CEM MIiNiFi C++ Agent 1.24.05

Using script to integrate custom code

Date published: 2022-09-01
Date modified: 2024-07-30

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

CEM MiNiFi C++ Agent | Contents | iii

T LA T AU | o USSR 4
Enabling Python scripting for MiNiFi version 1.23.02 and higher..........cocccveiiiniinneneeeeee e 4
Enabling Python scripting for MiNiFi versions 1.22.08 and 1.22.10.........cccccvirrinnineeneeseese e 5

Using the EXeCULESCript PrOCESSOcccuveiieeiiecteecee et see et see et ene e 5

USINg @ PYLNON PrOCESSONvieiiee e 6

CEM MiNiFi C++ Agent Initial setup

Scripting allows you to integrate custom code into MiNiFi C++ Agents using Python. Y ou can use either the
ExecuteScript processor or custom Python processors.

E Note: To usethisfeature, you need MiNiF C++ Agent 1.22.08 or higher versions.

Learn how to install and enable the required Python version on all target systems.

* To use the Python processors, copy libminifi-python-script-extension.so located in the nifi-minifi-cpp-...-extra-
extensions-centos-bX X .tar.gz archive to the extensions folder.

* To use the ExecuteScript processor with Python, copy libminifi-python-script-extension.so and libminifi-script-
extension.so located in the nifi-minifi-cpp-...-extra-extensions-centos-bX X .tar.gz archive to the extensions/ folder.

Reguirements

Python scripting extension needs the generic Python3 library (libpython3.s0) with a minimum version 3.6.

Anaconda
Before starting MiNiFi, set the LD_LIBRARY_PATH environment variable to the lib folder of the
installed Python.
export LD LI BRARY_PATH="${ CONDA PREFI X}/ i b"
PyEnv

Before starting MiNiFi, set the LD_LIBRARY_PATH environment variable to the lib folder of the
installed Python.

export LD LI BRARY_PATH="${ PYENV_ROOT}/ ver si ons/ ${ PY_VERSI ON}/ | i b"
RHEL/CentOS
yuminstall python3-1ibs
Debian/Ubuntu
apt install |ibpython3-dev
Debian/Ubuntu does not provide the generic Python3 library (libpython3.s0), but the extension
works with the specific libraries as well. To use the extension on a system where the generic

libpython3.s0 is not available, patch the extension to use the specific library.

pat chel f extensions/Iibmnifi-python-script-extension.so --repla
ce-needed |i bpython3.so |ibpython3.9.so

CEM MiNiFi C++ Agent Using the ExecuteScript processor

The Python extension is part of the normal MiNiFi C++ MSI installer, but it is not enabled by default. Y ou need to
enableit during installation if you want to useit.

Requirements
Python scripting extension needs the generic Python3 library (python3.dll) with a minimum version 3.6.
Install Python through the GUI installer on Python Releases for Windows, or through winget.

wi nget install -e --id Python. Python.3.11

» Using the ExecuteScript processor
e Using a Python processor

To use scripting, you need to install the required Python version on all target systems.

Python 3.6 isrequired, which is available on CentOS 7.
If you are downloading MiNiFi C++ for Linux:

1. Find the nifi-minifi-cpp-...-extra-extensions-centos-bX X .tar.gz file. This file contains the libminifi-script-
extensions.so file.

2. Copy the libminifi-script-extensions.so file to the extensions/ directory so that the MiNiFi C++ Agent can load it
on startup.

There is an additional workaround required to make scripting work if you are using MiNiFi version 1.22.08. You
need to patch the MiNiFi binary to link to Python: patchelf --add-needed libpython3.6m.so MINIFI_HOME/bin/m
inifi

B Note: This step is unnecessary if you use version 1.22.10 or higher.

Python 3.10 and the 64 bit version of the agent are required. The Python extension is already part of the normal
MiNiFi C++ MS| installer, but it is not enabled by default. Y ou need to enable it during installation.

Before version 1.23.02, the script-extension was tightly coupled with Python and Lua, so you also need to install the
Lualibrary on all target systems.

The ExecuteScript processor runs an external statel ess script on each processor run, allowing simpler integration.
Learn how to use it to integrate custom code into a MiNiFi C++ Agent.

When using the ExecuteScript processor, you need to add a Python script on the agents file systems, and point the
ExecuteScript processor to use that script. For more information on how you can send files to agents to be used on the
agents, see Using Asset Push command. On each execution, the Python script is evaluated, and its onTrigger function
is called to receive any incoming flow files and to produce the output.

https://www.python.org/downloads/windows/
https://docs.cloudera.com/cem/2.3.0/using-scripting/topics/cem-using-executescript.html
https://docs.cloudera.com/cem/2.3.0/using-scripting/topics/cem-using-python.html

CEM MiNiFi C++ Agent Using a Python processor

Thisis an example script that reverses the content of flow files:

#! [usr/ bi n/ env python
i mport codecs
i mport tinme

cl ass ReadCal | back:

def process(self, input_stream:

sel f.content = codecs. getreader (' utf-8")(input_stream.re
ad()

return | en(sel f.content)

class WiteReverseStringCall back:
def __init_ (self, content):

sel f.content = content

def process(self, output_strean):

reversed _content = self.content[::-1]

out put _stream wite(reversed_content.encode('utf-8"))
return | en(reversed_content)

def onTrigger(context, session):

flow file = session.get()

if flowfile is not None:

read_cal | back = ReadCal | back()

session.read(flow file, read _call back)

session.wite(flowfile, WiteReverseStringCall back(read_
cal | back. content))

flow file. addAttribute(' python_tinmestanmp', str(int(tine.t
ime())))

session.transfer(flow file, REL_SUCCESS)

Using Asset Push command

Python processorsin MiNiFi C++ are loaded from externa files, and they keep running a function, while retaining

the interpreter state. This makes them well-suited for tasks that require maintaining state between runs or executing
initialization logic to be run only once. Learn how to integrate custom code seamlessly into a MiNiFi C++ agent by
utilizing custom Python processors. Y ou can unlock the full potential of your MiNiFi C++ Agent by enhancing its

functionality with the flexibility offered by Python processors.

The workflow of a Python processor:

1. At startup, the MiNiFi C++ agent reads the Python script directory specified in the minifi.propertiesfile asthe
value of the nifi.python.processor.dir property. By default, this directory is set to MINIFI_HOME/minifi-python.
2. The agent scans the directory for compatible scripts and automatically registers them for use.

3. Python files are evaluated during startup. Their onSchedule function isinvoked before starting a flow and their
onTrigger function is called regularly as the processor is scheduled.

For more details, see the following example:
#! [/ usr/ bi n/ env python

def descri be(processor):
processor. set Descri ption("Adds an attribute to your flow files")

6

https://docs.cloudera.com/cem/2.3.0/using-asset-push-command/topics/cem-using-asset-push-command.html

CEM MiNiFi C++ Agent Using a Python processor

def onlnitialize(processor):
processor. set Support sDynam cProperties()

def onTrigger(context, session):
flow file = session.get()
if flowfile is not None:
flow file.addAttribute("Python attribute", "attributeval ue")
session.transfer(flow file, REL_SUCCESS)

To add or update processors, place the Python filesin the designated script directory and restart the agent.

	Contents
	Initial setup
	Enabling Python scripting for MiNiFi version 1.23.02 and higher
	Enabling Python scripting for MiNiFi versions 1.22.08 and 1.22.10

	Using the ExecuteScript processor
	Using a Python processor

