Cloudera Edge Management 2.3.1

Managing Agent Manifest Resolution

Date published: 2019-04-15
Date modified: 2025-02-28

CLOUD=RA

https://docs.cloudera.com/

https://docs.cloudera.com/

© Cloudera Inc. 2025. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2"), the Affero General Public License version 3 (AGPLV3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liahility arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Clouderalmpala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT ASEXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,

CLOUDERA DOESNOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF

ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE

FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’' S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMSANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Edge Management | Contents | iii

I ntroduction to agent manifest resolution Strategy........c.cccevevvreerersieeenersieeseeens 4

Refreshing the agent manifest for existing flows.........ccocovvvecieie e, 5

Cloudera Edge Management Introduction to agent manifest resolution strategy

The manifest of an agent isits full and detailed list of capabilities. A manifest includes all extension components,
including processors and controller services, and how they are configured.

When an agent first communicates to the Edge Flow Manager through the C2 Protocol (heartbeats), the Edge Flow
Manager server asks the agent to describe itself, and the agent suppliesits manifest to the server.

An agent classis a group of agents. Currently, agent classes are defined by a unique property in each agent, and
agents with matching class names are put in the same agent class in the Edge Flow Manager server.

An agent manifest is necessary in order to design aflow for an agent class, but because an agent class can contain
many agents, the Edge Flow Manager server must decide which agent manifest to use for the entire agent class when
loading the flow for that classin the flow designer. The logic that decidesthisis referred to as the Agent Manifest
Resolution Strategy.

Edge Flow Manager supports multiple strategies to resolve agent manifest for a class at run time:

FirstIn Thisis the default manifest resolution strategy and binds an agent class
to the first manifest reported for it.

LastIn This strategy updates the associated manifest to the most recently
reported by any agent associated with the specified class.

Static This strategy alows mapping of an agent class to a specific manifest
ID.

The strategy is configurable at the application level and appliesto all agent classes.
In efm.properties, set the global agent manifest resolution strategy:

This property does not exist, so you will have to add it anywhere in efmp
roperties

The default is '"First In'

ef m mani f est . strategy=Last In

Static mappings act as overrides to the global manifest resolution strategy. If a static mapping of agent classto
manifest ID is configured, then the application uses the static manifest strategy for that class and ignore the globally
configured strategy. Classes without a static mapping falls back to the global stratey (i.e., First In or Last In).

Static mappings are created through the REST API (or Swagger Ul) and stored in the Edge Flow Manager database.

Hereis an example of setting a mapping for a class to manifest using curl:

CGet all agent manifests
curl -X CGET "http://Iocal host: 10090/ ef n1 api / agent - mani fests" -H "accept: a
pplication/json"

Make a note of the manifest identifer to use in the mappi ng

Create a mapping

curl -X POST "http://1ocal host: 10090/ ef mf api / agent - cl ass- mani fest-config" -H
"accept: application/json" --data { "agentd assNanme": "M/Agentd ass", "agen

t Mani festld": "27165b44-c54a-4504-8d47- 7e3bec421a00" }

Later, update to nap the agent class to a new manifest

curl -X PUT "http://Iocal host: 10090/ ef nl api / agent - cl ass- mani fest-config" -H
"accept: application/json" --data { "agentd assName": "M/AgentC ass", "agen

tMani festld": "90af 998a-f 7ff-4422-b8f b- 2ed08f 273959" }

See the Swagger Ul Section Agent class manifest config for more details.

4

Cloudera Edge Management Refreshing the agent manifest for existing flows

Note: When importing aflow for an agent class, the application uses static strategy irrespective of the
globally configured strategy. In this scenario, if there is an existing mapping of agent class to manifest
configured and if the input manifest does not match with the configured one, then an illegal state exception
(HTTP 409 Conflict) error isthrown. If there is no existing mapping configured, then a mapping of agent
classto the input manifest 1D will be persisted.

After upgrading agents that already have a flow defined for their agent class, the changes in the manifest (version and
processor updates) are not instantly reflected in the existing flows. To make these changes appear, you must refresh
the manifest using the Refresh Manifest option available in the Edge Flow Manager Flow Designer.

« Unforeseen issues can arise when refreshing the agent manifest. As aresult, Cloudera recommends that you export
the original flow definition before you continue with this task. Y ou can export the flow definition with the REST
API using the GET /designer/{ agentClassName} /flows/export operation and endpoint. For more information, see
Exporting and importing dataflows using the Edge Flow Manager Ul.

« Update all agents belonging to the same agent class. Inconsi stencies between agent configuration can lead to
issues with flow execution.

In the Edge Flow Manager, go to a Design.
2. Select the flow that belongs to the updated class and click Open.
3. Click Actions Refresh Manifest... .

If there are new manifest definitions available for the class, the latest is used. Additionally, the differences
between the existing and new manifest definition is presented to you in amoda window. The modal window only

https://docs.cloudera.com/cem/2.3.1/exporting-and-importing-dataflows/topics/cem-exporting-and-importing-dataflows-ui.html

Cloudera Edge Management Refreshing the agent manifest for existing flows

lists newly added or removed processors and controller services. Version differences are not highlighted. Thisis
because version differences are applicable to all processors following an upgrade. Here is an example:

Refresh Manifest X

/\ Refreshing this flow will rebase it to the latest manifest for the class manifest-test.

Differences between actual and latest manifest:

Added Processors:

org.apache.nifi.minifi.processors.Comp1ProcNEW
Removed Processors:

org.apache.nifi.minifi.processors.Comp1Proc4

org.apache.nifi.minifi.processors.Comp1Proc3
Added ControllerServices:

org.apache.nifi.minifi.controllers.Comp1CtrISvcNEW
Removed ControllerServices:

org.apache.nifi.minifi.controllers.Comp1CtrlSvc2

4. Review the changes and click Refresh.

The manifest is automatically refreshed after you click Refresh. All existing processors and services are updated
in the flow. Any new processors and services become availablein thelist.

5. Update component parametersif there were any changes.

Component parameter changes, for example, name changes, introduction of new parameters, and so on, must be
corrected before publishing.

6. Publish the updated flow.

The agent manifest for the selected flow is refreshed. New agent capabilities are reflected in the manifest.

	Contents
	Introduction to agent manifest resolution strategy
	Refreshing the agent manifest for existing flows

