conforming to GDPR.

Y ou can expire snapshots, list snapshots of atable, use a snapshot to rollback to aversion of atable, and perform
other snapshot management operations described in this documentation.

| ceberg branches and tags are available in Hive to reference snapshots for managing snapshot lifecycles. Branches
track the ancestral relations of snapshots and point to the snapshot root. Cloudera recommends that you use this
feature in test and development environments. It is not recommended for production deployments. | ceberg branches
and tags are not supported in Impala or Spark.

The following Hive syntax for sets the current snapshot using an 1D or timestamp:
ALTER TABLE <tabl e nane> EXECUTE SET_CURRENT_SNAPSHOT (<snapshot | D>)
For example:

ALTER TABLE t EXECUTE SET_CURRENT SNAPSHOT (7521248990126549311)

Branches are references to snapshots that have a lifecycle of their own. Y ou can create a branch by basing the branch
on asnapshot 1D, atimestamp, or the state of your table. Using the SNAPSHOT RETENTION clause, you can create
abranch that limits the number of snapshots of atable.

I ceberg branching is available in Hive and Spark. | ceberg branches are not supported in Impala.

The following syntax lists timestamps and |Ds of snapshots of an Iceberg table. Y ou can use the list of snapshots to
create branches and tags.

SELECT * FROM <dat abase>. <t abl e nane>. H STORY
The following syntax lists the branches and tags of atable.

SELECT * from <dat abase>. <t abl e nane>. REFS

Use either system version or system time in the following syntax from Hive to create a branch. Tables must be
Iceberg V2 tables.

ALTER TABLE <t abl e name> CREATE BRANCH <branch nanme> FOR SYSTEM VERSI ON AS O
F <SNAPSHOT | D>

ALTER TABLE <t abl e nane> CREATE BRANCH <branch nanme> FOR SYSTEM TI ME AS OF
"time_stanp' [expression]

32



Apache | ceberg features

If you do not have the ID or timestamp of a snapshot, you can also create a branch using the table name only and
omitting the FOR clause

ALTER TABLE <t abl e nane> CREATE BRANCH <br anch nane>

This syntax creates a branch having the same state as the table.

When you create a branch, you can limit the number of snapshots a branch retains.

ALTER TABLE <t abl e nane> CREATE BRANCH <branch nane> FOR SYSTEM VERSI ON AS O
F <tinmestanp> W TH SNAPSHOT RETENTI ON <i nteger |imt> SNAPSHOTS;

From Hive, you can ingest datainto an Iceberg branch using dot notation as you would a SQL table. The branch name
prefix branch_ must be lowercase.

I NSERT | NTO TABLE <dat abase nane>. <t abl e nane>. branch_<branch nane> VALUES (
<col um name>[, <columm name> ...]

Y ou can use SQL syntax to read, update, and delete datain a branch.

SELECT <col umm nane 1>, <columm nane 2>, ... FROM <dat abase name>. <t abl e nam
e>. branch_<branch nane>

UPDATE TABLE <dat abase nane>. <t abl e nanme>. branch_<branch nanme> SET <col um
nane>=<new val ue>, <col um nane>=<new val ue> ... WHERE <condition>

DELETE FROM <dat abase nane>. <t abl e nanme>. branch_<branch name> WHERE <condi ti
on>

Fast forwarding a branch updates the state of one branch to another branch within its hierarchy. For example, you can
fast-forward branch x to branch z as shown in the following example:

ALTER TABLE <t abl e nane> EXECUTE FAST- FORWARD ' x' 'z';

Branch x must be an ancestor of branch z. If you omit the second branch name, the named branch is fast-forwarded to
the current branch.

Y ou can delete a branch related to a particular table, using the following syntax:

ALTER TABLE <t abl e nane> DROP BRANCH [ | F EXI STS] <branch name>

Tags identify snapshots you need for auditing and conforming to GDPR. Y ou can tag a snapshot to help you track
retention for a certain period of time.

| ceberg tagging is available in Hive and Spark. Iceberg tagging is not available in Impala.

33



Apache | ceberg features

Y ou can create atag based on SYSTEM_VERSION, SYSTEM_TIME, or the current branch. Tables must be Iceberg
V2 tables.

ALTER TABLE <t abl e nane> CREATE TAG <t ag nane> FOR SYSTEM VERSI ON AS OF <sna
pshot | D>

ALTER TABLE <t abl e nane> CREATE TAG <tag nane> FOR SYSTEM TI ME AS OF ' <ti
mest anp>'

ALTER TABLE <t abl e nane> CREATE TAG <t ag name>

You can run SQL read queries on tags using the name of the tag as follows:
<dat abase nane>. <t abl e nane>.tag_<tag nanme>
For example:

SELECT * from nydb. nyt abl e. t ag_mnyt ag;

Use the following syntax to delete a tag.

ALTER TABLE <tabl e nane> DROP tag [IF EXI STS] <tag nane>

From Hive or Impala, you can run point in time queries for auditing and regulatory workflows on | ceberg tables.
Time travel queries can be time-based or based on a snapshot ID.

| ceberg generates a snapshot when you create, or modify, atable. A snapshot stores the state of atable. You can
specify which snapshot you want to read, and then view the data at that timestamp. In Hive, you can use projections,
joins, and filtersin time travel queries. Y ou can add expressions to the timestamps, as shown in the examples. You
can expire snapshots.

Snapshot storage isincrementa and dependent on the frequency and scale of updates. By default, Hive and Impala
use the latest snapshot. Y ou can query an earlier snapshot of |ceberg tables to get historical information. Hive and
Impala use the latest schemato query an earlier table snapshot even if it has a different schema.

SELECT * FROM tabl e_nane FOR SYSTEM TIME AS OF 'tine_stanp' [expression]
SELECT * FROM tabl e_nane FOR SYSTEM VERSI ON AS OF snapshot i d [expression]

e time stamp

The state of the Iceberg table at the time specified by the UTC timestamp.
e snapshot _id

The ID of the | ceberg table snapshot from the history output.




Apache | ceberg features

SELECT * FROMt FOR SYSTEM TI ME AS OF ' 2021-08-09 10:35:57" LIMT 100;

SELECT * FROMt FOR SYSTEM VERSI ON AS OF 3088747670581784990 limt 100;
SELECT * fromice_11 FOR SYSTEM TIME AS OF now() - interval 30 m nutes;

Truncating an | ceberg table removes all rows from the table. A new snapshot is created. Truncation works for
partitioned and unpartitioned tables.

Although the table data and the table and column stats are cleared, the old snapshots and their data files continue to
exist to support time travel in the future.

TRUNCATE t abl e_nane

TRUNCATE [ TABLE] tabl e_name

TRUNCATE t;

From Hive or Impala, you can update data from a V2 |ceberg table.

The Iceberg V2 format allows row-level modifictions using delete files. Row-level updates are supported. Hive and
Impalawrite position to denote deleted or updated records. For information about position delete files, see the Delete
data feature and Row-level operations topics.

Updating table data generates a new snapshot for the table.
Y ou can use a WHERE clause in your UPDATE statement. For example:

update tbl _ice set b='Changed' where b in (select b fromthl _ice where a < 4

)

Hive or Impala evaluates rows from the target table against a WHERE clause, and updates all the rows that match the
WHERE condition. The WHERE condition is similar to the WHERE condition used in SELECT.

The target table should be an Iceberg V2 table. Therefore set the following table property during table creation, or use
ALTER TABLE SET TBLPROPERTIES on existing Iceberg V1 tables. ‘format-version' = '2'

Y ou must write data and delete files in Parquet format. Set the following table properties to meet this prerequisite:

« ‘writeformat.default’' = 'PARQUET"
» ‘write.delete.format.default’ = 'PARQUET"

35



Best practices for Iceberg in Cloudera

updat e tabl ename set colum = value [, columm = value ...] [where expres
si on]

create external table tbl _ice(a int, b string, ¢ int) stored by iceberg tblp
roperties ('format-version' = 2");

insert into tbl _ice values (1, 'one', 50), (2, '"tw', 51), (3, 'three', 52),
(4, 'four', 53), (5, 'five', 54), (111, 'one', 55), (333, 'two', 56);

update tbl _ice set b=' Changed' where b in (select b fromtbl _ice where a <
4);

From Impala, you can use UPDATE FROM to update anlceberg table based on a source table or view that is another
I ceberg or non-lceberg table. For example:

UPDATE tbl ice SET tbl _ice.one = t.one, thl ice.two = t.two, FROMthl ice, t
bl _hi ve one where tbl _ice. pk = one. pk;

Based on large scale TPC-DS benchmark testing, performance testing and real-world experiences, Cloudera
recommends several best practices when using | ceberg.

Follow these key best practices listed below when using | ceberg:
* Uselceberg asintended for analytics.

The table format is desighed to manage alarge, slow-changing collection of files. For more information, see the
I ceberg spec.
* Reduce read amplification

Monitor the growth of positional deltafiles, and perform timely compactions.
» Speed up drop table performance, preventing deletion of data files by using the following table properties:

Set external.table. purge=fal se and gc. enabl ed=f al se

« Tunethe following table properties to improve concurrency on writes and reduce commit failures; commit.retry
.num-retries (default is4),  commit.retry.min-wait-ms (default is 100)

* Maintain arelatively small number of data files under the iceberg table/partition directory for efficient reads. To
alleviate poor performance caused by too many small files, run the following queries:

TRUNCATE TABLE t arget;
| NSERT OVERWRI TE TABLE target select * fromtarget FOR SYST
EM VERSI ON AS OF <preTruncat eSnapshot | d>;

e To minimize the number of delete files and file handles and improve performance, ensure that the Spark
write.distribution.mode table property valueis “hash” (the default setting for Spark Iceberg 1.2.0 onwards).

36


https://iceberg.apache.org/spec/

Performance tuning

Learn the types of workloads best suited for Iceberg. Under certain conditions, using V2 tables versus V1 tables
might improve query response.

Iceberg atomic DELETE and UPDATE operations resembl e traditional RDBM S systems, but are not suitable for
OLTP workloads. Iceberg is not designed to handle high frequency transactions. To handle very large datasets and
frequent updates, use Apache Kudu.

Use Iceberg for managing large, infrequently changing datasets. Y ou can update and delete |ceberg V2 tables at the
row-level and not incur the overhead of rewriting the datafiles of V1 tables. Iceberg stores information about the
deleted records in position delete files. These files store the file paths and positions of the deleted records, eliminating
the need to rewrite the files. Iceberg performs a DELETE plus an INSERT operation in asingle transaction. This
technique speeds up queries. Query engines scan the datafiles and del ete files associated with a snapshot and merge
them, removing the deleted rows. For example, to remove all data belonging to a single customer:

DELETE FROM ice_tbl WHERE user_id = 1234;
To update a column value in a specific record:
UPDATE ice_thl SET col_v =col_v + 1 WHERE id = 4321;

Y ou can convert an Iceberg vl table to v2 by setting atable property as follows: format-version' = '2'.

Impala uses its own C++ implementation to deal with I ceberg tables. Thisimplementation provides significant
performance advantages over other engines.

To tune performance, try the following actions;

« Speed up drop table performance, preventing deletion of data files by using the following table properties:

Set external .tabl e. purge=fal se and gc. enabl ed=f al se

« Tunethefollowing table properties to improve concurrency on writes and reduce commit failures: commit.retry
.num-retries (default is4), commit.retry.min-wait-ms (default is 100)

» Read Iceberg V2 tables from Hive using vectorization when heavy table scanning occurs asin SELECT
COUNT(*) FROM TBL_ICEBERG_PART.

» et hivellap.io.memory.mode=cache;
« set hivellap.io.enabled=true;
» set hive.vectorized.execution.enabled=true;
» Uselceberg from Impalafor querying Iceberg tables when latency is a concern.

The massively parallel SQL query engine, backend executors written in C++, and frontend (analyzer, planner)
written in Java delivers query results fast.
» Cache manifest files as described in the next topic.

Apache | ceberg provides a mechanism to cache the contents of Iceberg manifest filesin memory. The manifest
caching feature helps to reduce repeated reads of small |ceberg manifest files from remote storage by Impala
Coordinators and Catalogd.

Impala caches table metadatain CatalogD and the local Coordinator’s catalog, making table metadata analysis fast if
the targeted table metadata and files were previously accessed. Impala might analyze the same table multiple times
across concurrent query planning and also within single query planning, so caching is very important.

37


https://iceberg.apache.org/spec/#row-level-deletes
https://iceberg.apache.org/spec/#position-delete-files

Unsupported features and limitations

Having a frontend written in Java, Impala can directly analyze many aspects of the I ceberg table metadata through
the Java Library provided by Apache Iceberg. Metadata analysis such as listing the table data file, selecting the table
snapshot, partition filtering, and predicate filtering is delegated through | ceberg Java API.

To use the Iceberg Java APl while still maintaining fast query planning, Iceberg implements caching strategiesin the
Iceberg Java Library similar to those used by Apache Impala. The Iceberg manifest caching feature congtitutes these
caching strategies. For more information about manifest caching, see the Iceberg Manifest Caching Blog.

Cloudera does not support all featuresin Apache Iceberg. Thelist of unsupported features for Cloudera differs from
release to release. Also, Apache Iceberg in Cloudera has some limitations you need to understand.

The following table presents feature limitations or unsupported features:
# means not yet tested
N/A meanswill never be tested, not a GA candidate

|ceberg Feature Hive Impala Spark
Branching/Tagging # # #
Read equality deletes for Flink # # #
upserts

Read equality deletes for NiFi # # #
Write equality deletes N/A N/A N/A
Read outside files N/A N/A N/A
Bucketing # # #

The table above shows that the following features are not supported in this release of Cloudera:
» Tagging and branching

A technical preview is supported from Hive (not Impala) in Cloudera Data Warehouse on cloud.
e Writing equality deletes

Hive and Impala only read equality deletes.
« Reading files outside the table directory

Reading outside files is not supported due to the security risk. An unauthorized party who knows the underlying
schema and file location outside the table location can rewrite the manifest files within one table location to point
to the data files in another table location to read your data.

» Buckets defined from Hive do not create like bucketsin | ceberg.

For more information, see "Bucketing workaround" below.
» Using Iceberg tables as Spark Structured Streaming sources or sinks
« Pylceberg
e Migration of Delta Lake tables to Iceberg

The following features have limitations or are not supported for Apache | ceberg:

38



Unsupported features and limitations

» Impalaonly supports reading data filesin the AVRO format but does not yet support reading delete filesin AVRO
format.

This means Impala can always read | ceberg V 1 tables containing AV RO files because the V1 version does not
have delete files. However, | ceberg V2 tables configured with the merge-on-read del ete strategy might contain
AVRO deletefiles.

If Impala encounters AVRO delete files while reading an Iceberg V2 table, it fails with an error.
Workaround: Use one of the following methods to access or modify the table:

» UseHiveor Spark to read | ceberg V2 tables that contain AVRO delete files.
« Change the delete strategy to copy-on-write or compact the table to eliminate the delete files.
« Rewrite the |ceberg table files to the Parquet file format so that Impala can read the delete files as well.
e Multipleinsert overwrite queries that read data from a source table.
* When the underlying table is changed, you need to rebuild the materialized view manually, or use the Hive query
scheduling to rebuild the materialized view.

* You must be aware of the following considerations when using equality deletes:

« Equality updates and deletes are not supported.

» If you are using Apache Flink or Apache NiFi to write equality deletes, then ensure that you provide a
PRIMARY KEY for thetable. Thisisrequired for engines to know which columnsto write into the equality
deletefiles.

« |f thetableis partitioned then the partition columns have to be part of the PRIMARY KEY

» For Apache Flink, the table should be in 'upsert-mode' to write equality deletes

» Partition evolution is not allowed for |ceberg tables that have PRIMARY KEYs

« Anequdity deletefilein thetableisthe likely cause of a problem with updates or deletes in the following
situations:

« In Change Data Capture (CDC) applications
e Inupserts from Apache Flink
e From athird-party engine

* You must be aware of the following:

« AnIceberg table that points to another | ceberg table in the HiveCatalog is not supported.

For example:

CREATE EXTERNAL TABLE ice t
STORED BY | CEBERG
TBLPROPERTI ES ('iceberg.table identifier'=db.tbh');

e Seealso Iceberg datatypes.

A query from Hive to define buckets/foldersin Iceberg do not create the same number of buckets/folders asthe
same query createsin Hive. In Hive bucketing by multiple columns using the following clause creates 64 buckets
maximum inside each partition.

| CLUSTERED BY ( [
| id, I
| partition_id) |
| INTO 64 BUCKETS

Defining bucketing from Hive on multiple columns of an Iceberg table using this query creates 64* 64 buckets/
folders; consequently, bucketing by group does not occur as expected. The operation will create many small files at
scale, adrag on performance.

39



Prerequisites

Add multiple bucket transforms (partitions) to more than one column in the current version of Iceberg as follows:

bucket (p, col 1, col2) =[ bucket(m coll) , bucket(n, col2) ] where p = m* n

Y ou need to meet environment prerequisites for querying lceberg tablesin CDP. Y ou learn which query editors are
supported and which roles are required.

Note: Do not drop, move, or change the old table during a migration operation. Doing so will delete the data
E files of the old and new tables.

Thefollowing list covers prerequisites for using Iceberg.

¢ You are using the CDP Private Cloud Data Warehouse Data Service.

* Your Base cluster must be Cloudera Private Cloud Base 7.1.9 (Open Data L akehouse) to use | ceberg GA-certified
features.

* You must have theroles DWUser.

e You must obtain permission to run SQL queries from the Env Admin, who must add you to the Hadoop SQL
Storage Handler and the Hadoop SQL policies.

* Theorigina tableisan EXTERNAL table from the Impala perspective: The EXTERNAL table property value is
true.

e Theorigina tableisanon-ACID table.
e Youhave“ALL" privileges on the database containing the table.

Cloudera uses Apache Ranger to provide centralized security administration and management. The Ranger Admin Ul
isthe central interface for security administration. Y ou can use Ranger to create two policies that allow usersto query
| ceberg tables.

How you open the Ranger Admin Ul differs from one Cloudera service to another. In Cloudera Management Console,
you can select your environment, and then click Environment Details Quick Links Ranger .

You log into the Ranger Admin Ul, and the Ranger Service Manager appears.

i--ﬁ:'ﬂﬂl'lg'er U Access Manager [ Audit (*) Security Zone # Settings ﬁ admin ~
Last Response Time : 12/20/2022 02:16:44 PM
Service Manager Security Zone: v mimpert ) Expon
[= HDFS + 08 [= HBASE +06 0 [= HADOOP SQL + 8 A
n_hdfs - - u &m_hbase - - u Hadoop S0L - " n

The default policies that appear differ from service to service. You need to set up two Hadoop SQL policiesto query
| ceberg tables:

40



Accessing | ceberg tables

* Oneto authorize users to access the Iceberg files

Follow stepsin "Editing apolicy to access Iceberg files' below.
» Oneto authorize usersto query Iceberg tables

Follow stepsin "Creating a policy to query an Iceberg table" below.

e Obtain the RangerAdminrole.
* Get the user name and password your Administrator set up for logging into the Ranger Admin.

The default credentials for logging into the Ranger Admin Web Ul are admin/admin123.

You learn how to edit the existing default Hadoop SQL Storage Handler policy to accessfiles. This policy is one of
the two Ranger policies required to use | ceberg.

The Hadoop SQL Storage Handler policy allows references to | ceberg table storage location, which is required for
creating or atering atable. Y ou use a storage handler when you create afile stored as | ceberg on the file system or
object store.

In this task, you specify | ceberg as the storage-type and allow the broadest access by setting the URL to *.

The Hadoop SQL Storage Handler policy supports only the RW Storage permission. A user having the required RW
Storage permission on aresource, such as | ceberg, that you specify in the storage-type properties, is alowed only

to reference the table location (for create/alter operations) in Iceberg. The RW Storage permission does not provide
access to any table data. Y ou need to create the Hadoop SQL policy described in the next topic in addition to this
Hadoop SQL Storage Handler policy to access datain tables.

For more information about these policy settings, see Ranger Storage Handler documentation.

1. Loginto Ranger Admin Web Ul.
The Ranger Service Manager appears.

‘-'%i'Ranger U Access Manager [ Audit  [#)SecurityZone & Settings o admin ~
Last Respanse Time : 12/20/2022 02:16:44 PM
Service Manager Security Zone: * @ impont [ Expont

[= HDFS + 0608 [~ HBASE + 68 [= HADOOP SQL + 608
il » @ u em_hbas & @ u Hadeop SCL o | = n

41


https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html

Accessing I ceberg tables

2. InPolicy Name, enable the all - storage-type, storage-url policy.
List of Policies : Hadoop SQL

a, Search for your policy

Poliey ID Palicy Name Palicy Labels Status

8 al - global -
g all - database, table, column -
10 all - database, tabls --

all - staracge-Type, storage-url

3.
In Service Manager, in Hadoop SQL, select Edit 4 and edit the all storage-type, storage-url policy.

4. Below Policy Label, select storage-type, and enter iceberg..

42



Accessing I ceberg tables

5. In Storage URL, enter the value *, enable Include.

Policy Type (k)
Policy ID*  (§i

Policy Name* all - storage-type, storage-url o Enabled (@@
Policy Label Select...
Storage Type iceberg X

Description Policy for all - storage-type, storage-url

Audit Logging”

For more information about these policy settings, see Ranger storage handler documentation.
6. In Allow Conditions, specify roles, users, or groups to whom you want to grant RW storage permissions.

Y ou can specify PUBLIC to grant access to | ceberg tables permissions to all users. Alternatively, you can grant
access to one user. For example, add the systest user to the list of users who can access | ceberg:

Allow Conditions:

Select Role Select Group Select User

% hive | | = beacon | | = dpprofiler |
* hue | | x admin | | x impala |

# Systest

For more information about granting permissions, see Configure a resource-based policy: Hadoop-SQL.
7. Addthe RW Storage permission to the policy.
8. Saveyour changes.

43


https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-storage-handler.html
https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Accessing | ceberg tables

Y ou learn how to set up the second required policy for using Iceberg. This policy manages SQL query access to
I ceberg tables.

Y ou create a Hadoop SQL policy to allow roles, groups, or usersto query an Iceberg table in a database. In thistask,

you see an exampl e of just one of many ways to configure the policy conditions. Y ou grant (allow) the selected roles,
groups, or users the following add or edit permissions on the table: Select, Update, Create, Drop, Alter, and All. You
can also deny permissions.

For more information about creating this policy, see Ranger documentation.

1. Loginto Ranger Admin Web Ul.
The Ranger Service Manager appears.
2. Click Add New Palicy.

3. Fill inrequired fields.
For example, enter the following required settings:

« InPolicy Name, enter the name of the policy, for example IcebergPolicyl.

* Indatabase, enter the name of the database controlled by this policy, for exampleicedb.

« Intable, enter the name of the table controlled by this policy, for exampleicetable.

« In columns, enter the name of the column controlled by this policy, for example enter the wildcard asterisk (*)
to allow access to al columns of icetable.

* Accept defaults for other settings.

Create Policy

Policy Details:
lcebergPolicy1 o m

lcedb

i

icetable

4, Scroll down to Allow Conditions, and select the roles, groups, or users you want to access the table.

Y ou can use Deny All Other Accessesto deny accessto all other roles, groups, or users other than those specified
in the allow conditions for the policy.



https://docs.cloudera.com/cdp-private-cloud-base/7.3.1/security-ranger-authorization/topics/security-ranger-resource-policy-configure-hive.html

Accessing Iceberg filesin Ozone

5. Select permissionsto grant.
For example, select Create, Select, and Alter. Alternatively, to provide the broadest permissions, select All.

add/edit permissions

Allow Conditions:

Saloct Aolo Salect Group

Ignore RW Storage and other permissions not named after SQL queries. These are for future implementations.
6. Click Add.

Learn how to set up policies to give users access to I ceberg filesin Ozone. For example, if you query Iceberg tables
from Impala, you must set up a Hadoop SQL access policy and Ozone file system access policy.

When Ranger is enabled in the cluster, any user other than the default admin user, "om" requires the necessary Ranger
permissions and policy updates to access the Ozone filesystem. To create an | ceberg table on the Ozone file system,
you need Ranger permissions.

In this task, you first enable Ozone in the Ranger service, and then set up the required policies.

1. In ClouderaManager, click Clusters Ozone Configuration to navigate to the configuration page for Ozone.
2. Search for ranger_service, and enable the property.

45



Accessing | ceberg filesin Ozone

3. Click Clusters Ranger Ranger Admin Web Ul , enter your user name and password, then click Sign In.

The Service Manager for Resour ce Based Policies pageis displayed in the Ranger console.

Service Manager Security Zone:  Saloct Zone Name « | mimoot @ Edport

[=HDFs + [=HBASE + [= HADOOP SQL

+
arm_hdfs - I3 n am_hbase - r s n
Hedoop SCL @ | n

=YARN + 0 B = KNOX + @ B (~SOLR + @8

cm_yam & | Z n cm_knox = & B cm_solr & @ n

= KAFKA + 0B E=NF o+ [= NIFI-REGISTRY
+

cm_kafka - n

= ATLAS + B B8 =aADLS + 88 EKuDu + @8

em_atlas - 'rs n em_kudu - # n

[= OZONE + [= SCHEMA-

REGISTRY + a

CIT_ozone & | @z n

om_schema-registry

k2 : |
. Click the cm_ozone prel oaded resource-based service to modify an Ozone policy.

In the cm_ozone policies page, click the Policy ID or click ) Edit against the "all - volume, bucket, key"
policy to modify the policy details.

. Inthe Allow Conditions pane, add roles, groups, or users, choose the necessary permissions, and then click Save.
Policy

Select User . Permissions
Conditions

Al | Read | write | create
S Cofjﬁm  List | Delete | Read_AcL
£ om £ Nive L NTLANT

. Click the Service Manager link in the breadcrumb trail and then click the Hadoop SQL prel oaded resource-based
service to update the Hadoop SQL URL policy.

% Ranger  UAccessManager

Sarvice Manager cmi_ozong Policies

In the Hadoop SQL policies page, click the Policy ID or click Edit against the "all - url" policy to modify
the policy details.

46



Creating an Iceberg partitioned table

9. Select roles, users, or groups in addition to the default.

By default, "hive", "hue", "impaad’, "admin” and afew other users are provided accessto all the Ozone URLs. To
grant everyone access, add the "public" group to the group list. Every user is then subject to your allow conditions.

Select Group Select User Permissions
 select | update | Create | orop | ater | index
e [ Lock ] an | Read | write | Repiadmin
% public [ Retresh
® hue x admin  * impala

The ease of use of the Iceberg partitioning is clear from an example of how to partition a table using the backward
compatible, identity-partition syntax. Alternatively, you can partition an | ceberg table by column values from Hive or
Impala.

Y ou can specify partitioning that is backward compatible with Iceberg V1 using the PARTITION BY clause. This
type of table is called an identity-partitioned table. For more information about partitioning, see the Apache I ceberg
documentation.

1. Select, or use, adatabase.

2. Create an identity-partitioned table and run the query.
Hive:

CREATE EXTERNAL TABLE ice_extl1 (i int, s string, ts tinmestanp, d date) P
ARTI TI ONED BY (state string)

STORED BY | CEBERG

STORED AS ORC,

Impaa

CREATE TABLE ice ext2 (i int, s string, ts tinestanp, d date) PARTI TI ONED
BY (state string)
STORED BY | CEBERG

3. Create atable and specify an identity transform, such as bucket, truncate, or date, using the Iceberg V2
PARTITION BY SPEC clause.
Hive:

CREATE TABLE ice t transforns (i int, s string, ts tinestanp, d date)
PARTI TI ONED BY SPEC ( TRUNCATE(10, i), BUCKET(11, s), YEAR(ts))
STORED BY | CEBERG

Impaa:

CREATE TABLE ice_t _transforns (i int, s string, ts tinestanp, d date)
PARTI TI ONED BY SPEC ( TRUNCATE(10, i), BUCKET(11, s), YEAR(ts))
STORED AS | CEBERG

Partition transform feature

47


https://iceberg.apache.org/spec/?h=partitioning#partition-transforms
https://iceberg.apache.org/spec/?h=partitioning#partition-transforms

Expiring snapshots

Y ou can expire snapshots of an Iceberg table using an ALTER TABLE query. Y ou should periodically expire
snapshots to delete data files that are no longer needed, and reduce the size of table metadata.

Each write to an | ceberg table creates a new snapshot, or version, of atable. Y ou can use snapshots for time-
travel queries, or to roll back atable to avalid snapshot. Snapshots accumulate until they are expired by the
expire_snapshots operation.

1. Enter aquery to expire snapshots older than the following timestamp: '2021-12-09 05:39:18.689000000'

ALTER TABLE test_table EXECUTE EXPI RE_SNAPSHOTS(' 2021-12- 09 05: 39: 18. 689
000000');

2. Enter aquery to expire snapshots having between December 10, 2022 and November 8, 2023.

ALTER TABLE test_tabl e EXECUTE EXPlI RE_SNAPSHOTS BETWEEN (' 2022-12-10 00:
00: 00. 000000000 ) AND (' 2023-11-08 00: 00: 00. 000000000" ) ;

Expire snapshots feature

Y ou can append data to an Iceberg table by inserting values or by selecting the data from another table. Y ou can
update data, replacing the old data.

Y ou use the INSERT command in one of the following ways to popul ate an Iceberg table from Hive:

* INSERT INTOtVALUES (1, ‘asf’, true);
* INSERT INTOt SELECT * FROM s,
* INSERT OVERWRITE t SELECT * FROM s;

I NSERT | NTOt VALUES (1, ‘asf’, true);
I NSERT INTO t SELECT * FROM s;
| NSERT OVERWRI TE t SELECT * FROM s;

Y ou learn what happens under the covers during Hive table to Iceberg table migration.

When you migrate an external Hive table to Iceberg, Hive makes the following changes:

48


https://docs.cloudera.com/cdw-runtime/1.5.5/iceberg-how-to/topics/iceberg-expire-snapshots.html

Migrating a Hive table to Iceberg

1. Convertsthe storage handler, serde, inputformat and outputformat properties of the tablein HM S to use the

| ceberg specific classes.
2. Readsthe footers of the existing data files and generates the necessary |ceberg metadata files based on the footers.
3. Commitsall the datafiles to the Iceberg table in a single commit.

Impala s table migration process consists of multiple steps under the hood:

Sets table properties on the Hive table, such as 'external .table.purge'=false

Renames the original table name to atemporary name in the format “<original_name>_tmp_<random_I|D>"
Refreshes the renamed Hive table.

Creates an | ceberg table using the original table name and the same location as Hive table.

Using the metadata for the data files of the Hive table, populates the Iceberg table with the data files. Reads the
footer of the data files and saves statistics to |ceberg metadata.

Sets the Iceberg table ‘ external .table.purge’ property to true.

7. Drops the renamed Hive table. The ‘external.table.purge’ property set to false prevents dropping the data files just
deletes the metadata of the Hive table.

o wDdh e

o

If for any reason the table migration fails, Impala cleans up the |ceberg metadata files created during step 6. Perhaps
the original Hive table had already been renamed when the table migration failed. In this case, you see an error
message about how to rename the Hive table to the original name. For example:

ALTER TABLE <t bl nane>_tnp_<random | D> RENAME TO <t bl nane>;

Y ou see how to use asimple ALTER TABLE statement from Hive or Impalato migrate an external Hive table to an
| ceberg table. Y ou see how to configure table input and output by setting table properties.

Note: To prevent loss of new and old table data during migration of atable to Iceberg, do not drop, move, or
B change the old table during migration.

In Impala, you can configure the NUM_THREADS_FOR_TABLE_MIGRATION query option to tweak the
performance of the table migration. It sets the maximum number of threads to be used for the migration process but
could al'so be limited by the number of CPUs. If set to zero then the number of available CPUs on the coordinator
node is used as the maximum number of threads. Parallelism occurs on the basis of data files within a partition, which
means one partition is processed at a time with multiple threads processing the files inside the partition. In case there
isonly onefilein each partition, sequential execution occurs.

1. Loginto the Clouderaweb interface and navigate to the Cloudera Data Warehouse service.
2. Inthe Cloudera Data Warehouse service, in the Overview page, locate your Virtual Warehouse, and click Hue.
Instead of using Hue, you can connect over JDBC to the Virtual Warehouse, and run the query.

3. Enter aquery to use a database.
For example:

USE nydb;

49



Selecting an Iceberg table

4. Enter aquery to migrate an existing external Hive table to an Iceberg v2 table.
Hive example:

ALTER TABLE t bl
SET TBLPROPERTI ES (' storage_handl er' =' org. apache. i ceberg. nr. hive. Hi vel c
eber gSt or ageHandl er ',

"format-version' = "'2");

Impala example, which requires two queries:

ALTER TABLE t abl e_name CONVERT TO | CEBERG
ALTER TABLE tabl e_name SET TBLPROPERTI ES (' format-version' ='2");

Thefirst ALTER command converts the Hive table to an Iceberg V1 table.

Click > to run the queries.
An Iceberg V2 tableis created, replacing the Hive table.

Y ou see an exampl e of how to read an Apache |ceberg table, and understand the advantages of 1ceberg.

Working with timestampsin I ceberg, you do not need to know whether the table is actually partitioned by month,

day or hour, based on the timestamp value. Y ou can simply supply a predicate for the timestamp value and I ceberg
converts the timestamp to month/day/hour transparently. Hive/lmpala must maintain actual partition valuesin a
separate column (for example, ts month or ts_day). Forgetting to reference the derived partition column in your query
can lead to inadvertent full table scans.

By default iceberg.table_identifier is not set in Cloudera, so you can use the familiar <db_name.<table name> in
queries.

1. Useadatabase.
For example:

USE nydat abase;

2. Query an lceberg table partitioned by city.
For example:

SELECT * FROM ice_ t2 WHERE city="Bangal ore";

Y ou query historical snapshots of data using the FOR SYSTEM_TIME AS OF '<timestamp>' FOR
SYSTEM_VERSION AS OF <snapshot_id> clausesin a select statement. Y ou see how to use AS OF to specify a
snapshot of your | ceberg data at a certain time.

50



Updating an I ceberg partition

Y ou can inspect the history of an Iceberg table to see the snapshots. Y ou can query the metadata of the Iceberg table
using a SELECT ... AS OF statement to run time travel queries. Y ou use history information from a query of the
database to identify and validate snapshots, and then query a specific snapshot AS OF a certain Timestamp value.

* You must be aware of the table history.

However, this can include commits that have been rolled back.
e You must have access to valid snapshots.

1. View thetable history.

SELECT * FROM db. t abl e. hi story;
2. Check the valid snapshots of thetable.

SELECT * FROM db. t abl e. snapshot s;
3. Query aspecific snapshot by providing the timestamp and snapshot_id.

SELECT * FROM T

FOR SYSTEM Tl ME AS OF <TI MESTAMP>;
SELECT * FROM t

FOR SYSTEM VERSI ON AS OF <SNAPSHOT_| D>;

Y ou see how to update | ceberg table partitioning in an existing table and then how to change the partitioning to be
more granular.

Partition information is stored logically, and only in table metadata. When you update a partition spec, the old data
written with an earlier spec remains unchanged. New data is written using the new spec in anew layout. Metadata for
each of the partition versions is separate.

1. Create atable partitioned by year.
Hive

CREATE EXTERNAL TABLE ice t (i int, j int, ts timestanp)
PARTI TI ONED BY SPEC (truncate(5, j), year(ts))
STORED BY | CEBERG

Impala
CREATE TABLE ice t (i int, j int, ts tinmestmap)

PARTI TI ONED BY SPEC (truncate(5, j), year(ts))
STORED BY | CEBERG,

51



Test driving Iceberg from Impala

2. Split the datainto manageabl e files using buckets.

ALTER TABLE ice_t SET PARTI TI ON SPEC (bucket (13, i));
3. Partition the table by month.

ALTER TABLE ice_t SET PARTITION SPEC (truncate(5, j), nmonth(ts));

Y ou complete atask that creates Iceberg tables from Impala with mock data that you can test drive using your own
queries. You learn how to work with partitioned tables.

* You must obtain Ranger access permissions.

1. InImpala, use adatabase.
2. Create an Impalatable to hold mock datafor this task.

create external table nock rows stored as parquet as
select x from (

with v as (values (1 as x), (1), (1), (1), (1))
select v.x fromv, v v2, v v3, v v4, v v5, v v6

) &

3. Create another Impalatable based on mock_rows.

create external table custoner_deno stored as parquet as

sel ect

FROM Tl MESTAMP( DAYS_SUB(now() , cast ( TRUNC(RAND(7)*365*1) as bigint)),

yyyy-MM ) as year nonth,

DAYS SUB(now() , cast ( TRUNC(RAND(7)*365*1) as bigint)) as ts,

CONCAT(
cast ( TRUNC(RAND(1) * 250
cast ( TRUNC(RAND(2) * 250
cast ( TRUNC(RAND(3) * 250

2) as string), '.' ,
2) as string), '.',

2) as string), '.',

+ + + +

cast ( TRUNC( RAND( 4) 250 2) as string)
) as ip,
CONCAT("USER ", cast ( TRUNC(RAND(4) * 1000) as string),' @onmedonai n.coni)
as email,

CONCAT("USER ", cast ( TRUNC(RAND(5) * 1000) as string)) as usernane,
CONCAT("USER ", cast ( TRUNC(RAND(6) * 100) as string)) as country,
cast ( RAND(8)*10000 as double) as netric_1,

cast ( RAND(9)*10000 as double) as netric_2,

cast ( RAND(10)*10000 as double) as netric_3,

cast ( RAND(11)*10000 as double) as netric_4,

cast ( RAND(12)*10000 as double) as netric_5

from nock rows

4. Create another Impalatable based on mock_rows.

create external table custoner_denp2 stored as parquet as

sel ect

FROM TI MESTAMP( DAYS_SUB(now() , cast ( TRUNC(RAND(7)*365*1) as bigint)),
'yyyy-MM ) as year nonth,

52



Test driving Iceberg from Impala

DAYS_SUB(now() , cast ( TRUNC(RAND(7)*365*1) as bigint)) as ts,
CONCAT

2) as string), '.' ,
2) as string), '.',

2) as string), '.',
2) as string)

cast ( TRUNC(RAND(1) * 250
cast ( TRUNC(RAND(2) * 250
cast ( TRUNC(RAND(3) * 250
cast ( TRUNC(RAND(4) * 250

) as ip,

CONCAT("USER ", cast ( TRUNC(RAND(4) * 1000) as string),' @omedonmai n. com)
as email,

CONCAT("USER ", cast ( TRUNC(RAND(5) * 1000) as string)) as usernane,

CONCAT("USER ", cast ( TRUNC(RAND(6) * 100) as string)) as country,

cast ( RAND(8)*10000 as double) as netric_1,

cast ( RAND(9)*10000 as double) as netric_2,

cast ( RAND(10)*10000 as double) as netric_3,

cast( RAND(11)*10000 as double) as netric_4,

cast ( RAND(12)*10000 as double) as netric 5

from nock_rows

+ + + +

. Create an | ceberg table from the customer_demo table.

CREATE TABLE cust oner _denp_i ceberg STORED BY | CEBERG AS SELECT * FROM cu
st oner _deno;

. Insert into the customer_demo_iceberg table the results of selecting all data from the customer_demo?2 table.

I NSERT | NTO cust oner _deno_i ceberg sel ect * from cust oner _deno2;
I NSERT | NTO cust oner _deno_i ceberg sel ect * from cust oner _deno2;
I NSERT | NTO cust oner _deno_i ceberg sel ect * from custoner_deno2;

. Create an | ceberg table partitioned by the year_ month column and based on the customer_demo_iceberg table.

CREATE TABLE cust oner _deno_i ceberg part PARTI TI ONED BY(year _nonth) STORED
BY | CEBERG

AS SELECT ts, ip, enmail, usernane , country, netric_1 , nmetric_2 , netric

3, netric_4 , netric_5, year_nonth

FROM cust oner _deno_i ceber g;

. Split the partitioned data into manageable files.

ALTER TABLE cust omer _deno_i ceberg_part SET PARTI TI ON SPEC (year _nont h, BU
CKET( 15, country));

. Insert the results of reading the customer_demo_iceberg table into the partitioned table.

I NSERT | NTO cust oner _deno_i ceberg part (year_nonth, ts, ip, enmail, usern
ane, country, netric_1, netric_2, metric_3, nmetric_4, netric_5)
SELECT year_nonth, ts, ip, email, usernane, country, nmetric_1, metric_2,

metric 3, nmetric 4, nmetric 5
FROM cust oner _deno_i ceber g;

10. Run time travel queries on the Iceberg tables, using the history output to get the snapshot id, and substitute theid

in the second SELECT query.

SELECT * FROM cust onmer _deno_i ceberg FOR SYSTEM TI ME AS OF ' 2021-12-09 05
: 39: 18. 689000000" LIM T 100;

DESCRI BE HI STORY cust onmer _deno_i ceber g;

SELECT * FROM cust oner _deno_i ceberg FOR SYSTEM VERSI ON AS OF <snapshot
id>LIMT 100;

53



Hive demo data

To test drive Iceberg from Hive, you use demo datain the airline_online_iceberg database.

The Airlines demo data for Iceberg is stored in the airline_online iceberg database. The following queries created and

set up this database.

create database if not exists airline_ontine_iceberg;

use airline_ontime_iceberg;
set hive.vectorized. execution. enabl ed=f al se;
set hive. stats. col um. aut ogat her =f al se;

The following Hive external tables were created in the airline_online_iceberg database:

e airports
e airlines
e planes
« flights

create external table if
iata string,
ai rport string,
city string,
state doubl e,
country string,
| at doubl e,
| on doubl e

stored as orc;

create external table if
code string,
description string

stored as orc;

create external table if
tail num string,
owner _type string,
manuf act urer string,
i ssue_date string,
nodel string,
status string,

aircraft_type string,

engi ne_type string,
year int

stored as orc;

create external table if
month int,
dayof nonth int,
dayof week i nt,
deptinme int,
crsdeptinme int,
arrtine int,

not exists airports (

not exists airlines (

not exists planes (

not exists flights (




Hive demo data

crsarrtine int,
uni quecarrier string,
flightnumint,
tail num string,
act ual el apsedti me int,
crsel apsedtine int,
airtine int,
arrdel ay int,
depdel ay i nt,
origin string,
dest string,
di stance int,
taxiin int,
taxi out int,
cancel | ed int,
cancel | ati oncode stri ng,
diverted string,
carrierdel ay int,
weat her del ay int,
nasdel ay int,
securitydel ay int,
| at eai rcraftdel ay int
)
partitioned by (year int)
stored as orc;

| oad data inpath
ai rports;

'${datapath}/airline_ontine_i

| oad data inpath
airlines;

'${datapath}/airline_ontine_i

| oad data inpath
| anes;

'${datapath}/airline_ontine_i

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=1995);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1996);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1997);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=1998);

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=1999);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2000);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2001);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2002);

| oad data inpath '${datapath}/airline_ontine_i
nto table flights partition (year=2003);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2004);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2005);

| oad data inpath '${datapath}/airline_ontine_i
into table flights partition (year=2006);

ceberg.

ceberg.

ceberg.

ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.
ceberg.

ceberg.

db/ ai rports

db/airlines'

db/ pl anes

db/flights/year=1995'
db/ flights/year=1996'
db/flights/year=1997
db/flights/year=1998'
db/ flights/year=1999'
db/flights/year=2000'
db/ flights/year=2001"
db/ flights/year=2002
db/flights/year=2003'
db/ flights/year=2004
db/ flights/year=2005'
db/flights/year=2006'

into tabl e

into table

into table p

55



Test driving Iceberg from Hive

| oad data inpath '${datapath}/airline_ontinme_iceberg.db/flights/year=2007" i
nto table flights partition (year=2007);

| oad data inpath '${datapath}/airline_ontime_iceberg.db/flights/year=2008'
into table flights partition (year=2008);

ALTER TABLE pl anes ADD CONSTRAI NT pl anes_pk PRI MARY KEY (tail num) DI SABLE NO
VAL| DATE;

ALTER TABLE flights ADD CONSTRAI NT pl anes_fk FOREI GN KEY (tailnum REFEREN
CES pl anes(tail num DI SABLE NOVALI DATE RELY;

ALTER TABLE airlines ADD CONSTRAI NT airlines_pk PRI MARY KEY (code) DI SABLE
NOVALI DATE;

ALTER TABLE flights ADD CONSTRAINT airlines fk FOREIGN KEY (uni quecarrier)

REFERENCES ai r |l i nes(code) DI SABLE NOVALI DATE RELY;

ALTER TABLE airports ADD CONSTRAI NT airports_pk PRI MARY KEY (iata) DI SABLE N
OVALI DATE;

ALTER TABLE flights ADD CONSTRAI NT airports_orig_fk FOREI GN KEY (origin)
REFERENCES ai rports(iata) DI SABLE NOVALI DATE RELY;

ALTER TABLE flights ADD CONSTRAI NT airports_dest fk FOREIGN KEY (dest) RE
FERENCES ai rports(iata) DI SABLE NOVALI DATE RELY;

ALTER TABLE airports SET TBLPROPERTIES ('storage_handl er' = org. apache. i ceb
erg. nr. hive. Hi vel ceber gSt orageHandl er' ) ;

ALTER TABLE airlines SET TBLPROPERTIES ('storage_handl er' =" org. apache. i cebe
rg. nr. hive. Hi vel ceber gSt orageHandl er') ;

ALTER TABLE pl anes SET TBLPROPERTI ES (' st orage_handl er' =' or g. apache. i ceberg.
nr. hi ve. Hi vel ceber gSt or ageHandl er' ) ;

ALTER TABLE flights SET TBLPROPERTI ES (' storage_handl er' =" org. apache. i ceber
g. nr. hi ve. H vel ceber gSt or ageHandl er' ) ;

Y ou learn how to access the Hive demo data, which you can use to get hands-on experience running |ceberg queries.

A DWAdmin can optionally load demo datain Hue when you create a new Database Catal og.

56



Test driving Iceberg from Hive

Create Database Catalog

Mame *

‘ khahn ‘

Environments *

‘ dwx-ixkejs - ‘

Database Catalog Image Version

‘ 2023.0.15.0-239 v ‘

Datalake *

‘ & ‘

DWX

SDX

Create Database Catalog Cancel

The Admin enables Load Demo Data when creating the Database Catal og. Users can then query sample airline demo
datain Hue.

Before you begin

e You must meet the prerequisites to query |ceberg tables from a Virtual Warehouse mentioned earlier.
* You have accessto a Hive Virtual Warehouse, having a Database Catal og in which demo data has been |oaded.
* You obtained the required role for querying the Virtual Warehouse: DWUser

57



Test driving Iceberg from Hive

1. In Cloudera Data Warehouse Overview, select aHive Virtual Warehouse, and click Hue.

HUE :
= drorke d ©

0 35 255

2. InHue, expand the default database and verify that the airline demo datais available in your Virtual Warehouse.
Y ou see the following list of demo databases:

Databases (@

3. Sdlect airline_ontime_iceberg to use the airline_ontime_iceberg database.
4. Takealook at thetablesin the airline_ontime_iceberg database.

Flightsisthe fact table. It has 100M rows and three dirmensions, ariline, airports, and planes. This records flights
for more than 10 yearsin the US, and includes the following details:

e origin
e dedtination
e delay
e artime
5. Become familiar with the Iceberg airline queries to set up this database. See the next topic.

6. Query the demo data from Hive.
For example, find the flights that departed each year, by IATA code, airport, city, state, and country. Find the
average departure delay.

SELECT f.nmonth, a.iata, a.airport, a.city, a.state, a.country
FROM flights f,

airports a

WHERE f.origin = a.iata

GROUP BY

f. nont h,

a.iata,

a.airport,

a.city,

a.state,

a.country

HAVI NG COUNT(*) > 10000

ORDER BY AVG f. DepDel ay) DESC

58



| ceberg data types

LIMT 10;

Output appears as follows:

feccoccococodmoocoonoo feccoccococooccococoococccocoocococooooooo feccoccocoooococo
feoccoocococodmoocoooonoocs +
| f.nonth a.iata | a. airport | a.city
| a.state | a.country |
Focococococdmocococoo FococococococococoCcoCoCoOCoOCoCoOCoCoooo Fococcoccococooooooo
feccoocococodmooccocoonoocs +
| 12 ORD Chi cago O Hare International | Chicago
| NULL | USA |
| 6 EVIR Newar k | ntl | Newar k
| NULL | USA |
| 7 JFK John F Kennedy Intl | New York
| NULL | USA
| 6 | AD Washi ngton Dull es | nternational | Chantilly
| NULL | USA |
| 7 EVIR Newar k | ntl | Newar k
| NULL | USA [
| 6 PHL Phi | adel phia Intl | Phil adel phia
| NULL | USA
| 1 ORD Chi cago O Hare International | Chicago
| NULL | USA |
6 ORD Chi cago O Hare International | Chicago
| NULL | USA [
7 ATL WIlliamB Hartsfield-Atlanta Intl | Atlanta
| NULL | USA [
| 12 MDW Chi cago M dway | Chicago
| NULL | USA |
e L L T L L T T TR R r=r= fooccocooococoooooo
Fococococococoodmoocooooooooo +
10 rows selected (103.812 seconds)
7. Split the partitioned data into manageable files.
ALTER TABLE airports SET PARTI TI ON SPEC (i at a, BUCKET( 15, country));

Iceberg data types

References include | ceberg data types and atable of equivalent SQL data types by Hive/lmpala SQL engine types.

Iceberg supported data types

Table 2:

| ceberg data type SQL datatype Hive Impala

binary BINARY BINARY
boolean BOOLEAN BOOLEAN BOOLEAN

date DATE DATE DATE
decimal(P, S) DECIMAL(P, S) DECIMAL (P, S) DECIMAL (P, S)
double DOUBLE DOUBLE DOUBLE
fixed(L) BINARY Not supported
float FLOAT FLOAT FLOAT

59



| ceberg data types

| ceberg data type SQL data type Hive Impala

TINYINT, SMALLINT, INT INTEGER INTEGER
list ARRAY ARRAY Read only
long BIGINT BIGINT BIGINT
map MAP MAP Read only
string VARCHAR, CHAR STRING STRING
struct STRUCT STRUCT Read only
time STRING Not supported
timestamp TIMESTAMP TIMESTAMP TIMESTAMP (see limitation
below)
timestamptz TIMESTAMPWITH LOCAL Use TIMESTAMP WITH Read timestamptz into
TIME ZONE LOCAL TIMEZONE for handling | TIMESTAMP values
thesein queries .
Writing not supported
uuid none STRING Not supported
Writing to Parquet is not
supported

Data type limitations

An implicit conversion to an Iceberg type occurs only if thereis an exact match; otherwise, a cast is needed. For
example, toinsert aVARCHAR(N) column into an Iceberg table you need a cast to the VARCHAR type as | ceberg
does not support the VARCHAR(N) type. Toinsert aSMALLINT or TINYINT into an I ceberg table, you need a cast
tothe INT type as | ceberg does not support these types.

| ceberg supports two timestamp types:

o timestamp (without timezone)
e timestamptz (with timezone)

Starting from Spark 3.4 onwards, Spark SQL supports a timestamp with local timezone (TIMESTAMP_LTZ)

type and atimestamp without timezone (TIMESTAMP_NTZ) type, with TIMESTAMP defaulting to the
TIMESTAMP_LTZ type. However, this can be configured by setting the spark.sgl.timestampType (the default value
isTIMESTAMP_LTZ).

When creating an | ceberg table using Spark SQL, if spark.sql.timestampTypeissetto TIMESTAMP _LTZ,
TIMESTAMP is mapped to | ceberg's timestampz type. If spark.sgl.timestampTypeis set to TIMESTAMP_NTZ, then
TIMESTAMP is mapped to | ceberg's timestamp type.

Impalais unable to write to |ceberg tables with timestamptz columns. For interoperability, when creating | ceberg
tables from Spark, you can use the Spark configuration, spark.sgl.timestampType=TIMESTAMP_NTZ.

Note that the timestamp and timestamptz types have different semantics.

Unsupported data types
Impala does not support the following I ceberg data types:

e TIMESTAMPTZ (only read support)

e TIMESTAMPIntablesin AVRO format
* FIXED

e UUID

60



| ceberg table properties

The Cloudera environment for querying tables from Hive overrides some | ceberg table properties. Y ou learn which
table properties are supported for querying tables from Impala.

| ceberg documentation describes all the properties for configuring tables. This documentation focuses on key
properties for working with Iceberg tables in Cloudera.

| ceberg supports concurrent writes by default. Y ou can tune Iceberg v2 table properties for concurrent writes. Y ou set
the following properties if you plan to have concurrent writers on Iceberg v2 tables:

e commit.retry.min-wait-ms
e commit.retry.num-retries

Cloudera supports adding the Parquet compression type using table properties. For more information, see Iceberg
documentation about Compression Types.

Y ou can use the Alter Table feature to set a property. From Hive, the following | ceberg table property overrides arein
effect:

* iceberg.mr.split.size overrides read.split.target-size.
 read.split.open-file-cost is overridden.

Y ou can tune | ceberg v2 table properties for concurrent writes. From Impala, the following subset of Iceberg table
properties are supported:

* history.expire.min-snapshots-to-keep
Valid values: integers. Default = 1
e write.format.default

Valid value: Parquet
* write.metadata.del ete-after-commit.enabled

Valid values: true or false.
* write.metadata.previous-versions-max

Valid values: integers. Default = 100.
* write.parquet.compression-codec

Valid values. GZIP, LZ4, NONE, SNAPPY (default value), ZSTD
e write.parquet.compression-level

Validvaues: 1 - 22. Default =3
e write.parquet.row-group-size-bytes

Valid values: 8388608 (or 8 MB) - 2146435072 (or 2047MB). Overiden by PARQUET_FILE_SIZE.
* write.parquet.page-size-bytes

Valid values: 65536 (or 64KB) - 1073741824 (or 1GB).
e writeparquet.dict-size-bytes

Valid values: 65536 (or 64KB) - 1073741824 (or 1GB)

61


https://iceberg.apache.org/docs/latest/configuration/
https://spark.apache.org/docs/latest/sql-data-sources-parquet.html#configuration

	Contents
	Apache Iceberg features
	Alter table feature
	Create table feature
	Create table as select feature
	Create partitioned table as select feature
	Create table … like feature
	Data compaction
	Delete data feature
	Describe table metadata feature
	Drop partition feature
	Drop table feature
	Expire snapshots feature
	Insert table data feature
	Load data inpath feature
	Load or replace partition data feature
	Materialized view feature
	Materialized view rebuild feature
	Merge feature
	Migrate Hive table to Iceberg feature
	Securing Iceberg table data

	Flexible partitioning
	Partition evolution feature
	Partition transform feature

	Query metadata tables feature
	Rollback table feature
	Select Iceberg data feature
	Schema evolution feature
	Schema inference feature
	Snapshot management
	Branching feature
	Tagging feature

	Time travel feature
	Truncate table feature
	Update data feature

	Best practices for Iceberg in Cloudera
	Making row-level changes on V2 tables only

	Performance tuning
	Caching manifest files

	Unsupported features and limitations
	Prerequisites
	Accessing Iceberg tables
	Editing a storage handler policy to access Iceberg files on the file system
	Creating a SQL policy to query an Iceberg table

	Accessing Iceberg files in Ozone
	Creating an Iceberg partitioned table
	Expiring snapshots
	Inserting data into a table
	Table migration overview
	Migrating a Hive table to Iceberg
	Selecting an Iceberg table
	Running time travel queries
	Updating an Iceberg partition
	Test driving Iceberg from Impala
	Hive demo data
	Test driving Iceberg from Hive
	Iceberg data types
	Iceberg table properties

