
Cloudera Runtime 1.5.5

Configuring Apache Impala
Date published: 2020-11-30
Date modified: 2025-06-06

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Runtime | Contents | iii

Contents

Configuring client access to Impala..4
Impala Shell Tool... 4

Impala Shell Configuration Options.. 4
Impala Shell Configuration File...7
Running Commands and SQL Statements in Impala Shell... 8
Impala Shell Command Reference...9
Connecting to a kerberized Impala daemon.. 10

Setting up ODBC connection from a BI tool.. 11
Configuring Impyla for Impala.. 14

Connecting to Impala Virtual Warehouse..15
Configuring Delegation for Clients..16
Spooling Impala Query Results..16

Configuring admission control.. 18
Configuring Impala...19

Cloudera Runtime Configuring client access to Impala

Configuring client access to Impala

Application developers have a number of options to interface with Impala.

The core development language with Impala is SQL. You can also use Java or other languages to interact with Impala
through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of
analysis, you can supplement the Impala built-in functions by writing user-defined functions in C++ or Java.

You can connect and submit requests to the Impala through:

• The impala-shell interactive command interpreter
• The Hue web-based user interface
• JDBC
• ODBC
• Impyla

Impala clients can connect to any Coordinator Impala Daemon (impalad) through HiveServer2 over HTTP or over
the TCP binary. You can control client connections to Impala using the Impala coordinator role available under the
Configurations tab for a selected Virtual Warehouse.

Impala Shell Tool
You can use the Impala shell tool (impala-shell) to set up databases and tables, insert data, and issue queries.

For ad-hoc queries and exploration, you can submit SQL statements in an interactive session. To automate your work,
you can specify command-line options to process a single statement or a script file. The impala-shell accepts all
the same SQL statements, plus some shell-only commands that you can use for tuning performance and diagnosing
problems.

You can install the Impala shell on a local computer and use it as a client to connect with an Impala Virtual
Warehouse instance. For more information on installing Impala shell, see the link provided under Related
Information.

Impala Shell Configuration Options
You can specify the following options when starting impala-shell to control how shell commands are executed. You
can specify options on the command line or in the impala-shell configuration file.

Command-Line Option Configuration File Setting Explanation

-B or

--delimited

write_delimited=true Causes all query results to be printed in plain format as a delimited
text file. Useful for producing data files to be used with other Hadoop
components. Also useful for avoiding the performance overhead of
pretty-printing all output, especially when running benchmark tests
using queries returning large result sets. Specify the delimiter character
with the --output_delimiter option. Store all query results in a file
rather than printing to the screen with the -B option.

-E or

--vertical

vertical=true Causes all query results to print in vertical format. In this mode,
impala-shell will print each row in the following style.

• The first line will contain the line number followed by the row's
columns in separate lines. Each column line will have a prefix with
its name and a colon.

To enable this mode, use the shell option '-E' or '--vertical', or 'set
VERTICAL= true' in the interactive mode. To disable it in interactive
mode, 'set VERTICAL=false'. NOTE: This vertical option will be
disabled if the '-B' option or 'set WRITE_DELIMITED=true' is
specified.

4

Cloudera Runtime Configuring client access to Impala

Command-Line Option Configuration File Setting Explanation

--connect_max_tries --connect_max_tries=4 Sets the maximum number of attempts to connect to a coordinator.
Currently, the maximum number of attempts to connect to a
coordinator is hard coded to 4 in hs2-HTTP mode. From this release,
you can configure the maximum number of attempts impala-shell can
make using this option --connect_max_tries. The default value of this
option is 4. After the number of attempts specified through this option,
impala-shell returns with error "Not connected to Impala"

--hs2_fp_format hs2_fp_format=<a Python-based
format specification expression
which will get parsed and applied
to floating-pointcolumn values>

Sets the printing format specification for floating point values when
using HS2 protocol. The default behaviour makes the values handled
by Python's str() built-in method. Use '16G' to match Beeswax
protocol's floating-point output format.

--http_cookie_names http_cookie_names=KNOX_BACKEND-
IMPALA

This parameter has to be set to include the cookie that Knox uses for
stateful connections. This is what the Knox enableStickySession=true
uses. When using impala-shell and http mode, you must update the
client connection string to include the cookie being used for session
persistence using the `-http_cookie_names`. This config is needed for
Active-Active HA in Impala.

--live_progress live_progress=true Prints a progress bar showing roughly the percentage complete for each
query. Information is updated interactively as the query progresses.

--disable_live_progress live_progress=false Disables live_progress in the interactive mode.

--print_header print_header=true

-o FILENAME or

--output_file FILENAME

output_file=FILENAME Stores all query results in the specified file. Typically used to store
the results of a single query issued from the command line with the -q
option. Also works for interactive sessions; you see the messages such
as number of rows fetched, but not the actual result set. To suppress
these incidental messages when combining the -q and -o options,
redirect stderr to /dev/null.

--output_delimiter=

CHARACTER

output_delimiter=CHARACTER Specifies the character to use as a delimiter between fields when query
results are printed in plain format by the -B option. Defaults to tab ('\t').
If an output value contains the delimiter character, that field is quoted,
escaped by doubling quotation marks, or both.

-p or

--show_profiles

show_profiles=true Displays the query execution plan (same output as the EXPLAIN
statement) and a more detailed low-level breakdown of execution steps,
for every query executed by the shell.

--profile_format=

text | json | prettyjson

N/A json and prettyjson output the JSON representation of each profile
in a dense single-line form and in a human-readable multi-line form
respectively.

-h or

--help

N/A Displays help information.

N/A history_max=1000 Sets the maximum number of queries to store in the history file.

-i HOSTNAME or

--
impalad=HOSTNAME[:PORTNUM]

impalad=HOSTNAME[:PORTNUM] Connects to the impalad daemon on the specified host. The default
port of 21050 is assumed unless you provide another value. You can
connect to any host in your cluster that is running impalad. If you
connect to an instance of impalad that was started with an alternate port
specified by the --fe_port flag, provide that alternative port.

-q QUERY or

--query=QUERY

query=QUERY Passes a query or other impala-shell command from the command
line. The impala-shell interpreter immediately exits after
processing the statement. It is limited to a single statement, which
could be a SELECT, CREATE TABLE, SHOW TABLES, or any
other statement recognized in impala-shell. Because you cannot pass
a USE statement and another query, fully qualify the names for any
tables outside the default database. (Or use the -f option to pass a file
with a USE statement followed by other queries.)

5

Cloudera Runtime Configuring client access to Impala

Command-Line Option Configuration File Setting Explanation

-f QUERY_FILE or

--query_file=QUERY_FILE

query_file=PATH_TO_QUERY_FILEPasses a SQL query from a file. Multiple statements must be semicolon
(;) delimited.

--query_option=

"OPTION=VALUE

-Q

"OPTION=VALUE"

Header line [impala.query_option
s], followed on subsequent lines
by OPTION=VALUE, one option
per line.

Sets default query options for an invocation of the impala-shell
command. To set multiple query options at once, use more than one
instance of this command-line option. The query option names are not
case-sensitive.

-V or --verbose verbose=true Enables verbose output.

--quiet verbose=false Disables verbose output.

-v or --version version=true Displays version information.

-c ignore_query_failure=true Continues on query failure.

-d DEFAULT_DB or

--database=DEFAULT_DB

default_db=DEFAULT_DB Specifies the database to be used on startup. Same as running the USE
statement after connecting. If not specified, a database named DEFA
ULT is used.

--ssl ssl=true Enables TLS/SSL for impala-shell.

--http_socket_timeout_s http_socket_time
out_s=HTTP_SOCKET_TIMEOUT_S

Sets the timeout in seconds after which the socket will time out if the
associated operation cannot be completed. Set to None to disable any
timeout. This configurable option is only supported for hs2-http mode
and the DEFAULT is NONE.

PATH_TO_CERTIFICATE ca_cert=PATH_TO_CERTIFICATE The local pathname pointing to the third-party CA certificate, or to
a copy of the server certificate for self-signed server certificates. If
--ca_cert is not set, impala-shell enables TLS/SSL, but does
not validate the server certificate. This is useful for connecting to a
known-good Impala that is only running over TLS/SSL, when a copy
of the certificate is not available (such as when debugging customer
installations).

-l use_ldap=true Enables LDAP authentication.

-u user=USER_NAME Supplies the username, when LDAP authentication is enabled by the -
l option. (Specify the short username, not the full LDAP distinguished
name.) The shell then prompts interactively for the password.

--ldap_password_cmd=

COMMAND

N/A Specifies a command to run to retrieve the LDAP password, when
LDAP authentication is enabled by the -l option. If the command
includes space-separated arguments, enclose the command and its
arguments in quotation marks.

-j, --jwt N/A Indicates that JWT authentication will be used when this command line
option is specified in the impala-shell command.

--jwt_cmd N/A Shell command to run to retrieve the JWT to be used for
authentication.

--config_file=

PATH_TO_CONFIG_FILE

N/A Specifies the path of the file containing impala-shell
configuration settings. The default is /etc/impalarc. This setting can
only be specified on the command line.

--live_progress N/A Prints a progress bar showing roughly the percentage complete for each
query. The information is updated interactively as the query progresses.

--live_summary N/A Prints a detailed report, similar to the SUMMARY command, showing
progress details for each phase of query execution. The information is
updated interactively as the query progresses.

--var=

VARIABLE_NAME=

VALUE

N/A Defines a substitution variable that can be used within the impala-
shell session. The variable can be substituted into statements
processed by the -q or -f options, or in an interactive shell session.
Within a SQL statement, you substitute the value by using the notation
${var:VARIABLE_NAME}.

6

Cloudera Runtime Configuring client access to Impala

Command-Line Option Configuration File Setting Explanation

--auth_creds_ok_in_clear N/A Allows LDAP authentication to be used with an insecure connection to
the shell. WARNING: This will allow authentication credentials to be
sent unencrypted, and hence may be vulnerable to an attack.

--protocol=

PROTOCOL

N/A Protocol to use for the connection to Impala.

Valid PROTOCOL values are:

• 'hs2-http': Impala-shell uses HTTP transport to speak to the Impala
Daemon via the HiveServer2 protocol.

Impala Shell Configuration File
You can store a set of default settings for impala-shell in the impala-shell configuration file.

The global impala-shell configuration file is located in /etc/impalarc.

The user-level impala-shell configuration file is located in ~/.impalarc.

Note that the global-level file name is different from the user-level file name. The global-level file name does not
include a dot (.) in the file name.

The default path of the global configuration file can be changed by setting the $IMPALA_SHELL_GLOBAL_CON
FIG_FILE environment variable.

To specify a different file name or path for the user-level configuration file, start impala-shell with the --config
_file impala-shell option set to the path of the configuration file.

Typically, an administrator creates the global configuration file for the impala-shell, and if the user-level
configuration file exists, the options set in the user configuration file take precedence over those in the global
configuration file.

In turn, any options you specify on the impala-shell command line override any corresponding options within
the configuration file.

The impala-shell configuration file (global or user) must contain a header label [impala], followed by the
options specific to impala-shell.

The impala-shell configuration file consists of key-value pairs, one option per line. Everything after the #
character on a line is treated as a comment and ignored.

The names of the options in the configuration file are similar (although not necessarily identical) to the long-form
command-line arguments to the impala-shell command. For the supported options in the configuration file, see
Impala Shell Configuration Options on page 4.

You can specify key-value pair options using keyval, similar to the --var command-line option. For example, keyv
al=VARIABLE1=VALUE1.

The query options specified in the [impala] section override the options specified in the [impala.query_options]
section.

The following example shows a configuration file that you might use during benchmarking tests. It sets verbose
mode, so that the output from each SQL query is followed by timing information. impala-shell starts inside
the database containing the tables with the benchmark data, avoiding the need to issue a USE statement or use fully
qualified table names.

In this example, the query output is formatted as delimited text rather than enclosed in ASCII art boxes, and is stored
in a file rather than printed to the screen. Those options are appropriate for benchmark situations, so that the overhead
of impala-shell formatting and printing the result set does not factor into the timing measurements. It also
enables the show_profiles option. That option prints detailed performance information after each query, which might
be valuable in understanding the performance of benchmark queries.

[impala]
verbose=true
default_db=tpc_benchmarking

7

Cloudera Runtime Configuring client access to Impala

write_delimited=true
output_delimiter=,
output_file=/home/tester1/benchmark_results.csv
show_profiles=true
keyval=msg1=hello,keyval=msg2=world

The following example shows a configuration file that connects to a specific remote Impala node, runs a single query
within a particular database, then exits. Any query options predefined under the [impala.query_options] section in the
configuration file take effect during the session.

You would typically use this kind of single-purpose configuration setting with the impala-shell command-line
option --config_file=PATH_TO_CONFIG_FILE, to easily select between many predefined queries that could be run
against different databases, hosts, or even different clusters. To run a sequence of statements instead of a single query,
specify the configuration option query_file=PATH_TO_QUERY_FILE instead.

[impala]
impalad=impala-test-node1.example.com
default_db=site_stats
Issue a predefined query and immediately exit.
query=select count(*) from web_traffic where event_date = trunc(now(),'dd')

[impala.query_options]
mem_limit=32g

Running Commands and SQL Statements in Impala Shell
This topic provides the commonly used syntax and shortcut keys in impala-shell.

The following are a few of the key syntax and usage rules for running commands and SQL statements in impala-shell.

• To see the full set of available commands, press TAB twice.
• To cycle through and edit previous commands, click the up-arrow and down-arrow keys.
• Use the standard set of keyboard shortcuts in GNU Readline library for editing and cursor movement, such as

Ctrl-A for the beginning of line and Ctrl-E for the end of line.
• Commands and SQL statements must be terminated by a semi-colon.
• Commands and SQL statements can span multiple lines.
• Use -- to denote a single-line comment and /* */ to denote a multi-line comment.

A comment is considered part of the statement it precedes, so when you enter a -- or /* */ comment, you get a
continuation prompt until you finish entering a statement ending with a semicolon. For example:

[impala] > -- This is a test comment
 > SHOW TABLES LIKE 't*';

• If a comment contains the ${VARIABLE_NAME} and it is not for a variable substitution, the $ character must be
escaped, e.g. -- \${hello}.

Variable Substitution in impala-shell

You can define substitution variables to be used within SQL statements processed by impala-shell.

1. You specify the variable and its value as below.

• On the command line, you specify the option --var=VARIABLE_NAME=VALUE
• Within an interactive session or a script file processed by the -f option, use the SET

VAR:VARIABLE_NAME=VALUE command.
2. Use the above variable in SQL statements in the impala-shell session using the notation: ${VA

R:VARIABLE_NAME}.

For example, here are some impala-shell commands that define substitution variables and then use them in
SQL statements executed through the -q and -f options. Notice how the -q argument strings are single-quoted to

8

Cloudera Runtime Configuring client access to Impala

prevent shell expansion of the ${var:value} notation, and any string literals within the queries are enclosed by double
quotation marks.

$ impala-shell --var=tname=table1 --var=colname=x --var=coltype=string -q '
CREATE TABLE ${var:tname} (${var:colname} ${var:coltype}) STORED AS PARQUET'
Query: CREATE TABLE table1 (x STRING) STORED AS PARQUET

The below example shows a substitution variable passed in by the --var option, and then referenced by statements
issued interactively. Then the variable is reset with the SET command.

$ impala-shell --quiet --var=tname=table1

[impala] > SELECT COUNT(*) FROM ${var:tname};

[impala] > SET VAR:tname=table2;
[impala] > SELECT COUNT(*) FROM ${var:tname};

When you run a query, the live progress bar appears in the output of a query. The bar shows roughly the percentage of
completed processing. When the query finishes, the live progress bar disappears from the console output.

Impala Shell Command Reference
Use the following commands within impala-shell to pass requests to the impalad daemon that the shell is connected
to. You can enter a command interactively at the prompt or pass it as the argument to the -q option of impala-shell.

Command Explanation

Impala SQL statements You can issue valid SQL statements to be executed.

connect Connects to the specified instance of impalad. The default port of 21050 is assumed unless you provide another
value. You can connect to any host in your cluster that is running impalad. If you connect to an instance of impalad
that was started with an alternate port specified by the --fe_port flag, you must provide that alternate port.

help Help provides a list of all available commands and options.

history Maintains an enumerated cross-session command history. This history is stored in the ~/.impalahistory file.

profile Displays low-level information about the most recent query. Used for performance diagnosis and tuning. The report
starts with the same information as produced by the EXPLAIN statement and the SUMMARY command.

quit Exits the shell. Remember to include the final semicolon so that the shell recognizes the end of the command.

rerun or @ Executes a previous impala-shell command again, from the list of commands displayed by the history
command. These could be SQL statements, or commands specific to impala-shell such as quit or profile.

Specify an integer argument. A positive integer N represents the command labelled N in the output of the HIST
ORY command. A negative integer -N represents the Nth command from the end of the list, such as -1 for the most
recent command. Commands that are executed again do not produce new entries in the HISTORY output list.

set Manages query options for an impala-shell session. These options are used for query tuning and
troubleshooting. Issue SET with no arguments to see the current query options, either based on the impalad
defaults, as specified by you at impalad startup, or based on earlier SET statements in the same session. To
modify option values, issue commands with the syntax set OPTION=VALUE. To restore an option to its default,
use the unset command.

shell Executes the specified command in the operating system shell without exiting impala-shell. You can use the !
character as shorthand for the shell command.

Note: Quote any instances of the -- or /* tokens to avoid them being interpreted as the start of a
comment. To embed comments within source or ! commands, use the shell comment character # before
the comment portion of the line.

9

Cloudera Runtime Configuring client access to Impala

Command Explanation

source or src Executes one or more statements residing in a specified file from the local filesystem. Allows you to perform the
same kinds of batch operations as with the -f option, but interactively within the interpreter. The file can contain
SQL statements and other impala-shell commands, including additional SOURCE commands to perform a
flexible sequence of actions. Each command or statement, except the last one in the file, must end with a semicolon.

summary Summarizes the work performed in various stages of a query. It provides a higher-level view of the information
displayed by the EXPLAIN command. Added in Impala 1.4.0.

The time, memory usage, and so on reported by SUMMARY only include the portions of the statement that read
data, not when data is written. Therefore, the PROFILE command is better for checking the performance and
scalability of INSERT statements.

You can see a continuously updated report of the summary information while a query is in progress.

unset Removes any user-specified value for a query option and returns the option to its default value.

You can also use it to remove user-specified substitution variables using the notation UNSET VA
R:VARIABLE_NAME.

use Indicates the database against which to run subsequent commands. Lets you avoid using fully qualified names when
referring to tables in databases other than default. Not effective with the -q option, because that option only allows a
single statement in the argument.

version Returns Impala version information.

Connecting to a kerberized Impala daemon
Using an impala-shell session you can connect to an impalad daemon to issue queries. When you connect to an
impalad, it coordinates the execution of all queries sent to it. You can run impala-shell to connect to a Kerberized
Impala instance over HTTP in a cluster.

About this task

Kerberos is an enterprise-grade authentication system Impala supports. Kerberos provides strong security benefits
including capabilities that render intercepted authentication packets unusable by an attacker. It virtually eliminates
the threat of impersonation by never sending a user's credentials in cleartext over the network. Cloudera recommends
using impala-shell with Kerberos authentication for strong security benefits while accessing an Impala instance.

Before you begin

• Locate the hostname that is running the impalad daemon.

You can get the Impala daemon and port information from the Copy Impala shell Download Command in the
UI.

• 28000 is the default port impalad daemon uses to transmit commands and receive results from client applications
over HTTP using the HiveServer2 protocol. Ensure that this port is open.

• Ensure that the host running impala-shell has a preexisting kinit-cached Kerberos ticket that impala-shell can pass
to the impala server automatically without the need for the user to reenter the password.

• To override any client connection errors, you should run the Kinit command to retrieve the Ticket Granting Ticket
or to extend it if it has already expired.

Procedure

1. To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

2. For impala-shell to communicate with the Impala daemon over HTTP through the HiveServer2 protocol, specify
--protocol=hs2-http as the protocol.

impala-shell -i xxxx-cdh-7-2-3.vpc.cloudera.com -k --protocol=hs2-http
Starting Impala Shell with Kerberos authentication using Python 2.7.5
Using service name 'impala'

10

Cloudera Runtime Configuring client access to Impala

Warning: --connect_timeout_ms is currently ignored with HTTP transport.
Opened TCP connection to xxxx-cdh-7-2-3.vpc.cloudera.com:28000
Connected to xxxx-cdh-7-2-3.vpc.cloudera.com:28000
Server version: impalad version 4.0.0-SNAPSHOT RELEASE (build d18b1c1d3f
7230d330b58928513c20e90bab0153)

Setting up ODBC connection from a BI tool
Describes how to connect to Impala Virtual Warehouses using ODBC with your BI tool, with Tableau as an example.

Before you begin

Before you can use Tableau with Impala Virtual Warehouses, you must have created a Database Catalog that is
populated with data. You have the option to populate your Database Catalog with sample data when you create it.
You must also create an Impala Virtual Warehouse, which is configured to connect to the Database Catalog that is
populated with data.

Procedure

1. Download the latest version of the Impala ODBC driver from Cloudera Downloads page or alternatively, on the
Virtual Warehouses page, click the options menu for the warehouse you want to connect to your BI tool, and
select Download JDBC/ODBC Driver and install it.

2. Install the driver on the local host where you intend to use Tableau Desktop.

3. Log in to the Cloudera web interface and navigate to the Data Warehouse service.

4. Click Virtual Warehouse in the left navigation panel.

5. On the Virtual Warehouses page, click for the Impala warehouse you want to connect to with Tableau, and
select Copy JDBC URL:

This copies the JDBC URL to your system clipboard.

6. Paste the copied JDBC URL into a text file. It should look similar to the following:

jdbc:hive2://<your-virtual-warehouse>.<your-environment>.<dwx.company.co
m>/default;transportMode=http;httpPath=cliservice;ssl=true;retries=3

7. From the text file where you just pasted the URL, copy the host name from the JDBC URL to your system
clipboard. For example, in the URL shown in Step 6, the host name is:

<your-virtual-warehouse>.<your-environment>.<dwx.company.com>

11

https://www.cloudera.com/downloads/connectors/impala/odbc/2-6-13.html

Cloudera Runtime Configuring client access to Impala

8. Start Tableau and navigate to ConnectMore…Cloudera Hadoop :

This launches the Cloudera Hadoop dialog box.

12

Cloudera Runtime Configuring client access to Impala

9. In the Tableau Cloudera Hadoop dialog box, paste the host name you copied to your clipboard in Step 7 into the
Server field:

10. Then in the Tableau Cloudera Hadoop dialog box, set the following options:

• Port: 443
• Type: HiveServer2
• Authentication: Username and Password
• Transport: HTTP
• Username: Username to connect to the CDP Data Warehouse service.
• Password: Password to connect to the CDP Data Warehouse service.
• HTTP Path: cliservice
• Require SSL: Make sure this is selected.

11. Click Sign In.

13

Cloudera Runtime Configuring client access to Impala

Configuring Impyla for Impala
Explains how to install Impyla to connect to and submit SQL queries to Impala. Impyla is a Python client wrapper
around the HiveServer2 Thrift Service. It connects to Impala and implements Python DB API 2.0.

About this task

Impyla releases are available at pypi.org. To get the available releases, check Release history.

Note: Cloudera will not support versions of Impyla that are built manually from source code.

Key Features of Impyla

• HiveServer2 compliant.
• Works with Impala including nested data.
• DB API 2.0 (PEP 249)-compliant Python client (similar to sqlite or MySQL clients) supporting Python 2.6+ and

Python 3.3+.
• Works with LDAP, SSL.
• SQLAlchemy connector.
• Converts to pandas DataFrame, allowing easy integration into the Python data stack (including scikit-learn and

matplotlib); see the Ibis project for a richer experience.
• For more information, see here.

Before you begin

Different systems require different packages to be installed to enable SASL support in Impyla. The following list
shows some examples of how to install the packages on different distributions.

You must have the following installed in your environment before installing impyla. Python 2.6+ or 3.3+ and the pip
packages six, bitarray, thrift and thriftpy2 will be automatically installed as dependencies when installing impyla.
However if you clone the impyla repo and run their local copy, you must install these pip packages manually.

• Install the latest pip and setuptools:

python -m pip install --upgrade pip setuptools

• RHEL/CentOS:

sudo yum install gcc-c++ cyrus-sasl-md5 cyrus-sasl-plain cyrus-sasl-gssapi
 cyrus-sasl-devel

• Ubuntu:

sudo apt install g++ libsasl2-dev libsasl2-2 libsasl2-modules-gssapi-mit

Procedure

1. Using pip you can install the latest release: pip install impyla

2. You also need to pip-install pandas for conversion to DataFrame objects or sqlalchemy for the SQLAlchemy
engine.

Example

Sample codes

Impyla implements the Python DB API v2.0 (PEP 249) database interface (refer to it for API details):

from impala.dbapi import connect

14

https://pypi.org/project/impyla/#history
https://peps.python.org/pep-0249/
https://www.sqlalchemy.org/
https://github.com/cloudera/impyla
https://peps.python.org/pep-0249/

Cloudera Runtime Configuring client access to Impala

conn = connect(host = "my.host.com", port = 21050)
cursor = conn.cursor()
cursor.execute("SELECT * FROM mytable LIMIT 100")
print(cursor.description) # prints the result set's schema
results = cursor.fetchall()
cursor.close()
conn.close()

The Cursorobject also exposes the iterator interface, which is buffered (controlled by cursor.arraysize):

cursor.execute("SELECT * FROM mytable LIMIT 100")
for row in cursor:
 print(row)

Furthermore the Cursor object returns you information about the columns returned in the query. This is useful to
export your data as a csv file.

import csv

cursor.execute("SELECT * FROM mytable LIMIT 100")
columns = [datum[0] for datum in cursor.description]
targetfile = "/tmp/foo.csv"

with open(targetfile, "w", newline = "") as outcsv:
 writer = csv.writer(
 outcsv,
 delimiter = ",",
 quotechar = '"',
 quoting = csv.QUOTE_ALL,
 lineterminator = "\n")
writer.writerow(columns)
for row in cursor:
 writer.writerow(row)

You can also get back a pandas DataFrame object

from impala.util import as_pandas

carry df through scikit-learn, for example
df = as_pandas(cur)

Connecting to Impala Virtual Warehouse
Lists an example code to connect to Impala VW with LDAP over http using LDAP as the authentication mechanism.

Example

Sample code

from impala.dbapi import connect

conn = connect(
 host = "Impala VW endpoint", # could be coordinator or impala-proxy
 port = 443,
 auth_mechanism = "LDAP",
 use_ssl = True,
 use_http_transport = True,
 http_path = "cliservice",
 user = "ldap_userId",
 password = "ldap_password")
cursor = conn.cursor()

15

Cloudera Runtime Configuring client access to Impala

cursor.execute("SELECT * FROM default.emax_temp")
for row in cursor:
 print(row)
cursor.close()
conn.close()

Configuring Delegation for Clients
Impala supports user delegation for client connections.

About this task

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool,
typically all requests are treated as coming from the same user. Impala supports “delegation” where users whose
names you specify can delegate the execution of a query to another user. The query runs with the privileges of the
delegated user, not the original authenticated user.

The name of the delegated user is passed using the HiveServer2 protocol configuration property impala.doas.user
when the client connects to Impala.

When the client connects over HTTP, the doAs parameter can be specified in the HTTP path. For example:

/?doAs=DELEGATED_USER

Currently, the delegation feature is available only for Impala queries submitted through application interfaces such as
Hue and BI tools. For example, Impala cannot issue queries using the privileges of the HDFS user.

Attention:

• When the delegation is enabled in Impala, the Impala clients should take an extra caution to prevent
unauthorized access for the delegate-able users.

• Impala requires Apache Ranger on the cluster to enable delegation. Without Ranger installed, the
delegation feature will fail with an error.

Procedure

To enable delegation:

1. Log in to the CDP web interface and navigate to the Data Warehouse service.

2. In the Data Warehouse service, click Virtual Warehouses in the left navigation panel.

3.

Select the Impala Virtual Warehouse, click options for the warehouse you want to configure Proxy User.

4. Select Edit.

5. In the Configuration tab, click Impala Coordinator.

6. In the Proxy User Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy
users to the user(s) they can impersonate.

The list of delegated users are delimited with a comma, e.g. hue=user1, user2.

7. Click Apply to save the changes.

Spooling Impala Query Results
In Impala, you can control how query results are materialized and returned to clients, e.g. impala-shell, Hue, JDBC
apps.

Result spooling is turned ON by default and can be controlled using the SPOOL_QUERY_RESULTS query option.

16

Cloudera Runtime Configuring client access to Impala

• Since the query result spooling is enabled by default, result sets of queries are eagerly fetched and spooled in the
spooling location, either in memory or on disk.

Once all result rows have been fetched and stored in the spooling location, the resources are freed up. Incoming
client fetches can get the data from the spooled results.

Admission Control and Result Spooling

Query results spooling collects and stores query results in memory that is controlled by admission control. Use the
following query options to calibrate how much memory to use and when to spill to disk.
MAX_RESULT_SPOOLING_MEM

The maximum amount of memory used when spooling query results. If this value is exceeded when
spooling results, all memory will most likely be spilled to disk. Set to 100 MB by default.

MAX_SPILLED_RESULT_SPOOLING_MEM

The maximum amount of memory that can be spilled to disk when spooling query results. Must
be greater than or equal to MAX_RESULT_SPOOLING_MEM. If this value is exceeded, the
coordinator fragment will block until the client has consumed enough rows to free up more
memory. Set to 1 GB by default.

Fetch Timeout

Resources for a query are released when the query completes its execution. To prevent clients from indefinitely
waiting for query results, use the FETCH_ROWS_TIMEOUT_MS query option to set the timeout when clients fetch
rows. Timeout applies both when query result spooling is enabled and disabled:

• When result spooling is disabled (SPOOL_QUERY_RESULTS = FALSE), the timeout controls how long a
client waits for a single row batch to be produced by the coordinator.

• When result spooling is enabled ((SPOOL_QUERY_RESULTS = TRUE), a client can fetch multiple row
batches at a time, so this timeout controls the total time a client waits for row batches to be produced.

Explain Plans

Below is the part of the EXPLAIN plan output for result spooling.

F01:PLAN FRAGMENT [UNPARTITIONED] hosts=1 instances=1
 | Per-Host Resources: mem-estimate=4.02MB mem-reservation=4.00MB thr
ead-reservation=1
 PLAN-ROOT SINK
 | mem-estimate=4.00MB mem-reservation=4.00MB spill-buffer=2.00MB thr
ead-reservation=0

• The mem-estimate for the PLAN-ROOT SINK is an estimate of the amount of memory needed to spool all the
rows returned by the query.

• The mem-reservation is the number and size of the buffers necessary to spool the query results. By default, the
read and write buffers are 2 MB in size each, which is why the default is 4 MB.

PlanRootSink

In Impala, the PlanRootSink class controls the passing of batches of rows to the clients and acts as a queue of rows to
be sent to clients.

• When result spooling is disabled, a single batch or rows is sent to the PlanRootSink, and then the client must
consume that batch before another one can be sent.

• When result spooling is enabled, multiple batches of rows can be sent to the PlanRootSink, and multiple batches
can be consumed by the client.

17

Cloudera Runtime Configuring admission control

Configuring admission control

Learn how to configure admission control in Impala Virtual Warehouses, including enabling and disabling the global
admission controller.

Enabling admission control

The admission controller is designed to handle query admission in Impala Virtual Warehouses
that have more than one active coordinator. Admission control is enabled by default when
a new Impala Virtual Warehouse is created in High Availability (HA) Active-Active

mode.

Disabling admission control

Admission control is enabled by default if you have configured an Active-Active Impala coordinator to run in
an Impala Virtual Warehouse. However, for debugging or other purposes, you can disable the global admission
controller by performing the following steps:

Note: The required role for this action is DWAdmin.

1. Log in to the Cloudera web interface and navigate to the Cloudera Data Warehouse service. The Overview page
displays.

2. In the Overview page under Virtual Warehouses tab, select the Virtual Warehouse where you want to disable

admission controller, click the icon and select the Edit action form the list of actions.
3. In the Sizing And Scaling tab, view the properties you can adjust to disable the service.

18

Cloudera Runtime Configuring Impala

4. Deselect the Enable Global Admission Controller checkbox.

Attention: Global Admission Controller can only be deactivated. This action cannot be reversed on the
UI.

5. Click the Apply changes button at the bottom of the page to apply your changes.

Configuring Impala

You must review and configure the mandatory and recommended settings if you installed Impala without Cloudera
Manager or if you want to customize your environment after installing Impala. If you installed Impala using Cloudera
Manager, some of these configurations are completed automatically.

In some cases, depending on the level of Impala, Cloudera, and Cloudera Manager, you might need to add particular
component configuration details in one of the free-form fields on the Impala configuration pages in Cloudera
Manager.

• You must enable short-circuit reads, whether or not Impala was installed through Cloudera Manager. This setting
goes in the Impala configuration settings, not the Hadoop-wide settings.

• If you installed Impala in an environment that is not managed by Cloudera Manager, you must enable block
location tracking, and you can optionally enable native checksumming for optimal performance.

Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to
communicate through the DataNodes, improving performance. This setting also minimizes the number of additional
copies of data. Short-circuit reads requires libhadoop.so (the Hadoop Native Library) to be accessible to both the
server and the client. You must install it from an .rpm, .deb, or parcel to use short-circuit local reads.

Note: If you use Cloudera Manager, you can enable short-circuit reads through a checkbox in the user
interface and that setting takes effect for Impala as well.

To Enable Short-Circuit Reads

You can enable short-circuit reads through a checkbox available under Configuration tab for both Impala and HDFS.

1. In Cloudera Manager Clusters select the Impala service, for example, IMPALA.
2. On the Configuration tab, search for dfs.client.read.shortcircuit.
3. Accept the default (enabled), or check to enable the dfs.client.read.shortcircuit property to read the HDFS file

blocks directly.

19

Cloudera Runtime Configuring Impala

4. Do the above for HDFS service too by clicking Cloudera Manager Clusters and by selecting the HDFS service.
5. Save the changes and Restart the service.

To configure DataNodes for short-circuit reads:

1. On all Impala nodes, configure the following attributes from the HDFS service as shown:

a. In Cloudera Manager Clusters select the HDFS service, for example, HDFS.
b. On the Configuration tab, search for dfs.domain.socket.path and set the attribute.
c. Search for and set the attribute, if necessary, dfs.client.file-block-storage-locations.timeout.millis.
d. Search for and set the attribute, if necessary, dfs.datanode.hdfs-blocks-metadata.enabled

2. After applying these changes, restart all DataNodes.

Block Location Tracking

Enabling block location metadata allows Impala to know which disk data blocks are located on, allowing better
utilization of the underlying disks. Impala will not start unless this setting is enabled.

To enable block location tracking:

1. For each DataNode, enable the following attribute dfs.datanode.hdfs-blocks-metadata.enabled file:

a. In Cloudera Manager Clusters select the HDFS service, for example, HDFS.
b. On the Configuration tab, search for dfs.datanode.hdfs-blocks-metadata.enabled and enable the attribute if not

already enabled.
2. After applying these changes, restart all DataNodes.

Native Checksumming

Enabling native checksumming causes Impala to use an optimized native library for computing checksums, if that
library is available.

To enable native checksumming:

If you installed Cloudera from packages, the native checksumming library is installed and setup correctly, and no
additional steps are required.

If you installed by other means, native checksumming may not be available due to missing shared objects. Finding the
message "Unable to load native-hadoop library for your platform... using builtin-java classes where applicable" in
the Impala logs indicates native checksumming may be unavailable.

To enable native checksumming, you must build and install libhadoop.so (the Hadoop Native Library).

20

	Contents
	Configuring client access to Impala
	Impala Shell Tool
	Impala Shell Configuration Options
	Impala Shell Configuration File
	Running Commands and SQL Statements in Impala Shell
	Impala Shell Command Reference
	Connecting to a kerberized Impala daemon

	Setting up ODBC connection from a BI tool
	Configuring Impyla for Impala
	Connecting to Impala Virtual Warehouse

	Configuring Delegation for Clients
	Spooling Impala Query Results

	Configuring admission control
	Configuring Impala

