
Cloudera Flow Management - Kubernetes Operator 2.10.0

Configuring NiFi Registry CR
Date published: 2024-06-11
Date modified: 2025-04-28

https://docs.cloudera.com/

https://docs.cloudera.com/

Legal Notice

© Cloudera Inc. 2026. All rights reserved.

The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property
rights. No license under copyright or any other intellectual property right is granted herein.

Unless otherwise noted, scripts and sample code are licensed under the Apache License, Version 2.0.

Copyright information for Cloudera software may be found within the documentation accompanying each component in a
particular release.

Cloudera software includes software from various open source or other third party projects, and may be released under the
Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms.
Other software included may be released under the terms of alternative open source licenses. Please review the license and
notice files accompanying the software for additional licensing information.

Please visit the Cloudera software product page for more information on Cloudera software. For more information on
Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your
specific needs.

Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor
liability arising from the use of products, except as expressly agreed to in writing by Cloudera.

Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered
trademarks in the United States and other countries. All other trademarks are the property of their respective owners.

Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA,
CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF
ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR
RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH. CLOUDERA DOES NOT WARRANT THAT
CLOUDERA PRODUCTS NOR SOFTWARE WILL OPERATE UNINTERRUPTED NOR THAT IT WILL BE
FREE FROM DEFECTS NOR ERRORS, THAT IT WILL PROTECT YOUR DATA FROM LOSS, CORRUPTION
NOR UNAVAILABILITY, NOR THAT IT WILL MEET ALL OF CUSTOMER’S BUSINESS REQUIREMENTS.
WITHOUT LIMITING THE FOREGOING, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, CLOUDERA EXPRESSLY DISCLAIMS ANY AND ALL IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, NON-INFRINGEMENT, TITLE, AND
FITNESS FOR A PARTICULAR PURPOSE AND ANY REPRESENTATION, WARRANTY, OR COVENANT BASED
ON COURSE OF DEALING OR USAGE IN TRADE.

Cloudera Flow Management - Kubernetes Operator | Contents | iii

Contents

Configuring a NiFi Registry cluster... 4

Configuring group, version, kind, and meta... 4

Configuring images...4

Configuring persistence..5

Configuring node certificate generation...5

Configuring connections to NiFi Registry..5
Configuring session affinity... 6
Configuring arbitrary connections..6
Configuring NiFi Registry Web UI connection...7

Hostname-only ingress example...7
Hostname-only route example..7
Ingress with context path example...7

Configuring additional proxy hosts..8

Configuring authentication for NiFi Registry... 8
Configuring the initial admin user... 9
Configuring LDAP authentication..9
Configuring OIDC authentication.. 10

Configuring JVM security providers (FIPS)... 11
Configuration...13

Example CR.. 14

Cloudera Flow Management - Kubernetes Operator Configuring a NiFi Registry cluster

Configuring a NiFi Registry cluster

Cloudera Flow Management Operator for Kubernetes can deploy NiFi Registry instances using the NiFiRegistry
custom resource. NiFi Registry instances are configured through these CRs. No additional configuration is required
after deployment.

A custom resource (CR) is a YAML file that describes your desired NiFi Registry deployments. This single file
contains all configuration information required for the NiFi Registry instance, no additional configuration is required
after deployment.

This documentation provides sample configuration code snippets that help you create a CR.

Configuring group, version, kind, and meta

This is the initial section of your YAML file that you need to specify in all cases.

You need to add the following section on top of each NiFi Registry custom resource (CR) you write. It defines the
group “cfm.cloudera.com”, the version “v1alpha1”, the kind “NifiRegistry”, and the name of your cluster and the
nodes. It can also specify the namespace in which resources will be deployed. It is expected that a single NiFi cluster
is deployed in a given namespace. You can also specify namespace during deployment, if that is what you want, omit
namespace from the CR.

apiVersion: cfm.cloudera.com/v1alpha
kind: NifiRegistry
metadata:
 name:[***NIFI REGISTRY NAME***]

Configuring images

This section describes the images used for running NiFi Registry. This provides a way of manually upgrading the
NiFi version in an existing cluster or very quickly rolling out NiFi clusters with new versions.

A CFM NiFi Registry deployment includes two container images: cfm-nifiregistry-k8s and cfm-tini. The cfm-
nifiregistry-k8s image is the actual registry image itself. The cfm-tini image is a small utility image used for
aggregating logs.

Pulling images from Cloudera’s registries requires a pull secret containing your Cloudera credentials. Create this pull
secret with

kubectl create secret docker-registry my-pull-secret \
--docker-username=[***CLOUDERA USER***] \
--docker-password=[***CLOUDERA PASSWORD***] \
--docker-server=container.repository.cloudera.com

spec:
 image:
 repository: [***CFM-NIFI-REGISTRY-K8S REPOSITORY***]
 tag: 2.8.0-bXX
 imagePullPolicy: IfNotPresent
 pullSecret: my-pull-secret
 tiniImage:
 Repository: [***CFM-TINI REPOSITORY***]
 tag: 2.8.0-bXX
 imagePullPolicy: IfNotPresent

4

Cloudera Flow Management - Kubernetes Operator Configuring persistence

 pullSecret: [***PULL SECRET***]

• The default [***CFM-NIFI-REGISTRY-K8S REPOSITORY***] is container.repository.cloudera.com/cloudera/c
fm-nifiregistry-k8s

• The default [***CFM-TINI REPOSITORY***] is container.repository.cloudera.com/cloudera/cfm-tini

if your Kubernetes cluster has no internet connection or you want to use a self-hosted repository, replace these with
the relevant paths.

Configuring persistence

Learn about configuring storage for NiFi Registry.

Cloudera Flow Management Operator for Kubernetes can configure persistent volumes for the following directories:

• flow_storage
• data
• extension_bundles

In the persistence spec, a default size and StorageClass can be defined which applies to each of the directories. The
spec can be further configured to define specific sizes and StorageClasses for each directory if desired.

spec:
 persistence:
 size: 1Gi
 storageClass: default
 flowStorage:
 size: 3Gi
 data: {}
 extensionBundles:
 storageClass: SOME-STORAGE-CLASS

Configuring node certificate generation

Learn about certificate generation options.

Cloudera Flow Management Operator for Kubernetes provides automatic certificate generation for each NiFi node
in a given cluster by way of cert-manager certificates to secure intra-cluster communication between NiFis. To
configure nodeCertGen, a cert-manager Issuer or ClusterIssuer is required. A self-signed Issuer setup is sufficient for
development environments. In production environments use a third-party authority, or internal signing CAs.

spec:
 security:
 nodeCertGen:
 issuerRef:
 name: self-signed-ca-issuer
 kind: ClusterIssuer

Related Information
Issuers and ClusterIssuers

Configuring connections to NiFi Registry

Learn about configuring connections for your NiFi Registry cluster.

5

https://cert-manager.io/docs/concepts/issuer/

Cloudera Flow Management - Kubernetes Operator Configuring connections to NiFi Registry

Cloudera Flow Management Operator for Kubernetes provides a flexible method of configuring connections to NiFi
Registry called Connections. Using Connections, a Service, Ingress, or Route can be configured to route to a specific
port on NiFi Registry. For defining Connections targeting an arbitrary port on NiFi Registry, use the spec.connections
array. For configuring connection to the NiFi Registry Web UI, use the spec.uiConnection field. This documentation
provides a full reference for Connections.

Configuring session affinity
Learn about configuring session affinity. It makes possible to keep connection to the web UI alive in clusters with
several nodes.

Regardless of your connection type, a NiFi cluster with more than one node requires session affinity of some type
for the Web UI to operate. This is because each NiFi node can supply its own web UI and if a LoadBalancer shifts
you to another instance, your authentication tokens become invalid. The best method of applying session affinity
varies greatly depending on the Kubernetes cluster provider. In the simplest case, defining session affinity on the web
Service resource itself is sufficient:

spec:
 uiConnection:
 serviceConfig:
 sessionAffinity: ClientIP

In certain clouds, for example AWS, the backing LoadBalancer resources do not support session affinity, and cause
provisioning to break.

Configuring arbitrary connections
Learn about configuring a connections array.

You can use the connections array to flexibly define routing to ports on NiFi. The below example configures an
Ingress resource with some annotations and labels provided. The Ingress will expose a URL https://nifi.io/listenTCP
which routes to port 9432 on NiFi. Additionally, the backing Service is configured to have two extra ports, 8496 and
8495.

spec:
 connections:
 - type: Ingress
 name: someConnection
 annotations:
 someanno: myanno
 labels:
 somelabel: mylabel
 ingressConfig:
 hostname: nifi.io
 paths:
 - port: 9432
 path: /listenTCP
 name: listentcp
 serviceConfig:
 ports:
 - port: 8496
 protocol: TCP
 name: porta
 - port: 8495
 protocol: UDP
 name: portb

6

Cloudera Flow Management - Kubernetes Operator Configuring connections to NiFi Registry

Configuring NiFi Registry Web UI connection
Learn about configuring a connection to the NiFi Registry web UI.

You can configure a connection to the NiFi Registry Web UI using the spec.uiConnection field. It is a standard
connection field with special validation and handling. The name of this connection is always ignored and set to
[***CR NAME***]-web. For Ingress type connections, a maximum of one path may be specified. When you
configure a uiConnection, the spec.hostname field is required.

The uiConnection can support hostname routing with and without an additional context path. It is not recommended
to use a context path for routing as NiFi Registry does not support it well, but it is possible. For more information, see
NiFi Registry documentation on proxy configuration. An example using ingress-nginx is included in this section.

Hostname-only ingress example
Learn about configuring an Ingress resource using TLS files generated by Cloudera Flow Management Operator for
Kubernetes.

This YAML snippet configures an Ingress resource for accessing the NiFi Registry Web UI. It uses the TLS files
generated by a Cloudera Flow Management Operator for Kubernetes created Certificate as defined in spec.securit
y.ingressCertGen. The supplied annotations are for the ingress-nginx Ingress controller. The affinity settings enable
a persistent session so that UI interactions go to the same NiFi Registry node in the cluster. The backend-protocol
setting is needed for when NiFi Registry is configured to be secure, as it will reject any non-HTTPS connection
attempts.

spec:
 uiConnection:
 type: Ingress
 ingressConfig:
 ingressClassName: myIngressClass
 ingressTLS:
 - hosts:
 - nifi.localhost
 secretName: mynifi-ingress-cert
 annotations:
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/affinity-mode: persistent
 nginx.ingress.kubernetes.io/backend-protocol: HTTPS

Hostname-only route example
Learn about configuring a Route resource to acces the NiFi Registry web UI.

This YAML snippet configures a Route resource for accessing the NiFi Registry web UI.

spec:
 uiConnection:
 type: Route
 routeConfig:
 tls:
 termination: passthrough

Ingress with context path example
Learn about configuring an Ingress resource that rewrites the connection path in incoming requests and does a
reverse-rewrite on UI calls going to the backend.

This YAML code snippet configures an ingress UI Connection with a path. The annotations here are for the ingress-
nginx ingress controller and all are required for NiFi Registry to correctly understand the incoming requests.

7

Cloudera Flow Management - Kubernetes Operator Configuring authentication for NiFi Registry

In the example the path includes some regex at the end: (/|$)(.*). This regex informs the rewrite directives in the
configuration-snippet and rewrite-target annotations. NiFi Registry does not handle proxy paths well, it does not
understand that https://nifi-registry.localhost/some/path/to/nifi-registry coming through the defined Ingress is
intended to call the /nifi-registry API to load the UI. The rewrite-target annotation addresses this by capturing the
/nifi-registry and anything that comes after and sends that as the path to the NiFi Registry pod. It translates /some/
path/to/nifi-registry/ to /nifi-registry/. Similarly, the NiFi Registry web UI does not correctly form API calls going
to the backend, attempting to call /nifi-registry/ instead of /some/path/to/nifi-registry/. This is addressed by the
configuration-snippet rewrite instruction. It does the reverse of the rewrite-target, reapplying the removed context
path /some/path/to. The remaining configuration-snippet lines are headers required by a NiFi Registry behind a proxy.
For more information, see the NiFi System Administrator’s Guide.

spec:
 uiConnection:
 type: Ingress
 ingressConfig:
 ingressClassName: myIngressClass
 ingressTLS:
 - hosts:
 - nifi.localhost
 secretName: mynifi-registry-ingress-cert
 paths:
 - port: 8443
 path: "/some/path/to(/|$)(.*)"
 annotations:
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/affinity-mode: persistent
 nginx.ingress.kubernetes.io/backend-protocol: HTTPS
 nginx.ingress.kubernetes.io/configuration-snippet: |-
 proxy_set_header X-ProxyScheme $scheme;
 proxy_set_header X-ProxyHost $host;
 proxy_set_header X-ProxyPort $server_port;
 proxy_set_header X-ProxyContextPath /some/path/to;
 rewrite (.*\/nifi)$ $1/ redirect;
 proxy_ssl_name mynifi.default.svc.cluster.local;
 nginx.ingress.kubernetes.io/rewrite-target: /$2

Configuring additional proxy hosts
Learn about adding a list of expected proxy hosts. NiFi Registry will reject API requests sent through proxies if it is
not aware of those proxy hosts.

Provide a list of expected proxy hosts to NiFi Registry beyond the hostname provided in hostName. To add additional
proxy hosts, add the following to your NiFi Registry YAML:

spec:
 additionalProxyHosts:
 - [***YOUR PROXY***]
 - [***ANOTHER PROXY***]

Configuring authentication for NiFi Registry

Learn about configuring the type of authentication appropriate for your use case.

8

Cloudera Flow Management - Kubernetes Operator Configuring authentication for NiFi Registry

Note:

NiFi Registry requires all web and API traffic be over HTTPS to support user authentication and
authorization. For information on adding an auto-generated certificate to each node, see Node certificate
generation.

Related Concepts
Configuring node certificate generation

Configuring the initial admin user
When you set up a secured NiFi Registry instance for the first time, you must manually designate an "Initial Admin
Identity". This initial admin user is granted access to the UI and given the ability to create additional users, groups,
and policies.

NiFi Registry requires an initial admin user which will be given sufficient privileges to configure other users and
policies. When configuring an authentication method other than single user authentication, an initial admin user is
required.

Specify the initial admin user with the following YAML snippet:

spec:
 security:
 initialAdminIdentity: [***INITIAL ADMIN IDENTITY***]

Replace [***INITIAL ADMIN IDENTITY***] with a username, LDAP distinguished name (DN), or a Kerberos
principal.

Configuring LDAP authentication
Learn how to configure an LDAP server for user authentication in your NiFi or NiFi Registry cluster.

Cloudera Flow Management Operator for Kubernetes can configure NiFi to connect to an LDAP server for user
authentication.

Prerequisites:

• Full LDAP URL, i.e. ldap://[***LDAP SERVER URL***]:[***LDAP PORT***]
• Desired authentication strategy
• Authentication credentials and key/trust stores if using LDAPS.
• User search filters

For LDAP servers protected with any authentication, a Secret must be created containing the correct authentication
credentials and TLS resources (if applicable). The Secret must contain the following data fields:

• managerPassword
• keystore (if TLS is configured)
• keystorePassword (if TLS is configured)
• truststore (if TLS is configured)
• truststorePassword (if TLS is configured)

Create the secret usiing the cubectl CLI utility:

kubectl create secret generic my-ldap-creds \
 --from-literal=managerPassword=myMan@gerPassw0rd \
 --from-file=keystore=/path/to/keystore \
 --from-literal=keystorePassword=myKeystorePassword \
 --from-file=truststore=/path/to/truststore \
 --from-literal=truststorePassword=myTruststorePassword

9

https://docs.cloudera.com/cfm-operator/2.10.0/configure-registry-cr/topics/cfm-op-configure-nifi-cr-cert-gen.html
https://docs.cloudera.com/cfm-operator/2.10.0/configure-registry-cr/topics/cfm-op-configure-nifi-cr-cert-gen.html

Cloudera Flow Management - Kubernetes Operator Configuring authentication for NiFi Registry

The following example shows a connection to an LDAP server protected with basic authentication with TLS.

spec:
 security:
 initialAdminIdentity: mynifiadmin
 ldap:
 authenticationStrategy: SIMPLE
 managerDN: "cn=admin,dc=example,dc=org"
 secretName: my-ldap-creds
 referralStrategy: FOLLOW
 connectTimeout: 3 secs
 readTimeout: 10 secs
 url: ldap://my-ldap-url:389
 userSearchBase: "dc=example,dc=org"
 userSearchFilter: "(uid={0})"
 identityStrategy: USE_USERNAME
 authenticationExpiration: 12 hours
 tls:
 keystoreType: jks
 truststoreType: jks
 clientAuth: NONE
 protocol: TLSv1.2

By default, Cloudera Flow Management Operator for Kubernetes does not deploy a UserGroupProvider using the
LDAP target. This means NiFi does not pull down any users, only queries the LDAP server for authentication. This
impedes configuring user access, requiring the NiFi administrator to create each user manually.

The following example shows configuring user synchronization with the LDAP server:

spec:
 security:
 ldap:
 sync:
 interval: 30 min
 userObjectClass: inetOrgPerson
 userSearchScope: SUBTREE
 userIdentityAttribute: cn
 userGroupNameAttribute: ou
 userGroupNameReferencedGroupAttribute: ou
 groupSearchBase: "dc=example,dc=org"
 groupObjectClass: organizationalUnit
 groupSearchScope: OBJECT
 groupNameAttribute: ou

Configuring OIDC authentication
NiFi Registry supports user authentication with Open ID Connect (OIDC) providers such as Keycloak.

To configure authentication with an Open ID Connect (OIDC) provider, you need to know the Discovery URL,
clientId, and clientSecret of the authenticating server.

An example of a Discovery URL from Keycloak is:

https://keycloak.cfmoperator.net/realms/master/.well-known/openid-configurat
ion

10

Cloudera Flow Management - Kubernetes Operator Configuring JVM security providers (FIPS)

The clientID and clientSecret fields are provided to NiFi Registry in a Kubernetes secret. Create that secret with the
following command:

kubectl create secret generic oidc-client-secret --from-literal=clie
ntID=[***YOUR CLIENT ID***] --from-literal=clientSecret=[***YOUR CLIENT
 SECRET***]

The Discovery URL and client credentials secret are provided to NiFi Registry with the below spec:

spec:
 security:
 openIDAuth:
 discoveryURL: [***YOUR DISCOVERY URL***]
 clientSecretName: [***OIDC CLIENT SECRET***]

OpenIDAuth also provides additional options:

connectTimeout

Specify the connection timeout when communicating with the OIDC provider.

readTimeout

Specify the read timeout when communicating with the OIDC provider.

JWSAlgorithm

JWSAlgorithm is the preferred algorithm for validating identity tokens. If this value is blank,
it defaults to RS256 which is required to be supported by the OIDC provider according to the
specification. If this value is HS256, HS384, or HS512, NiFi Registry attempts to validate HMAC
protected tokens using the specified client secret. If this value is none, NiFi Registry attempts to
validate unsecured/plain tokens. Other values for this algorithm attempt to parse as an RSA or EC
algorithm to be used in conjunction with the JSON Web Key (JWK) provided through the jwks_uri
in the metadata found at the discovery URL.

Note:

For NiFi Registry to trust the certificate presented by the OIDC server, you must add a valid CA for your
OIDC server to NiFi Registry. For informatioon on adding a CA to NiFi Registry, see Additional CA
Bundles.

Related Information
OpenID Connect | Apache NiFi System Administrator's Guide

Configuring JVM security providers (FIPS)

NiFi and NiFi Registry are not FIPS compliant out of the box. When booting cfm-nifi-k8s for NiFi version 1 on a
FIPS enabled cluster, the Pod will enter a CrashLoop attempting to load JKS keystores. NiFi version 2 will boot but
not necessarily be compliant. Follow the instructions here to add additional security providers to the NiFi JVM to
enable FIPS compliance.

Prerequisites

FIPS compliance requires special security providers to be given to the NiFi and NiFi Registry containers. To fully
configure these new providers, the operator requires a few pieces of information:

1. Security provider jars.
2. Keystore provider class.
3. Preferred keystore format.
4. Security providers definition.

11

http://docs.cloudera.com/cfm-operator/2.10.0/configure-nifi-cr/topics/cfm-op-configure-nifi-cr-additional-ca-bundles.html
http://docs.cloudera.com/cfm-operator/2.10.0/configure-nifi-cr/topics/cfm-op-configure-nifi-cr-additional-ca-bundles.html
https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html#openid_connect

Cloudera Flow Management - Kubernetes Operator Configuring JVM security providers (FIPS)

5. Java policy for providers. (optional)

Security provider jars

These are Java jar files containing FIPS compliant security providers that you have obtained from
Cloudera (CCJ and BCTLS) or another vendor, such as Safelogic. The jars should be referred to by
the environment variable PROVIDER_JAR_PATH.

The rest of this document will show examples using ccj and bctls from Cloudera’s archive mirror.

Keystore provider class

The provider class that should be used for constructing keystores and truststores. Using ccj, this
would be com.safelogic.cryptocomply.jcajce.provider.CryptoComplyFipsProvider. This will be
provided to NiFi by environment variable KEYSTORE_PROVIDER_CLASS.

Preferred keystore format

The default keystore format JKS is a weak format and generally not FIPS compliant. Your security
provider may provide a different format, such as Bouncy Castle FIPS KeyStore (BCFKS). This will
be supplied to NiFi by environment variable KEYSTORE_TYPE.

Security providers definition

The security providers to add to the JVM must be provided in a file with one provider per line.

CCJ example:

$ cat additional-security-providers.txt
com.safelogic.cryptocomply.jcajce.provider.CryptoComplyFipsProv
ider
org.bouncycastle.jsse.provider.BouncyCastleJsseProvider fips:CCJ

A path reference to this file must be provided with an environment variable
SECURITY_PROVIDERS_PATH.

Java policy for providers

For some providers, additional permissions may need to be given via Java policy. A standard Java
policy file can be provided, see this CCJ example:

$ cat additional-java-policy.txt
grant {
 //CCJ Java Permissions
 permission java.lang.RuntimePermission "getProtectionDomain";
 permission java.lang.RuntimePermission "accessDeclaredMembers
";
 permission java.util.PropertyPermission "java.runtime.name",
"read";
 permission java.security.SecurityPermission "putProviderProp
erty.CCJ";
 //CCJ Key Export and Translation
 permission com.safelogic.cryptocomply.crypto.CryptoServicesP
ermission "exportKeys";
 //CCJ SSL
 permission com.safelogic.cryptocomply.crypto.CryptoService
sPermission "tlsAlgorithmsEnabled";
 //CCJ Setting of Default SecureRandom
 permission com.safelogic.cryptocomply.crypto.CryptoService
sPermission "defaultRandomConfig";
 //CCJ Setting CryptoServicesRegistrar Properties
 permission com.safelogic.cryptocomply.crypto.CryptoServicesP
ermission "globalConfig";
 //CCJ Enable JKS
 permission com.safelogic.cryptocomply.jca.enable_jks "true";

12

https://archive.repo.cdp.clouderagovt.com/p/safelogic/

Cloudera Flow Management - Kubernetes Operator Configuring JVM security providers (FIPS)

};

A path reference to this file must be provided with an environment variable
JAVA_POLICY_PATH.

Configuration
The Cloudera Flow Management Kubernetes Operator for Apache NiFi has two methods of providing FIPS compliant
security providers to the NiFi JVM: image rebuild or with volumes.

Image rebuild

Note:

This option requires access to an internal container registry.

This is the recommended method of enabling FIPS if you’ve got the infrastructure to utilize, as this requires no
runtime configuration, Flow developer teams will simply reference the new FIPS enabled image.

You can provide all required JVM Security Provider Information directly to the cfm-nifi-k8s and cfm-nifiregistry-k8s
images via an image rebuild. With this method, you will create a Dockerfile that modifies the images you’ve pulled
from Cloudera prior to pushing them to your internal registries.

1. In a directory, place the provider jars, provider definition file, and optional java policy file.

$ ls
additional-java-policy.txt additional-security-providers.txt bctls.jar
 ccj-3.0.2.1.jar

2. Create a Dockerfile.

Use args to parameterize this Dockerfile for reuse
ARG CFM_NIFI_K8S_BASE_IMAGE=container.repository.cloudera.com/cloudera/
cfm-nifi-k8s
ARG CFM_NIFI_K8S_BASE_TAG=2.9.0-b96-nifi_1.27.0.2.3.14.0-14

FROM ${CFM_NIFI_K8S_BASE_IMAGE}:${CFM_NIFI_K8S_BASE_TAG} AS nifi-k8s

Copy the required files
COPY bctls.jar ccj-3.0.2.1.jar $NIFI_HOME/lib/
COPY additional-java-policy.txt additional-security-providers.txt $NIFI
_HOME/conf/
Configure environment variables to point to the provided files
ENV PROVIDER_JAR_PATH="$NIFI_HOME/lib/ccj-3.0.2.1.jar:$NIFI_HOME/lib/bctls
.jar"
ENV JAVA_POLICY_PATH="$NIFI_HOME/conf/additional-java-policy.txt"
ENV SECURITY_PROVIDERS_PATH="$NIFI_HOME/conf/additional-security-provide
rs.txt"
Configure the keystore type
ENV KEYSTORE_TYPE=BCFKS

Specify the security provider classe
ENV KEYSTORE_PROVIDER_CLASS=com.safelogic.cryptocomply.jcajce.provider.Cr
yptoComplyFipsProvider

3. Build the new image.

docker build -t <your-registry>/cloudera/cfm-nifi-k8s:2.9.0-b96-nifi_1.2
7.0.2.3.14.0-14-fips .
docker push <your-registry>/cloudera/cfm-nifi-k8s:2.9.0-b96-nifi_1.27.0.2
.3.14.0-14-fips

13

Cloudera Flow Management - Kubernetes Operator Example CR

Using volumes

Using volumes, Security Providers can be configured at deploy time using the standard cfm-nifi-k8s and cfm-
nifiregistry-k8s images provided by Cloudera. Prior to deploying NiFi or NiFi Registry, a volume that supports RWX
should be created and populated with the required files:

• Security provider jars
• Security provider definition file
• Additional Java policy

1. In your Nifi or NifiRegistry yamls, add the following to mount the volume:

spec:
 statefulset:
 volumes:
 - name: fips-providers
 persistentVolumeClaim:
 claimName: [***RWX VOLUME CLAIM***]
 volumeMounts:
 - name: fips-providers
 mountPath: /opt/nifi/fips-providers

2. Reference the provided files, keystore type, and keystore provider class:

spec:
 security:
 jvmSecurityProviderInfo:
 # List of provider jars in classpath format
 providerJarPath: "/opt/nifi/fips-providers/ccj-3.0.2.1.jar:/opt/ni
fi/fips-providers/bctls.jar"
 # Class providing the keystore implementation
 providerClass: com.safelogic.cryptocomply.jcajce.provider.CryptoCo
mplyFipsProvider
 # Keystore format
 keystoreType: BCFKS
 # Path to security providers definition
 securityProvidersPath: /opt/nifi/fips-providers/additional-security-
providers.txt
 # Path to additional Java policy
 javaPolicyPath: /opt/nifi/fips-providers/additional-java-policy.txt

Example CR

This custom resource example configures a basic NiFi Registry instance with a single replica, no security, and a
Route to connect to the UI.

apiVersion: cfm.cloudera.com/v1alpha1
kind: NifiRegistry
metadata:
 name: mynifiregistry
spec:
 image:
 repository: container.repository.cloudera.com/cloudera/cfm-nifi-k8s
 tag: [***NIFI REGISTRY TAG***]
 tiniImage:
 repository: container.repository.cloudera.com/cloudera/cfm-tini
 tag: [***CFM TINI TAG***]
 hostName: mynifiregistry.[***OPENSHIFT ROUTER DOMAIN***]
 uiConnection:

14

Cloudera Flow Management - Kubernetes Operator Example CR

 type: Route

15

	Contents
	Configuring a NiFi Registry cluster
	Configuring group, version, kind, and meta
	Configuring images
	Configuring persistence
	Configuring node certificate generation
	Configuring connections to NiFi Registry
	Configuring session affinity
	Configuring arbitrary connections
	Configuring NiFi Registry Web UI connection
	Hostname-only ingress example
	Hostname-only route example
	Ingress with context path example

	Configuring additional proxy hosts

	Configuring authentication for NiFi Registry
	Configuring the initial admin user
	Configuring LDAP authentication
	Configuring OIDC authentication

	Configuring JVM security providers (FIPS)
	Configuration

	Example CR

